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Background: Tumor mutation burden (TMB) has been recognized as a predictive

biomarker for immunotherapy response in cancer. Systematic identification of

molecular features correlated with TMB is significant, although such investigation

remains insufficient.

Methods: We analyzed associations of somatic mutations, pathways, protein

expression, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), competing

endogenous RNA (ceRNA) antitumor immune signatures, and clinical features

with TMB in various cancers using multi-omics datasets from The Cancer

Genome Atlas (TCGA) program and datasets for cancer cohorts receiving the

immune checkpoint blockade therapy.

Results: Among the 32 TCGA cancer types, melanoma harbored the highest

percentage of high-TMB (≥ 10/Mb) cancers (49.4%), followed by lung

adenocarcinoma (36.9%) and lung squamous cell carcinoma (28.1%). Three

hundred seventy-six genes had significant correlations of their mutations with

increased TMB in various cancers, including 11 genes (ARID1A, ARID1B, BRIP1,

NOTCH2, NOTCH4, EPHA5, ROS1, FAT1, SPEN, NSD1,and PTPRT) with the

characteristic of their mutations associated with a favorable response to

immunotherapy. Based on the mutation profiles in three genes (ROS1, SPEN,

and PTPRT), we defined the TMB prognostic score that could predict cancer

survival prognosis in the immunotherapy setting but not in the non-

immunotherapy setting. It suggests that the TMB prognostic score’s ability to

predict cancer prognosis is associated with the positive correlation between

immunotherapy response and TMB. Nine cancer-associated pathways

correlated positively with TMB in various cancers, including nucleotide excision

repair, DNA replication, homologous recombination, base excision repair,

mismatch repair, cell cycle, spliceosome, proteasome, and RNA degradation.

In contrast, seven pathways correlated inversely with TMB in multiple cancers,

including Wnt, Hedgehog, PI3K-AKT, MAPK, neurotrophin, axon guidance, and

pathways in cancer. High-TMB cancers displayed higher levels of antitumor

immune signatures and PD-L1 expression than low-TMB cancers in diverse

cancers. The association between TMB and survival prognosis was positive in

bladder, gastric, and endometrial cancers and negative in liver and head and neck
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cancers. TMB also showed significant associations with age, gender, height,

weight, smoking, and race in certain cohorts.

Conclusions: The molecular and clinical features significantly associated with

TMB could be valuable predictors for TMB and immunotherapy response and

therefore have potential clinical values for cancer management.
KEYWORDS

tumor mutation burden, multi-omics, antitumor immunity, cancer immunotherapy,
TMB prognostic score, ceRNA
Introduction

Recently, cancer immunotherapies, including the immune

checkpoint blockade (ICB) (1) and the chimeric antigen receptor

(CAR) T cell therapy (2), have achieved notable success in treating

various advanced malignancies. Nevertheless, only a subset of

cancer patients responds to such treatments (3). Previous studies

(4 ) have id en t ified spec ific b iomarke r s fo r cancer

immunotherapeutic responsiveness, including tumor PD-L1

expression levels (5), DNA mismatch-repair deficiency (6), tumor

mutation burden (TMB) (7), and tumor-infiltrating lymphocytes

(TILs) levels (8). In particular, the association between TMB and

cancer immunotherapy response has been extensively investigated

(7, 9–12). In general, high-TMB tumors tend to be more responsive

to immunotherapy than low-TMB tumors and therefore have a

better prognosis in the immunotherapy setting (13). In contrast,

high-TMB tumors often have a worse prognosis than low-TMB

tumors in the non-immunotherapy setting (14). It suggests that the

more active immunotherapy response in high-TMB tumors leads to

a be t t e r p rognos i s ve r sus low-TMB tumors in the

immunotherapy setting.

Previous studies have associated certain molecular features with

TMB in cancer (15). In a study of the TMB landscape across

100,000 human cancer genomes (15), Chalmers et al. identified 48

genes whose mutations were primarily associated with increased

TMB in human cancers, among which there were many DNA

mismatch repair pathway genes and DNA polymerase genes,

including MSH2, MSH6, MLH1, PMS2, and POLE. In another

exploration of the association between somatic genetic alterations

and TMB in 513 non-small-cell lung cancers (NSCLC) (16), Zhu

et al. found that TP53 and KRAS mutations were significantly

associated with high TMB, while EGFR mutations, ALK fusion,

and ROS1 fusion were significantly related to low TMB. Likewise,

they found a strong association between alterations in DNA damage

repair pathway genes and high TMB in NSCLC (16).

A common finding from these prior studies is that the

microsatellite instability/deficient mismatch repair (MSI/dMMR)

genomic feature correlates strongly with high TMB in cancer.

However, Chalmers et al. revealed that only 16% of high-TMB

tumors were characterized by the MSI/dMMR genomic feature

(15). It suggests that there must be other molecular features
02
significantly correlated with TMB. To identify TMB-associated

molecular features, we analyzed multi-omics datasets for 32

cancer types from The Cancer Genome Atlas (TCGA) program

(https://www.cancer.gov/about-nci/organization/ccg/research/

structural-genomics/tcga). Based on the recently defined standard

for high (≥ 10/Mb) and low (< 10/Mb) TMB for clinical application,

we analyzed associations of TMB with gene mutations, protein

expression, and pathway activity in 14 cancer types having more

than ten high-TMB tumors. We reexamined associations of TMB

with tumor immunity, immunotherapy response, prognosis, and

various tumor phenotypes and clinical features in these cancer

types. This study aimed to provide potential implications for what

cause high TMB and what are the consequences of high TMB.
Results

Comparison of TMB between different
cancer types

Among the 32 cancer types, SKCM had the highest percentage

of high-TMB cancers (49.4%), consistent with previous studies (14,

15). Two lung cancers had the second and third highest percentage

of high-TMB cancers (36.9% and 28.1% for LUAD and LUSC,

respectively). The other cancer types encompassing more than 10%

of high-TMB cancers included BLCA, UCEC, COAD, STAD,

DLBC, HNSC, ESCA, PAAD, and CESC (Figure 1A). The cancer

types having less than 1% of high-TMB cancers included THYM,

PRAD, KIRC, KIRP, LAML, OV, PCPG, and THCA. Since the high

TMB is a biomarker for cancer immunotherapy response, the

cancer types with a high percentage of high-TMB cancers would

be suitable for immunotherapy. Indeed, immunotherapies,

including ICB and CAR T cell therapy, have successfully treated

skin, lung, bladder, head and neck, kidney, lymphoma, and MSI/

dMMR cancers [10], most of which embraced more than 10% of

high-TMB cancers except kidney cancer. The percentage of high-

TMB cancers in pan-cancer was 11.5%, suggesting that around

11.5% of cancer patients are appropriate to immunotherapy in

terms of the TMB criterion.

We examined TMB in different subtypes of a single cancer type.

As expected, MSI-high tumors often had high TMB. For example,
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within the MSI-high subtype, 98% of COAD, 100% of ESCA, 97% of

STAD, and 56% of UCEC were high-TMB tumors (Figure 1B). In

contrast, within the microsatellite instability (MSS)/MSI-low

subtype, only 6% of COAD, 17% of ESCA, 2% of STAD, and 10%

of UCEC had high TMB. In BRCA, triple-negative breast cancers

(TNBCs) had significantly higher TMB than non-TNBCs (one-

tailed Mann-Whitney U test, P = 4.36 × 10-11) and harbored a

higher proportion of high-TMB tumors (4.39% versus 2.30%)

(Figure 1C). In addition, basal-like and HER2-enriched breast

cancers had significantly higher TMB than luminal A&B (ER+)

breast cancers (P < 0.001). In COAD, BRAF-mutated tumors had

significantly higher TMB than BRAF-wildtype tumors (P = 1.37 ×

10-11) and harbored a higher proportion of high-TMB tumors

(70.59% versus 12.64%; P = 2.67 × 10-17, OR = 16.09)

(Figure 1D). In LUAD, EGFR-mutated tumors had significantly

lower TMB than EGFR-wildtype tumors (P = 2.13 × 10-5) and

harbored a higher proportion of high-TMB tumors (23.08% versus

38.28%; P = 0.03, OR = 0.49) (Figure 1D). However, KRAS-mutated

and KRAS-wildtype LUADs showed no significant difference in

TMB (high-TMB tumors: 35.98% in KRAS-mutated versus 36.15%

in KRAS-wildtype). In addition, we analyzed a gastrointestinal (GI)

pan-cancer (17), which included 79 esophageal, 383 gastric, 341

colon, and 118 rectal cancers belonging to five subtypes: Epstein-

Barr virus (EBV), MSI, hypermutated-SNV (HM-SNV),

chromosomal instability (CIN), and genome stable (GS). We

found that TMB followed the pattern: MSI&HM-SNV > CIN >

GS&EBV (one-tailed Mann-Whitney U test, P < 0.05). The

proportions of high-TMB tumors in these subtypes were 99.04%,
Frontiers in Immunology 03
80%, 3.70%, 2.94%, and 0% for MSI, HM-SNV, EBV, CIN, and GS,

respectively (Figure 1E).
Identification of genes whose mutations
correlate with TMB in cancer

We identified 376 genes whose mutations significantly correlated

with increased TMB in at least 10 of the 14 cancer types (one-tailed

Mann-Whitney U test, false discovery rate (FDR) < 0.1)

(Supplementary Table S1A). These genes included some critical

tumor suppressor genes (such as BRIP1, SMARCA4, PALB2, and

EP300) and oncogenes (such as AFF3, CNTRL, NCOA1, NIN,

NOTCH2, NSD1, NUP214, PCM1, PDE4DIP, RNF213, ROS1, and

TPR) (Figure 2A). Notably, many of these genes belong to the same

families, including ABCA (ABCA4, 12&13), ARID1 (ARID1A&B),

CHD (CHD3, 4, 6, 7&9), DNAH (DNAH1, 2, 3, 5, 7, 8, 10, 11&17),

FAT (FAT1, 2, 3&4), MUC (MUC5B, 6, 16&17), NOTCH

(NOTCH2&4), and ZEB (ZEB1&2). GSEA (18) revealed that these

genes were significantly associated with the pathways regulating

cellular activity, including focal adhesion, ECM-receptor

interaction, calcium signaling, tight junction, gap junction, and

ABC transporters. Also, we found 28 genes whose mutations

correlated with reduced TMB in a single cancer type

(Supplementary Table S1B). For example, GATA3 mutations

connected with reduced TMB in BRCA and increased TMB in five

other cancer types (Figure 2B). IDH1mutations were associated with

reduced TMB in GBM. They increased TMB in four different cancer
A

B D EC

FIGURE 1

Comparison of TMB between different cancer types or subtypes. (A) The TMB distribution in each cancer type. Percentages of high-TMB cancers in
each cancer type are shown. Proportions of high-TMB tumors in MSI-high versus MSS/MSI-low cancers (B), in TNBC versus non-TNBC (C), in COAD
(or LUAD) with BRAF (or EGFR) mutations versus without BRAF (or EGFR) mutations (D), and in five subtypes of gastrointestinal pan-cancer (E).
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types (Figure 2C). EGFR mutations were associated with reduced

TMB in LUAD and increased TMB in nine other cancer types

(Figure 2D). The negative correlation between mutations of these

genes and TMB may explain why their mutations are associated with

a better prognosis in these cancer types (19–21). Overall, these results

indicate that the association between mutations in a single gene and

TMB is likely positive in cancer. However, a negative association

between them may occur in a few cases.

Since high TMB is associated with a favorable immunotherapy

response in cancer patients (13), we anticipated that the patients

harboring mutations in any of the 376 genes would have better

survival than those without such mutations. As expected, among the

21 genes overlapping between the 376 genes and the 474 genes studied

in the pan-cancer cohort [MSKCC-Samstein cohort (13)] receiving the

ICB therapy, 12 genes exhibited a significant correlation of their

mutations with better overall survival (OS) in the MSKCC-Samstein

cohort (log-rank test, P < 0.05) (Figure 3A). The 12 genes included

ARID1A, ARID1B, BRIP1, NOTCH2, NOTCH4, EPHA5, ROS1, FAT1,

SPEN, NSD1, PTPRT, and ZFHX3. Among them, only the mutation of

ZFHX3 was associated with better OS in another pan-cancer cohort

[MSKCC-Zehir cohort (13)] not receiving the ICB therapy (P = 0.007)

(Supplementary Figure 1). It indicated that 11 of the 12 genes (except

ZFHX3) had the characteristic of their mutations correlated with both

high TMB and a favorable response to immunotherapy in cancer. Next,

we used logistic models to explore the ability of mutations in the 11

genes to predict high- versus low-TMB in TCGA pan-cancer and the

14 individual cancer types. We first utilized the least absolute shrinkage

and selection operator (Lasso) (22) to select variables (genes) and

refitted logistic regression models with the variables selected by the

Lasso. The Lasso selected all 11 genes in the pan-cancer analysis, and in

analyzing individual cancer types, each gene was selected by the Lasso

at least eight times (Figure 3B). The prediction accuracy was 92% in

both training and test sets in the pan-cancer analysis and more than

80% in 10 individual cancer types. Furthermore, we analyzed the
Frontiers in Immunology 04
correlations betweenmutations of the 11 genes andOS in theMSKCC-

Samstein cohort using the Cox proportional hazards model. We found

three genes (ROS1, SPEN, and PTPRT) whose mutations had a

significant association with better OS (ROS1: P = 0.019, HR = 0.67,

95% CI: [0.48, 0.94]; SPEN: P = 0.023, HR = 0.64, 95% CI: [0.44, 0.94];

PTPRT: P = 0.022, HR = 0.74, 95% CI: [0.57, 0.96]) (Figure 3C). We

reanalyzed the correlations between mutations of the three genes and

OS in the MSKCC-Samstein cohort using the Cox proportional

hazards model and obtained their coefficients. Based on the mutation

status of the three genes, we defined the TMB prognostic score

(TMBPS) as: TMBPS = - (a × mutated (ROS1) + b × mutated

(SPEN) + c × mutated (PTPRT)), where a = -0.5071, b = -0.5189,

and c = -0.3485, which were the coefficients of the three variables in the

Cox proportional hazards model; mutated(X) = 1 if the gene X is

mutated in the tumor sample, otherwise mutated(X) = 0. We found

that high-TMBPS (> median) tumors showed better OS than low-

TMBPS tumors in the MSKCC-Samstein cohort (p = 1.85 × 10-9)

(Figure 3D), but high- and low-TMBPS tumors showed no significant

different OS in the MSKCC-Zehir cohort without the ICB therapy

(Figure 3D). We further confirmed that the TMBPS correlated

positively with OS in two lung cancer cohorts [Rizvi cohort (10) and

Hellmann cohort (23)] and two melanoma cohort [Hugo cohort (11)

and Allen cohort (12)] receiving the ICB therapy (Figure 3E). In

contrast, it showed no significant correlation with OS in the TCGA

lung cancers (Figure 3F). These results demonstrate that the TMBPS

can predict the response to ICB therapy.
Identification of cancer-associated
pathways significantly correlated with TMB
in cancer

We identified nine cancer-associated pathways whose activity

exhibited a significant positive correlation with TMB in at least
A B

D

C

FIGURE 2

Correlations of gene mutations with TMB. (A) A list of tumor suppressor genes, oncogenes, and gene families whose mutations were significantly
associated with increased TMB in at least ten cancer types. Comparisons of TMB between GATA3-mutated and GATA3-wildtype (B), between IDH1-
mutated and IDH-wildtype (C), and between EGFR-mutated and EGFR-wildtype cancers (D). The one-tailed Mann-Whitney U test adjusted P-values
(FDR) are indicated.
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eight cancer types (Spearman’s correlation test, FDR < 0.1). These

pathways included nucleotide excision repair, DNA replication,

homologous recombination, base excision repair, mismatch

repair, cel l cycle, spliceosome, proteasome, and RNA

degradation (Figure 4). Notably, numerous DNA damage repair-

associated pathways showed significant positive correlations with

TMB (Figure 4). This is consistent with previous studies showing

that dMMR has a strong correlation with high TMB in cancer

(15). Interestingly, the cell cycle pathway showed a marked

positive correlation with TMB in nine cancer types, including

(BLCA, BRCA, COAD, LUAD, LUSC, SARC, SKCM, STAD,

UCEC) (Figure 4), indicating that the proliferation of tumor

cells increases TMB. The spliceosome pathway exhibited a

significant correlation with TMB in eight cancer types

(Figure 4); a possible explanation is that the spliceosome is

associated with DNA damage repair and cell cycle progression

(24). Moreover, we found seven pathways showing significant

inverse correlations with TMB in at least eight cancer types

(Spearman’s correlation test, FDR<0.1) (Figure 4). These

pathways included Wnt, Hedgehog, PI3K-AKT, MAPK,

neurotrophin, axon guidance, and pathways in cancer. Most of

these pathways are overexpressed in cancer (25–29). Our data

indicated that the hyperactivation of these pathways was

associated with reduced TMB in cancer, suggesting that their

activities inhibit the antitumor immune response. Interestingly,

two neural development-associated pathways (neurotrophin and

axon guidance) correlated significantly with TMB in diverse

cancers. It suggests that the molecules involved in regulating

neural development may play essential roles in modulating

tumor immunity, as evidenced in a recent study (30).
Identification of proteins whose expression
correlates with TMB in cancer

We identified ten proteins having significant positive expression

correlations with TMB in at least five cancer types (Spearman’s

correlation test, FDR < 0.1) (Figure 5). These proteins included

ASNS, Cyclin_B1, Cyclin_E1, Cyclin_E2, Caspase-7, FoxM1,

PCNA, Rad51, TFRC, and 4E-BP1. Many of these proteins were

associated with cell cycle regulation, including ASNS, Cyclin_B1,

Cyclin_E1, Cyclin_E2, and FoxM1. This is consistent with the fact

that the cell cycle pathway correlates positively with TMB in

multiple cancer types (Figure 4). Besides, several proteins were

involved in the regulation of DNA damage repair, including PCNA

and RAD51, consistent with the significant correlation between

dMMR and high TMB in cancer. Furthermore, we identified seven

proteins with significant inverse expression correlations with TMB

in at least five cancer types (Spearman’s correlation test, FDR < 0.1)

(Figure 5). These proteins included ACVRL1, Bcl-2, Caveolin-1, c-

Kit, PKC-alpha, PR, and INPP4B. Among them, ACVRL1 is

associated with the TGF-b pathway, which hampers antitumor

immune response (31); Bcl-2 regulates the apoptosis pathway,

which correlated inversely with TMB in four cancer

types (Figure 4).
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Identification of ceRNA network which
constructed by mRNA, miRNAs and
lncRNAs whose expression correlates with
TMB in cancer

We identified 356 genes from the immune response module

(pink module) which enriched in higher-TMB cancers and 674

genes from the cell cycle/chromosome module (turquoise

module) which enriched in lower-TMB cancers among pan-

cancer (WGCNA-pink-turquoise genes) by WGCNA method

(Figure 6A). Meanwhile, we identified 730 and 248 mRNAs

upregulated and downregulated differentially expressed mRNA

genes (DEmRNA) between high-TMB cancers and low-TMB

cancers in at least five cancer types, respectively (Student’s t test,

FDR < 0.05, |FC| > 1.5). WGCNA-DEmRNA were defined as the

intersection of WGCNA-pink-turquoise genes and DEmRNA.

ClueGO mainly enriched the 107 WGCNA-DEmRNA in the

mitotic nuclear division, regulation of cell division, and positive

regulation of cel l cycle phase transit ion (Figure 6B).

Furthermore, we identified 58 (or 18) miRNAs and 8 (or 16)

lncRNAs upregulated and downregulated differentially

expressed miRNAs (DEmiRNA) and lncRNAs (DElncRNA)

between high-TMB cancers and low-TMB cancers in at least

five cancer types, respectively (Student’s t test, FDR<0.1)

(Figures 6C, D). Many of these miRNAs were involved in the

KEGG pathway MicroRNAs in cancer pathway (https://

www.genome.jp/kegg-bin/show_pathway?hsa05206), including

hsa-mir-192, hsa-mir-7-2, hsa-mir-96, hsa-mir-25, hsa-mir-7-

3, hsa-mir-107, hsa-mir-128-2, hsa-mir-128-1, hsa-mir-183,

hsa-mir-200b, hsa-mir-615, and hsa-mir-335. In addition, hsa-

mir-25, hsa-mir-3074, and hsa-mir-106b were involved in the

DNA damage response pathways. To further explore the

molecular features of TMB, a competing endogenous RNAs

(ceRNA) network was constructed and visual ized by

Cytoscape based on the intersection of 24 DElncRNA–

DEmiRNA pairs and 383 WGCNA-DEmRNA–DEmiRNA

pairs that were identified from the three databases [miRecords

(32), miRTarBase (33, 34), starBase (35)]. (Figure 6E). The

ceRNA network contains 7 DElncRNAs, 20 DEmiRNAs, and

107 WGCNA-DEmRNA.
Association between TMB and antitumor
immune response in cancer

It has been recognized that high-TMB cancers are likely to

yield more neoantigens to incite antitumor immune responses

(7). We found that the enrichment levels of CD8+ T cells were

higher in high-TMB than in low-TMB cancers in seven cancer

types (COAD, CESC, UCEC, BLCA, LUSC, STAD, LUAD). The

immune cytolytic activity was higher in high-TMB cancers in

eight cancer types (COAD, CESC, STAD, BRCA, BLCA, UCEC,

LUSC, LUAD) (one-tailed Mann-Whitney U test, FDR < 0.1)

(Figure 7A). Meanwhile, in 10 cancer types (COAD, STAD,

LUAD, BLCA, SKCM, CESC, BRCA, UCEC, SARC, PAAD),
frontiersin.org
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high-TMB cancers displayed significantly higher PD-L1

expression levels than low-TMB cancers (two-tailed Student’s t

test, P < 0.1). It indicates that elevated TMB is associated with

increases in both immunostimulatory and immunoinhibitory

s i gna tu r e s . Howeve r , we f ound tha t th e r a t i o s o f

immunostimulatory/immunoinhibitory signatures (CD8+/CD4

+ regulatory T cells, pro-/anti-inflammatory cytokines, and M1/

M2 macrophages) were significantly higher in high-TMB than in

low-TMB cancers (two-tailed Student’s t test, FDR < 0.1) in

diverse cancer types (Figure 7B). The ratios were the average

expression levels of immune-stimulatory signature marker genes

over the average expression levels of immune-inhibitory

signature marker genes. Furthermore, we found that high-

TMB cancers encompassed more neoantigen loads than low-

TMB cancers in all ten cancer types, in which the data of

predicted neoantigen loads are available (Figure 7C) (36).

These results confirmed that high TMB is associated with a

more active antitumor immune response.
Frontiers in Immunology 06
Associations between TMB and clinical
features in cancer

In seven of the 14 TCGA cancer types, high-TMB cancers

displayed significantly higher expression levels of MKI67, a marker

for tumor cell proliferation (37), and proliferation signature scores

than low-TMB cancers (two-tailed Student’s t test, P < 0.1)

(Figure 8A). It indicates that high TMB is associated with the

increased proliferation potential of tumor cells. The association

between TMB and survival prognosis is cancer type dependent. In

LIHC and HNSC, high-TMB tumors had significantly worse

survival (OS and/or disease-free survival (DFS)) prognosis than

low-TMB tumors, while in BLCA, STAD, and UCEC, high-TMB

tumors had significantly better survival prognosis (log-rank test, P <

0.1) (Figure 8B and Supplementary Figure 2).

We analyzed associations of TMB with age, gender, height,

weight, smoking, and race. We found that the high-TMB patients

were significantly older than the low-TMB patients in pan-cancer
A B
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FIGURE 3

Correlations of gene mutations with survival prognosis in cancer. (A) Kaplan-Meier curves showing 12 genes whose mutations correlate with better
overall survival (OS) in the MSKCC-Samstein cohort receiving the immune checkpoint blockade (ICB) therapy. The 12 genes also significantly
correlate their mutations with increased TMB in at least 10 TCGA cancer types. (B) Predictions of high- versus low-TMB in TCGA pan-cancer and in
14 individual cancer types based on the mutation status of 11 genes using logistic regression models with the variables selected by the Lasso. The b-
values for each variable in the logistic regression models and the ROC-AUC indicate the prediction performance. (C) Correlations between
mutations of 11 genes and OS in the MSKCC-Samstein cohort by the Cox proportional hazards model. (D) Kaplan-Meier curves showing that the
TMB prognostic score (TMBPS) correlates positively with OS in the MSKCC-Samstein cohort receiving the ICB therapy, while it shows no significant
correlation with OS in the MSKCC-Zehir cohort without the ICB therapy. (E) Kaplan-Meier curves show that the TMBPS correlates positively with OS
in two lung cancer cohorts (Rizvi and Hellmann cohorts) and two melanoma cohorts (Allen and Hugo cohort) receiving the ICB therapy. (F) In
contrast, it shows no significant correlation with OS in the TCGA lung cancers not receiving the ICB therapy. The log-rank test P-values are shown
in the survival analyses.
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and in six individual cancer types, including BRCA, CESC, ESCA,

HNSC, SKCM, and STAD (one-tailed Mann-Whitney U test, P <

0.1) (Figure 8C). This is reasonable because tumor mutations

accumulate with age. One exception was LUAD, in which the

high-TMB patients were significantly younger than the low-TMB

patients (P < 0.001) (Figure 8C). The main reason could be that

smoking significantly contributes to gene mutations during the

development of lung cancer. Indeed, the smoking load had a

significant positive correlation n with TMB in LUAD (P < 0.001)

(Figure 8D). In pan-cancer and three individual cancer types,

including BLCA, SARC, and SKCM, males had significantly

higher proportions of high-TMB tumors than females (Fisher’s

exact test, P < 0.1) (Figure 8E). However, in STAD, females had
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significantly higher proportions of high-TMB tumors than males

(Fisher’s exact test, P < 0.002). In pan-cancer and four individual

cancer types, including BLCA, ESCA, LIHC, and SKCM, the high-

TMB patients were significantly higher than the low-TMB patients

(one-tailed Mann-Whitney U test, P < 0.05) (Figure 8F). In

addition, in pan-cancer and three individual cancer types,

including BLCA, ESCA, and SKCM, the high-TMB patients were

significantly heavier than the low-TMB patients (one-tailed Mann-

Whitney U test, P < 0.01) (Figure 8F). Interestingly, in certain

cancer types, TMB showed a significant association with race. In

SKCM, ESCA, and BLCA, the proportion of high-TMB tumors in

the white was significantly higher than that in other races (Chi-

square test, P < 0.1) (Figure 8G). In contrast, in LUAD, the white

harbored a significantly lower proportion of high-TMB tumors than

other races (P = 0.01). In LIHC, the American Indian had the

highest proportion (50%) of high-TMB tumors compared to other

races (less than 10%).
Discussion

TMB has been recognized as a biomarker for the response to

immunotherapy in cancer (7, 13). Because whole-exome measures

of TMB are often costly and have limited accuracy, TMB evaluated

by targeted gene panel sequencing is clinically actionable (15).

Certain genomic features, such as dMMR or MSI, have been

indicated as valuable predictors of immunotherapy response for

their strong correlations with TMB in cancer (6). In this study, we

identified new molecular features correlated with TMB. First, we

detected numerous genes whose mutations associated with

increased TMB in diverse cancers, of which there were 11 genes

whose mutations correlated with a favorable immunotherapy

response. Of the 11 genes, some have been recognized for their

significant association with immunotherapy response, such as

ARID1A (38, 39). Previous studies demonstrated that the

association between ARID1A mutations and favorable

immunotherapy response was attributed to the increased TMB

caused by ARID1A mutations (38, 39). This is consistent with our

findings. Furthermore, based on the mutation profiles in three of

the 11 genes (ROS1, SPEN, and PTPRT), we defined the TMB

prognostic score that could predict cancer survival prognosis in the

immunotherapy setting but not in the non-immunotherapy setting.

It indicates that the TMB prognostic score’s ability to predict cancer

prognosis is associated with the positive correlation between

immunotherapy response and TMB. Then, we built an upgraded

TMBPS (UTMBPS) score by molecular features (The mutation

profiles in three genes (ROS1, SPEN, and PTPRT)) and clinical

features. We incorporating the significant clinical covariants

(gender) in multivariable Cox regression analysis in the MSKCC-

Samstein cohort. We found three genes (ROS1, SPEN, and PTPRT)

whose mutations and gender had a significant association with

better OS (ROS1: P = 0.003, HR = 0.61, 95% CI: [0.44, 0.85]; SPEN: P

= 0.007, HR = 0.60, 95% CI: [0.41, 0.87]; PTPRT: P = 0.0008, HR =

0.71, 95% CI: [0.55, 0.91], gender: P = 0.079, HR = 1.14, 95% CI:

[0.99, 1.31]) (Supplementary Figure 3A). Based on the mutation

status of the three genes and gender status, we defined the upgrade
FIGURE 5

Proteins whose expression levels have significant correlations with
TMB in at least five cancer types. The Spearman’s correlation test
FDR and correlation coefficients (r) are indicated.
FIGURE 4

Cancer-associated pathways significantly correlate their activities
with TMB in at least eight cancer types. The Spearman’s correlation
test FDR and correlation coefficients (r) are indicated.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1090838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1090838
TMB prognostic score (UTMBPS) as: UTMBPS = - (a × mutated

(ROS1) + b × mutated (SPEN) + c × mutated (PTPRT) + d ×

gender), where a = -0.7131, b = -0.7369, c = -0.4941, and d = 0.1890,

which were the coefficients of the four variables in the Cox

proportional hazards model: mutated(X) = 1 if the gene X is

mutated in the tumor sample, otherwise mutated(X) = 0; gender

(X) = 1 if the patient is female, otherwise gender(X) = 0. We found

that high-UTMBPS (> median) tumors showed better OS than low-

UTMBPS tumors in the MSKCC-Samstein cohort (p = 8.5 × 10-9)

(Supplementary Figure 3B), but high- and low-UTMBPS tumors

showed no significant different OS in the MSKCC-Zehir cohort

without the ICB therapy (Supplementary Figure 3B).

Many DNA damage repair-associated pathways correlated with

TMB, including nucleotide excision repair, DNA replication,

homologous recombination, base excision repair, and mismatch

repair. It is a fact that DNA damage repair deficiency may result in

genomic instability, which in turn enhances TMB. Besides, the cell

cycle activity correlated positively with TMB in multiple cancer

types, suggesting that the growing tumor cell proliferation potential

may raise TMB. This is in line with a recent study showing that

increased cell cycle activity promoted an antitumor immune

response in diverse cancers (40). The positive association between

cell cycle activity and TMB suggests that combining cell cycle

inhibitors with immunotherapy, as suggested in a recent study

(41), could not be promising in improving the efficacy of cancer

treatments. In addition, we found numerous oncogenic pathways
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whose activity correlated inversely with TMB, including the Wnt,

Hedgehog, PI3K-AKT, and MAPK signaling pathways. This

suggests that combining these pathways’ inhibitors and

immunotherapy could improve the antitumor efficacy.

Our data showed that almost all the cancer types applying to

immunotherapy harbored more than 10% of high-TMB tumors,

including skin, lung, bladder, head and neck, lymphoma, and MSI/

dMMR cancers. Among all cancer types, SKCM harbored the

highest percentage of high-TMB tumors (49.4%), indicating that

SKCM is the most suitable for immunotherapy. Indeed, current

immune checkpoint inhibitors (ICIs) have achieved the earliest and

most significant success in treating melanoma among all cancer

types (42, 43). Next to SKCM were LUAD and LUSC, which

included 36.9% and 28.1% of high-TMB tumors, respectively.

Current ICIs have also successfully treated lung cancers (44–46).

The MSI/dMMR cancers, which have high TMB and are prevalent

in UCEC, COAD, and STAD, have been proven to have a favorable

response to ICIs (47, 48). These results confirm that TMB is a

valuable biomarker for predicting immunotherapy response.

Three kidney cancer types, including KIRC, KIRP, and KICH,

harbored extremely low percentages of high-TMB tumors.

Nevertheless, ICIs have been clinically used in treating kidney

cancers (49), indicating that certain kidney cancers can respond

to immunotherapy. The reason could be that many kidney cancers

have high levels of immune cell infiltration (50). Taken together,

these data indicate that TMB or neoantigens are not the only
A B

D E

C

FIGURE 6

CeRNA network which constructed by mRNA, miRNAs and lncRNAs whose expression correlates with TMB in cancer. (A) WGCNA identified 14
coexpressed gene modules with softpower 7. The GO terms in the tan, black, pink, salmon, blue, red, green, greenyellow, magenta, turquoise,
brown, purple, and yellow modules were mainly associated with developmental pigmentation, extracellular matrix, immune response, O-glycan
processing, epithelial cell differentiation, apical junction complex, intrinsic component of synaptic membrane, regulation of synapse organization,
cilium, cell cycle/chromosome, metabolic process, secondary active transmembrane transporter activity, and cellular amino acid metabolic process,
respectively. (B) ClueGO mainly enriched the 107 WGCNA-DEmRNA in the mitotic nuclear division, regulation of cell division, and positive regulation
of cell cycle phase transition. (C) 58 miRNAs whose expression levels were significantly higher in high-TMB cancers than in low-TMB cancers, and 18
miRNAs whose expression levels were significantly lower in high-TMB cancers than in low-TMB cancers in at least five cancer types (Student’s t test,
FDR<0.1). (D) Left, eight lncRNAs whose expression levels were significantly higher in high-TMB cancers than in low-TMB cancers; Right, 16 lncRNAs
whose expression levels were significantly lower in high-TMB cancers than in low-TMB cancers in at least five cancer types (Student’s t test,
FDR<0.1). (E) CeRNA network constructed by 7 DElncRNAs, 20 DEmiRNAs, and 107 WGCNA-DEmRNA.
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determinants for antitumor immunity and immunotherapy

response. Thus, the discovery of other factors aside from TMB

associated with antitumor immunity and immunotherapy response

represents an interesting research direction.
Conclusions

The molecular features significantly associated with TMB could

be useful predictors for TMB and cancer immunotherapy response

and therefore have potential clinical values for cancer therapy.
Materials and methods

Datasets

We downloaded gene somatic mutations (level 3), RNA-

Seq gene expression profiles (level 3, RSEM-normalized), protein

expression profiles (level 3), and clinical datasets for 32 cancer types

from the TCGA data portal (https://portal.gdc.cancer.gov/). The

cancer-associated pathways and genes involved in these pathways

were obtained from KEGG (51). The somatic mutation profiles and

clinical datasets for two other pan-cancer cohorts (MSKCC-

Samstein and MSKCC-Zehir cohorts) were attained from their

associated publication (13). In addition, we obtained the somatic
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mutation profiles and clinical datasets for two lung cancer cohorts

(Rizvi cohort (10) and Hellmann cohort (23)) and two melanoma

cohorts (Hugo cohort (11) and Allen cohort (12)) receiving ICB

therapy from their associated publications.(Supplementary Table 2)
Evaluation of TMB

For each tumor sample, its TMB was defined as the total count

of non-synonymous somatic mutations/30Mb in the sample. We

defined the high- and low-TMB according to the FDA standard.

That is, if a tumor sample’s TMB is no less than 10, the tumor

sample has a high-TMB. Otherwise, it has a low-TMB. The sample

size for high- and low-TMB cancers is presented in Supplementary

Table S3.
Single-sample gene-set enrichment
analysis

For a pathway, immune signature, or biological process, we

quantified its enrichment level in a tumor sample as the single-

sample gene-set enrichment analysis (ssGSEA) (52) score of its

marker genes. The marker gene sets representing different immune

signatures were from several publications, including CD8+ T cells

(36), CD4+ regulatory T cells (36), pro-/anti-inflammatory
A

B

C

FIGURE 7

Association between TMB and antitumor immune response in cancer. The enrichment levels of antitumor immune signatures (CD8+ T cells and
immune cytolytic activity) (A), the ratios of immunostimulatory/immunoinhibitory signatures (CD8+/CD4+ regulatory T cells, pro-/anti-inflammatory
cytokines, and M1/M2 macrophages) (B), and the neoantigen loads (C) likely to be higher in high-TMB than in low-TMB cancers. The one-tailed
Mann-Whitney U test (A, C) and two-tailed Student’s t test (B) FDRs are indicated.
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cytokines (36), and M1/M2 macrophages immune cytolytic activity

(36), and proliferation signature score (53). These gene sets are

listed in Supplementary Table S4.
Logistic regression analysis

We explored the ability of gene mutations to predict high-

versus low-TMB cancers in TCGA pan-cancer and in 14 individual

cancer types. We separated all samples into a training set (70% of

the samples) and a test set (30% of the samples). On the training set,

we used the Lasso to select variables with 10-fold cross-validation

(CV) and refitted a logistic regression model with the variables

selected by the Lasso using a 10-fold CV. We then tested the model

on the test set and calculated the area under the curve of the

receiver-operating characteristic (ROC-AUC) as the prediction

performance. We performed the Lasso and logistic regression

analyses using the R package “glmnet” and “caret,” respectively,

and calculated the standardized regression coefficients (b values)

using the function “lm. beta” in the R package “QuantPsyc.”
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Establishing the ceRNA network according
to the DElncRNA–DEmiRNA–WGCNA–
DEmRNA

The correlation between miRNA or lncRNA expression levels and

TMB was assessed by comparing miRNA or lncRNA expression levels

between high-TMB and low-TMB cancers in each caner type using

Student’s t test. We identified miRNAs and lncRNAs whose expression

levels were significantly higher (or lower) in high-TMB cancers than in

low-TMB cancers in at least five cancer types as DEmiRNAs and

DElncRNAs. We predicted DElncRNA–DEmiRNA pairs by the

intersection of three databases [miRecords (32), miRTarBase (33, 34),

starBase (35)] and using the R package “multiMiR”. WGCNA–

DEmRNA–DEmiRNA pairs were identified by using starBase

(http://starbase.sysu.edu.cn/) database. We establish and visualize the

DElncRNA–DEmiRNA–WGCNA–DEmRNA ceRNA network based

on the intersection of DElncRNA–DEmiRNA pairs and WGCNA–

DEmRNA–DEmiRNA pairs (established by DElncRNAs, DEmiRNAs,

and WGCNA–DEmRNA) by Cytoscape v3.7.2 WGCNA analysis was

carried out using R package "WGCNA".
A B
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FIGURE 8

Associations between TMB and clinical features in cancer. (A) High-TMB cancers display significantly higher expression levels of MKI67 and
proliferation signature scores than low-TMB cancers in diverse cancers. (B) Kaplan-Meier curves show that the association between TMB and
survival prognosis is cancer type dependent. Associations between TMB and age (C), smoking (D), gender (E), weight and height (F), and race (G)
in cancer.
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We using the first 70% mRNAs by variance comparison to build

the gene modules that were differentially enriched between the

higher TMB level and the lower TMB level tumors in pan-cancer.

Then, we identified 14 co-expressed gene modules with softpower 7.

WGCNA-pink-turquoise genes was defined as genes which

enriched in immune response and cell cycle modules (pink and

turquoise modules). The interaction of WGCNA-pink-turquoise

genes and DEmRNA was defined as WGCNA – DEmRNA.

Cytoscape plug-in (ClueGO) (54) provides functional annotation

for WGCNA – DEmRNA genes.
Statistical analysis

In comparisons of two classes of data, we used the Mann-

Whitney U test (for non-normally distributed data) or the

Student’s t test (for normally distributed data). We used

Spearman’s correlation test (for non-normally distributed data) or

Pearson’s correlation test (for normally-distributed data) to evaluate

the correlation between two groups of data. We used Fisher’s exact or

Chi-square test to assess the association between two categorical

variables.We utilized the FDR, evaluated by the Benjamini-Hochberg

method, to adjust for multiple tests. We performed all statistical

analyses in the R programming environment (version 4.0.2).
Survival analysis

In the univariate survival analysis, we utilized the Kaplan-Meier

curves to exhibit the survival time differences and the log-rank

test to evaluate the significance of survival time differences. We

performed the survival analyses using the function “survfit” in the

R package “survival.” In the multivariate survival analysis, we

used the cox proportional hazards model. We performed the

multivariate survival analyses using the function “coxph” in R

package “survival.”
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Glossary

TMB tumor mutation burden

TCGA The Cancer Genome Atlas

TILs tumor-infiltrating lymphocytes

NSCLC non-small-cell lung cancers

MSI microsatellite instability

dMMR deficient mismatch repair

PD-L1 programmed cell death one ligand

FDR false discovery rate

FAT FAT atypical cadherin.

MUC mucin

IDH1 isocitrate dehydrogenase 1

ssGSEA the single-sample gene-set enrichment analysis

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

HNSC head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney renal clear cell carcinoma

KIRP kidney renal papillary cell carcinoma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

STAD stomach adenocarcinoma

THCA thyroid carcinoma

UCEC uterine corpus endometrial carcinoma

ACC adrenocortical carcinoma

CESC cervical squamous-cell carcinoma and endocervical adeno-
carcinoma

LAML acute myeloid leukemia

LGG brain lower-grade glioma

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adeno-carcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

(Continued)
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TGCT testicular germ-cell tumors

UCS uterine carcino-sarcoma

UVM uveal melanoma

THYM thymoma

DLBC lymphoid neoplasm diffuse large B-cell lymphoma

PCPG pheochromocytoma and paraganglioma

TMBPS TMB prognostic score.

miRNAs microRNAs

lncRNAs long non-coding RNAs.
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