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The impact of vasomotion on
analysis of rodent fMRI data
Henriette Lambers, Lydia Wachsmuth, Chris Lippe and
Cornelius Faber*

Clinic of Radiology, University of Münster, Münster, Germany

Introduction: Small animal fMRI is an essential part of translational research in

the cognitive neurosciences. Due to small dimensions and animal physiology

preclinical fMRI is prone to artifacts that may lead to misinterpretation of the data.

To reach unbiased translational conclusions, it is, therefore, crucial to identify

potential sources of experimental noise and to develop correction methods for

contributions that cannot be avoided such as physiological noise. Aim of this

study was to assess origin and prevalence of hemodynamic oscillations (HDO)

in preclinical fMRI in rat, as well as their impact on data analysis.

Methods: Following the development of algorithms for HDO detection and

suppression, HDO prevalence in fMRI measurements was investigated for

different anesthetic regimens, comprising isoflurane and medetomidine, and for

both gradient echo and spin echo fMRI sequences. In addition to assessing the

effect of vasodilation on HDO, it was studied if HDO have a direct neuronal

correlate using local field potential (LFP) recordings. Finally, the impact of HDO

on analysis of fMRI data was assessed, studying both the impact on calculation of

activation maps as well as the impact on brain network analysis. Overall, 303 fMRI

measurements and 32 LFP recordings were performed in 71 rats.

Results: In total, 62% of the fMRI measurements showed HDO with a frequency

of (0.20 ± 0.02) Hz. This frequent occurrence indicated that HDO cannot be

generally neglected in fMRI experiments. Using the developed algorithms, HDO

were detected with a specificity of 95%, and removed efficiently from the signal

time courses. HDO occurred brain-wide under vasoconstrictive conditions in

both small and large blood vessels. Vasodilation immediately interrupted HDO,

which, however, returned within 1 h under vasoconstrictive conditions. No direct

neuronal correlate of HDO was observed in LFP recordings. HDO significantly

impacted analysis of fMRI data, leading to altered cluster sizes and F-values for

activated voxels, as well as altered brain networks, when comparing data with

and without HDO.

Discussion: We therefore conclude that HDO are caused by vasomotion under

certain anesthetic conditions and should be corrected during fMRI data analysis

to avoid bias.
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1. Introduction

Functional magnetic resonance imaging (fMRI) allows for non-
invasive mapping of neuronal activity as well as investigation
of functional connectivity. However, caution must be taken with
interpretation of fMRI, as it is an indirect representation of
neuronal activity. fMRI is based on blood oxygenation level
dependent (BOLD) contrast (Ogawa et al., 1990; Buxton, 2013),
as the hemodynamic response to neuronal activity causes changes
in the MR signal. Therefore, in addition to technical noise
and motion, physiological noise including heartbeat, respiration,
arterial carbon dioxide (CO2) concentration and vasomotion
can distort the functional signal (Murphy et al., 2013). This is
crucial for functional network analysis, since any non-neuronal
related process that affects at least one brain region impacts
analysis of functional connectivity. Furthermore, non-neuronal
signals may affect calculation of BOLD activation maps, since
models used for fMRI data analysis with the general linear
model (GLM) usually ignore physiological noise. Especially in
small animal fMRI, physiological noise must be studied carefully,
since measurements are often acquired under anesthesia, which
alter physiological processes (Gao et al., 2017; Paasonen et al.,
2018; van Alst et al., 2019) compared to the awake condition.
Small animal fMRI is valuable for translational research, since it
offers numerous options such as studying specific disease models
(Tenney et al., 2003; Tristao Pereira et al., 2021; Wachsmuth
et al., 2021), pharmacological (Haensel et al., 2015) and surgical
interventions (Chen et al., 2019) as well as combining MRI with
electrophysiological (Pan et al., 2010; Kosten et al., 2022) and
optical recordings (Schulz et al., 2012; Albers et al., 2018; Lake
et al., 2020; Ioanas et al., 2022). To avoid incorrect translational
conclusions, it is crucial to investigate physiological noise and to
develop correction methods for commonly performed preclinical
experiments.

Although fMRI can be conducted on awake animals, small
animal fMRI studies are often performed under anesthesia to
reduce motion and prevent stress for the animal. A variety
of anesthetic drugs is used for fMRI studies, including α-
chloralose, isoflurane (ISO), ketamine-xylazine, propofol, urethane
or medetomidine/dexmedetomidine (MED/DMED). Frequently,
modifications of an anesthetic protocol originally proposed by
Weber et al. (2006) are used, whereby animal preparation is
performed under an inhalation anesthetic followed by fMRI
measurements under MED sedation. This protocol offers a
number of advantages, since application is non-invasive, can
be maintained over extended durations and leads to temporally
stable neuronal activity and functional connectivity in rats (Weber
et al., 2006; Sirmpilatze et al., 2019). Using a similar anesthesia
protocol (animal preparation under ISO, fMRI under DMED),
Magnuson et al. (2010, 2014) detected signal oscillations with
a frequency of approximately 0.2 Hz in CBV and in BOLD
weighted fMRI measurements. The authors hypothesized that
these oscillations resulted either from infraslow neuronal activity
or from modulations in vascular tone. Close examination of
these oscillations is important, because they may represent a

Abbreviations: EGF, exponential-Gaussian function; HDO, hemodynamic
oscillations; MDCC, mean differences of correlation coefficients.

physiological noise source that distorts fMRI data analysis. We refer
to these oscillations in the following as hemodynamic oscillations
(HDO), since both neuronal activity and vascular tone model the
hemodynamic system.

This study aimed to investigate origin and prevalence of HDO
in fMRI as well as their impact on data analysis (Figure 1). For
this purpose, we performed fMRI with two different MR contrasts
under ISO and MED anesthesia. We developed algorithms for
detection and suppression of HDO, and investigated the effect
of vasodilation on HDO. Further, we studied whether HDO
are physiological noise or whether they have a direct neuronal
correlate, using local field potential (LFP) recordings. Finally, we
investigated the impact of HDO on fMRI data analysis using the
GLM (Friston et al., 1995) as well as brain network analysis using
network based statistics (NBS) (Zalesky et al., 2010).

2. Materials and methods

All experiments were conducted according to the German
Animal Welfare Act and were approved by the State Agency
for Nature, Environment and Consumer Protection of North
Rhine-Westphalia, Germany (LANUV approval IDs: 87-
51.04.2010.A274, 84-02.04.2015.A427, 84-02.04.2016.A135,
and 81-02.04.2018.A426). Experiments were performed with 71
adult Fischer rats (>3 month). A total of 70 animals were female
and had a weight of (184 ± 14) g, one animal was male and
weighed 261 g. Rats were housed in groups of two to five animals
under a regular light/dark schedule (12/12 h) with food and water
ad libitum.

2.1. Animal handling and data overview

Respiratory gas was 1 L/min O2 for anesthesia induction and
during LFP experiments. For MRI, a gas mixture of 0.25 L/min
O2 and 0.75 L/min air was used. Animal preparation and LFP
electrode implantations were performed under ISO anesthesia
(5% induction, 2–3% maintenance). Long-term ISO experiments
were performed under 1.2% ISO anesthesia. Other experiments
were executed after switching to MED sedation initiated by
a subcutaneous bolus injection of 0.04 mg/kg followed by a
continuous infusion of 0.05 mg/kg/h. After MED bolus, ISO was
discontinued within 10–15 min and experiments were started at
least 40 min after bolus injection, because after this waiting period
a stable physiology can be expected (Weber et al., 2006; Sommers
et al., 2009; Amirmohseni et al., 2016; Sirmpilatze et al., 2019; Kint
et al., 2020). A total of 30 min prior to stereotaxic surgery for
electrode implantation, the animals received analgesia [Metacam
(1 mg/kg s.c.) or Metamizol (100 mg/kg s.c.)]. A total of 56
animals were ventilated (MRI-1 Ventilator, CWE, Inc., Ardmore,
Pennsylvania, United States). A total of 24 of them received
a muscle relaxant [Pancuronium (2 mg/kg bolus followed by
continuous injection of 1.5 mg/kg/h) or Atracurium (5 mg/kg bolus
followed by continuous injection of 5 mg/kg/h)]. For ventilated
animals, the end-expiratory CO2 was continuously monitored
using a CO2 analyzer (Micro CapStar End-Tidal CO2 Analyzer,
CWE, Inc., Ardmore, Pennsylvania, United States). Respiration
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FIGURE 1

Study design. fMRI was performed on Fischer rats. Algorithms for detection and suppression of HDO were developed. Afterward, HDO prevalence
was investigated using the detection algorithm. In detail, it was examined in which brain regions and after which time HDO occurred after switching
from ISO anesthesia to MED sedation. Further, the effect of vasodilation was studied and it was examined whether HDO occur in both SE-EPI and
GE-EPI scans. Subsequently, the impact of HDO to GLM-based analysis and NBS analysis of fMRI data was examined using the developed
algorithms. Additionally, LFP signals were recorded with implanted electrodes for examination whether HDO have a direct neuronal correlate.

rate of ventilated animals was set to 53, 57, or 60 breaths per
minute (bpm). The respiratory minute volume was between 95
and 127 mL/min. Respiration rate of spontaneously breathing
animals was (56 ± 5) bpm and (68 ± 11) bpm for LFP and fMRI,
respectively. Animals were placed on a temperature-controlled bed
and fixated with bite and ear bars. Rectal temperature was kept at
(36.7 ± 0.4) ◦C. Functional echo-planar imaging (EPI) and LFP
data from seven experiments were investigated: (1) For up to 4 h,
5 or 10 min-long gradient echo-EPI (GE-EPI) measurements were
performed repeatedly under 1.2% ISO anesthesia. (2) For up to 8 h
short GE-EPI scans were acquired repeatedly under MED sedation.
(3) Spin echo-EPI (SE-EPI) measurements were recorded under
MED sedation. GE-EPI scans were recorded during execution of
(4) CO2 or (5) ISO challenges. (6) GE-EPI measurements were
recorded during electrical paw stimulation. (7) LFP recordings were
conducted. A total of 10% of the data were included retrospectively
from previous studies (Albers et al., 2019; van Alst et al., 2019;
Lambers et al., 2022). Therefore, temporal resolution of MR
measurements varied. For characterization of oscillation frequency,
optimization and evaluation of the oscillation detection algorithm,

a training and test dataset was generated: For both training and test
data, 240 time courses each were randomly selected from 2,254 time
courses of high temporal resolution GE-EPI data. As a previous
study (Lambers et al., 2020) implied that hemodynamics were
not gender-specific, measurements of both sexes were combined.
Grouping information is provided in Supplementary Table 1.

2.2. Electrical paw stimulation and
vasodilation challenges

For electrical paw stimulation, two electrodes were inserted
into one forepaw and 1-ms pulses were applied at a frequency
of 9 Hz with an amplitude of 1 or 1.5 mA according to block
paradigms. Further details are given in the respective figure
legends. Approximately 50% of GE-EPI scans used for algorithm
optimization and investigation of oscillation prevalence were
recorded during electrical paw stimulation, the other 50% were
recorded without stimulation (resting state). However, both resting
state and stimulation fMRI data were pooled for analysis. To
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examine the effect of HDO on analysis of fMRI data, stimulation
was applied with the following paradigm: 5-s stimulation, 25-s
rest, 20 repetitions. For CO2 challenge experiments, the mixture
of inspiratory gas was alternately set to standard (0.25 L/min O2,
0.75 L/min air, and 0.00 L/min CO2) and 5% CO2 (0.20 L/min O2,
0.75 L/min air, and 0.05 L/min CO2) according to the following
paradigm: 3-min standard, 3-min 5% CO2, 4-min standard. All
animals undergoing CO2 challenge were ventilated to enable
recording of CO2 levels in expiratory air. Starting point of the
CO2 challenge was defined at the moment when the expired
CO2 level exceeded baseline by more than 50%. End point of
the CO2 challenge was defined as the moment when the expired
CO2 level fell below 50% above baseline. Only datasets were
evaluated in which the CO2 challenge was at least 2.5 min long.
Additionally, ISO challenge experiments were conducted using
the following paradigm: 5-min no ISO, 10-min ISO (0.8, 1.5, or
2%), 10-min no ISO.

2.3. Functional magnetic resonance
imaging experiments

MR measurements were acquired using a 9.4 T Bruker Biospec
94/20 small animal scanner equipped with a 720 mT/m gradient
system (Bruker BioSpin GmbH, Ettlingen, Germany) and different
combinations of transmit coils and receive-only coils. First, an
anatomical image was acquired to identify the slice position for
fMRI measurements: 2D Turbo spin echo sequence (RARE),
TR/TEEff = 2,000/50 ms, RARE factor 8, Matrix 256 × 256, field
of view (FOV) 28 mm × 26 mm, slice thickness 1.2 mm, 9–12
contiguous slices. Subsequently, B0 homogenization was performed
using the MAPSHIM Bruker routine. Functional GE-EPI and
SE-EPI measurements were performed using a single-shot EPI
sequence (same FOV as anatomy, Matrix: 80 × 80, 1.2 mm slice
thickness; GE-EPI: TE 18 ms, TR 100/125/1,000 ms, flip angle
18/21/60 or 65◦, 1/2/9 or 12 slices; SE-EPI: TE 35.9 ms, TR 250 ms,
flip angle 90◦, 3 slices). One fMRI measurement lasted between 5
and 25 min (Supplementary Table 1).

2.4. Functional magnetic resonance
imaging data processing

This section describes the processing of all fMRI data with
exception of the data analyzed using the GLM or NBS (see Section
“2.5. Functional magnetic resonance imaging data analysis using
the GLM or NBS”). Data processing was done using MATLAB
(Release 2021b, The MathWorks, Inc., Natick, Massachusetts,
United States). The first 5 s of each measurement were discarded
to avoid pre-steady-state artifacts. A template of 14 regions based
on a rat brain atlas (Paxinos, 1997) was registered to the data
(Supplementary Figure 1). If the measurements contained only
one slice of the template, seven regions were registered. These
regions were selected since they were not expected to contain
strong susceptibility artifacts, which would affect comparison of
SE-EPI and GE-EPI data. For vasodilation challenge experiments,
only the right forelimb region of the primary somatosensory cortex
(S1Fl) was examined. Signals from voxels located in one region

were summed up, downsampled to a temporal resolution of 1 s
and normalized to their mean. For determination of the oscillation
frequency, no downsampling was performed, as a higher temporal
resolution was required for the fitting procedure.

2.5. Functional magnetic resonance
imaging data analysis using the GLM or
NBS

Data analysis using both, GLM or NBS was performed on
data recorded for 10 min during electrical paw stimulation. For
preprocessing, the first five iterations were removed, data were
realigned using SPM121 and brains were manually masked using
MRIcroGL2 or MagnAN (BioCom, Uttenreuth). Subsequently,
analysis was performed using GLM or NBS. GLM-based analysis
was done with SPM 12 by using the 3rd order canonical basis set:
convolution of the stimulation paradigm and a rat HRF (Lambers
et al., 2020) and its derivatives were used as regressors. For each
dataset, two BOLD activation maps were calculated using an F-test
(p < 0.05, family wise error correction): before and after voxel-
wise application of the HDO suppression algorithm. Effect of HDO
on GLM-based analysis was only examined on datasets with more
than 12 and a maximum of 100 activated voxels in the activated
S1Fl (before suppression algorithm application). Data were divided
into non-oscillatory and oscillatory by analyzing time courses of the
activated S1Fl with the HDO detection algorithm. The evaluation
of the algorithm was reviewed using manual classifications. Two
datasets were excluded from analysis due to large differences
between manual and automated classification.

Additionally, NBS analysis was conducted with MagnAn. In
most cases, stimulation was applied to the left paw. Scans were
mirrored, if the right paw was stimulated. Data were smoothed
(gaussian kernel, 3 × 3 pixel, full width half max 0.6 mm) and
lowpass filtered at 0.3 Hz (Fourier filter). Subsequently, regression
of the global mean signal was performed and a template of 28 brain
regions based on the Paxinos and Watson rat brain atlas (Paxinos,
1997) was registered to the data (Supplementary Table 2). Non-
registerable datasets (e.g., measurements that did not cover both
hemispheres) were excluded from analysis. If an animal was
measured twice, registration was done on the first measured scan.
Data were divided into non-oscillatory and oscillatory by analyzing
time courses of all 28 brain regions with the HDO detection
algorithm. For each dataset, Pearson correlation coefficients were
calculated between pairs of brain regions. Resulting 28 × 28
correlation matrices represented undirected, weighted functional
connections between brain regions. Only positive correlation
coefficients were considered. Per dataset, correlation matrices
were calculated twice (before and after voxel-wise application of
the HDO suppression algorithm). Subsequently, mean correlation
coefficients were calculated group wise. For this purpose, Pearson’s
r-values were converted to Fisher’s z-values to provide normal
distribution, averaged, and converted back to Pearson’s r-values.
Resulting connectivity matrices (Supplementary Figure 2) clearly

1 https://www.fil.ion.ucl.ac.uk/spm/

2 https://www.nitrc.org/frs/?group_id=889
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showed interhemispheric connections, indicating that the analysis
detected meaningful functional connections. Subsequently, for the
140 strongest connections that appeared in the averaged matrices,
NBS was used to find differences in functional connectivity: a
paired t-test was performed between correlation matrices of HDO-
suppressed und unsuppressed data and the largest components
of significantly modulated connections (p < 0.05) were retained.
Subsequently, permutation testing was applied with 1,000 iterations
for correcting the t-test for multiple testing. Finally, mean
differences of correlation coefficients (MDCC) were calculated
separately for oscillating and non-oscillating data. For this purpose,
differences of correlation matrices (suppressed–unsuppressed)
were calculated for each significantly different connection and
averaged over datasets. For visualizing results of network analysis,
the software Cytoscape was used.3

2.6. Hemodynamic oscillations frequency
fitting

To determine the oscillation frequency for all 240 time
courses of the test dataset, a Fast Fourier Transformation (FFT)
was calculated. A total of 60 of the resulting spectra showed
a peak between 0.08 and 0.8 Hz. Corresponding time courses
were classified as oscillating and the oscillation frequency was
determined. For this purpose, a function consisting of an
exponential and a Gaussian term (exponential-Gaussian function,
EGF) was fitted to the spectra across the interval from 0.01 to 1 Hz.

EGF
(
f
)
= a+ b · e−c·f

+ d · e−
(f−fo)2

2σ2 .

The parameter fo represented the frequency of the HDO while σ was
the width of the peak in the spectrum caused by the oscillations.
Frequencies and peak widths determined using the test data were
averaged and used for optimization of the detection algorithm
and the suppression algorithm. Parameters from two EGFs were
excluded from averaging since one of the fitted parameters was
unphysiological (negative peak amplitude or peak position).

2.7. Hemodynamic oscillations detection
and suppression algorithms

In order to systematically investigate the prevalence of HDO
and their effect on the analysis of fMRI data, we developed two
algorithms using MATLAB. Both require time courses extracted
from fMRI data as input and are online available.4 The first
algorithm detects oscillations and delivers the output whether
the inserted time course contains HDO. The second algorithm
suppresses HDOs from the inserted time course.

The HDO suppression algorithm performed double filtering
of the time courses with a finite impulse response (FIR) bandstop
filter. Using the averaged oscillation frequency fo and peak width
σ the passband of the FIR filter was set to

[
fo − 3σ, fo + 3σ

]
while

3 https://cytoscape.org/

4 https://github.com/TheFaberLab/HDO

the interval of the stopband was set to [fo − σ, fo + σ]. The filter
attenuation was adaptively adjusted. For this purpose, the FFT of
the time course was calculated, the interval

[
fo − 4σ, fo + 4σ

]
of the

spectrum was extracted and downsampled to a spectral resolution
of half the peak width σ. The ratio of maximum and baseline of the
downsampled spectrum was used for filter attenuation.

The HDO detection algorithm examined the FFT of the
inserted time courses as well as the autocorrelation functions,
since both are different for oscillating data compared to non-
oscillating time courses: The FFT of oscillating data showed
a peak while the autocorrelation function showed a periodic
pattern which were absent for non-oscillating data. The detection
algorithm first calculated the FFT of the extracted MR time courses.
The interval

[
fo − 4σ, fo + 4σ

]
was extracted from the resulting

spectrum using the averaged oscillation frequency fo and peak
width σ. Baseline drifts were removed from the extracted interval
using the function “detrend” and the detrended spectrum was
downsampled to a spectral resolution of half the peak width
σ. Additionally, the autocorrelation function of the time course
was calculated for 15 time lags between 1 and 15 s using the
function “autocorr.” Baseline drifts of the autocorrelation function
were corrected using the function “detrend.” Subsequently, the
detrended autocorrelation was averaged by calculating the mean
of points that were 5 s apart from each other. This was done
because the averaged autocorrelations of oscillatory and non-
oscillatory time courses differed: Values of averaged autocorrelation
functions of non-oscillatory time courses were around zero.
Values for oscillatory time courses were non-zero, since their
autocorrelation showed a periodic pattern with a period of 5 s. Both
the averaged autocorrelation function, and the averaged spectrum,
were transferred to an artificial neural network (ANN), which
classified the data as non-oscillatory or oscillatory. Training of
the ANN was done using 226 manually classified time courses of
the training dataset (240 time courses), separating oscillating from
non-oscillating time courses. Subsequently, the performance of the
ANN was evaluated using 231 manually classified time courses
of the test dataset (240 separate time courses, Supplementary
Figure 3). All MR time courses investigated in this study were
screened for HDO using the trained ANN. The developed HDO
detection algorithm can be applied to time courses extracted from
MR data recorded with a TR of 1 s or less.

2.8. Local field potential recordings

For LFP recordings, two custom made silver electrodes
(250 µm dimeter) were implanted in the brain and glued to the
skull using dental cement. One electrode was positioned in the
S1Fl. The other electrode was used as reference and implanted in
the cerebellum. LFP signals were recorded as difference between
electric currents detected by the electrode in the S1Fl and the
reference electrode using a differential amplifier (DPA-2FX, NPI
Electronics, Tamm, Germany). Signals were recorded at 2 kHz
using a multifunction data acquisition device (PCIe-6363, National
Instruments, Austin, Texas, United States) and a custom-written
LabView script (National Instruments). LFP recordings were
performed for 3 min during stimulation which evoked neuronal
activation in S1Fl. Only LFP recordings with visible response
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to stimulation were evaluated. LFP data were normalized to
their baseline and the FFT was calculated using MATLAB. Time
courses and spectra were manually analyzed with respect to a
neuronal correlate of HDO, as no HDO detection algorithm was
available for LFP data.

2.9. Data representation

Results in the text are represented as mean ± standard
deviation. Data clusters are displayed as overlay of bee swarm
plots and boxplots. In boxplots, central marks represent the
median, boxes include the 25th and 75th percentiles, whiskers
extend to the last data points within the 1.5× interquartile and
outliers are indicated as crosses. Spectra shown within one figure
are scaled equally.

3. Results

We investigated HDO, periodic oscillations with a period of
approximately 5 s which were detected in signal time courses of
fMRI measurements of anesthetized rats. These oscillations may

represent a physiological source of noise for functional imaging.
In total, 62% of all 303 fMRI measurements analyzed in this
study showed HDO (Figure 2). For detailed investigation, we
developed algorithms for detecting and suppressing HDO. Using
these algorithms, we investigated HDO prevalence and assessed
their impact on analysis of fMRI data.

3.1. Hemodynamic oscillations were
detected at 0.2 Hz

First, we investigated the frequency domain of MR data
using FFT and continuous wavelet transformation (CWT,
Supplementary Figure 4). Spectra of datasets with HDO showed
increased spectral density around 0.2 Hz. Additionally, respiration
often caused a peak at approximately 1 Hz, yet this peak was
not related to the occurrence of HDO. No other conspicuous
peaks occurred in the spectra, suggesting that HDO were not
directly driven by cardiac, respiratory, myogenic, neurogenic or
endothelial oscillators. We characterized the HDO frequency
using a fitting procedure with an EGF (Figure 3A). An HDO
frequency fo of (0.20 ± 0.02) Hz with an average peak width σ of

FIGURE 2

Appearance and occurrence of HDO. Periodic oscillations in fMRI time courses were investigated in 303 measurements. In total, 62% of the
measurements showed HDO which had a period of approximately 5 s. Exemplary time courses without and with HDO for resting state data are
shown in the (upper row) and data recorded during sensory stimulation in the (middle row). Stimulation periods are indicated by black bars.
Enlarged segments of one paradigm repetition (bottom row) showed that HDO (maxima indicated by black arrows) were triggered by the BOLD
response (red arrows).
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FIGURE 3

Hemodynamic oscillations frequency and assessment of suppression algorithm performance. (A) An exponential-gaussian function (EGF, blue) was
fitted to FFT (gray) of an exemplary GE-EPI time course. Note that respiration caused a peak at 0.9 Hz. (B) HDO frequency fo and peak width σ,
resulting from fitting 58 spectra. Representative (C) non-oscillatory and (D) oscillatory datasets: time courses (left), spectra (middle) and
autocorrelation functions (right) before (gray) and after (blue) application of the HDO suppression algorithm. In contrast to the non-oscillatory
dataset, the spectrum of the oscillating dataset showed a peak and the autocorrelation function showed a periodic pattern. The suppression
algorithm eliminated HDO without substantially affecting non-oscillating signals.

(0.025± 0.015) Hz was obtained (Figure 3B). Both HDO detection
and suppression algorithms were adjusted using the determined
frequency and peak width. Subsequently, the HDO suppression
algorithm eliminated HDO without substantially affecting other
signal components as exemplary shown in Figures 3C, D. Finally,
the neural network of the detection algorithm was trained using
the manually classified training data. After training, the algorithm
performance was evaluated using the manually classified test data.
The detection algorithm had a specificity of 95% (Supplementary
Figure 3).

3.2. Vasodilation interrupted
hemodynamic oscillations

CO2 and ISO challenges were used to investigate whether short-
time vasodilation interrupts HDO. Time courses were extracted
from S1Fl, and three intervals (before, during and after challenge)

were examined (Figure 4). In 15 vasodilation challenge scans
(CO2: n = 6, ISO: n = 9), time intervals preceding the challenge
showed HDO. In all time courses, the MR signal increased during
the challenge and subsequently returned to baseline, indicating
that the challenge caused vasodilation. No HDO were detected
during challenge in any of these measurements. We therefore
concluded that vasodilation interrupted HDO. In 50% of CO2
challenge measurements, oscillations returned immediately after
end of challenge. In 90% of ISO challenge scans, oscillations
were detected 5 min after challenge had ended. Furthermore,
it was investigated whether HDO occur during long-term ISO
anesthesia, which is known to cause permanent vasodilation. Ten
animals were measured for up to 4 h under ISO anesthesia
without MED. From these, in a total of 56 GE-EPI scans 14
different brain regions were examined: Only 14 of the resulting
784 region-specific time courses were classified as oscillatory
by the detection algorithm. This corresponded to 1.8%, which
is considerably below the false positive rate of the detection

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1064000
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1064000 February 20, 2023 Time: 16:58 # 8

Lambers et al. 10.3389/fnins.2023.1064000

FIGURE 4

Vasodilation interrupts HDO. Vasodilation was induced by administration of (A) CO2 and (B) ISO. First row: exemplary time courses recorded during
CO2 and ISO challenge. Three segments were analyzed using the HDO detection algorithm (gray background): before, during and after the
respective challenge (black bars). Time course segments classified as oscillating were colored blue. Second and third row show spectra and
autocorrelation functions, respectively, of the corresponding sections above.

algorithm. Thus, we concluded that the occurrence of HDO
under long-term ISO anesthesia, i.e., permanent vasodilation, was
negligible. In an analysis, described in Supplementary Figure 5,
we found that short-term vasodilation induced by stimulation
of neuronal activation also interrupted HDO briefly, resulting
in HDO being stimulus-locked. This effect is consistent with
two studies by Sirotin and Das (2009) and Sirotin et al. (2012),
which reported stimulation-locked oscillations in hemodynamic
signals.

3.3. Brain-wide hemodynamic
oscillations started within 1 h after end of
ISO anesthesia

Next, we investigated after which duration HDO started when
switching from ISO anesthesia to MED sedation. We further
assessed whether HDO prevalence changed with prolonged
MED sedation. For this purpose, the HDO prevalence in 135
GE-EPI scans from 23 animals over a scan time period of
maximum 8 h was examined. In 85% of the measurements,
at least one time course of the investigated brain regions was
oscillatory. Data acquisition started approximately 1 h after
switching anesthesia. At this time, ten of 14 animals showed
HDO. HDO prevalence increased over time (Figure 5A): Around
20% of early recorded (1–3 h after switching anesthesia) time
courses oscillated. For late measurements (4 h or more), the
portion of oscillating time courses increased to approximately
50%. HDO prevalence maps showed that HDO occurred
in all examined regions (Figure 5B). After assessing HDO
prevalence using GE-EPI measurements, HDO occurrence
in SE-EPI data was investigated. HDO were detected in
both GE-EPI and SE-EPI scans (Figure 6). To assess HDO
prevalence in SE-EPI measurements, 27 SE-EPI scans from

seven animals were examined. SE-EPI scans of five animals
showed HDO. In total, at least one oscillating time course was
found in 63% of the SE-EPI measurements. In SE-EPI data,
HDO were observed only in cortical regions (Supplementary
Figure 6).

3.4. Hemodynamic oscillations
significantly impact analysis of fMRI data

Before we evaluated the impact of HDO on fMRI analysis,
we assessed whether HDO are directly driven by neuronal
activity. To this end, LFP recordings were performed in S1Fl,
and scrutinized for electric activity patterns with frequencies
around 0.2 Hz. A total of 32 LFP recordings from six
animals were examined. The absence of a prominent peak
around 0.2 Hz in the spectra indicated that no oscillations
were present (Figure 7). The according absence of a direct
neuronal correlate of HDO suggested that HDO may represent
a physiological noise source for BOLD fMRI measurements. To
evaluate the influence of this physiological noise on the analysis
of fMRI data, BOLD datasets, recorded during electrical paw
stimulation, were examined using two methods. First, statistical
analysis was performed for calculation of BOLD activation
maps using the GLM. Secondly, brain network analysis was
performed using NBS. Both analyses were conducted before
and after voxel-wise HDO removal using the suppression
algorithm.

Statistical analysis was performed on 14 fMRI datasets
(14 animals) using the GLM with the 3rd order canonical
basis set. Seven datasets each were classified as oscillatory
or non-oscillatory. BOLD activation maps showed larger
clusters of activated voxels and larger maximum F-values
after applying the suppression algorithm, as compared to
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FIGURE 5

Hemodynamic oscillations prevalence increases over time. HDO prevalence was assessed in 135 GE-EPI scans of 23 animals measured after
switching from ISO to MED anesthesia. (A) Time line illustrating relative prevalence of HDO. For each animal, all measurements acquired within 1 h
were combined and the percentage of oscillating signal time courses was plotted. Not every animal was measured at all time points. Measurements
recorded after more than 6 h were displayed together. (B) HDO prevalence maps separated into early (recorded 1–3 h after MED start) and late
(recorded 4 h or later) measurements. Color codes relative number of scans with HDO in each of the 14 brain regions.

FIGURE 6

Hemodynamic oscillations are detected with both GE-EPI and SE-EPI. Exemplary oscillating (A) SE-EPI and (B) GE-EPI scans. Time courses (left),
spectra (middle) and autocorrelation functions (right). Both datasets were recorded in the same animal consecutively without delay. Despite lower
temporal signal to noise ratio (tSNR) of SE-EPI scans, oscillations were similarly detected in both SE-EPI and GE-EPI scans.
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FIGURE 7

Hemodynamic oscillations do not have a direct neuronal correlate. (A) Exemplary LFP recording, acquired upon sensory stimulation with 10-s long
stimulation periods (black bars). (B) Individual spectra (light blue) and their average (dark blue). The absence of a prominent peak around 0.2 Hz
indicated that no oscillations were present.

the original data (Figure 8). Cluster sizes and maximum
F-values obtained for HDO suppressed data were normalized
to values extracted from original data. Resulting relative
cluster sizes were 1.13 ± 0.08 and 1.27 ± 0.25 for non-
oscillating and oscillating data, respectively. Similarly, for
F-values, the suppression algorithm had a larger impact
on oscillating data, with relative F-values of 1.21 ± 0.06
and 1.63 ± 0.48 for non-oscillating and oscillating data,
respectively. Statistical comparisons of the normalized values
(U-test, Bonferroni corrected) showed that the difference
between oscillating and non-oscillating data was significant
for normalized F-values (p = 0.008). We therefore concluded
that HDO significantly affected the GLM analysis of BOLD
activation.

Additionally, brain network analysis was performed on 18
GE-EPI fMRI datasets recorded in 16 animals. After data pre-
processing (including lowpass filtering at 0.3 Hz and registration
of a template with 28 brain regions) analysis was divided
into five steps. First, nine datasets each were classified as
non-oscillatory or oscillatory. In non-oscillating data sets, no
oscillations were detected in any region. For oscillating data,
oscillations were found in at least five brain regions. Secondly,
we examined which of the brain regions showed frequent
oscillations (oscillatory nodes). In total, 12 oscillatory nodes were
detected, located in association cortex, motor cortex, sensory
cortex, and thalamus (Supplementary Table 2). Third, for
each dataset two correlation matrices were calculated (before
and after the application of the HDO suppression algorithm,
Supplementary Figure 2). Fourth, for both groups (oscillating and
non-oscillating), correlation matrices of the HDO-unsuppressed
data were compared with those of the suppressed data using
NBS. Significant differences were found for both oscillating and
non-oscillating data (p < 0.001 and p = 0.007, respectively,
Figures 9A–C). In oscillating data, 44 correlation coefficients
were significantly different. For 39 of these coefficients, at
least one of the connected regions was an oscillatory node
(Figures 9A, B), suggesting that differences were directly related
to HDO suppression. Finally, differences in correlation coefficients
were examined. Absolute MDCC of non-oscillating data were
smaller when compared to oscillating data (0.03 ± 0.01 and

0.05 ± 0.02, respectively, Figure 9D). This difference was
highly significant (U-test, p < 0.000001). The strong impact
of the suppression algorithm on oscillatory data indicated
that HDO strongly affected the network analysis of fMRI
data.

4. Discussion

In this study, we explored the prevalence of HDO in rat
fMRI measurements and their impact on analysis of fMRI
data. In total 62% of all 303 fMRI measurements analyzed
in this study showed HDO. This number is not a precise,
general estimation of probability for the occurrence of HDO
in preclinical fMRI experiments, because the measurements
were conducted under widely established, specific experimental
conditions, suspected to induce or inhibit HDO. However,
their frequent occurrence clearly showed that HDO are
relevant for functional MRI and need to be examined in
more detail. For this purpose, we developed algorithms
for HDO detection and suppression and evaluated fMRI
measurements recorded with GE-EPI or SE-EPI sequences as
well as LFP recordings.

4.1. Vasomotion leads to hemodynamic
oscillations

We detected HDO in anesthetized rats. Several studies
reported similar oscillatory signals in measurements sensitive
to blood flow or arterial vessel diameter in various species
such as mice (Drew et al., 2010; Mateo et al., 2017; Winder
et al., 2017; Fan et al., 2020), rats (Fujii et al., 1990; Mayhew
et al., 1996; Kleinfeld et al., 1998), rabbits (Hundley et al.,
1988), cats (Rivadulla et al., 2011) and humans (Mitra et al.,
1997; Obrig et al., 2000; Rayshubskiy et al., 2014; Liu et al.,
2022), and identified vasomotion as their origin. Vasomotion
refers to rhythmic oscillations of blood vessel diameter, which
causes oscillations of blood flow (Aalkjaer et al., 2011). However,
the physiological sources of vasomotion are still not fully
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FIGURE 8

Application of the suppression algorithm improves GLM-based analysis of fMRI data. GLM-based analysis was performed on 14 fMRI datasets before
(gray) and after HDO suppression (blue). (A) Periods (5 min) of BOLD time courses and (B) activation maps of one exemplary oscillating dataset.
Duration of electrical paw stimulation were highlighted by black bars. (C) Cluster sizes and (D) maximum F-values resulting from GLM-based
analysis of BOLD activation are shown separately for data with and without HDO (n = 7, each). Data points for identical measurements are
connected by lines. Bold lines indicate the dataset shown in panels (A,B). U-tests were used to test for significant differences between relative
cluster sizes and relative F-values of data with and without HDO.

FIGURE 9

Hemodynamic oscillations elimination in fMRI data improves NBS network analysis. Brain network analysis was performed before and after
application of the HDO suppression algorithm and compared using NBS. Significantly different links were displayed in circular layout, separately for
(A) non-oscillating and (B) oscillating data (n = 9, each). Line thickness is proportional to absolute mean differences of correlation coefficients
(MDCC). Nodes where HDO were frequently detected were highlighted (bold frame). (C) Brain regions were arranged and color coded by affiliation
to six anatomical groups. (D) Absolute MDCC of oscillating data were significantly larger than for non-oscillating data (U-test).

understood. We also considered vasomotion as origin of the
detected oscillations. Analysis of hemodynamic recordings often
involves dividing signals into five frequency bands, attributed
to cardiac, respiratory, myogenic, neurogenic and endothelial
oscillators, respectively (Li et al., 2006; Aleksandrin et al., 2018).

We divided our signals into corresponding frequency bands and
found that these oscillators do not directly drive vasomotion-
induced HDO. However, we cannot completely exclude that these
oscillators interact with vasomotion and thus influence fMRI
measurements.
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4.2. Anesthesia exerts diverse effects on
vasomotion

Most preclinical fMRI experiments use anesthesia to minimize
motion and imaging artifacts. Here a well accepted anesthesia
protocol was used (ISO followed by MED/DMED), for which
Magnuson et al. (2010, 2014) reported the occurrence of
oscillations. We intended to investigate the prevalence of these
oscillations (referred as HDO) in fMRI data and identified
oscillations with a frequency around 0.2 Hz in MED sedated
animals. In contrast, studies applying other anesthesia or
measuring awake subjects often reported a vasomotion frequency
around 0.1 Hz (Fujii et al., 1990; Mayhew et al., 1996; Mitra
et al., 1997; Kleinfeld et al., 1998; Obrig et al., 2000; Rivadulla
et al., 2011; Rayshubskiy et al., 2014; Mateo et al., 2017;
Fan et al., 2020; Liu et al., 2022). The higher oscillation
frequency under MED sedation can be explained by the fact
that MED is a vasoconstrictor (Sinclair, 2003; Fukuda et al.,
2013) and vasoconstriction causes an increase in vasomotion
frequency (Colantuoni et al., 1984; Fujii et al., 1990). In contrast
to MED, ISO causes vasodilation (Flynn et al., 1992; Farber
et al., 1997; Iida et al., 1998). We showed that both CO2
and ISO administration led to dilation of blood vessels and
interrupted HDO. This is consistent with other studies showing
that vasodilation decreases frequency of vasomotion, and that
pronounced vasodilation abolishes vasomotion (Colantuoni et al.,
1984; Fujii et al., 1990; Oude Vrielink et al., 1990; Obrig et al.,
2000). We accomplished the CO2 challenge by replacing a portion
of the oxygen in the breathing gas by CO2. Although the
difference in oxygen supply was low (5%), we cannot explicitly
assign the observed vasodilation to the resulting hypercapnia
alone, a slight hypoxia may have contributed to the reduced
vascular tone as well. Yet, vasodilation caused by hypercapnia
can suspend vasomotion (Hudetz et al., 1998). This is relevant
when using MED sedation as MED can induce hypercapnia
(Brynildsen et al., 2017). However, vasomotion was not inhibited
under MED sedation applied in the current study. In contrast
to our results, a study in cats detected vasomotion during long-
term ISO anesthesia (Rivadulla et al., 2011). However, a lower
dose of ISO was used in that study, suggesting a dose-dependent
effect of ISO. Accordingly, vasomotion is expected to occur not
only during measurements with pure MED sedation, but also
with a combination of MED and low ISO doses, a popular
anesthetic regimen which provides temporally stable brain states
in mice (Pradier et al., 2021), resembles the awake condition
in rat brains more closely than MED or ISO alone (Paasonen
et al., 2018) and enhances functional connectivity specificity as
shown by Grandjean et al. (2022). Another important point is
that ISO depresses sympathetic nervous activity (Skovsted and
Sapthavichaikul, 1977) and that the latter was found to be a
prerequisite for vasomotion (Colantuoni et al., 2001; Nilsson
and Aalkjaer, 2003). Accordingly, vasomotion can only restart
after end of ISO administration when both sympathetic nervous
system activity has returned and vasodilation has regressed.
In our experiments, the vasomotion suppressing effect of ISO
had no long-term effect on consecutive measurements under
MED. In contrast to Magnuson et al. (2014), we detected
vasomotion already 1 h after switch from ISO to MED.

Earlier times were not investigated as there was no stable
physiological baseline directly after switching from ISO to
MED. The early appearance of vasomotion implies that limiting
experimental duration alone is unlikely to prevent the occurrence
of oscillations.

4.3. Vasomotion significantly impacts
analysis of fMRI data

Functional magnetic resonance imaging data are interpreted
under the assumption that detected signal changes reflect
neuronal activity due to neurovascular coupling. However,
MR signal fluctuations of non-neuronal origin can distort
data analysis. No direct correlation between our LFP and
fMRI data was to be expected as the measurements were
performed separately and LFP and hemodynamics show
time-dependent variations. Nevertheless, the absence of a
prominent signal component of the LFP signals at 0.2 Hz
strongly suggests that the vasomotion-induced HDO have
no direct neuronal correlate. This is consistent with other
studies (Rivadulla et al., 2011; Winder et al., 2017). Mateo
et al. (2017) reported a correlation between an envelope
of γ-band (30–80 Hz) and vasomotion. In contrast to our
study, these authors performed simultaneous hemodynamic
and LFP recordings in awake mice. They interpreted their
findings as evidence for a potential linkage between changes
in brain oxygenation by modulation of vasomotion and
ultra-slow variability in neuronal activity. Mechanistic insight
supporting this notion is not available yet. Other studies found
that vasomotion can also occur independently of neuronal
activity. Winder et al. (2017) detected vasomotion after
pharmacological blocking of neuronal activity, and further,
spontaneous vasomotion was observed in isolated, pressurized
vessels (Osol and Halpern, 1988). All together we concluded
that vasomotion can introduce physiological noise in fMRI
measurements and must be considered when evaluating these
measurements.

While correction procedures for other physiological noise
sources such as for example breathing and heart rate are
available (Murphy et al., 2013), physiological noise from
vasomotion is mostly neglected. Models used for GLM
analysis usually ignore vasomotion and network analysis
is based on the evaluation of temporal signal fluctuations
irrespective of their origin. To investigate the influence of
vasomotion on the analysis of fMRI data, we performed
fMRI data analysis before and after HDO correction with
a new suppression algorithm. Both GLM-based analysis
and NBS network analysis showed that application of this
algorithm had an impact on all data (measurements with and
without vasomotion). However, in both analysis methods,
HDO suppression had a significantly higher impact on data
with vasomotion compared to vasomotion-free data. The
relatively smaller effect on analysis of data without vasomotion
indicated that the algorithm removed random noise. The much
larger influence on data with HDO showed that vasomotion
strongly affected GLM-based and NBS analysis of fMRI
data.
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4.4. Hemodynamic oscillations
suppression complements preprocessing

One could argue that lowpass filtering strategies have already
been implemented to minimize the impact of physiological
noise in fMRI data. Complex preprocessing pipelines, such as
the independent component analysis-based method FIX (Salimi-
Khorshidi et al., 2014; Zerbi et al., 2015), presumably diminish
the effects of vasomotion. For brain network analysis often a 0.1-
Hz-lowpass filter is used for preprocessing. Indeed, its application
removes HDO as effectively as the developed suppression algorithm
(data not shown). However, Pan et al. (2013) showed a high
correlation between LFP and fMRI ranging from 0.1 to 0.2 Hz in
DMED sedated rats. Following this line of evidence, a study by
Grandjean et al. (2014) set the filter to 0.3 Hz for MED/DMED
anesthesia. For anesthetic regimens other than MED, we expect
a lower oscillation frequency (see Section “4.2. Anesthesia exerts
diverse effects on vasomotion”). Therefore, a 0.1 Hz lowpass
filter may not be sufficient to remove HDO and vasomotion
correction may still be needed. Accordingly, we recommend
application of lowpass filter together with an HDO suppression
algorithm.

4.5. Hemodynamic oscillations occur in
both small and large blood vessels

The functional GE-EPI signal is most sensitive to large
venous blood vessels, while the SE-EPI signal is most sensitive
to small vessels (Buxton, 2013; Baez-Yanez et al., 2017).
Since we detected oscillations in both GE-EPI and SE-EPI
measurements, our results suggest that HDO occur in both
small and large venous blood vessels. Since all regions of the
brain are densely vascularized, oscillations are likely to occur
everywhere in the brain. Therefore, it appears unlikely that it
will be possible to avoid recordings of oscillations by excluding
individual brain regions from the measurements. This is not
only relevant for fMRI, but for all techniques that are sensitive
to hemodynamic changes. In addition to optical recordings of
blood volume or flow and laser doppler flowmetry, this also
applies to optical recordings of fluorescent dyes, as hemodynamic
changes cause artifacts in these measurements (Kozberg et al.,
2016; Ma et al., 2016; Lambers et al., 2022; Zhang et al.,
2022).

5. Conclusion

Here, we have investigated prevalence of HDO and their impact
on analysis of fMRI data under anesthetic regimens that are widely
used for rodent fMRI experiments. HDO were not detected under
vasodilatory conditions such as for example ISO anesthesia. Under
the commonly applied MED anesthesia, vasomotion-induced HDO
occurred already during short experimental duration and in most
regions of the brain. Since HDO significantly influenced analysis
of fMRI data, HDO should be corrected during fMRI data analysis.
We provide HDO detection and suppression algorithms that can be
readily applied to fMRI data.
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