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Abstract

The healthcare and wellness products retail market can be characterized by the medium to long
shelf-life of the products, the dynamism in the market, its competitiveness, and scale. In this
market, considering the effects of promotions or promotional events is gaining importance, as it’s
been shown that they can greatly increase store traffic and sales volume [44][3]. Additionally,
product demand can also be affected by other variables such as weather events, distance to nearest
competitor, holidays, and more [2]. Currently, the main forecasting models used to produce sales
predictions fall into 3 categories, the traditional time series models, such as the Auto-Regressive
Integrated Moving Average (ARIMA) or Holt Winter’s (HW), the machine learning models, like
Support Vector Machines (SVM) or Tree-based models, and lastly the deep learning models, a
subsection of the machine learning models, namely Recurrent Neural Networks (RNN) and Long
Short Term Memory Networks (LSTM).

Using traditional models, in cases where demand is influenced by promotions, weather effects
and special events like holidays, it isn’t yet possible to generate accurate sales predictions. The
abundance of promotional methods and their interactions can affect demand, further increasing the
difficulty in forecasting product sales using the traditional methods. Furthermore, both traditional
and newer approaches have difficulty when forecasting sales for intermittent and slow-moving
products.

We compare traditional and state of the art approaches to the problem of sales forecasting, in-
corporating exogenous variables such as different promotional methods and types, weather effects,
holidays, google analytics data, and more. We were particularly interested in a newer approach
named Deep AR, using Auto-Regressive Recurrent Neural Networks (RNN), which seems to out-
perform its alternatives when applied to large volumes of data [43]. This approach allows for
the incorporation of external variables, like promotions and weather events, and is also able to
produce sales forecasts for products recently introduced in the market, with very limited sales
histories. By applying each approach to the best of our ability, and selecting and identifying the
most appropriate performance measures that suited our modeling process and data, we provide a
fair comparison between the Deep AR, Prophet, SARIMAX, and Holt Winter’s models. A per-
formance analysis was conducted for multiple time series from multiple data sets that differed in
scale, variability, seasonality, and context. One data set was acquired from a Kaggle competition,
and it includes the store aggregated daily sales history, in euros, of several stores from the german
drug stores chain Rossmann (store-level sales forecasting). The second data set was provided by
Retail Consult and includes the daily sales history, in product units, of multiple products from
multiple stores owned by a large Portuguese healthcare and wellness products retailer (product-
store level sales forecasting). The time series selected for comparing the models were arranged
into multiple groups to provide a more in-depth analysis of each models’ performance (4 groups
based on median daily sales of each store for the Rossmann data set, and 3 groups based on aver-
age daily sales of each product-store for the Retail data set). We assessed how the Deep AR model
compared with other models when handling either seasonal or highly intermittent data, and when
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supplied with and without external variables, by graphically analyzing the plots generated by each
model (predictions and prediction intervals) and measuring their performance using the MASE,
considered to be one of the most suitable error metrics for multiple series and particularly in the
case of intermittent series [29].

Overall, results indicate that the Deep AR can be a highly suitable approach to the problem of
daily sales forecasting when supplied with a large training set containing multiple time series, in
particular for intermittent and slow-moving products. We also observed that it benefited from the
inclusion of multiple external variables such as different promotions and events. It exhibited the
best overall performance in the case of seasonal data and the case of highly intermittent data. In
both situations, it generated the most accurate and precise prediction intervals. In the case of the
Rossmann data set, the Deep AR reached the lowest average MASE values, out of all the models,
for the low median daily sales (MASE = 0.208) and the medium-low median daily sales group
(MASE = 0.184). Regarding the Retail data set, it achieved the lowest average MASE across all
time series (MASE = 0.695). We conclude that in the conducted experiments the Deep AR model
displayed the desirable traits of a valuable stock management and revenue optimization tool for
retailers of healthcare and wellness products.

CCS Concepts: •Applied computing → Forecasting; •Applied computing → Marketing;
•Computing methodologies→Machine learning algorithms;

Additional keywords and phrases: deep learning, forecasting, promotions, healthcare, wellness,
market



Resumo

O mercado de retalho de produtos de saúde e bem estar pode ser caracterizado pelo tempo de vida
médio a longo dos produtos, o dinamismo do mercado, a sua competitividade e escala. Neste
mercado, considerar os efeitos de promoções e eventos promocionais é cada vez mais relevante
pois já foi demonstrado que estes podem aumentar significativamente o número de clientes e o
volume de vendas [44][3]. A procura também pode ser afetada por mais fatores tais como feriados
e metereologia [2] entre outros. Atualmente, os métodos para previsão de vendas mais utilizados
estão agrupados em 3 categorias, nomeadamente os métodos tradicionais, tais como o ARIMA ou
Holt Winter’s, métodos de machine learning, como Suppport Vector Machines (SVM) ou Tree-
based, e finalmente os métodos de deep learning, uma sub-secção de machine learning, como por
exemplo Recurrent Neural Networks (RNN) e Long Short Term Memory Networks (LSTM).

Em casos em que a procura é influenciada pelas variáveis mencionadas (promoções, metere-
ologia, feriados), os métodos tradicionais são incapazes de produzir previsões com alta precisão.
Adicionalmente, a grande variedade de métodos promocionais e as suas interações também po-
dem afetar a procura, e consequemente dificultam o processo de produção de previsões. Ademais,
tanto as abordagens tradicionais como as modernas apresentam dificuldades em casos de séries
temporais intermitentes e de produtos de baixo-movimento.

Esta dissertação tem como objetivo comparar a recente abordagem Deep AR com as alterna-
tivas tradicionais e modernas, aplicadas ao problema de previsão de volumes de vendas, incorpo-
rando variáveis externas como efeitos promocionais, informação metereológica, dados recolhidos
através de google analytics, entre outros. A literatura sugere que a abordagem Deep AR, usando
Auto Regressive Neural Networks (ARNN), é capaz de um desempenho superior aos métodos
alternativos, quando aplicada a grandes volumes de dados [43]. Esta abordagem permite a incor-
poração de variáveis externas, como promoções e feriados, e também é capaz de gerar previsões de
volumes de vendas para produtos recentemente introduzidos no mercado, e portanto com históri-
cos de vendas limitados. Aplicando cada abordagem o melhor que conseguimos, e identificando
e selecionando as medidas de desempenho que melhor se adequam ao nosso processo modelativo
e dados utilizados, providenciamos uma comparação justa entre os modelos Deep AR, Prophet,
SARIMAX e Holt Winters. Analisamos o desempenho de cada abordagem, aplicada a múlti-
plas séries temporais de 2 conjuntos de dados distintos que variavam em escala, variabiabilidade,
sasonalidade e contexto. Também analisamos o seu desempenho na presença e na ausência de
variáveis externas como promoções, feriados, variáveis metereológicas, dados relacionados com
a concorrência e dados de google analytics. Um dos conjuntos de dados foi obtido através de
uma competição Kaggle, e inclui o histórico de vendas diárias, em euros, agregados por loja, de
várias lojas da farmacêutica alemã Rossmann (previsões ao nível da loja). O segundo conjunto foi
fornecido pela Retail Consult e inclui o histórico de vendas diárias de vários produtos em várias
lojas, de produtos de saúde e bem-estar de um revendedor Português de grande dimensão. As
séries temporais selecionadas para comparação foram organizadas em vários grupos para obter-
mos uma análise de desempenho mais detalhada (4 grupos baseados na mediana de vendas diárias
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de cada loja para os dados Rossmann, e 3 grupos baseados na média de vendas diárias de cada
produto em cada loja para os dados Retail). Comparamos os desempenhos de cada modelo através
da medida MASE, considerada uma das mais adequadas quando comparando o desempenho de
múltiplas séries temporais e especialmente no caso de séries intermitentes [29]. Adicionalmente,
comparamos os gráficos das previsões e intervalos de previsão gerados pelos vários modelos.

Em geral, os resultados indicam que o Deep AR é uma abordagem adequada ao problema de
previsão de vendas diárias quando lhe é fornecido um grande conjunto de dados para treino, con-
tentendo múltiplas séries temporais, particularmente, para produtos de baixo-movimento e com
vendas intermitentes. Também observamos que esta abordagem beneficia com a incorporação
de variáveis externas, como promoções, feriados, dados metereológicos e mais. Na maior parte
dos casos o Deep AR demonstrou o melhor desempenho, tanto na presença de séries temporais
periódicas como séries temporais intermitentes. Em ambos os casos produziu as previsões e inter-
valos de previsão mais precisos e com menor variância. No caso dos dados Rossmann, o modelo
Deep AR atingiu um valor médio de MASE mais baixo que os outros modelos, tanto para o grupo
de de lojas com uma mediana de vendas diárias baixas (MASE = 0.208) como para o grupo com
uma mediana de vendas diárias média-baixa (MASE = 0.184). No caso dos dados Retail, con-
siderando todas as séreis temporais, o Deep AR obteve o valor MASE médio mais baixo (MASE
= 0.695). Concluímos que as experiências realizadas demonstram que o Deep AR exibe as car-
acterísticas desejáveis de uma valiosa ferramenta de gestão de stock e otimizição de rendimento
para revendedores de produtos de saúde e bem-estar.

Conceitos CCS: •Computação aplicada→ Previsões; •Computação aplicada→ Marketing;
•Metodologias de computação→ Algoritmos de machine learning;

Palavras-chave e frases adicionais: deep learning, previsões de vendas, promoções, saúde, bem-
estar, mercado de retalho



Acknowledgements

First and foremost I wish to express my deepest gratitude to Alexandra Oliveira and Professor Ana
Paula Rocha, who guided me throughout this whole process. The completion of this study would
not have been possible without their continuous mentoring, guidance, and commitment.

My appreciation extends to our partner, Retail Consult, who provided material to conduct
this dissertation. Vitor Rangel Rodrigues, Nuno Tiago Maia dos Santos, and Ana Rita Novo, the
team from Retail Consult that accompanied this dissertation provided valuable insight, continuous
support, and greatly assisted in its completion.

In addition, a thank you to Professor Luís Paulo Reis, head of the Laboratory of Artificial In-
telligence and Computer Science, for his insightful comments and enthusiasm which had a lasting
effect on me and further motivated my work.

Lastly, I’d like to thank the Gluon TS Python toolkit developer team for their quick and coop-
erative responses to all questions solicited during this study.

Mário Santos

v



vi



“It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with

experiment, it’s wrong.”

Richard P. Feynman

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the Art 5
2.1 Common Solutions and Traditional Models . . . . . . . . . . . . . . . . . . . . 5
2.2 Demand Influencing Factors as External Variables . . . . . . . . . . . . . . . . . 8
2.3 Machine Learning models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Prophet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Deep AR: Probabilistic Forecasting with Auto-Regressive Recurrent Networks . 17
2.6 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Overview of reviewed literature . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology and Preliminary Data Analysis 27
3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Holt Winter’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 SARIMAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Prophet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Deep AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Rossmann Drug Stores Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Data Cleaning and Feature Engineering . . . . . . . . . . . . . . . . . . 31
3.2.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Prepared Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Retail Drug Stores Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Data Cleaning and Preparation . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Prepared Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Tests and Results 57
4.1 Rossmann Dataset Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Average MASE measurements and Standard Deviation for each model for
each group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Forecasts and Metrics for Low Median Group . . . . . . . . . . . . . . . 59
4.1.3 Forecasts and Metrics for Medium-Low Median Group . . . . . . . . . . 61

ix



x CONTENTS

4.1.4 Forecasts and Metrics for Medium Median Group . . . . . . . . . . . . . 63
4.1.5 Forecasts and Metrics for High Median Group . . . . . . . . . . . . . . 65

4.2 Retail Dataset Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Average MASE measurements and Standard Deviation for each model . . 67
4.2.2 Forecasts and Metrics for Low Average Group . . . . . . . . . . . . . . 68
4.2.3 Forecasts and Metrics for Medium Average Group . . . . . . . . . . . . 70
4.2.4 Forecasts and Metrics for High Average Group . . . . . . . . . . . . . . 74

5 Conclusions 79

A Additional literature review 83

A List of Results and Plots 87
A.1 Rossmann Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.1.2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Retail Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2.2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References 145



List of Figures

2.1 Actual Demand sales actual and forecast values by ARIMA and Holt Winter’s
(HW) [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Classification and categorization of demand influencing factors. . . . . . . . . . 10
2.3 Predicted and actual sales values in store #1 during 2009 [17] . . . . . . . . . . . 15
2.4 Predicted and actual sales values in store #2 during 2009 [17] . . . . . . . . . . 16
2.5 Deep AR Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Deep AR Gaussian Likelihood Model . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Deep AR Negative Binomial Likelihood Model . . . . . . . . . . . . . . . . . . 18

3.1 Scatter plot of daily sales by number of customers . . . . . . . . . . . . . . . . . 34
3.2 Box plots of daily sales for each day of the week . . . . . . . . . . . . . . . . . 34
3.3 Box plots of daily sales by promotion 1 . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Box plots of daily sales by promotion 2 . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Box plot of daily sales by days since last promotion . . . . . . . . . . . . . . . . 36
3.6 Box plots of daily sales by State Holiday . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Box plots of daily sales by School Holiday . . . . . . . . . . . . . . . . . . . . . 37
3.8 Box plot of daily sales for each weather event . . . . . . . . . . . . . . . . . . . 37
3.9 Box plot of median daily sales per store . . . . . . . . . . . . . . . . . . . . . . 37
3.10 Aggregated total daily sales scatter chart . . . . . . . . . . . . . . . . . . . . . . 42
3.11 Aggregated total daily sales line chart . . . . . . . . . . . . . . . . . . . . . . . 43
3.12 Daily sales volume for a single time series scatter chart . . . . . . . . . . . . . . 43
3.13 Daily sales volume for a single time serie line chart . . . . . . . . . . . . . . . . 43
3.14 Box plots of daily sales by out of stock Blue box plot - In Stock Red box plot -

Out of Stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.15 Box plots of daily sales by out of stock zoomed in Blue box plot - In Stock Red

box plot - Out of Stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.16 Box plots of daily sales by promotional display Blue box plot - No Promotion Red

box plot - Promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.17 Box plots of daily sales by promotional display zoomed in Blue box plot - No

Promotion Red box plot - Promotion . . . . . . . . . . . . . . . . . . . . . . . . 45
3.18 Box plots of daily sales by special holiday promotion Blue box plot - No Promo-

tion Red box plot - Promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.19 Box plots of daily sales by special holiday promotion zoomed in Blue box plot -

No Promotion Red box plot - Promotion . . . . . . . . . . . . . . . . . . . . . . 46
3.20 Plot of daily sales by high impact promotional discount 1 . . . . . . . . . . . . . 47
3.21 Plot of daily sales by high Impact promotional discount 2 . . . . . . . . . . . . . 47
3.22 Box plots of daily sales by high impact promotional discount 1 occurrence Blue

box plot - No Promotion Red box plot - Promotion . . . . . . . . . . . . . . . . 48

xi



xii LIST OF FIGURES

3.23 Box plots of daily sales by high impact promotional discount 2 occurrence Blue
box plot - No Promotion Red box plot - Promotion . . . . . . . . . . . . . . . . 48

3.24 Box plots of daily sales by product sub class . . . . . . . . . . . . . . . . . . . . 49
3.25 Box plots of daily sales by product class . . . . . . . . . . . . . . . . . . . . . . 49
3.26 Box plots of daily sales by city . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.27 Box plots of daily sales by city zoomed in . . . . . . . . . . . . . . . . . . . . . 50
3.28 Box plots of daily sales by district . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.29 Box plots of daily sales by district zoomed in . . . . . . . . . . . . . . . . . . . 51
3.30 Box plots of daily sales by region . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.31 Box plots of daily sales by region zoomed in . . . . . . . . . . . . . . . . . . . . 52
3.32 Box plots of daily sales by zone . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.33 Box plots of daily sales by zone zoomed in . . . . . . . . . . . . . . . . . . . . 53
3.34 Box plots of daily sales by channel . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.35 Box plot of average daily sales per Product-Store . . . . . . . . . . . . . . . . . 54

4.1 Average metrics for each model for each quartile . . . . . . . . . . . . . . . . . 58
4.2 Metrics for each models forecasts for each time series from Low median group (Q1) 59
4.3 Deep AR forecasts, prediction intervals and actual values for store 701 . . . . . . 59
4.4 SARIMAX forecasts, prediction intervals and actual values for store 701 . . . . . 60
4.5 Prophet forecasts, prediction intervals and actual values for store 701 . . . . . . . 60
4.6 Holt Winter’s forecasts and actual values for store 701 . . . . . . . . . . . . . . 60
4.7 Metrics for each models forecasts for each time series from Medium-Low median

group (Q2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Deep AR forecasts, prediction intervals and actual values for store 401 . . . . . . 61
4.9 SARIMAX Forecast for store 401 . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.10 Prophet forecasts, prediction intervals and actual values for store 401 . . . . . . . 62
4.11 Holt Winter’s forecasts and actual values for store 401 . . . . . . . . . . . . . . 62
4.12 Metrics for each models forecasts for each time series from Medium median group

(Q3)l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.13 Deep AR forecasts, prediction intervals and actual values for store 113 . . . . . . 63
4.14 SARIMAX forecasts, prediction intervals and actual values for store 113 . . . . . 64
4.15 Prophet forecasts, prediction intervals and actual values for store 113 . . . . . . . 64
4.16 Holt Winter’s forecasts and actual values for store 113 . . . . . . . . . . . . . . 64
4.17 Metrics for each models forecasts for each time series from High median group (Q4) 65
4.18 Deep AR forecasts, prediction intervals and actual values for store 639 . . . . . . 66
4.19 SARIMAX forecasts, prediction intervals and actual values for store 639 . . . . . 66
4.20 Prophet forecasts, prediction intervals and actual values for store 639 . . . . . . . 66
4.21 Holt Winter’s forecasts and actual values for store 639 . . . . . . . . . . . . . . 67
4.22 Average metrics for each model for each quartile . . . . . . . . . . . . . . . . . 67
4.23 MASE measurements for each models forecasts for each time series from the low

average group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.24 Holt Winter’s forecasts and actual values for time series 1496 . . . . . . . . . . . 68
4.25 SARIMA forecasts, prediction intervals and actual values for time series 1496 . . 69
4.26 SARIMAX forecasts, prediction intervals and actual values for time series 1496 . 69
4.27 Prophet forecasts, prediction intervals and actual values for time series 1496 . . . 69
4.28 ProphetX forecasts, prediction intervals and actual values for time series 1496 . . 70
4.29 Deep AR forecasts, prediction intervals and actual values for time series 1496 . . 70
4.30 Deep AR - FDR forecasts, prediction intervals and actual values for time series 1496 70
4.31 Metrics for each models forecasts for each time series from Medium average group 71



LIST OF FIGURES xiii

4.32 Holt Winter’s forecasts and actual values for time series 1675 . . . . . . . . . . . 71
4.33 SARIMA forecasts, prediction intervals and actual values for time series 1675 . . 71
4.34 SARIMAX forecasts, prediction intervals and actual values for time series 1675 . 72
4.35 Prophet forecasts, prediction intervals and actual values for time series 1675 . . . 72
4.36 ProphetX forecasts, prediction intervals and actual values for time series 1675 . . 73
4.37 Deep AR forecasts, prediction intervals and actual values for time series 1675 . . 73
4.38 Deep AR - FDR forecasts, prediction intervals and actual values for time series 1675 73
4.39 Metrics for each models forecasts for each time series from High average group . 74
4.40 Holt Winter’s forecasts and actual values for time series 1020 . . . . . . . . . . . 75
4.41 SARIMA forecasts, prediction intervals and actual values for time series 1020 . . 75
4.42 SARIMAX forecasts, prediction intervals and actual values for time series 1020 . 75
4.43 Prophet forecasts, prediction intervals and actual values for time series 1020 . . . 76
4.44 ProphetX forecasts, prediction intervals and actual values for time series 1020 . . 76
4.45 Deep AR forecasts, prediction intervals and actual values for time series 1020 . . 77
4.46 Deep AR - FDR forecasts, prediction intervals and actual values for time series 1020 77



xiv LIST OF FIGURES



List of Tables

2.1 Comparison between different forecasting approaches 1 . . . . . . . . . . . . . . 24
2.2 Comparison between different forecasting approaches 2 . . . . . . . . . . . . . . 25
2.3 Comparison between different forecasting approaches 3 . . . . . . . . . . . . . . 26

A.1 Additional studies comparing forecasting methods 1 . . . . . . . . . . . . . . . . 84
A.2 Additional studies comparing forecasting methods 1 . . . . . . . . . . . . . . . . 85

xv



xvi LIST OF TABLES



Abbreviations

ANN Artificial Neural Network
AR Auto Regressive
ARIMA Auto Regressive Integrated Moving Average
ES Exponential Smoothing
ETS Error Trend and Seasonality
GBR Gradient Boosting Regression (GBR)
HW Holt Winter
HWES Holt Winter’s Exponential Smoothing
ISSM Innovative State Space Model
LSTM Long Short Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MdAE Median Absolute Error
MdAPE Median Absolute Percentage Error
MdASE Median Absolute Scaled Error
MLPNN Multilayer Perceptron Neural Network
MLR Multiple Linear Regression
MSE Mean Square Error
QR Quantile Regression
RBF Radial Basis Functions
RMdSPE Root Median Square Percentage Error
RMSE Root Mean Square Error
RMSPE Root Mean Square Percentage Error
RMSSE Root Mean Squared Scaled Error
RNN Recurrent Neural Networks
SARIMA Seasonal ARIMA
SARIMAX SARIMA with EXogenous regressors
SVM Support Vector Machine
SVR Support Vector Regression
WNN Wavelets Neural Network
TS Takagi-Sugeno
XGBR Extreme Gradient Bossting Regression

xvii





Chapter 1

Introduction

1.1 Context

Retail consists of the sale of goods to the public for use or consumption rather than for resale.

Within the retail market, our interest is in the healthcare and wellness products retail market,

which can be described by the following characteristics:

• Perishability (shelf-life) of the products is medium to long

• Dynamism, given the frequent and large entry of new products into the market.

• Competitiveness, with retailers frequently adopting several strategies, namely promotions,

to gain an advantage over competitors.

• Dimension, being one of the largest retail markets on a global scale, resulting in a very large

number of retailers, products, and sales.

Sales forecasting is particularly useful for short and medium shelf-life product retailers since

successful sales forecasting considerably reduces lost sales and product returns. This is crucial not

only for revenue optimization but also due to the environmental factor since the returned product

is usually discarded, resulting in waste.

The factors that may affect sales and demand were categorized by Arunraj et al. (2015) [12]

as internal, partially internal, and external factors.

• Internal Factors - Promotions, Discounts, which are known to the retailer.

• Partially Internal Factors - cannibalization and complementarity.

• External factors - These can be observed, like sports events, festivals, holidays, abnormal

events (health crisis, terror attacks), or can be forecasted like the national economy and the

weather.

1
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By affecting the consumers’ demand, these factors may result in over-stocking, which leads

to a loss of revenue and waste, or under-stocking, leading to situations where the consumer can’t

purchase the desired product [2]. This might make the customer switch to another option or, in

the worst scenario, resort to a competitor retailer. As a result of these demand influencing factors,

high volatility, skewness, multiple seasonal cycles, intermittence with zero sales, and stock-outs

characterize the product-level sales data [21].

1.2 Motivation

Retailers must decide on their strategic development in a changing competitive and technological

environment. The standard currently adopted market strategy and competitive factor defining

elements within the developing technological environment is, normally, forecast dependent [33].

The purpose of product demand forecasting in a retail scenario is to generate predictions for

a large quantity of data (time series), over a given period of time (forecast horizon). Accurately

forecasting the demand for each product sold in each retail store is essential for the growth and vi-

ability of a retail chain. Given that many decisions, such as space allocation, availability, inventory

management, ordering, and pricing for a product are directly related to its demand forecast (see

Fildes et al. 2019 [21]). Decisions regarding ordering must avoid over-stocking or under-stocking

to avoid high inventory costs, and particularly in the case of medium shelf-life products, the expi-

ration of the product while still in the warehouse. Conversely, they must ensure that the inventory

level isn’t too low, to avoid high inventory costs or stock-outs and consequently loss of sales.

With regards to promotions, the regular and relative price discounts are variables that can be

incorporated in a forecasting model to improve its performance [21]. Several retail software

products incorporate these factors, as is the case of Systems Applications & Products in Data

Processing (SAP). Also, different promotion types (e.g. buy-one-get-one-free vs 50% discount)

which may seem similar to a customer, but aren’t, result in effects that aren’t reflected solely by

the unit price. However, it isn’t yet possible, with the traditional approaches, to accurately predict

if a promotional event will increase or decrease the volume of sales of the promoted product.

Another key point is the sheer abundance of promotional methods, which can be divided into

strategic (e.g. price discounts, card discounts, buy-one-get-one-free) or communicational (e.g.

flyers, coupons, social media, different tag sizes, and displays). This becomes a challenge in

forecasting product sales using the traditional methods, where incorporating complex input data

(with many variables) does not result in more accurate sales forecasts (Gur Ali et. al 2009) [7].

All the possible combinations of promotion methods and types will interact differently, and retail

marketers regularly introduce new promotional methods. This ensures that products have to be

forecasted with mixed and varying promotional methods, not previously observed for the consid-

ered product.
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1.3 Objectives

Our general objective is to compare the forecasting performance of state of the art and traditional

sales forecasting methods when applied to healthcare and wellness products.

Our specific goals are:

• Train validate and apply the newer Deep AR approach to the problem of healthcare and

wellness retail product sales forecasting.

• Train validate and apply common traditional and more recent approaches to the same prob-

lem, including Holt Winter’s, SARIMA, SARIMAX, and Prophet.

• Compare the various approaches using multiple data sets with distinct contexts and struc-

ture:

– Generating store aggregated daily sales volume forecasts in euros (forecasting at the

store level). Regular time series with similar generating processes

– Generating daily forecasts for individual products in particular stores in product units

(forecasting at the product-store level). Irregular and highly distinct time series

– Considering each approach, compare performance in time series grouped by close

generating processes within the same data set

• Analyse and select performance measurements that best suit our modeling process and data

• Identifying the relationship between external variables, such as promotional or weather ef-

fects, and the target variable, daily sales

• Identifying when and if these features should be incorporated in the considered models.

• Assisting in the development of the tool kits utilized.

Recent literature seems to indicate that the new Deep AR approach can outperform alternative

state of the art approaches, in forecasting accuracy, when analyzing large volumes of data and

predicting sales for products recently introduced in the market, with very few time series available

for training (see Salinas et al. 2019 [43]). We select the Deep AR model from GluonTS [5] [6],

a Python toolkit for probabilistic time series modeling, built around Apache MXNet. This im-

plementation has already been proven capable of generating accurate forecasts on large data sets

[43].

1.4 Document Structure

This document is divided into five chapters. The current chapter, Introduction, describes the con-

text and motivation of the work and enumerates its objectives. The following chapter, State of

the Art 2, comprises our literature review, including common forecasting solutions 2.1, demand
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influencing factors and their use as external variables 2.2, the introduction of machine learning

approaches to the problem 2.3, the novelty deep learning approach Deep AR 2.5 and the most

common error metrics used to assess forecasting performance2.6. Additionally in section 2.7 we

provide an overview of the reviewed literature referenced in this section, regarding comparisons

between different forecast approaches.

In chapter 3 3, methodology, provides an overview of the data sets and models used in this

study.

The results are outlined in Chapter 4 4, both the given performance metric for each model and

an analysis of the plotted forecasts and prediction intervals.

Lastly, in Chapter 5 5 we provide our conclusions on this study and recommendations for

future work.



Chapter 2

State of the Art

The work mentioned in the following sections were selected out of the full literature review due

to their particular interest to this specific dissertation. The remainder of the reviewed literature,

which only indirectly addresses the related issues tackled in this dissertation, can be found in the

appendix A in tables A.1 and A.2.

2.1 Common Solutions and Traditional Models

When forecasting sales, the expected demand can depend on changes in trend or seasonality. Sim-

ple exponential smoothing along with its variations that incorporate trend and seasonality, such

as Seasonal Auto-Regressive Integrated Moving Average (SARIMA) and Holt-Winter’s (HW)

model, are the most commonly used market-level sales forecasting approaches [21]. Auto-Regressive,

Exponential Smoothing, random-walk, and random-trend models are all special cases of ARIMA(p,d,q)

models. Research indicates that traditional time series models with stochastic trend, such as HW’s

Exponential Smoothing (HWES) variation and ARIMA, produced reliable forecasts if macroe-

conomic conditions were relatively stable [42]. However, the ARIMA model presumes certain

conditions that might not be true (e.g. assumes the historical patterns of data won’t vary in the

forecast horizon [35])

The ARIMA model can take the following form:

(1−φ1B− ...−φpBp)(1−B)d yt = c+(1+θ1B+ ...+θqBq)εt (2.1)

And can be divided in 3 components:

(1−φ1B− ...−φpBp)→ AR(p) (2.2)

(1−B)d yt → d_di f f erences (2.3)

c+(1+θ1B+ ...+θqBq)εt →MA(q) (2.4)

5



6 State of the Art

Where:

• p is the order of the auto-regressive (AR) part

• d is the degree of first differencing involved (I),

• q is the order of the moving average part (MA)

• B is the backshift operator

• εt is the white noise

• θ is the slope coefficient

The Holt-Winters’ seasonal method has two variations, the additive method, and the multi-

plicative method. When seasonal variations are approximately constant throughout the time series,

the additive method should be employed, however, if the seasonal variations vary proportionally

to the level of the series, the multiplicative method should be used.

The following is the additive component form:

Ŷt+h|t = lt +hbt + st+h−m(k+1) (2.5)

Where:

lt = α (yt − st−m)+(1−α)(lt−1 +bt−1) (2.6)

bt = β
∗ (lt − lt−1)+(1−β

∗)bt−1 (2.7)

st = γ (yt − lt−1−bt−1)+(1− γ)st−m (2.8)

and

lt is the level smoothing equation, α = the corresponding smoothing parameter

bt is the trend smoothing equation, β is the corresponding smoothing parameter

st is the seasonal component smoothing equation, γ is the corresponding smoothing param-

eter.

m is the frequency of seasonality (e.g. for monthly data m=12, for quarterly data m = 4)

k is the integer part of (h−1)/m, guarantees that the estimates of the seasonal indices use

for forecasting come from the last year in the sample

The following is the multiplicative component form:

Ŷt+h|t = (lt +hbt)st+h−m(k+1) (2.9)

Where:
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lt = α
yt

st−m
+(1−α)(lt−1 +bt−1) (2.10)

bt = β
∗ (lt − lt−1)+(1−β

∗)bt−1 (2.11)

st = γ
yt

(lt−1 +bt−1)
+(1− γ)st−m (2.12)

Veiga et al. (2016) [14] compared the performance between ARIMA and HW’s models for the

prediction of sales of a group of perishable dairy products (the dairy products weren’t specified in

the study), using historical sales data, in the period from 2005 to 2013, composed of 50 stock keep-

ing units (SKUs). The study concluded that the ARIMA model performs well in terms of accuracy

as well as the simple Holt-Winters. Their performance was measured using the Mean Absolute

Percentage Error (MAPE) and Theil’s inequality index (Theil’s U value). They remarked that

the forecast horizon of the predictions made with the HW’s model shouldn’t exceed the seasonal

cycle of the series, as predictions with a larger forecast horizon generally have reduced accuracy

when forecasting sales, due to mounting uncertainties. A limitation of this study is the lack of

performance measures, relying solely on MAPE and Theil’s U. The predictions produced by both

models as well as the actual values they were attempting to predict are illustrated in Figure 2.1

Figure 2.1: Actual Demand sales actual and forecast values by ARIMA and Holt Winter’s (HW) [14]

In 2015 Ramos et al. [42] compared the forecasting performance of state-space models, namely

Error Trend and Seasonality (ETS) model against a traditional model, ARIMA, using data con-

taining the monthly sales of five categories of footwear including flats, sandals, booties, shoes,

and boots over a period of 5 years resulting in 64 time points. Time points, of the form (t,yt) are

what describe a time series, t being the time and yt the predicted value for that time. The per-

formance measures used included MAPE, Mean Absolute Error (MAE), and Root Mean Square

Error (RMSE), and the results show that the accuracy of predictions made for the testing data

(out-of-sample) of the ETS and ARIMA models was similar. They found that, in general, ARIMA

models don’t produce more accurate forecasts than ETS models when predicting retail sales, and

neither is the most appropriate for all scenarios, in fact, they are complementary approaches, since

the ETS model is based on a description of trend and seasonality in the data, while the ARIMA
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model attempts to describe auto-correlations present in the data. They also concluded that ARIMA

tends to fit the data better (this doesn’t necessarily mean it produces more accurate forecasts).

2.2 Demand Influencing Factors as External Variables

To overcome the limitations of the traditional models, a forecasting model that considers uncer-

tainty and incorporates demand influencing factors as external variables in forecasts, (e.g. holi-

days, festivals, price reductions and weather during the promotion) is required [12]. It must also

be mentioned that it is impossible to measure demand directly in retail stores since no orders are

placed and the customers simply buy what is available on the shelves at the time. As a result of

this, the actual demand is assumed to be the actual volume of sales. However, in the occurrence of

a stock-out, the actual demand will be underestimated [13]. In addition to this, the price variations

and weather may affect regular demand patterns of customers, and the demand peaks may be a

consequence of promotions and holidays [13]. The following is an overview of factors that can

affect expected demand and consequences they might generate [53]:

• Product presentation and displays - The presentation of the product (apparent quality, pack-

aging), and the effects of displays have been thoroughly researched in the marketing lit-

erature. A general conclusion is that the presence of displays can increase sales signifi-

cantly [3].

• Price reductions, variations and other promotional strategies - A price reduction may encour-

age customers to purchase more and increase volatility in demand, it can also be planned or

unplanned. Warehousing and waste are two major consequences of an improperly planned

price reduction (Armstrong, 2001 [10]). Customers demand patterns are affected by price

variations, which may be caused by changes in the market.

• Holidays - Changes in demand as a result of festivals and holidays are expected and rely on

cultural habits, location, demography, and the religion of the customers. Instances of retail-

ers whose stores are close to touristic locations may experience higher demand variability

during the festival and vacation season due to visiting tourists.

• Weather - The customers’ purchase behavior can be affected by the weather (very hot or

cold, snowfall, rainfall). In extreme cases (e.g. heavy rainfall, snowfall) customers are

compelled to stay home or visit retail stores that are close to their residence. The quality of

the weather forecast should also be taken into consideration;

• cannibalization and complementary - Customer demand patterns on a given product are

affected by the introduction of new products or the application of promotions to related

products. This effect can occur in the same store (in-store) or between a store and a nearby

competitor (between-stores).

• Seasonal demand patterns and trend.
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The forecast accuracy depends on the following characteristics of the data (time series) being

forecast:

• Data quality: A forecasting model is largely reliant on the quality of its data. Both in-

sample, the data in the training and validation sets (data used for fitting the model and

hyper-parameter tuning respectively), and out-sample, the data in the testing set [13]. The

quality of forecasted data like the weather is also crucial.

• Data availability: To understand the external factors affecting sales, longer and complete

historical data must be available [13].

• Forecast horizon: Longer forecast horizons are likely to compound uncertainty which may

result in a decrease in accuracy.

In general the inaccuracies of a sales forecast results in one of two problems [2]):

• Under-stocking - Results in stock-outs, reduced confidence in the retailer by the customer,

and a worsening of market image.

• Over-stocking - Results in waste, a lack of shelf space, and shrinkage, particularly in prod-

ucts with a short shelf-life. The amount of waste is usually intensified by factors such as the

short-life and inferior product quality.

In Figure 2.2, which is an edited version of Arunraj et al. (2015) [12] figure, the demand in-

fluencing factors are classified into events, weather, price, cannibalization, complementarity sea-

sonality, product characteristics, and the number of customer visits. Our edited version includes

complementarity, and groups these factors into 3 categories mentioned by the original authors,

namely internal, partially internal and external. The internal forces include the price and the prod-

uct characteristics. However, substitution and cannibalization effects are only partially internal

as they can occur in-store or between-stores, as discussed in the context section 1.1. The external

forces include events (regular holidays, festivals, and school vacations), weather (temperature, pre-

cipitation), seasonality, and the number of customer visits, which can be from regular customers,

irregular customers, or special visitors, they are inherently uncontrollable.
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Figure 2.2: Classification and categorization of demand influencing factors.

There are many instances of these factors being considered as demand influencing, in 2010

the demand factors impacting sales on a leading soft drink company in the UK was discussed by

Ramanathan and Muyldermans [40]. To understand the demand for different product types they

considered holidays, festivals, size of promotion, type of promotion, duration of the promotion,

temperature, week-in-year, the rank of the product and more. Additionally, the calendar effect of

holidays was used as an external variable in Lee & Hamzah’s (2010) [31] forecasting application

and in a hybrid ARIMA Artificial Neural Network (ANN) forecasting model, researchers [1] used

payment, intermediate payment, holidays, before holidays, festivals, school vacation, price and

climate as input neurons. Also, Ali et al. (2009) [8] considered price, percentage of discount,

and type of promotion in their regression tree forecast approach, Sharma & Sharma (2012) [46]

used day-of-the-week, holidays, temperature and sale of alternate products in their ANN approach

and Hasin et al. (2011) [25] also used recognized holidays, availability, consumption rate, price,

promotional activities, climate and brand loyalty as input variables in an ANN based forecasting

approach. Different demand influencing factors categorized into location characteristics, promo-

tional variables, weather, national holidays and product characteristics were investigated by re-

searchers [52] [37]. These external variables were analyzed in several linear regression analysis

to predict promotional sales and again holidays, festivals, school vacation, weather (temperature,

pressure, and rain), and promotions were also used as external prediction features in Zliobaite’s

et al. (2012) [56] intelligent model. Additionally, researchers analyzed the weather sensitivity

of the food and drinks sector within the UK retail and distribution industry (Agnew and Thornes

1995) [2]. They discussed the feasibility and advantages of incorporating weather-derived vari-

ables in a sales forecasting model. Additional internal and external demand influencing factors

were also considered.
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• Internal forces - in-store promotions, advertising campaigns, merchandising, price changes,

changes in retail outlets, and restructuring of management and operational systems.

• External forces - economic factors, political and legal considerations, technical develop-

ment, social trend, seasons, holiday periods, and weather variability.

In 2016, Arunraj et al. [13] ) utilized an extended version of ARIMA, which included season-

ality (SARIMA) and another version that also included external variables (SARIMAX). The study

analyzed SARIMAX’s performance on a data set containing 5 years of daily sales of bananas,

measured in kilograms from a typical food retail store.

The SARIMAX model is an extension of the SARIMA model with external variables. SARI-

MAX (p,d,q) (P,D,Q)s (X), where X is the vector of external variables can be modeled by the

following multilinear regression equation:

Yt = β0 +β1X1,t +β2X2,t + ...+βkXk,t +ωt (2.13)

where X1,t ,X2,t , ...,Xk,t are observations of k number of external variables corresponding to the

dependent variable Yt , β0,β1, ...,βk are regression coefficients of external variables and ωt is the

residual series that is independent of input series (stochastic residual) [13]. The stochastic residual

is represented as follows:

ωt =
θq(B)ΘQ(BS)

φp(B)ΦP(BS)(1−B)d(1−BS)D εt (2.14)

Substituting this equation for the stochatisc residual in the previous equation for the SARIMAX

model gives us the general SARIMAX model equation:

Yt = β0 +β1X1,t +β2X2,t + ...+βkXk,t +
θq(B)ΘQ(BS)

φp(B)ΦP(BS)(1−B)d(1−BS)D εt (2.15)

In the study, the external variables used included:

• Holiday effects, comprised of 4 categories, regular holidays, Christmas, Easter, and School

vacations. Some examples of the dummy variables (0 or 1) are, the after holiday effect, the

after Christmas effect, and the school vacations effect.

• The month effects are composed of 11 dummy variables (0 or 1) and January is used as the

reference month.

• Lastly the price reduction effects are the discounted sales and the percentage of price reduc-

tion resulting from the promotion.

The study relied on the MAPE, and RMSE to measure the forecast accuracy, and Theil’s U statis-

tic to compare the considered model to a reference naive model. Based on the error measures

researchers concluded that including the extra external variables, improves the forecast accuracy
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of the SARIMAX model. The R2 value of the forecasting model was used to assess its fitness. In

general, an increase in R2 indicates fitness improvement. The value of R2 nearly doubled (from

0.386 to 0.613) when comparing the SARIMA to the SARIMAX model. Additionally, the Theil’s

U value for the SARIMAX and reference naive model were 0.60 and 1.004 respectively, implying

the SARIMAX model produces more accurate forecasts.

In 2015 researchers [12] developed the Seasonal ARIMA using Multiple Linear Regression

(SARIMA-MLR) and Seasonal ARIMA using Quantile Regression (SARIMA-QR) models to

forecast the daily sales of bananas, measured in kilograms, in a German retail store, from Jan-

uary 2001 to April 2014. The banana was selected because of its short shelf life (between 2 and 4

days) and its availability (year-round). The time series was highly periodic, however, researchers

noted that seasonal patterns were hard to observe. They found both models yielded more accurate

forecasts for out-sample data (data the model wasn’t trained on) when compared to seasonal naive

forecasting models, namely SARIMA, and Multilayer Perceptron Neural Network (MLPNN), due

to the fact that the SARIMA-MLR and QR models also consider demand influencing effects, such

as promotional effect and discount effect. The promotions were split into two types, planned and

unplanned. A planned promotion is announced in an advertisement, while the unplanned promo-

tion is done on any day of the week, depending on the price of a related product from a competitor.

However, in the model itself, the promotional effect variable is merely a percentage of price reduc-

tion. Researchers also considered the discount effect, which in this case is an unplanned price drop

on a banana when its quality begins to deteriorate (after 2-3 days of shelf life). Using MAPE and

RMSE as performance measures, they concluded that the MLPNN model produces less reliable

and accurate predictions when the training data is insufficient, in comparison to traditional time

series models. However, when complete data is available (inclusion of several external variables),

the MLPNN model is more suitable to explain non-linear relationships between variables, unlike

the SARIMA-MLR model that assumes linear relationships between variables. One of the main

limitations of the SARIMA-MLR and QR models is that they only produce point forecasts, that is,

the mean forecast, and given that the actual distribution of sales isn’t a normal distribution, the es-

timation of prediction intervals from the extrapolation of higher quantiles from the mean forecast

won’t reflect reality [12].

To better understand the influence of temporary price discounts on the sales of perishable

items, Donselar et al. (2016) [54] analyzed the potential threshold and saturation levels for the

relative price discount of four perishable product categories, namely desserts, dairy drinks, cold

cuts, and salads, using a large data set from a retailer encompassing over 100 stores. After which,

a regression model was used to forecast the sales of those products. In total, the data contained

1447 promotions in 86 weeks for 407 perishable items. The data included sales quantities, prices,

product information, weight or volume per consumer unit, the timing of promotions, additional

promotion actions, and information whether the product was on display in the store or included

in the store flyer. Researchers aggregated the data on the national level, that is, summed across

all stores. Sales data was used instead of demand data, this is because the retailer carried safety

stock to prevent out-of-stocks, The promotions ran simultaneously in all stores, generally for one
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week. The sales data was also weekly, from the second week in 2010 until week 35 in 2011. Each

sales week covers one promotion week. They found that desserts sell on average 14 times more

during a week when they are being promoted, even though their average Shelf Life is only 1.5

weeks. They argue this result suggests that the success of promotion is more determined by the

substitution effect (consumers swapping between different products due to lower price and other

factors) than by the restriction to stockpile caused by the short shelf-life. They also noted that

the weight or volume of the product was only relevant in the models for Cold Cuts and Salads,

while Shelf Life was only significant in the models for desserts and dairy drinks. They suggest

the addition of the interaction between these variables in the regression model may be used to

further improve its accuracy. however,is important to note that the use of more detailed input data

is advantageous only if more complex and advanced techniques are used, as shown by Gur Ali et.

al (2009) [7], who noted that incorporating a linear regression model with many variables did not

add any benefits. However, when employing a machine learning model the additional variables

result in significant improvements to the forecasting accuracy.

In the real world, there are a plethora of factors that can be considered demand influencing, and

we must consider that many of them are not readily available in the data, and present challenges

in their measurement and handling. Thus in our work, we will focus on a particular group of

factors, including different promotional strategies and communicational methods, such as price

reductions and promotional displays respectively. Additionally, google analytics data, weather

effects, competition data, as well as other factors that are obtainable from the data, such as the

variables derived from dates will also be included.

2.3 Machine Learning models

Previous work indicates that classical sales forecasting models based on time series were. in

some cases, unreliable at predicting aggregate retail sales, they identified signs of volatility and

non-linearity in the market level retail sales data. As such, researchers have turned to non-linear

models, particularly artificial neural networks (ANN) (Alon, et al. 2001 [9]), however,healthcare

and wellness products sales forecasting isn’t a widely covered topic within the machine learning

literature [51].

In 2013 a study [17] was published on the use of machine learning with the purpose of forecast-

ing the sales of a particular kind of pasta from a popular brand, for two stores, under promotions

and its comparison to the statistical models. One of the stores considered had bad management

which resulted in frequent stock-outs while the second store had good management and stock-outs

were rare, this is important as it more accurately simulates a realistic environment. The data used

for training and validation was from the years 2007 and 2008, while data from the year 2009 was

used for forecasting and testing. The days in which the store was closed were eliminated and the

year used for testing, 2009, was divided into 10 intervals of equal length. Store #1 had 10 inter-

vals, 36 days each, and store #2 also has 10 intervals, but of 32 days each. 9 calendar attributes

were used as input attributes linked to the specific day in which the output is given, month, day
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of the month, day of the week. These attributes account for predictable human behavior (e.g.

higher demand on a Saturday). They also used 4 problem-specific attributes, a Boolean which

represents whether the product is being promoted or not, the number of hours that the store is

open that day, the daily price of the product, and the total number of receipts released that day. It’s

important to note that the number of receipts released for a given day that the forecast was done is

an unknown value, researchers used a Support Vector Machine (SVM) to forecast the number of

receipts per day. This is an important point, as using a forecasted value as an attribute can decrease

forecasting accuracy (depending on the accuracy of the forecasted attribute), however, researchers

considered this attribute important enough to include it. The Neural Networks of Radial Basis

Functions (RBF), Multilayer Artificial Neural Networks (ANN), and Support Vector Machines

(SVM) models were compared against the traditional ARIMA, Exponential Smoothing (ES), and

HWES. Results for store #1 show the best mean performance between the machine learning meth-

ods was given by a variation of the RBF (RBF4i was the variation of the RBF model which used

the total receipts attribute), and between the statistical models it was produced by ARIMA. This

was the store with frequent stock-outs, so the error measure, MAPE, presented high values. Yet,

in every case, the machine learning models outperformed the statistical ones, resulting in a lower

MAPE value. This suggests that learning machine models are superior to statistical methods when

supplied with irregular data, in this case, a time series that presented various stock-outs. In the

following figure 2.3 the sales forecasts produced by the RBF4i model are plotted as well as the

actual sales.

For store #2, out of the machine learning models, the best result was produced by a variation of

the SVM (SVM4i) using the total receipts attribute, and out of the statistical methods, the HWES

generated the most accurate forecasts. In this situation, for each machine learning model, the

version using the total receipts attribute produced the lowest MAPE, which means that the incor-

poration of the forecasted attribute beneficial. Given that this store did not frequently experience

stock-outs, and the related time series were thus more regular, the statistical methods compared

better against the machine learning methods. In the following figure, the sales forecasts produced

by the SVM4i model are plotted as well as the actual sales.
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Figure 2.3: Predicted and actual sales values in store #1 during 2009 [17]

It would be interesting if different food products were included in the data, along with use of

more error measures to more accurately assess the models performance. Again, cannibalization

and complementarity effects were not considered.

In 2001, Alon et al. [9] found that given highly volatile economic conditions, resulting in

rapid changes to the economic conditions, Artificial Neural Networks provided more accurate

forecasts than the linear methods.

Veiga et al. [55] published a paper on the applicability of neural networks for food products

retail forecasting, using a data set containing 63 monthly sales of liquid dairy products in 3 product

groups, yogurt, fermented milk, and milk dessert, spanning 108 months, aggregated at the national

level. These product groups accounted for 85% of the retailer’s total sales. Using MAPE and

Theil’s as performance measures, they found that Wavelets Neural Networks provided the most

accurate forecasts. Despite this, they discussed that its application required in-house experts,

special software, and considerable computing time.
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Figure 2.4: Predicted and actual sales values in store #2 during 2009 [17]

Loureiro et al. in 2018 [32] compared the sales predictions for the fashion retail market

given by the deep learning approach with those given by a set of shallow techniques, such as Ran-

dom Forest, Support Vector Regression, Decision Trees, Linear Regression and Artificial Neural

Networks. The deep learning model generated accurate forecasts, but it did not significantly out-

perform some of the shallow techniques, such as Random Forest. It should be mentioned that

the fashion and food retail market are very different, and abide by different rules, hence even

though the results aren’t significantly favorable for the deep learning approach, they cannot be

generalized, and we expect a different outcome for our approach.

More recently, a study from Priyadarshi et al. (2019) [39] examined how the application of

deep-learning techniques, such as Long Short-Term Memory (LSTM) networks, to forecasting,

can overcome many of the limitations of the commonly used traditional approaches, like ARIMA,

or the more simple Machine Learning methods like Random Forest. They used the daily sales

data of vegetables, collected from a retail store. The vegetables were divided into 3 groups based
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on their shelf-life, low, moderate, and long, in this case, tomatoes, onions, and potatoes respec-

tively. The data was arranged in day-wise format for 22 weeks. This was done to minimize the

effect of weekly seasonality on sales forecasts. It was then normalized using the min-max scalar.

Results showed that long short-term memory (LSTM) networks and Support Vector Regression

(SVR) models improved the accuracy of the sales forecasts, resulting in less waste of daily retail

inventory and fresh produce, thereby increasing the daily revenue. However, the results obtained

shouldn’t be generalized as they were obtained from only one store. This study did not incorpo-

rate external variables in the models and used only the sales data. This research seems to indicate

that deep learning models outperform the state of the art methods when external variables such as

promotions and are supplied, although external variables like promotion effects or cannibalization

weren’t incorporated in the models, thus there is currently no research that compares the stan-

dard machine learning models with the novel deep learning models when both incorporate these

variables.

2.4 Prophet

Prophet is a machine learning model for forecasting time series data based on an additive model

where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects [20].

It works best with time series that have strong seasonal effects and multiple seasons of historical

data [50]. It uses a decomposable time series model (Harvey & Peters 1990 [24]) with three

main model components: trend, seasonality and holidays. These are combined in the following

equation:

y(t) = g(t)+ s(t)+h(t)+ εt (2.16)

Where g(t) is the trend function that models non-periodic changes in the value of the time series,

s(t) represents periodic changes (e.g., weekly and yearly seasonality), and h(t) represents the ef-

fects of holidays that occur on potentially irregular schedules over one or more days. The error

term εt represents any idiosyncratic changes that are not accommodated by the model.

2.5 Deep AR: Probabilistic Forecasting with Auto-Regressive Recur-
rent Networks

The Deep AR is a forecasting method based on Auto-Regressive Recurrent Neural Networks, that

learns a global model from historical data of all the time series in the dataset [43].

The Deep AR approach, instead of fitting separate models for each time series, creates a global

model from related time series to handle widely-varying scales through re-scaling and velocity-

based sampling. They use an RNN architecture that incorporates a Gaussian/Negative Binomial

likelihood to produce probabilistic forecasting. The figure below 2.5 shows the architecture for

training and prediction:
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Figure 2.5: Deep AR Model Architecture

On the left, the goal is to predict the following time step. at each time step (forecast horizon of

1). The network must receive in input the previous observation (lag of 1) z_t−1, along with a set

of optional covariates x_i. The information is propagated to the hidden layer (represented in the

figure by h) and up to the likelihood function. During training (the network on the left) the error is

calculated using the current parametrization of the likelihood theta. This is represented by mu and

sigma in the case of a Gaussian likelihood. This means that while performing backpropagation

we are tuning the network parameters (weights w) which change the parametrization of every

likelihood, until we converge to optimal values.

On the right, once we have trained the network weights, we can perform forward propagation

using input z_i− 1 (along with [optional] covariates or encoded categorical features) and obtain

distribution parameters mu and sigma. For predictions we start by drawing one sample from the

output distribution of the first time step: that sample is the input to the second time step and so

on. Every time we start from the beginning and sample up to the prediction horizon we create the

equivalent of a Monte Carlo trace, which means that we can calculate the quantiles of the output

distribution and assess the uncertainty of the predictions.

The likelihood model can be both Gaussian (with parametrization mu and sigma):

Figure 2.6: Deep AR Gaussian Likelihood Model

or Negative Binomial (when dealing with time series of positive count data):

Figure 2.7: Deep AR Negative Binomial Likelihood Model

Additionally, the model trains an embedding vector that learns the common properties of all

the time series in the group. Another feature of the model is that Deep AR automatically creates

additional feature time series depending on the granularity of the target time series. These can, for
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instance, be time-series created for “day of the month” or “day of the year”, and allow the model

to learn time-dependent patterns. [36]

In a recent study Salinas et al 2019 [43] proposed the use of the Deep AR methodology to

generate accurate probabilistic forecasts. They incorporated the model with data from related

time series, such as the demand for related products, and discussed how this allowed for more

complex models to be fitted while avoiding over-fitting, and simultaneously reducing the time and

labor-intensive steps of selecting models and selecting and preparing covariates that traditional

approaches require. Covariates are represented as xi,t , where i is the item and t the time. In the

case of the retail demand forecasting data sets, an item’s covariate corresponds to a broad product

category like electronics (e.g. xi,t = e where e represents electronics), while in the smaller data

sets it corresponds to the item’s identity, which allows the model to learn item-specific behaviors.

5 data sets were used, however, in this paper we will only address 3 of them, as they relate to the

purpose of sales forecasting, while the remainder focused on forecasting electricity consumptions,

and traffic (lane occupancy rates). The following is an overview of the considered data sets.

• parts - 1045 time series aligned and spanning 50 months (42 months for training, 8 for

testing), containing the monthly sales of several items by an American car company.

• ec - 534884 time series, containing weekly item sales from Amazon.

• ec-sub - 39700 time series, containing weekly item sales from Amazon.

Both the ec and ec-sub data sets included novel products that were only introduced in the weeks

before the forecast time. The Croston method [28], an ETS method by Hyndman et al.(2008) [27],

the negative-binomial auto-regressive method of Snyder et al. (2012) [48] and the method of

Seeger et al. (2016) [45] using an innovative state space model with covariate features (ISSM),

along with 2 baseline RNN models were used for comparison, using the p− risk metric (quantile

loss). They asserted that their model provides a better forecast accuracy than previous methods.

In addition to this, they stated the following advantages in comparison to the traditional methods:

• This approach produces probabilistic forecasts in the form of Monte Carlo samples. These

samples can be used to compute consistent quantile estimates for all the sub-ranges in the

forecast horizon.

• In cases where an item has minimal sales history available, it is still able to produce fore-

casts, while classical single-item forecasting methods fail.

• The model can include a wide range of likelihood functions, chosen by the user depending

on the properties of the data.

• The model is able to learn seasonal behaviors and the effects on the given covariates across

time series. Additionally, it captures complex group dependent behaviors with minimal

manual intervention.
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The proposed Deep AR model was able to effectively learn a global model from related time

series, to handle varying scales through velocity-based sampling and re-scaling, to generate highly

accurate forecasts, and to learn complex patterns such as uncertainty growth and seasonality over

time. However, we note that the data used for forecasting wasn’t related to healthcare and wellness

products or daily sales, and it did not include demand influencing factors such as promotional

methods and different promotion types.

2.6 Evaluation Measures

2.6.0.1 Absolute error based measures

For each product, the error for the forecast horizon in the instant t given by:

et = Yt − Ŷt (2.17)

Where Yt is the actual value in the instant t and Ŷt the predicted value in the instant t. Resulting

in the following measures:

• Mean Absolute Error

MAE = mean(|et |) (2.18)

• Median Absolute Error

MdAE = median(et) (2.19)

• Mean Square Error

MSE = mean
(
e2

t
)

(2.20)

• Root Mean Square Error

RMSE =
√

mean
(
e2

t
)

(2.21)

The accuracy of these measures is dependent on the scale of the data [29]. Generally RMSE is

preferred to the MSE as it is on the same scale as the data. RMSE and MSE have been popular,

because of their theoretical relevance in statistical modelling. However, they are more sensitive to

outliers than MAE or MdAE [29]. MAE is often used due to the ease of interpretation [38]. Also,

these error measures are the most popular in various domains [47]. They have the following

limitations (Shcherbakov et al. 2013 [47]):

• RMSE and MSE have a low reliability: results can be different depending on different

fractions of data.

• Outliers have a high influence. These measures provide conservative values when data

contains a maximal value outlier, which is common in real world tasks.

• They are dependant on scale. These measures can’t be applied if the forecast contains

objects with different scales or magnitudes.



2.6 Evaluation Measures 21

2.6.0.2 Percentage Error based measures

Percentage error based measures are not scale dependent, and therefor are frequently used to com-

pare forecasting performance across different data sets (with varying scales) [29]. The percentage

error is given by:

pt = 100
et

Y
(2.22)

Resulting in the following measures:

• Mean Absolute Percentage Error

MAPE = mean(pt) (2.23)

• Root Mean Square Percentage Error

RMSPE =

√
mean(pt)

2 (2.24)

• Median Absolute Percentage Error

MdAPE = median(pt) (2.25)

• Root Median Square Percentage Error

RMdSPE =

√
median(pt)

2 (2.26)

These measures have the disadvantage of being infinite or undefined if Yt = 0 for any t in the

period of interest, and having an extremely skewed distribution when any value of Yt is close to

zero. Where the data involves small counts it is impossible to use these measures as zero values of

Yt occur frequently. MAPE is commonly used and as stated doesn’t depend on scale, however,it

does under-perform in cases where promotional activities took place (see Pinho, 2015 [38]).

Thus, the use of percentage error measures isn’t recommended for products with very few sales

(Davydenko and Fildes, 2013 [15]). Their limitations can be summarized as [47]:

• When the actual value is equal to zero, results in an infinite value (division by zero),

• Non-symmetry. Depending on if the predicted value is bigger or smaller than the actual

value the error values differ.

• Outliers significantly impact the result, particularly if outlier has a value much greater then

the maximal value of the "normal" cases.

• May lead to an incorrect evaluation of the the forecasts performance since the error measures

are biased.
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2.6.0.3 Scaled error based measures

Hyndman and Koehler [29] proposed a new but related idea, by scaling the error based on the

in-sample MAE from the naive (random walk) forecast method. Thus the scaled error is defined

as:

qt =
|et |

1
m−1 ∑

m
t=2 |Yt −Yt−1|

(2.27)

A scaled error is less than one if the forecast is better than the average one-step naive forecast

computed in-sample. It is larger than one if the forecast is worse than the average one-step naive

forecast computed in-sample. In this case (/m)/ is the frequency of seasonality.

The Mean Absolute Scaled Error (MASE) is defined as:

MASE = mean(qt) (2.28)

The Mean Absolute Scaled Error (MASE) proposed by Hyndman and Koehler (2006) [29] is

defined as the mean of the errors divided by the mean error that would be made using the naive

(random walk) forecast. The naive method simply forecasts the same number of units observed in

the last time period for the particular SKU-store. Analogously the Median Absolute Scaled Error

(MdASE) and Root Mean Squared Scaled Error (RMSSE) are defined as:

MdASE = median(qt) (2.29)

RMSSE =
√

mean
(
q2

t
)

(2.30)

If all the time series in the data are on the same scale, the MAE can be used as it is easily

explainable. If all the time series contain positive values much greater than zero, the MAPE can

be used due to its simplicity. Although, in the instance of very different scales. including data

close to zero or negative, the MASE is the best option according to Hyndman (2006) [29]. These

measures are symmetrical and resistant to outliers. however,Shcherbakov et al. [47] considered 2

drawbacks:

• Results in an infinite value if the forecast horizon real values are equal to each other (division

by zero).

• Weak bias estimates can be observed.

2.6.0.4 Selecting the appropriate measures

In 2013 [47] the following guidelines were proposed by Shcherbakov et al. for choosing the

appropriate error measures. They based their guidelines on a systematic review regarding the

available literature on error measurements in forecasting. [11] [34]

• If the forecast performance is evaluated for time series with a similar scale and the data was

preprocessed, (detecting anomalies and data cleaning), it is appropriate to use RMSE, MAE,

or MdAE.
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• Percentage errors are commonly used, however, due to non-symmetry, they are not advised.

• Scaled measures, such as MASE, should be used if the data contains outliers. For this the

following conditions should be met:

– The forecast horizon should be large enough;

– There should be no identical values;

– The normalized factor should not be equal to zero.

2.7 Overview of reviewed literature

In this section we provide an overview of the focus, data, variables, evaluation measures and base-

line methods used along with the limitations of the referenced literature regarding sales forecasting

models in tables 2.1, 2.2, 2.3.
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Chapter 3

Methodology and Preliminary Data
Analysis

This chapter provides an overview of the methods used to conduct our experiments. The first

section 3.1, details some characteristics and features of each model, and how their parameters

were set. The two following sections, 3.2 and 3.3, give an in-depth description of each data set,

including the available features as well as statistical analysis.

3.1 Models

3.1.1 Holt Winter’s

We used the additive Holt Winter’s implementation by statsmodel, a Python module that provides

classes and functions for the estimation of many different statistical models, as well as for con-

ducting statistical tests, and statistical data exploration. A seasonality period of 7 days, and 365

days for the Rossmann and Retail data sets respectively.

3.1.2 SARIMAX

The statsmodel SARIMAX model takes into account the parameters for the regular ARIMA model

(p,d,q), as well as the seasonal ARIMA model (P,D,Q,s). These sets of parameters are arguments in

our model called the order and the seasonal order, respectively. In order to find the best parameters

we performed a grid search, generating all possible triplets of p,d,q, and seasonal P, D and Q, in

a range from 0 to 2, and then selecting the best parameters ranked by the Akaike Information

Criterion (AIC). Additionally, the SARIMAX model also includes the parameter (X), the vector

of external variables. All external variables with the exception of static features were incorporated

for training.

27
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3.1.3 Prophet

The same exogenous variables were used in the Prophet model. Prophet includes functionality

for time series cross-validation to measure forecast error using historical data. This is done by

selecting cutoff points in the history, and for each of them fitting the model using data only up to

that cutoff point. We can then compare the forecasted values to the actual values. This function-

ality was employed to find the optimal values for the ’changepoint prior scale’ and ’seasonality

prior scale’ parameters, which were selected based on the lowest RMSE. Daily, weekly and yearly

seasonality were set for the Rossmann data set, and yearly seasonality was set for the Retail data

set.

3.1.4 Deep AR

Gluon TS’s Deep AR model allows us to select a variety of likelihood functions that can be adapted

to the statistical properties of the data allowing for data flexibility. We selected the Negative

Binomial Distribution, which is a common choice for modeling time series of positive count data,

such as daily sales, provided by the Gluon TS package [43].

Unlike the previous models which only included dynamic features, the Deep AR also takes

into account static categorical features. Dynamic features are features that vary across time for a

given time series, such as promotional and weather variables. On the other hand, static features

are constant throughout a given time series, in this case, an example would be the State the store is

located in. This allows the Deep AR model to group time series that have the same static features,

improving forecasting accuracy. Additionally, a categorical feature is represented by a limited set

of categories, and might not be a numerical value. As an example, Rain, Wind, and Snow are

different categories of the weather variable Event. In this case, the feature must be encoded with a

numerical value.

In Deep AR’s case, we don’t have to apply encoding to the static categorical features because

the model applies entity embedding, an encoding method, and allows us to set the dimension of

the embeddings for categorical features. We used the default value [min(50,(cat + 1)//2) for

cat in cardinality]). Entity embedding is especially useful when data sets contain features with

high cardinality. It’s also been demonstrated that the embeddings obtained from the trained neural

network boost the performance of machine learning methods considerably when used as the input

features. [22]

The Deep AR model expects a fair number of hyperparameters to be set, including the context

length for training, number of epochs, dropout rate, and learning rate among others. In both ex-

periments, a prediction length of 48 days and a context length of 96 days were set. The remaining

parameters were left with the default values and changed during validation.

Additionally, the Deep AR model was the only considered model that used multiple time series

as input to generate a global model. While in the case of the SARIMAX, Prophet and Holt Winter’s

approach, a model had to be trained for each time series. The global model for the Rossmann data
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set was produced from 932 time series, and the global model for the Retail data set was generated

from 2000 time series.

3.2 Rossmann Drug Stores Dataset

The following data was gathered from a Kaggle competition where the goal was to forecast the

sales values (e) for the last 48 time steps (days) in the data. It contains the historical sales

data for 1,115 Rossmann stores and supplemental information such as weather, promotional ef-

fects, competition-related features, and google trend related features, over a period of 990 days.

Rossmann operates over 3,000 drug stores in 7 European countries. Currently, Rossmann store

managers are tasked with predicting their daily sales for up to six weeks in advance. Store sales

are influenced by many factors, including promotions, competition, school and state holidays,

seasonality, and locality.

3.2.1 Data Description

The following data was used in all models that allowed for exogenous variables, the Deep AR,

Prophet, and SARIMAX models namely.

• Promotional features

– Promo - indicates whether a store is running a promo on that day

– Promo2 - Promo2 is a continuing and consecutive promotion for some stores: 0 =

store is not participating, 1 = store is participating

– Promo2 Since Year/Week - describes the year and calendar week when the store

started participating in Promo2

– After Promo - gives the days since a school Promo

– Before Promo - gives the days until another school Promo

– Promo2 Weeks - describes how many weeks Promo2 has been ongoing

– Promo2 Days - describes how many days Promo2 has been ongoing

– Promo Interval - describes the consecutive intervals Promo2 is started, naming the

months the promotion is started anew. E.g. "Feb,May,Aug,Nov" means each round

starts in February, May, August, November of any given year for that store

– Promo fw - the sum of occurrences of Promo in the following 7 day period

– Promo bw - the sum of occurrences of Promo in the previous 7 day period

• Time features

– Day - gives the day of the month

– Week - gives the week of the year
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– Month - gives the month of the year

– Year - gives the year

– Day of week - gives the day of the week

– Day of year - gives the day of the year

– Is month end - indicates if it’s the last day of the month

– Is month start - indicates if it’s the first day of the month

– Is quarter end - indicates if it’s the last day of the quarter

– Is quarter start - indicates if it’s the first day of the quarter

– Is year end - indicates if it’s the last day of the year

– Is year start - indicates if it’s the first day of the year

• Holiday Features

– State Holiday - indicates a state holiday

– School Holiday - indicates if the (Store, Date) was affected by the closure of public

schools

– After School Holiday - gives the days since seeing a school holiday

– Before School Holiday - gives the days untill another school holiday

– After State Holiday - gives the days since seeing a state holiday

– Before State Holiday - gives the days untill another state holiday

– State Holiday fw - the sum of occurrences of state holidays in the following 7 day

period

– State Holiday bw - the sum of occurrences of state holidays in the previous 7 day

period

– School Holiday fw - the sum of occurrences of school holidays in the following 7 day

period

– School Holiday bw - the sum of occurrences of school holidays in the previous 7 day

period

• Competition Features

– Competition Distance - distance in meters to the nearest competitor store

– Competition Open Since Month/Year - gives the approximate year and month of the

time the nearest competitor was opened

– Competition Months Open - gives how many months the competition has been open

for

– Competition Days Open - gives how many days the competition has been open for
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• Google Trend Features

– Trend - Google trend value for a given state

– Trend DE - Google trend value for the whole of Germany

• Weather Features

– Max/Mean/Min Temperature - gives the Max/Mean/Min temperature in Celsius

– Max/Mean/Min Dew Point - gives the Max/Mean/Min dew point in Celsius

– Max/Mean/Min Humidity - gives the percentage Max/Mean/Min humidity

– Max/Mean/Min Sea Level Pressure - gives the Max/Mean/Min Sea Level Pressure

in Pascal

– Max/Mean/Min Wind Speed - gives the Max/Mean/Min wind speed in Km/h

– Precipitation - gives precipitation in mm

– Wind Direction - gives wind direction in degrees

– Event - describes weather events that occurred (e.g. Fog, Fog-Rain, etc..)

• Other

– Open - indicates if store was open

The models considered for these experiments produce a fitted model for each time series,

except for the Deep AR model, which generates a global fitted model. Due to this, it can benefit

from using static categorical features. These are features that are constant throughout a given time

series but can vary between different time series, such as the store ID, store Type, product Class

and Sub-class, and more. The following static categorical features were used exclusively by the

Deep AR model:

• Store ID = Integer store identifier

• Store Type - differentiates between 4 different store models: a, b, c, d

• Assortment - describes an assortment level: a = basic, b = extra, c = extended

• State - the State in which the store is located

• Competition Open Since Year - the year since the Competition has been open

3.2.2 Data Cleaning and Feature Engineering

The following features were added:

• Included only time series which had a length greater than 942 days

• Clipped lower value of target variable (sales) to 0 (removing negative values)
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• Created feature Competition Days Open, indicating the number of days the competition

has been open for and Competition Months Open, with a maximum limit of 24 months to

limit the number of unique categories.

• Created feature Promotion 2 Days, indicating the number of days the competition has been

open for. Added feature Promotion 2 Weeks, with a maximum limit of 25 weeks to limit

the number of unique categories.

• Features such as Promotion 1 and School Holiday are called events. In time series data, it

always helps to show how long it’s been to and from an event as it helps the neural network

pick certain patterns from them, these patterns could be a spike in sales just before a public

holiday, a dip in sales before a promotion or how long it takes for sales to rise after a

promotion has started, for example [26]. These don’t need to be added to the data set as

the neural network can learn them but providing this data makes the learning process easier.

The features added were:

– After School Holiday

– Before School Holiday

– After State Holiday

– Before School Holiday

– After Promo

– Before Promo

• Another addition were rolling sums figures. A rolling sum figure was generated for the

holidays and promotions within a window of 7 days. This gives an idea of the events status

with a 7-day period. Again, this is useful information for the neural network that would

allow it to pick certain patterns following a certain event. The rolling sum features added

were:

– School Holiday bw

– School Holiday fw

– State Holiday bw

– State Holiday fw

– Promo bw

– Promo fw

We also applied One-Hot Encoding to the weather feature Event, a categorical feature

whose values describe an observed weather event, (e.g: ’Fog’, ’Rain’), and hence requires

encoding to convert it into a numerical value that the model can use. One of the limitations

of traditional label encoding (e.g. mapping an integer to each different value the variable
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can take), is that the model can interpret a false relationship between different ’Event’ val-

ues. The following example demonstrates this: A given variable Event can take one of the

following three values, ’Fog’, ’Rain’, ’Fog-Rain’, Using traditional label encoding, these

values would be converted to ’1’, ’2’ and ’3’ respectively, which can lead to the relationship

Rain > Fog which is false. One-Hot Encoding solves this by creating an additional feature

(dummies) for each value the variable can take and assigning it a 1 or a 0 (True or False). In

the previous example, we would create 3 additional features, Fog, Rain, and Fog-Rain, and

assign them a value of 1 or 0.

A fraction of the total time series contained missing values (roughly 16%), this presented

an obstacle because the Deep AR model used in the experiment can only handle missing values

for the target variable (in this case, sales). Rather than imputing these values, we opted to use

the complete data that we had and ignore the incomplete time series. This resulted in our data

describing 932 time series (stores), each with 990 time points (days), with 57 features. The first

942 days were used as training input and the last 48 were used for testing.

3.2.3 Data Analysis

We performed data analysis to better understand the target variable behavior and its relationship

with the external variables provided.

Firstly, some statistics regarding the target variable, the volume of daily sales, in euros:

• Mean = 5827.4293475542945 e

• Min = 0 e

• Max = 38722 e

• Median = 5783.0 e

• Standard Deviation = 3899.955241146479 e

The difference between the mean and median values is small, indicating most time series in this

data set have similar generating processes (structure).

We analyzed the Customers feature, which gives the number of customers that visited the store

on that day, by plotting the daily customer values and their corresponding sales values, illustrated

by the following figure 3.1.

The plot displays a clear relationship between these variables, it can be seen that with the

increase of the number of costumers, the currency/volume of total sales also increase, naturally.

Given this strong relationship and the fact that the number of customers values are real values and

not predictions, we didn’t include this feature in the models. Its inclusion would have generated

similar results as if the models were given the sales values for the testing data. Even though the

feature wasn’t included, we note that generating accurate predictions for the number of customers

on a given day can be valuable data for forecasting models that can use that external variable.
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Figure 3.1: Scatter plot of daily sales by number of customers

The following plot in Fig. 3.2 describes how sales vary according to the day of the week

when the stores are open (days when stores are closed were ignored). It can be seen that there is

a significant degree of variability in the daily sales values. The median daily sales values are the

highest on the first and last days of the week, day 1 (Monday) and day 7 (Sunday). If we included

the days when the stores were closed, day 7 would present the lowest median, given that most

stores are closed on Sunday.

Figure 3.2: Box plots of daily sales for each day of the week

We then analyzed how each promotional feature affected sales. Starting by box plotting the

daily sales values in case of promotion (in red) and in case of no promotion (in blue), for pro-

motions 1 and 2, illustrated in figures 3.3 and 3.4. There’s a greater median daily sales volume

in days where promotion 1 occurs (5400e vs 7700e), and all quartiles are larger. However the

difference in median daily sales between days with and without promotion 2 is very small (6700e

vs 6100e), days with no promotion 2 have slightly higher median daily sales.
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Figure 3.3: Box plots of daily sales by promotion 1

Figure 3.4: Box plots of daily sales by promotion 2
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Next, we plotted the daily sales by the number of days since the last promotion, one of our

engineered features, this is illustrated in figure 3.5. It appears that the longer it’s been since a

promotion, the lower the value of the daily sales. This makes sense since, in general, when pro-

motions occur frequently, they are often advertised and thus increase products or brand exposure.

In the absence of promotions, the opposite may occur, with brands and products being forgotten.

Figure 3.5: Box plot of daily sales by days since last promotion

The following box plots 3.6 illustrate the daily sales depending on if there was a State Holiday.

During State Holidays both median and maximum daily sales volumes are higher.

Figure 3.6: Box plots of daily sales by State Holiday

The relationship between the daily sales and the occurrence of School Holidays is not clear,

as illustrated by the following figure 3.7. During School Holidays, median daily sales values are

roughly the same as on regular days. This might be explained by the fact that the majority of

consumers of retail healthcare and wellness products are not children, which are the majority of

the students, and as such are not impacted by School Holidays.

Another interesting finding is the relationship between sales and the weather Events variable.

The following figure 3.8 illustrate a box plot of daily sales for each event. The events are ordered

by descending median daily sales value. One observation is that days in which extreme events

occurred, such as Fog-Rain-Snow-Hail and Rain-Snow-Hail-Thunderstorm display the highest

median daily sales values. We believe this may be explained by such events mainly occurring in

colder periods of the year, where flu and colds are more common, and naturally the demand for

healthcare and wellness products increases.
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Figure 3.7: Box plots of daily sales by School Holiday

Figure 3.8: Box plot of daily sales for each weather event

3.2.4 Prepared Data Selection

In order to make it feasible to graphically compare and analyze the predictions of each model,

a sub-set of 16 time series was selected from a total of 932. We set, for each time series, the

median of the value of daily sales as our time series representation measurement, given that it’s

more robust towards outliers, in order to be used as a selection tool. This is illustrated by figure

3.9, a box-plot of the median daily sales value for each store.

We can see that there is much variability in the values of median daily sales values, by store,

indicating that different stores have different dimensions and sales volumes, which translates to

disparate seasonality and stability between time series. Considering this, we not only selected

multiple individual time series but also grouped them based on the proximity of the median daily

sales values.

Figure 3.9: Box plot of median daily sales per store
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Four time series from each inter-quartile interval were selected, making up the following four

groups:

• Low Median Daily Sales Group

– Four randomly selected series whose median values range from 0 to q1 (4677e), the

time series (stores) in this group are the ones with the lowest median daily sales value

out of all the groups.

• Medium-Low Median Daily Sales Group

– Four randomly selected series whose median values range from q1 (4677e) to q2

(5868e).

• Medium Median Daily Sales Group

– Four randomly selected series whose median values range from q2 (5868e) to q3

(7155e).

• High Daily Sales Group

– Four randomly selected series whose median values range from q3 (7155e) to q4

(10647e).

These groupings allow us not only to assess a models’ performance on individual time se-

ries but also to establish a relationship between model performance and the various groups, by

identifying which model performed the best overall on a given group.

3.3 Retail Drug Stores Dataset

The following data was provided by Retail Consult, a group of professionals who specialize in

technology solutions for retail from Portugal. The data is from a large Portuguese healthcare and

wellness products retailer, with multiple stores across the country. The goal was to forecast the

sales values (in product units) for the last 48 time steps (days). It contains the historical sales data

for 195801 product-store pairs, over a period of 898 days, and supplemental information such as

promotional events and discounts and out of stock data. For confidentiality purposes, categorical

features were anonymized.

3.3.1 Data Description

The following features were used in all models that allowed for exogenous variables, the Deep

AR, Prophet, and SARIMAX models namely.

• Promotional features
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– High Impact Promotion 1 - indicates if the product in the store has promotion of type

High Impact 1 on that day and the discount value (from 0.0 to 1.0)

– High Impact Promotion 2 - indicates if the product in the store has promotion of type

High Impact 2 on that day and the discount value (from 0.0 to 1.0)

– Promotional Special Highlight w/ Discount - indicates the discount for the product

in the store (from 0.0 to 1.0)

– Promotional Display - indicates if the product in the store had a promotional display

– Promotional Special Highlight - indicates if the product in the store had a promo-

tional special highlight

– Special Event Mobile Holiday - indicates if a special event mobile holiday is occur-

ring in a particular store for a particular product

– Promo2 Days - describes how many days Promo2 has been ongoing

– After Promotional Display - gives the days since the last promotional display

– Before Promotional Display - gives the days until the next promotional display

– After Promotional Special Highlight - gives the days since the last promotional spe-

cial highlight

– Before Promotional Special Highlight - gives the days until the next promotional

special highlight

– After Special Event Mobile Holiday - gives the days since the last special event

mobile holiday

– Before Special Event Mobile Holiday - gives the days until the next special event

mobile holiday

– Promotional Display FW - the sum of occurrences of promotional displays in the

following 7 day period

– Promotional Display BW - the sum of occurrences of promotional displays in the

previous 7 day period

– Promotional Special Highlight FW - the sum of occurrences of promotional special

highlights in the following 7 day period

– Promotional Special Highlight BW - the sum of occurrences of promotional special

highlights in the previous 7 day period

– Special Event Mobile Holiday FW - the sum of occurrences of special event mobile

holidays in the following 7 day period

– Special Event Mobile Holiday BW - the sum of occurrences of special event mobile

holidays in the previous 7 day period

• Time features
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– Day - gives the day of the week

– Week - gives the week of the year

– Month - gives the month of the year

– Year - gives the year

– Day of week - gives the day of the week

– Day of year - gives the day of the year

– Is month end - indicates if it’s the last day of the month

– Is month start - indicates if it’s the first day of the month

– Is quarter end - indicates if it’s the last day of the quarter

– Is quarter start - indicates if it’s the first day of the quarter

– Is year end - indicates if it’s the last day of the year

– Is year start - indicates if it’s the first day of the year

• Other

– Out Of Stock - indicates if a product was/became out of stock on particular store

The models considered for these experiments produce a fitted model for each time series,

except for the Deep AR model, which generates a global fitted model. Due to this, it can benefit

from using static categorical features. These are features that are constant across time for a given

time series but can vary between different time series, such as the store ID, store Type or State,

and more, in this case. The following static categorical features were used exclusively by the Deep

AR model

• Product ID - integer product identifier

• Product Sub Class - describes an assortment level: a = basic, b = extra, c = extended

• Product Class - the State in which the store is located

• Product Department/Group/Division/Company - these features were provided but were

not used given that for the subset of selected time series, they have a cardinality of 1.

• Store ID - integer product identifier

• Store City - gives the city the store is located in

• Store District - gives the district the store is located in

• Store Region - gives the region the store is located in

• Store Zone - gives the zone the store is located in

• Store Channel - gives the the store’s channel

• Store Company - gives store’s company
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3.3.2 Data Cleaning and Preparation

The following features were added:

• A similar approach as the one employed in the first experiment was used here. The features

added were:

– After Promotional Display

– Before Promotional Display

– After Promotional Special Highlight

– Before Promotional Special Highlight

– After Promotional Special Event Mobile Holiday

– Before Promotional Special Event Mobile Holiday

• Another addition was rolling sums. A rolling sum figure was generated for the holidays and

promotions within a window of 7 days. This gives an idea of the event’s status with a 7-day

period. Again, this is useful information for the neural network that would allow it to pick

certain patterns following a certain event. The rolling sum features added were:

– Promotional Display BW

– Promotional Display FW

– Promotional Special Highlight BW

– Promotional Special Highlight FW

– Promotional Special Event Mobile Holiday BW

– Promotional Special Event Mobile Holiday FW

The data provided contained 195801 time series, each time series is identified by a store and a

product. Due to hardware limitations, we selected a subset of time series which was used for data

analysis and for training the models. This subset encompasses the 2000 series with the most data

points (non-null target values). Rather than imputing these values we opted to use the complete

data that we had and ignore the incomplete time series. This resulted in our data describing 2000

time series, identified by a product and a store, each with 898 time points (days), 31 dynamic

features, and 10 static features. The first 850 days were used as training input and the last 48 were

used for testing.

3.3.3 Data Analysis

Like in the previous experiment, we analyzed our data to assess the relationship between the

available features and the target variable (daily sales).

Firstly, some statistics regarding the target variable, the volume of daily sales in product units

(PU):
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• Mean = 3.476 PU

• Min = 0.000 PU

• Max = 445.000 PU

• Median = 2.000 PU

• Standard Deviation = 6.389 PU

The median and mean values indicate that most of these products are slow-moving, with 2 to

3 units sold per day.

To overcome this the classical forecasting techniques commonly aggregate stock-keeping units

(by store or by department for example), however, this aggregation is known to lead to poor per-

formance in some cases [19].

Another problem with aggregation is the loss of information on the demand for each product,

which is crucial for stock-management decisions. As such we were interested to see how the state

of the art models handled time series at the product-store level and decided not to aggregate our

data.

The following figures 3.10 and 3.11 show the history of total sales aggregated across all stores

and products.

There are clear peaks in sales in the periods of September to October and December to January.

Given that these are sales of healthcare and wellness retail products, this appears to be expected as

flu and colds are more common in these periods.

Figure 3.10: Aggregated total daily sales scatter chart
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Figure 3.11: Aggregated total daily sales line chart

In comparison, when analyzing the plots of daily sales for individual time series, there are no

clear seasonality or trend patterns, as illustrated by the following figures 3.12 and 3.13.

Figure 3.12: Daily sales volume for a single time series scatter chart

Figure 3.13: Daily sales volume for a single time serie line chart

We then analyzed the relationships between external features and the target variable. To deter-

mine if those relationships had a meaningful statistical value, we also analyzed the frequency of

occurrences for each external dynamic variable.

First, we examined how out of stock occurrences affected the daily sales, illustrated by figures

3.14. Figure 3.15 displays the same box plots but zoomed in so that the median values can be seen.

Statistics:

• Number of Out of Stock occurrences = 14543

• Total number of time points = 1700000

• Out of Stock occurs in 0.86% of the time points
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In spite of the low number of out-of-stock occurrences, this features’ relationship with the

value of the daily sales is clear. Its occurrence leads to an expected decrease in daily sales, given

that the consumers are unable to purchase the product. When out of stock occurs, the median sales

value is 0.

Figure 3.14: Box plots of daily sales by out of stock
Blue box plot - In Stock

Red box plot - Out of Stock

Figure 3.15: Box plots of daily sales by out of stock zoomed in
Blue box plot - In Stock

Red box plot - Out of Stock
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The following box plots 3.16 illustrate the relationship between daily sales and the use of

promotional displays. The same box plots are displayed in figure 3.17, zoomed so the differences

in the lower ranges are perceivable.

Both the median and the maximal daily sales values are lower in the presence of a promotional

display. We believe this may be explained by the very low frequency of promotional display

occurrences in our sub-set of 2000 time series.

Figure 3.16: Box plots of daily sales by promotional display
Blue box plot - No Promotion

Red box plot - Promotion

Figure 3.17: Box plots of daily sales by promotional display zoomed in
Blue box plot - No Promotion

Red box plot - Promotion

Given that it is only observed in roughly 1.5% of time points, there isn’t enough data to draw

a conclusion on the relationship between this feature and the target variable. The low frequency

of occurrences is common across all promotional features.

Statistics:

• Number of Promotional Display occurrences = 25402
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• Total number of time points = 1700000

• Promotional Display occurs in 1.49% of the time points

The following box plots 3.18 illustrate the relationship between the daily sales and the occur-

rence of a Special Holiday Promotion. Figure 3.19 is the same as 3.18 except zoomed in.

Both median and maximum daily sales values are higher when there is no promotion, like in

the previous features, this is likely due to the very low number of occurrences of this feature.

Figure 3.18: Box plots of daily sales by special holiday promotion
Blue box plot - No Promotion

Red box plot - Promotion

Figure 3.19: Box plots of daily sales by special holiday promotion zoomed in
Blue box plot - No Promotion

Red box plot - Promotion

Like the previous promotional feature, the special holiday promotion rarely occurs in the se-

lected time series.

Statistics:

• Number of Special Holiday Promotion occurrences = 1142
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• Total number of time points = 1700000

• Special Holiday Promotion occurs in 0.07% of the time points

When plotting the value of the daily sales by discount value, for features High Impact Promo-

tional Discount 1 and 2 the relationship between each of these features and the daily sales is not

clear, as illustrated by figures 3.20 and 3.21.

Figure 3.20: Plot of daily sales by high impact promotional discount 1

Figure 3.21: Plot of daily sales by high Impact promotional discount 2
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Once more, we note that the frequency of occurrences of both of these features might explain

their unclear relationship with the target variable.

Statistics:

• Number of High Impact 1 Promotional Discount occurrences = 130743

• Total number of time points = 1700000

• High Impact 1 Promotional Discount occurs in 7.69% of the time points

Statistics:

• Number of High Impact 2 Promotional Discount occurrences = 48991

• Total number of time points = 1700000

• High Impact 2 Promotional Discount occurs in 2.88% of the time points

We also analyzed the effect that the occurrence of these promotions had on daily sales, regard-

less of the discount value, this is illustrated in the following box plots, Fig. 3.22 and Fig. 3.23. In

both cases the value of daily sales seem to decrease in the occurrence of promotions, again, given

the low occurrence of these events, we cannot determine whether this means the promotions are

not effective, or if we simply don’t have enough data.

Figure 3.22: Box plots of daily sales by high impact promotional discount 1 occurrence
Blue box plot - No Promotion

Red box plot - Promotion

Figure 3.23: Box plots of daily sales by high impact promotional discount 2 occurrence
Blue box plot - No Promotion

Red box plot - Promotion

The following figures illustrate the relationship between the static external variables, such as

product sub-class and class, and their relationship to the target variable.
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Products of the sub-class H96xq have the highest demand, both in the median and the maxi-

mum values. Most sub-classes have the same median daily sales value, the largest variation is in

the maximum value, as illustrated by 3.24

Figure 3.24: Box plots of daily sales by product sub class

Products of the class 5Isak have the highest demand, both in the median and the maximum val-

ues. Most classes have the same median daily sales value, the largest variation is in the maximum

value.

Figure 3.25: Box plots of daily sales by product class
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There is a high variation of daily sales depending on the city, district and region that the stores

are located in, both in median and maximum daily sales values, as illustrated by figures 3.26,

3.27,3.28, 3.29,3.32, 3.33,

Figure 3.26: Box plots of daily sales by city

Figure 3.27: Box plots of daily sales by city zoomed in
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Figure 3.28: Box plots of daily sales by district

Figure 3.29: Box plots of daily sales by district zoomed in

Figure 3.30: Box plots of daily sales by region
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Figure 3.31: Box plots of daily sales by region zoomed in
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Stores located in different zones have mostly the same median daily sales value, the variation

lies in the maximum values as illustrated in figure 3.30 and 3.31

Figure 3.32: Box plots of daily sales by zone

Figure 3.33: Box plots of daily sales by zone zoomed in
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The median daily sales are the same for each channel, again the variation being in the maxi-

mum values, illustrated by figure 3.34

Figure 3.34: Box plots of daily sales by channel

Our data analysis leads us to conclude that for this experiment the static features are as valuable

as the dynamic features if not more, and their relationship with the target variable is clearer.

3.3.4 Prepared Data Selection

The data selection process was similar to the one in the previous experiment, however, given the

low variability of the median daily sales value for each time series, we instead set the average as

our selection metric. The following figure 3.35 shows a box-plot of the average daily sales for each

time series and we can observe significant variability in these values as well as a large number of

outliers.

Figure 3.35: Box plot of average daily sales per Product-Store

Like in the previous experiment, this variability lead us to group the selected time series. They

were grouped as follows:

• High Average Daily Sales Group

– Five series with an average daily sales value ranging from 10 to 30 units.
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• Medium Average Daily Sales Group

– Two series with an average daily sales value ranging from 3 to 4 units.

• Low Average Daily Sales Group

– Two series with an average daily sales value ranging from 1 to 2 units.
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Chapter 4

Tests and Results

4.1 Rossmann Dataset Results

In this section, we will analyze and discuss the forecasts produced by each model and their per-

formance. In the following tables, the cells highlighted from dark green to red, indicating the

smallest and largest values. We selected the MASE measurement as our performance metric. Pro-

posed Hyndman and Koehler (2006) [29], the MASE can be used to assess forecasting accuracy

on individual time series as well as for multiple time series, and for all forecast methods and all

types of series. It has been considered the best accuracy metric for intermittent demand studies

and beyond by several data scientists [29]. The following is a list of commonly used performance

metrics and our reasons [29] for not using them. A more in-depth explanation of each metric can

be found in chapter 2 2.

• Scale dependant such as the MAE metrics weren’t considered since all they are on the same

scale as the data, and thus none of them are meaningful for assessing a method’s accuracy

across multiple series with varying scales. The RMSE wasn’t considered when analyzing

single time series due to its vulnerability towards extreme values.

• Error measurements based on percentage errors like the MAPE have the disadvantage of

being infinite or undefined if there are zero values in a series, as is frequent for the con-

sidered data (intermittent). Additionally, percentage errors can have an extremely skewed

distribution when actual values are close to zero.

• Relative errors weren’t included given that when the errors are small, as they can be with

intermittent series, the use of the naïve method as a benchmark is not possible because it

would involve division by zero.

57
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4.1.1 Average MASE measurements and Standard Deviation for each model for
each group

The average MASE measurements for each group and the standard deviation are displayed in

figure 4.1.

Regarding the first 2 groups, low and medium-low daily sales (Q1 and Q2), the Deep AR

model achieved the lowest MASE measurements, indicating the best fit. The SARIMAX and

Prophet models had very similar results, and the Holt Winter’s model consistently produced the

highest MASE values in all groups, indicating the worst fit.

The SARIMAX model has the best performance on the medium and high average groups (Q3

and Q4) reaching the lowest MASE values. In Q3 the Deep AR model reached the second-best

fitness score, followed by Prophet, while in Q4 the opposite occurs. These results were very

similar to the results for Q2.

Overall the standard deviations are very small, meaning the models’ performance on time

series of the same group is similar. The exception being in group Q4, where performance deviates

the most for all models, in particular for the Deep AR model.

Figure 4.1: Average metrics for each model for each quartile

In the following subsection, we analyze the performances of each model for the individual

groups and time series.
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4.1.2 Forecasts and Metrics for Low Median Group

For most time series in this group, the results in figure 4.2 show that the lowest MASE measure-

ment was given by the Deep AR model. For the time series 157, the lowest MASE score was

achieved by both the Deep AR and SARIMAX models, the difference between them being under

1%.

Figure 4.2: Metrics for each models forecasts for each time series from Low median group (Q1)

The forecasts and prediction intervals for store 701, for each model are illustrated in figures,

4.3,4.4, 4.5, and 4.6. analyzing the graphs, all models generate reliable forecasts, and in general

produce forecasts close to the actual values, however, the Holt Winter’s model notably produces

the least accurate forecasts. Additionally, the prediction intervals generated by the Deep AR model

display the highest accuracy (actual values lie within range) and precision (the intervals have

smaller amplitudes) when compared to the ones generated by either the SARIMAX or Prophet

models.

Figure 4.3: Deep AR forecasts, prediction intervals and actual values for store 701
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Figure 4.4: SARIMAX forecasts, prediction intervals and actual values for store 701

Figure 4.5: Prophet forecasts, prediction intervals and actual values for store 701

Figure 4.6: Holt Winter’s forecasts and actual values for store 701
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4.1.3 Forecasts and Metrics for Medium-Low Median Group

Overall, the results in figure 4.7 indicate that the lowest MASE values in group Q2 were given

by the Deep AR and SARIMAX models. For stores 177 and 401, the Deep AR came ahead of

SARIMAX, and conversely for stores 112 and 676. Like in the previous group the highest MASE

values were reached by the Holt Winter’s model.

Figure 4.7: Metrics for each models forecasts for each time series from Medium-Low median group (Q2)

The forecasts and prediction intervals for store 401, for each model are illustrated in figures,

4.8,4.9, 4.10, and 4.11.

analyzing the graphs, like in the previous group all models generated reliable forecasts, and in

general produced forecasts close to the actual values, once more the Holt Winter’s model produced

the least accurate forecasts.

Once again the prediction intervals generated by the Deep AR model display the highest ac-

curacy and precision when compared to the ones generated by either the SARIMAX or Prophet

models.

Figure 4.8: Deep AR forecasts, prediction intervals and actual values for store 401
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Figure 4.9: SARIMAX Forecast for store 401

Figure 4.10: Prophet forecasts, prediction intervals and actual values for store 401

Figure 4.11: Holt Winter’s forecasts and actual values for store 401



4.1 Rossmann Dataset Results 63

4.1.4 Forecasts and Metrics for Medium Median Group

In this group, the results are more mixed, as illustrated by figure 4.12. For store 850 the Deep

AR model achieved the lowest MASE. The second-lowest MASE was given by the Prophet model

followed very closely by SARIMAX.

For store 384 the lowest MASE was given by the SARIMAX, followed by Prophet and then

Deep AR.

The lowest MASE for store 130 was again reached by the Deep AR model, followed by SARI-

MAX and Prophet.

Lastly, the SARIMAX model achieved the smallest MASE values for store 113. The second-

lowest MASE was given by the Prophet model followed closely by Deep AR.

Once again the highest MASE values were given by the Holt Winter’s model for all stores.

Figure 4.12: Metrics for each models forecasts for each time series from Medium median group (Q3)l

The forecasts and prediction intervals for store 113, for each model are illustrated in figures,

4.13,4.14, 4.15, and 4.16.

We can observe that in the case of store 113 the lowest MASE, and thus the best performance,

was given by the SARIMAX model, however, the most accurate and precise prediction intervals

were once more generated by the Deep AR model.

Figure 4.13: Deep AR forecasts, prediction intervals and actual values for store 113
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Figure 4.14: SARIMAX forecasts, prediction intervals and actual values for store 113

Figure 4.15: Prophet forecasts, prediction intervals and actual values for store 113

Figure 4.16: Holt Winter’s forecasts and actual values for store 113
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4.1.5 Forecasts and Metrics for High Median Group

Like in the previous group, the results, as illustrated by figure 4.17, are mixed, but even more so.

Store 639 is the only time series in which the Deep AR model gave the highest MASE value

out of all the models. In comparison to previous results, all models performed the worst on this

particular time series, indicating this series has a higher degree of irregularity and less perceivable

trend and seasonality patterns. The SARIMAX model fits these series the best, achieving the

lowest MASE, followed by Prophet and Holt Winter’s. So far we’ve seen the best overall from the

Deep AR and SARIMAX models, however, the results for store 639 differ from this trend. Unlike

the previously considered stores, store 639 has no zero sales values, in fact, it is the only store that

is never closed. Since the Deep AR generates a global model for all the time series it is given as

input, it is expected that forecasts generated for time series with generating processes that vastly

differ from the majority of the time series, supplied as training input, to be less accurate.

Regarding store 691 the Deep AR achieved the lowest MASE, followed by SARIMAX and

Prophet models. All models reached low MASE values with except the Holt Winter’s model.

The lowest MASE measurement for store 355 was given by the Prophet model, followed by

SARIMAX.

For store 360 the SARIMAX and Prophet models gave the lowest MASE values, followed

closely by the Deep AR model.

Figure 4.17: Metrics for each models forecasts for each time series from High median group (Q4)

The forecasts and prediction intervals for store 639, for each model are illustrated in figures

4.18,4.19, 4.20, and 4.21.

In this case, the most accurate precision intervals were generated by the SARIMAX model,

although less precise. The Deep AR model still generates the most precise intervals although some

of the actual values fall outside of the interval.
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Figure 4.18: Deep AR forecasts, prediction intervals and actual values for store 639

Figure 4.19: SARIMAX forecasts, prediction intervals and actual values for store 639

Figure 4.20: Prophet forecasts, prediction intervals and actual values for store 639

4.2 Retail Dataset Results

Given the data analysis outlined in the previous chapter 3 regarding the Retail data set, and the

lack of observations of dynamic features across all time series, their value in generating predictions

appears to be low, in fact, their inclusion in the models may result in less accurate forecasts. To

account for this, we fitted the Deep AR, SARIMAX, and Prophet models with and without these

features. The SARIMA, Prophet and Deep AR refer to the models fitted without external variables,

and the SARIMAX, Deep AR - FDR (Features Dynamic Real) and ProphetX labels refer to the
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Figure 4.21: Holt Winter’s forecasts and actual values for store 639

models that do incorporate them.

4.2.1 Average MASE measurements and Standard Deviation for each model

The lowest average MASE value across all time series was achieved by the Deep AR - FDR model

and the highest by the Holt Winter’s model. However when comparing both Deep AR model’s

standard deviations, the one including dynamic features has a higher performance variability.

The difference in the MASE averages for the Deep AR - FDR and SARIMAX models in

comparison to their respective counterparts are small, indicating that the external features had little

impact on the predicted values. However in Prophet’s case, including these exogenous variables

had a noticeable negative impact on forecast accuracy, as illustrated by figure A.1 Like in the

previous experiment the highest MASE values were given by the Holt Winter’s model forecasts.

Figure 4.22: Average metrics for each model for each quartile



68 Tests and Results

4.2.2 Forecasts and Metrics for Low Average Group

Regarding the low average group, the SARIMA and SARIMAX models achieved the lowest

MASE values, as illustrated by figure 4.23. In particular, for the time series 834, the lowest

MASE was reached by SARIMAX. The second-lowest MASE was achieved by both SARIMA

and Prophet models, followed by the Holt Winter’s which displayed a better performance than

both Deep AR models. For this time series, the worst performance was given by the Prophet

model that incorporated external variables.

Concerning the time series 1496, the worst performances were given by the Deep AR model

using dynamic features, followed by the Holt Winter’s model and the Deep AR model without

dynamic features. The lowest MASE was achieved by the SARIMA model, followed by both

the SARIMAX and Prophet models, which reached the exact same performance. The ProphetX

model performed slightly worse than Prophet.

Figure 4.23: MASE measurements for each models forecasts for each time series from the low average
group

The forecasts and prediction intervals for time series 1496, for each model are illustrated in

figures, 4.24,4.25, 4.26,4.27,4.28,4.29,4.30. The prediction intervals generated by the Deep AR

are the most precise and also do not include negative values unlike the SARIMA and Prophet

models. While the remaining models assume a Gaussian distribution, the Deep AR model allows

us to set the negative binomial distribution as our likelihood function, which ensures that predicted

values and prediction intervals are positive. We can also see that the prediction intervals fall short

in accuracy across all models, there being multiple instances of actual values falling outside of the

interval, mainly peaks.

Figure 4.24: Holt Winter’s forecasts and actual values for time series 1496
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Figure 4.25: SARIMA forecasts, prediction intervals and actual values for time series 1496

Figure 4.26: SARIMAX forecasts, prediction intervals and actual values for time series 1496

Figure 4.27: Prophet forecasts, prediction intervals and actual values for time series 1496
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Figure 4.28: ProphetX forecasts, prediction intervals and actual values for time series 1496

Figure 4.29: Deep AR forecasts, prediction intervals and actual values for time series 1496

Figure 4.30: Deep AR - FDR forecasts, prediction intervals and actual values for time series 1496

4.2.3 Forecasts and Metrics for Medium Average Group

The lowest MASE values were achieved in both time series of the Medium Average group by the

Deep AR model using dynamic external variables, and the second-lowest values by the Deep AR

model using only static external values, as illustrated by figure A.74.

For time series 721 the Holt Winter’s model performed the worst, followed closely by both of

Prophets’ models’ variations (with and without external variables).
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The highest MASE values in the case of time series 1675 were given by both Prophet models.

The Holt Winter’s and the two SARIMAX models had a similar performance.

Figure 4.31: Metrics for each models forecasts for each time series from Medium average group

The forecasts and prediction intervals for time series 1675, for each model are illustrated in

figures, 4.32,4.33, 4.34,4.35,4.36,4.37,4.38. The generated prediction intervals are more accurate

than in the previous group, once more the Deep AR model produced the most precise intervals, and

both the SARIMAX and Prophet models produced the most accurate. Overall the best prediction

intervals were generated by the SARIMAX model, even if less precise than Deep AR’s.

Figure 4.32: Holt Winter’s forecasts and actual values for time series 1675

Figure 4.33: SARIMA forecasts, prediction intervals and actual values for time series 1675
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Figure 4.34: SARIMAX forecasts, prediction intervals and actual values for time series 1675

Figure 4.35: Prophet forecasts, prediction intervals and actual values for time series 1675
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Figure 4.36: ProphetX forecasts, prediction intervals and actual values for time series 1675

Figure 4.37: Deep AR forecasts, prediction intervals and actual values for time series 1675

Figure 4.38: Deep AR - FDR forecasts, prediction intervals and actual values for time series 1675
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4.2.4 Forecasts and Metrics for High Average Group

As illustrated by figure 4.39, overall the Deep AR models were responsible for the lowest MASE,

except time series 1020 where the Deep AR model not incorporating dynamic features displayed

the second-worst performance.

The second-lowest MASE measurements were given by the SARIMA model, which consis-

tently outperformed the SARIMAX model.

In general, the highest MASE values were reached by the Holt Winter’s model, except time

series 1020, where the two worst performers were both Prophet models.

Figure 4.39: Metrics for each models forecasts for each time series from High average group

The forecasts and prediction intervals for time series 1020, for each model are illustrated in

figures, 4.40,4.41, 4.42,4.43,4.44,4.45,4.46. The prediction intervals had similar accuracy however

once more the Deep AR model produced the most precise intervals and the Deep AR model that

did not incorporate dynamic features generated the most accurate intervals.
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Figure 4.40: Holt Winter’s forecasts and actual values for time series 1020

Figure 4.41: SARIMA forecasts, prediction intervals and actual values for time series 1020

Figure 4.42: SARIMAX forecasts, prediction intervals and actual values for time series 1020



76 Tests and Results

Figure 4.43: Prophet forecasts, prediction intervals and actual values for time series 1020

Figure 4.44: ProphetX forecasts, prediction intervals and actual values for time series 1020
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Figure 4.45: Deep AR forecasts, prediction intervals and actual values for time series 1020

Figure 4.46: Deep AR - FDR forecasts, prediction intervals and actual values for time series 1020
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Chapter 5

Conclusions

We compared the Deep AR approach to the problem of sales forecasting with traditional and

state of the art alternatives. This comparison was done for two structurally distinct data sets and

the MASE metric was selected to measure performance, based on the available literature and

recommendation of multiple data scientists [29].

The Rossmann data set contained the daily sales history in euros, aggregated by store, for

1115 stores, over a period of 990 days. The majority of time series from this data set can be char-

acterized by their high seasonality, and low intermittency (most stores were closed on Sunday).

A total of 16 time series were selected from this data set, based on the median (more robust in

the presence of outliers than the average) daily sales values and were then grouped in 4’s as low,

low-medium, medium and high median daily sales groups (Min-Q1, Q1-Q2, Q2-Q3,Q3-Max).

These groupings allowed us to assess how the models performed overall between groups (low and

medium-low median sales groups, small stores with less traffic, medium and high median sales

groups, larger stores with more traffic), as well as assessing performance between time series of

the same group. The models used the first 942 days as training input and the last 48 days were

used for testing. After removing the time series that had missing values, the Deep AR model was

supplied with a total of 932 time series for training. Considering a forecast horizon of 48 days,

the Deep AR model displayed the best performance for both the low and medium-low median

daily sales groups, achieving the lowest average MASE measurements (0.208 and 0.184). The

SARIMAX model performed the best for the medium and high median daily sales group (MASE

= 0.202 and 0.353). The Holt Winter’s model consistently reached the highest MASE values and

thus displayed the worst fit. One important take away from this experiment is that when supplying

multiple time series as input to the Deep AR model, time series with vastly different generating

processes (structure) will generate less accurate predictions. This was observed in the results from

experiments on the group of stores with the highest medians of daily sales in particular for store

639. One way to overcome this is to train a separate model for the individual time series.

The second data set, from Retail Consult, contained the history of the daily sales volume,

in product units, for a total of 195801 product-store pairs, over a period of 898 days. The time

series in this data set were highly intermittent, non-seasonal, and the daily sales volumes were
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consistently small, which is expected for slow-moving products, and thus, the target variable had

a small range (around 1 to 5 daily sales), which generally leads to larger forecasting errors. From

this data set 7 time series were selected and arranged in groups called low, medium and high

average daily sales groups. The models used the first 850 days as training input and the last

48 days were used for testing, and the Deep AR model was supplied with a total of 2000 time

series for training. For this case, we trained two SARIMAX, Prophet, and Deep AR models. The

SARIMAX and Prophet models were trained with and without external variables (SARIMAX,

ProphetX, SARIMA, and Prophet). The two Deep AR models were both supplied with external

variables, however, one included all available features (dynamic and static) and the other static

features only (Deep AR FDR and Deep AR respectively). Once more we set a forecast horizon of

48 days and, overall, the lowest average MASE values were achieved by both Deep AR models, the

Deep AR FDR variation displaying a slightly lower MASE value(0.661 and 0.695). The second

best results were given by the SARIMA and SARIMAX models respectively (0.760 and 0.802).

Additionally, the Deep AR models generated the most accurate and precise prediction intervals for

the majority of time series from both data sets, a highly valuable characteristic when considering

stock management decision making.

The Gluon TS toolkit from which the Deep AR model was used is still in development, and

as such, some valuable training features aren’t yet available. For example, when trying to use

a validation data set for training to compute the validation loss, if the training input consists of

an individual or a small number of time series, it will throw an error. For our purposes, this did

not present a problem as in both experiments over 900 time series were used as training input.

Furthermore, the developer team is actively updating the tool kit. More in-depth data analysis and

feature engineering should be performed on the Retail Dataset to improve performance. Given

the very low number of observations of features, aggregating the products by class, subclass or

department, for each store is a possible alternative to improve the prediction’s accuracy while

not losing as much information as when aggregating exclusively by store. Additionally, the data

anonymization limited the analysis and feature engineering process. For example, if the city or

region features weren’t anonymized, it would have been possible to gather weather data which

could further improve results. Additional features like google analytics, competition-related data,

price, and relative price discount values are also important features that should be considered in

the future if available. We’d also be interested in seeing future work regarding the Deep AR model

using a wider range of accuracy measurements to provide a more complete view of the models’

performance, such as CFE (Cumulative Forecast Error) paired with metrics like PIS (Periods in

Stock) and SPEC (Stock-keeping-oriented Prediction Error Costs).

Our experiments showed that the Deep AR approach can be a highly suitable solution to the

problem of daily sales forecasting when supplied with a large training set containing multiple time

series, in particular for intermittent and slow-moving products. Additionally, we observed that it

benefited from the inclusion of multiple external variables such as different promotions and events.

It exhibited the best overall performance in the case of seasonal data and highly intermittent data

and generated the most accurate and precise prediction intervals, and as such, we consider that
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it displays the desirable traits of a valuable stock management and revenue optimization tool for

healthcare and wellness retailers.
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Appendix A

List of Results and Plots

A.1 Rossmann Experiment

A.1.1 Metrics

Figure A.1: Average metrics for each model for each quartil
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Figure A.2: Standard Deviation for each metric for each model for each quartil
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Figure A.3: Metrics for each time series of low median group (Q1)
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Figure A.4: Metrics for each time series of medium-low median group (Q2)
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Figure A.5: Metrics for each time series of medium median group (Q3)
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