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ABSTRACT 

Discovering sequential patterns in source codes is an important issue in software engineering since it can provide 

useful knowledge to help in a variety of tasks such as code completion, code refactoring, developer profiling, and 

code complexity measurement. This paper proposes a new framework, called Source Code Miner (SCodeMiner), 

which discovers frequent sequential rules within a software project. The proposed framework firstly transforms a 

Java code into a sequence data and then applies a sequential pattern mining (SPM) algorithm. This study is also 

original in that it compares four SPM algorithms in terms of computational time, including sequential pattern 

discovery using equivalence classes (SPADE), prefix-projected sequential pattern mining (PrefixSpan), bi-

directional extension (BIDE+), and last position induction (LAPIN). The experiments that carried out on an open-

source software project showed that the proposed SCodeMiner framework is an effective mining tool in identifying 

coding patterns. 
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Yazılım Mühendisliğinde Sıralı Kaynak Kodu Modellerini Keşfetme 
 

ÖZ 
Kaynak kodlardaki sıralı örüntüleri keşfetmek yazılım mühendisliğinde önemli bir konudur, çünkü kod 

tamamlama, kodu yeniden düzenleme, geliştirici profili oluşturma, ve kod karmaşıklığı ölçümü gibi çeşitli 

işlemlerde yardımcı olacak yararlı bilgiler sağlayabilmektedir. Bu makale, bir yazılım projesinde sıkça geçen sıralı 

kuralları keşfeden ve Kaynak Kod Madencisi (SCodeMiner) adı verilen yeni bir yazılım çerçevesi önermektedir. 

Önerilen yazılım çerçevesi ilk olarak bir Java kaynak kodunu bir sıralı veri tabanına dönüştürür ve ardından bir 

sıralı örüntü madenciliği (SPM) algoritması uygular. Bu çalışma aynı zamanda, dört SPM algoritmasını çalışma 

süresi açısından karşılaştırması açısından da orijinaldir. Bu algoritmalar şunlardır: ön ek ile öngörülen sıralı örüntü 

madenciliği (PrefixSpan), denklik sınıflarını kullanarak sıralı örüntü keşfi (SPADE), çift yönlü uzatma (BIDE+), 

ve son pozisyon indüksiyonu (LAPIN). Açık kaynak kodlu bir yazılım projesi üzerinde gerçekleştirilen deneyler, 

önerilen SCodeMiner yazılım çerçevesinin kodlama örüntülerini belirlemede etkili bir madencilik aracı olduğunu 

göstermektedir. 
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I. INTRODUCTION 
 

One of the main concerns in the software engineering field is the improvement of productivity and 

quality during software development. In this context, code analysis plays an important role since it can 

be useful in finding previously unknown, potentially valuable, hidden, and accurate coding patterns. 

Source Code Analysis (SCA) is the process of automatically extracting required information about 

software from its source code in the software engineering process [1]. SOC is an essential step of a code 

review that focuses on evaluating, monitoring, and improving software quality. Source Code Review 

(SCR) is a software development activity, where a code is automatically examined for a particular 

purpose such as for checking coding standard or structured design, controlling logical correctness, or 

discovering faults [2]. It is a non-trivial and effective way to decrease the price and time of the software 

product and improve overall productivity. 

 

A Coding Pattern is a typical sequence of programming statements that has a particular behavior. Since 

coding patterns indicate hidden rules in a software project, discovering them can help software engineers 

in various ways such as (i) improving developer performance via code completion [3, 4], (ii) comparing 

code versions to perform appropriate modifications and enhancements [5], (iii) profiling developers, (iv) 

detecting crosscutting concerns, and (iv) measuring code complexity. In this work, we used the 

sequential pattern mining technique to discover coding patterns in an efficient way.  

 

Pattern Mining is a fundamental task in data mining, with the goal of discovering frequently recurring 

patterns in a database [6]. A pattern, which is in the form of <pattern>:support, consists of the content 

of the pattern and the number of the transactions which have the pattern. Sequential Patterns are formed 

from ordered sequences of elements that frequently occur in a dataset. Sequential Pattern Mining (SPM) 

is one of the well-known data mining methods utilized to identify any specific order of occurrences [7]. 

A sequence is a typical ordered list of elements (i.e., events). A typical example of a sequence of events 

is a sequence of items bought by a particular customer at different times in order over an interval. For 

example, if there are two sequences <a b c> and <a d b> that have three elements, the pattern <a b> is 

detected since it appears two times. SPM discovers the complete collection of frequent sub-sequences 

from a given sequence dataset. SPM is a significant task that has been extensively studied in many 

applications such as medical record analysis, web-log analysis, and market basket analysis. Several types 

of patterns may be detected from the datasets, i.e., frequent sequences, periodic patterns, and sequential 

rules.   

 

When we provide source code files to a sequential pattern mining algorithm as input, source codes are 

organized in sequential transactions and then the coding patterns can be extracted to discover useful 

knowledge about the software. Here, a key challenge is to automatically transform a source code into 

sequences of programming statements using a tokenization approach. Another challenge is the selection 

of an SPM algorithm by considering both the characteristics of the dataset and the key features of the 

algorithms together. The performance of the algorithm highly depends on the number of pattern 

candidates, the length of the sequences, and the number of distinct items in a dataset. An efficient SPM 

algorithm should be used to speed up the computations.   

 

The main contributions of this study can be listed as follows. (i) This paper proposes a novel framework, 

Source Code Miner (SCodeMiner), which discovers frequent sequential rules within software projects. 

(ii) This study is also original in that it compares four SPM algorithms in terms of computational time, 

including prefix-projected sequential pattern mining (PrefixSpan) [8], sequential pattern discovery using 

equivalence classes (SPADE) [9], bi-directional extension (BIDE+) [10], and last position induction 

(LAPIN) [11].  

 

The experiments that carried out on an open-source software project showed that the proposed SCPM 

framework is an effective mining tool in identifying coding patterns. Therefore, it can be successfully 

used for software engineering projects. The proposed SCodeMiner framework can be useful for 
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developers, programmers, and testers as well as other professionals involved in other aspects of software 

engineering. 

 

This article is organized into five sections as follows. Section 2 discusses studies related to our work. 

The proposed framework is detailed in Section 3. The experiments are given in Section 4, before 

concluding the main findings in Section 5. 

 

 

II. RELATED WORK 
 
Analysis of source codes to discover patterns allows software engineers to identify frequently occurring 

sequences within software projects. For this purpose, some data mining studies have been conducted 

recently. Some previous studies [3]-[5], [12]-[23] on source code analysis are given in Table 1. A variety 

of data mining algorithms have been used for source code analysis such as graph neural network (GNN) 

[12], multi-layer perceptron (MLP) [5, 15], restricted Boltzmann machine (RBM) [4], naive Bayesian 

(NB) [5, 15], Bayesian networks (BN) [3], logistic regression (LR) [5, 15], and support vector machine 

(SVM) [15]. Some deep learning techniques have also been successfully applied to source code analysis, 

including long short-term memory (LSTM) [4, 13, 15, 17], bidirectional long short-term memory 

(BLSTM) [13, 15, 17], gated recurrent units (GRU) [13, 17], bidirectional gated recurrent unit (BGRU) 

[13], deep belief network (DBN) [4], recurrent neural networks (RNN) [4, 12, 17], and convolutional 

neural networks (CNN) [4, 12, 15, 17].  The sequential pattern mining algorithms that have been used 

in source code analysis are Generalized Sequential Pattern (GSP) [20], PrefixSpan [16, 18, 19], BIDE 

[22], and Pre-order Linked Web Access Pattern-Tree (PLWAP) [21]. Some ensemble learning 

algorithms have also been used in source code analysis such as Random Forest (RF) [4, 5, 15], AdaBoost 

(AB) [5], and Gradient Boosting Decision Tree (GBDT) [15].   

 

In the literature, previous studies on source code analysis have been focused on either classification task 

[4, 5, 12, 13, 15, 17] or pattern mining task [3, 14, 16], [18]-[23]. Until now, data mining techniques 

have been used to analyze source codes written in a variety of programming languages such as C [4, 13, 

14, 15], C++ [12, 14], Java [5, 14], [18]-[21], PHP [17], and Python [16]. In this study, we focus on the 

Java programming language. The codes of various open-source software projects have been analyzed, 

such as Eclipse, Linux Kernel, JFreeChart, Dnsjava, and JmDNS. In addition, some publicly available 

datasets collected to evaluate the vulnerability of source codes have been used in the previous works 

such as the software assurance reference dataset (SARD) [13, 15, 17] and national vulnerability database 

(NVD) [13, 15]. 

 

Newman et al. [14] investigated frequent naming patterns in different identifier types, such as attribute 

and class names. Date et al. [19] reported the characteristics of coding patterns over versions. They 

extracted coding patterns of each program version, and then investigated the number of versions in 

which the coding patterns appear. 

 

Akbar et al. [20] applied a method categorization technique to mine API usage patterns for the purpose 

of improving code completion. Kagdi et al. [24] proposed an approach to detect the call-usage patterns 

and variable locations by source code analysis using sequential pattern mining algorithms. They applied 

the SPADE algorithm to the Apache HTTPd v2.0.55 system source code. In another study [18], a 

software clone detection method was proposed utilizing a maximal frequent SPM method. The source 

codes of the Apache Struts 2.5.2 Core project were used for extracting code-matching statements in the 

Java programming language. A plug-in, called Vertical Code Completion was implemented for the 

Eclipse IDE [21]. The suggestions of new code sequences were made based on the patterns obtained by 

using the PLWAP Algorithm, which is one of the SPM algorithms. Takei and Yamana [22] extended 

the bi-directional execution (BIDE) algorithm by adding an intensity constraint (IC) and then used the 

proposed IC-BIDE algorithm for coding pattern extraction. They applied the algorithm on Bullet 

Physics, MySQL, and OpenCV source codes.  
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Table 1. Comparison of source code analysis studies (C: Classification P: Pattern mining). 

 

Ref Year Description 
Task 

Methods Language Project 
C P 

[12] 2021 Vulnerability detection  √  GNN, CNN, RNN C/C++ 

Linux Kernel 

FFmpeg 

Wireshark 

Libav 

[13] 2021 Vulnerability detection  √  
LSTM, BLSTM, 

GRU, BGRU 
C 

SARD  

NVD 

[4] 2020 Code completion √  
LSTM, RNN, CNN, 

RF, RBM, DBN 
C 

An online 

judge (AOJ) 

System 

[14] 2020 
Patterns related to 

source code identifiers 
 √ 

Part-of-speech 

(POS) tagging 

C, C++, 

Java 

20 open-source 

systems 

[15] 2020 Vulnerability detection √  

LR, NB, SVM, 

MLP, GBDT, RF, 

CNN, LSTM, 

BLSTM 

C 
SARD  

NVD 

[5] 2019 
Analysis of code 

versions 
√  

NB, MLP, AB, RF, 

LR 
Java 

JFreeChart  

Heritrix 

[16] 2019 Code review  √ PrefixSpan Python OpenStack 

[17] 2019 Vulnerability detection √  
LSTM, BLSTM, 

CNN, GRU, RNN 
PHP 

SARD 

SQLI-LABS 

[18] 2016 
Finding Software 

Clones 
 √ Apriori, PrefixSpan Java 

Apache Struts 

2.5.2 Core 

[3] 2015 Code completion  √ BN OOP Eclipse 

[19] 2015 
Analysis of code 

versions 
 √ PrefixSpan Java 

10 open-source 

programs 

[20] 2014 Code completion  √ GSP Java 
10 open-source 

projects 

[21] 2014 Code completion  √ PLWAP Java 

Ant 

Eclipse Maven  

Log4j 

[22] 2013 
Coding Pattern 

Extraction 
 √ BIDE Various 

Bullet Physics 

MySQL 

OpenCV 

[23] 2012 
Analysis of code 

versions 
 √ PrefixSpan Java 

Dnsjava 

JmDNS 

Proposed 

Approach 

Code analysis for 

general-purpose 
 √ 

PrefixSpan, SPADE, 

BIDE+, LAPIN 
Java 

Apache 

Tomcat 

 

 

Code review is an important step in software development and includes source code verification, 

modification, and feedback. Ueda et al. [16] detected similar code changes patterns that commonly 

appear in the project history. They applied a sequential pattern mining algorithm to the OpenStack 

project and detected 1476 improvement patterns from the Python source codes. Kim et al. [25] 

discovered coding patterns with their characteristics by performing an evaluation. They selected several 

indicators and performed an analysis by investigating relations between the characteristics and values 

of the patterns. Ishio et al. [26] focused on mining the code patterns related to method calls.  

  

While some of the previous studies [14, 20, 26] discovered the coding-related patterns from a single 

version of a software project, some studies [19, 23] investigated the patterns in multiple versions of the 

project. In the former one, patterns can be detected only from a particular version of the source code. 
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However, in the latter one, coding patterns were extracted from a single version separately, and after 

that, the common patterns were searched in multiple versions.  

 

Our study differs from the aforementioned studies in that it proposes a new framework that especially 

focuses on nested loop and control statement blocks. Furthermore, it uses an efficient sequential pattern-

mining algorithm to provide increased computational performance. Moreover, our method can be used 

for general-purpose since we are concerned with examining the general structure of the source. On the 

other hand, the existing approaches typically proposed for a specific purpose such as for source code 

identifiers [14], software versions [5, 19, 23], API usage patterns [20], call-usage patterns [24], software 

clones [18], code review [16], crosscutting concerns [26], and vulnerability detection [12, 13, 15, 17].  

 

 

III. MATERIAL AND METHODS 
 

A. PROPOSED FRAMEWORK 

 
In this study, we propose a novel framework: Source Code Miner (SCodeMiner), which discovers 

frequent sequential rules within software projects. Figure 1 shows the general architecture of the 

proposed framework. Before the data mining techniques, a source code available in a repository has to 

be processed to transform it into a proper form. For this reason, the framework basically consists of two 

main phases: data preprocessing and pattern mining. In the data preprocessing phase, the source code 

is converted into sequences of programming statements. In the first step of this phase, a source code is 

taken from the repository to be analyzed. In the next step, a parser is used for tokenization which extracts 

the statements with various levels of nesting and identifies tokens, especially including loop and control 

statements. Here, all keywords, delimiters, and procedures/functions in the source code are obtained 

separately while comment lines are ignored. After that, a sequence generator converts tokens into 

sequences and stores them in sequence data. In the pattern mining phase, a SPM algorithm is utilized to 

extract frequent subsequences from a collection of sequences. Here, each pattern is a sequence of code 

elements. Each pattern is evaluated by a minimum support threshold where the support value of a 

sequence si in the dataset D is the number of sequences s ϵ D that contains si. The discovered patterns 

are stored in a database and presented to the user in an appropriate form through an application. 

 

 

 
 

Figure 1. The general architecture of the proposed SCodeMiner Framework. 
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B. DATA PREPROCESSING 

 
Each source code file may include more than one class, each class may involve a set of methods and 

each method may consist of various kinds of blocks. A block in the source code is represented by the 

"{" and "}" symbols. The framework firstly extracts all the blocks and then captures the sequences of 

programming tokens. Inside each code block, more than one programming statement can be existing 

and all of them are listed in a sequence in the order they present in the block. In other words, all 

programming statements that exist in the same block are collected in the same sequence. In order to 

increase the computational power, tokens (items) in sequences are assigned with a unique index by 

utilizing a mapping method.  

 

Figure 2 shows three example sequences extracted from different source code fragments. The following 

keywords are specially processed by a parser: if, else, for, while, get, set, break, math, and return. The 

sequences are created by analyzing tokens using a set of rules and stack data structure. Some keywords 

such as "return" and "break" are directly included in the sequence. An "if-else" statement is converted 

into a series of "IF", "ELSE", and "ENDIF" terms. The code elements controlling by the "if" statement 

are put between the "IF" term and its corresponding "ENDIF" term. The "for" and "while" statements 

are translated into a pair of “LOOP” and "ENDLOOP" terms. In order to represent nested if and loop 

statements, the "ENDIF" and "ENDLOOP" keywords are added to the sequences. The basic 

mathematical operations such as addition or subtraction and the subroutines in the math library are 

translated as the "MATH" keyword. The user-defined function calls are stated as the "FUNC" keyword. 

The get and set function calls are separated from other user-defined function calls and the "GET" and 

"SET" specific keywords are used to indicate them. The framework ignores all primitive data types (i.e., 

int, string, char), variables, and comment statements. 

 

 

 
 

Figure 2. Sample sequence generation from source code fragments. 

 

 

C. PATTERN MINING 

 
Assume that Ӏ = { i1, i2, ..., in } be a finite set of elements called items. An itemset is a nonempty set of 

items. A sequence is a finite ordered and consecutive list of item-sets. A typical sequence s is stated as 
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<t1 t2 ... tm>, where tj is an itemset, tj ⊆ Ӏ.  In this context, tj can be also named an element of the sequence 

which is stated as (x1, x2, ..., xr), where xk is an item, xk ϵ Ӏ. In our study, the brackets are ignored since 

each element has only a single item, i.e., element (x) is illustrated as x. Note that an item may exist 

multiple times in different parts of the same sequence; however, it can appear at most once in an element 

of a sequence. The length of a sequence, denoted by l (s), is the number of items in the sequence such 

that l (s) = |t1| + |t2| + ... + |tm|, i.e., 𝑙(𝑠) = ∑ |𝑡𝑖|
𝑚
𝑖=1 . For instance, the length of the sequence <(1 2 3)(1 

4)(2 5)> is 7. A sequence with length l is called an l-sequence. The size of a sequence, denoted by |s|, is 

the number of itemsets in the sequence. A sequence α = <a1 a2 ... au> is called a sub-sequence of another 

sequence β = <b1 b2 ... bv> if there exist numbers 1 ≤ j1 < j2 < ... < ju ≤ v such that a1 ⊆ bj1, a2 ⊆ bj2, ..., 

au ⊆ bju. When a sequence α is included in another sequence β, then α is called as a subsequence of β, 

and β is called to be a supersequence of α. For instance, the sequence β = <(1 2 3)(3 4)> is a super-

sequence of α = <(1 2)(4)>.  

 

A sequence database, denoted by D = { s1, s2, ..., sn }, is a finite set of sequences, and |D| refers to the 

number of sequences in D. Given a database D and user-determined minimum support (minsup), the 

algorithm extracts all the sub-sequences with support ≥ minsup. The support of a sequence s in D, 

denoted by sup(s), is the number of transactions in D to which s belongs. For example, if we have two 

sequences <abc> and <ace>, the support of the pattern "ac" is 2 since it appears two times. Given a 

positive number minsup, a sequence s is called as frequent pattern or frequent sequence if sup(s) ≥ 

minsup. The projected dataset of a sequence α contains all the suffixes of sequences that include α. 

 

Table 2 gives a sample sequence dataset in the first row and then shows the discovery of patterns step 

by step. Each row of the table illustrates a k-length pattern (also called prefix), its projected dataset, and 

new (k + 1)-length patterns. The symbol Ф represents an empty projected dataset. As shown in Table 2, 

the PrefixSpan algorithm repeatedly generates prefix-projected itemsets to discover frequent patterns. 

A typical pattern and its corresponding support value are represented in the form <pattern> : support. 

The algorithm firstly finds 1-length patterns which are the following in this example: <IF>: 3, <FUNC>: 

2, <MATH>: 4, and <ENDIF>: 3. Here, the pattern <MATH>: 4 was extracted from the dataset, instead 

of <MATH>: 5 since the traditional SPM methods ignore the number of occurrences of an item within 

one transaction. The occurrences of items in one transaction are limited to binary values (i.e., each item 

may or may not appear in one transaction). The support value of an item is the number of transactions 

that contain this item. In other words, the support of item ix in a database D is the number of transactions 

in D to which belongs the item ix. The number of transactions is 4 in this example and MATH appears 

at least one time in all transactions. It may be noted here that high-utility sequential pattern (HUSP) 

mining has emerged as a new research topic, which considers the items that may appear zero, once, or 

multiple times in one transaction in a quantitative sequence database [27]. Since the minimum support 

is 50% (minsup = 2) in this example, the algorithm filters out "ELSE", "LOOP", "ENDLOOP", "SET", 

and "RETURN" elements because each one is involved in only one sequence.  

 

The algorithm repeatedly finds (k+1)-length patterns by considering k-length patterns. The method finds 

all the sequences containing an itemset and generates a projected dataset in which each sequence is 

prefixed with the first occurrence of the itemset. For instance, <FUNC>-projected dataset includes two 

sequences:  <MATH ENDIF> and <MATH ENDLOOP>. Frequent itemsets in a projected dataset 

represent (k + 1)-length patterns. For example; the "MATH" element in <FUNC>-projected dataset 

results in its corresponding 2-length patterns: <FUNC MATH> : 2. Each prefix-projected itemset is 

evaluated by a minimum support (minsup) threshold. If the support of an itemset is less than minsup, 

then this itemset is eliminated. For example, when considering the prefix <MATH>, the algorithm filters 

out <MATH ELSE MATH ENDIF>: 1, <MATH ENDLOP>: 1, and <MATH SET RETURN ENDIF>: 1 

candidate itemsets since the minimum support is 50% (minsup = 2) in this example and each one is 

involved in only one transaction. On the other hand, the pattern <MATH ENDIF>: 3 is extracted since 

it appears in three transactions and so its support is greater than the minsup. The algorithm finishes when 

no new pattern is found in an iteration. Eventually, the algorithm with minsup = 2 finds five frequent 

patterns from the sample dataset: <IF MATH>: 3, <IF ENDIF>: 3, <FUNC MATH>: 2, <MATH 

ENDIF>: 3, and <IF MATH ENDIF>: 3. 
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Table 2. A sample sequence dataset and the discovery of patterns from it. 

 

Prefix   Prefix-Projected Itemsets Patterns 

Original dataset  <IF FUNC MATH ENDIF>             

<IF MATH ELSE MATH ENDIF>        

<LOOP FUNC MATH ENDLOOP>         

<IF MATH SET RETURN ENDIF>       

<IF>: 3 

<FUNC>: 2 

<MATH>: 4 

<ENDIF>: 3 

<IF> <FUNC MATH ENDIF>                

<MATH ELSE MATH ENDIF>           

<MATH SET RETURN ENDIF> 

<IF MATH>: 3 

<IF ENDIF>: 3 

<FUNC> <MATH ENDIF>                     

<MATH ENDLOOP> 

<FUNC MATH>: 2 

<MATH> <ENDIF>                          

<ELSE MATH ENDIF> 

<ENDLOOP> 

<SET RETURN ENDIF> 

<MATH ENDIF>: 3 

<ENDIF> ∅  

<IF MATH> <ENDIF>                      

<ELSE MATH ENDIF> 

<SET RETURN ENDIF> 

<IF MATH ENDIF>: 3 

<IF ENDIF> ∅  

<FUNC MATH> <ENDIF> 

<ENDLOOP> 

 

<MATH ENDIF> ∅  

<IF MATH ENDIF> ∅  

 

 

Patterns extracted by the SCodeMiner framework have the following properties:  

 

• A coding pattern is a sequence of programming elements and statements. In other words, a coding 

pattern is a list of tokens and each token corresponds to a coding element or statement.    

• Each item in a pattern has at least minsup value. Here, the term "item" represents a special programming 

element in a code fragment corresponding to the pattern.  

• A pattern can comprise a different number of code elements. The length of a pattern is the number of 

items in the pattern. For example, the <FUNC MATH> pattern is a 2-length pattern, while the <IF MATH 

ENDIF> pattern is a 3-length pattern.  

• When a pattern appears in the code fragments with minimum support or higher, it is said to be frequent.

• A pattern implies its sub-patterns that have a fewer number of items. For instance, a pattern <GET 

FUNC MATH RETURN> implies four sub-patterns comprising 3-items: <GET FUNC MATH>, <GET 

FUNC RETURN>, <GET MATH RETURN>, and <FUNC MATH RETURN>. 

 

D. ALGORITHMS 

 
Over the last decade, different algorithms have been proposed in the field of SPM, each of which has 

different properties [28, 29]. In this study, we chose the PrefixSpan [8], SPADE [9], BIDE+ [10], and 

LAPIN [11] algorithms based on important key features supported by these methods (Table 3). Since 

each algorithm uses a different approach (apriori-based, pattern-growth, constraint-based, and early-

pruning), we can perform a comparative analysis of their performances on the dataset. Apriori-based 

approaches scan the original dataset several times to extract frequent itemsets of size k at each kth-

iteration, while the pattern-growth techniques build a representation of the dataset and then provide a 

way to partition the search space. Early-pruning approaches rely on position induction to avoid support 

counting and to prune candidates at the very early stage of the mining process as much as possible. 
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Constraint-based approaches focus on identifying the entire set of patterns satisfying a particular 

constraint C to reduce the number of retrieved patterns by pruning uninteresting ones.  

 
 

Table 3. The key features of the sequential pattern mining algorithms. 

 
             Algorithms 

 

Properties 

PrefixSpan SPADE BIDE+ LAPIN 

Approach Pattern-Growth Apriori-Based  Constraint-Based Early-Pruning 

Database Layout  Horizontal Vertical Horizontal Vertical 

Traverse Depth-First 

Search 

Breadth-First 

Search 

Depth-First 

Search 

Depth-First 

Search 

Search Top-Down Bottom-Up Bi-directional ─ 

Monotone Prefix-monotone Anti-monotone Prefix-monotone Anti-monotone 

Generate-and-Test X √ X X 

Candidate Pruning √ √ √ √ 

Search- Space 

Partitioning 
√ √ √ √ 

Single Scan of 

Database 
√ X X √ 

Prefix Growth X X X √ 

Position Induction X X X √ 

Memory-only √ X √ √ 

Compression or/and 

Sampling 
X X X X 

Constraints and 

Taxonomies 
X X √ X 

Counting Support 

Without Scanning  
X X X √ 

Pros - Scanning the 

original dataset 

once 

- Effective when 

low support 

thresholds are 

used 

Thanks to 

lattice-theoretic 

approach, good 

for fast mining 

in large datasets 

- Executing 

some checking 

steps to avoid 

maintaining 

-Memory 

efficiency 

- Reducing the 

search space 

-Effective in 

mining dense 

datasets 

Cons Creation and 

analyzing of a 

large number of 

projected sub-

datasets 

Inefficient for 

mining long 

sequential 

patterns 

Multiple scans 

(closure 

checking, back-

scan, and scan-

skip) 

Additional 

computation 

time and storage 

space to convert 

a dataset from 

horizontal to 

vertical format 

 

Some SPM algorithms like SPADE and LAPIN use a vertical form of the dataset rather than the regular 

horizontal layout. The traversal in the search space (Depth-First Search (DFS) or Breadth-First Search 

(BFS)) makes a big difference in performance. The Generate-and-Test feature implies using exhaustive 

join operators such that the pattern is basically grown one element at a time and tested against the 

minimum support. Prefix-monotone property indicates that if for each sequence S that satisfies a 

constraint C, so does every sequence having S as a prefix, while Anti-monotone property states that 

every non-empty subsequence of a pattern is also a sequential pattern. 
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PrefixSpan is considered one of the efficient SPM algorithms since it scans the original dataset one time, 

usually along with search space partitioning and candidate pruning. In this study, we especially chose 

the PrefixSpan and SPADE algorithms since a comprehensive performance study [8] showed that they 

outperformed the other alternative algorithms such as FreeSpan and GSP in terms of both memory usage 

and running time. As reported in [30], PrefixSpan is faster than other hybrid or pure pattern-growth 

methods, like PLWAP, although it is less memory-efficient. We also applied the BIDE+ algorithm on 

the dataset due to its advantages such as no need to generate candidate sequential patterns. Besides, the 

LAPIN algorithm has the advantages of reducing the search space during the sequential mining process 

and being effective in mining dense databases [11]. 

 

Since the characteristics of the data (i.e., the length of the sequences, the number of distinct items, dense 

vs. sparse) and input parameter settings (i.e., minimum support threshold) have an important impact on 

the performance of the algorithm, we tested and compared four algorithms to determine the best one. 

Therefore, a combination of theoretical analysis and empirical evaluation was used to determine the best 

algorithm for the given dataset. 

 

 

IV. EXPERIMENTAL STUDIES 
 
In the experiments, we obtained the results with the PrefixSpan algorithm by utilizing the SPMF open-

source library [31]. The library can be freely downloaded from the website http://www.philippe-

fournier-viger.com/spmf/. In addition, we compared four different sequential pattern mining algorithms 

in terms of runtime, including PrefixSpan [8], SPADE [9], BIDE+ [10], and LAPIN [11]. In each 

experiment, the SPM algorithms were executed 5 times and the average values were reported here. All 

experiments presented in this study were conducted on a laptop equipped with Intel Quad-Core 2.7 GHz 

CPU and 8 GB of RAM. 

 

A. DATASET DESCRIPTION 

 
In the experimental studies, we used the Apache Tomcat1 v9.0.28 open-source software project for 

detecting coding patterns. The Apache Tomcat is an open-source implementation of the JavaServer 

Pages, Java Expression Language, Java WebSocket technologies, and Java Servlet. It contains 2460 java 

files. In the data preprocessing phase, these source code files were read and translated into sequences. 

Total, 17220 sequences were obtained by converting 2460 java files. 

 

B. EXPERIMENTAL RESULTS 

 
We carried out four experiments for the following purposes: (i) to find frequent coding patterns, (ii) to 

investigate the relation between the minsup settings and the number of frequent patterns, (iii) to explore 

the distribution of k-length patterns, and (iv) to compare four alternative SPM algorithms.  

 

In the first experiment, we discovered the frequent coding patterns by running the PrefixSpan algorithm 

with %1 minimum support threshold. Table 4 shows sample patterns. The results show that source codes 

usually contain frequent patterns of subroutine calls, mathematical operations, control flows, and loops. 

For example, the pattern <IF GET ELSE GET ENDIF> indicates that 4.18% of the code blocks have a 

get function inside an “if-else” control statement. The example pattern with ID 18 contains an "IF ELSE 

IF" statement block, while the last sample pattern includes a nested-IF block. Some programming 

elements such as “THROW” may not involve in the list of frequent patterns due to their sparsity in the 

source codes. When a low minimum support threshold is chosen, rare programming elements can also 

be extracted. However, in this case, a huge number of patterns is obtained, which increases the runtime 

of the algorithm and leads to producing some uninteresting patterns. 

 

                                                             
1 http://github.com/apache/tomcat 
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Table 4. Sample discovered sequential patterns along with their lengths, frequencies, and support values. 

 

ID Pattern Length Frequency 
Support 

(%) 

1 IF 1 15133 87.88 

2 FUNC 1 11916 69.20 

3 LOOP 1 3485 20.24 

4 MATH 1 3944 22.90 

5 GET 1 6852  39.79 

6 SET 1 1738 10.09 

7 FUNC RETURN 2 2369 13.76 

8 MATH RETURN 2 580 3.37 

9 IF GET ENDIF 3 6187 35.93 

10 IF SET ENDIF 3 1591 9.24 

11 LOOP MATH ENDLOOP 3 2026 11.77 

12 LOOP FUNC GET ENDLOOP    4 1316 7.64 

13 IF MATH SET ENDIF  4 249 1.45 

14 LOOP FUNC GET FUNC ENDLOOP 5 944 5.48 

15 IF GET ELSE GET ENDIF 5 720 4.18 

16 IF FUNC RETURN ELSE RETURN ENDIF 6 266 1.54 

17 LOOP FUNC IF BREAK ENDIF ENDLOOP 6 201 1.17 

18 IF FUNC ELSE IF FUNC ENDIF 6 570 3.31 

19 LOOP IF FUNC ENDIF MATH FUNC ENDLOOP 7 234 1.36 

20 IF FUNC LOOP IF FUNC ENDIF ENDLOOP ENDIF 8 242 1.41 

21 IF IF FUNC MATH IF ENDIF FUNC ENDIF ENDIF 9 182 1.06 

 

 

The coding patterns found can help software engineers in various ways. Code completion can be 

provided to the developers according to the patterns, invoking automatically or by pressing a key. When 

a programming element is initiated by the user, the possible completion proposals according to the 

frequent coding patterns can be shown through a popup menu. Furthermore, coding patterns discovered 

from different versions of software projects can be compared to uncover changes. It can be utilized for 

the interpretation of software versions, modeling changes, and understanding the modifications and 

enhancements. Moreover, the coding patterns can be used for developer profiling. For example, the 

developer’s expertise or skill level can be predicted according to the patterns. Similarly, based on their 

coding patterns, the developers can be ranked in terms of ability. In addition, the coding patterns can 

give an idea about code quality and code complexity. As the source code gets more complex, sequences 

in the dataset contain longer patterns.    

 

In the second experiment, the relation between the minimum support settings and the number of frequent 

patterns was investigated. The algorithm was run on the sequence dataset with support values varying 

from 10% to 50% with an increment of 5%. Figure 3 presents the number of discovered frequent patterns 

along with the minimum support threshold. Frequent patterns were obtained by the subsequences whose 

support value was greater than or equal to the threshold value. However, the other subsequences that 

had a lower support value than the threshold value were discarded. As can be seen in Figure 3, the 

number of frequent patterns decreases exponentially when the minimum support threshold increases. 

For example, when the minimum support value was 10%, the algorithm discovered 155 frequent coding 

patterns, whereas it found 15 patterns for the minimum support of 35%. Therefore, it is possible to say 

that we can obtain a huge number of frequent patterns by executing the algorithm with small support 

thresholds. However, using a low minimum support threshold may result in generating too many patterns 

including a lot of uninteresting rules. In addition, it leads to increasing computational complexity and 

memory requirements. On the other hand, a high minsup value can lead to miss useful patterns. For this 
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reason, an appropriate minimum support threshold should be set to efficiently discover valuable and 

interesting frequent patterns. 

 

 

 

Figure 3. Numbers of retrieved frequent sequences 

 

 

In the third experiment, the distribution of k-length patterns was investigated by running the algorithm 

with different minimum support values ranging from 5 to 15. Table 5 presents the numbers of discovered 

patterns separately, varying from 1-length to 8-length patterns. Hence, it shows the effect of support 

threshold value on the length of frequent patterns. The results show that the number of patterns obtained 

from the dataset was high when a low minimum support threshold was determined. For example, the 

number of 4-length patterns is 234 when minsup = 5%, while the number of 4-length patterns was 10 

when minsup = 15%. In this way, the frequent coding patterns can be found in a more manageable size. 

It can be observed from Table 5 that the number of 3-length and 4-length patterns is usually higher than 

others. The results construct a form quite similar to the bell curve. However, the kurtosis and skewness 

of the curve change according to the minsup value. 

 

 
Table 5. The number of k-length coding patterns with different minimum support values. 

 

Support 

(%) 

Number of k-length patterns 

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

5 10 50 147 234 225 135 39 6 

6 10 47 108 139 125 54 10 1 

7 10 43 82 100 68 26 3 0 

8 10 40 71 77 42 11 1 0 

9 10 39 65 52 20 5 0 0 

10 10 36 51 38 17 3 0 0 

11 9 30 40 33 11 1 0 0 

12 9 25 33 21 8 1 0 0 

13 9 25 27 16 4 0 0 0 

14 9 22 23 12 2 0 0 0 

15 9 20 20 10 1 0 0 0 

 

 

 

C. COMPARISON RESULTS 

 
In the last experiment, we compared four different sequential pattern mining algorithms in terms of 

running time, including PrefixSpan [1], SPADE [2], BIDE+ [3], and LAPIN [4]. This comparison is 
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important since the sequential pattern mining process is costly, especially when a low minimum support 

(minsup) value is given as input, or the dataset is dense and has long patterns. When handling large-

scale data, some SPM algorithms have challenges and problems, including low processing speed, huge 

memory cost, and insufficient hard disk space [7]. The main reason behind this problem is the reduction 

in the elimination of candidate itemsets. Therefore, the number of frequent sequential patterns increases 

exponentially with respect to the minsup, instead of linearly. To increase the efficiency, an appropriate 

SPM algorithm should be chosen.  

 

Figure 4 shows the comparison results when we set the minimum support threshold from 2% to 5% with 

an increment of 0.5%. It can be noted here that all the algorithms discover the same patterns but in 

different execution times. As expected, the runtimes decrease as the minimum support value increases. 

For example, the patterns were discovered in 2.20 sec. when minsup = 2, while they found in 0.76 sec. 

when minsup = 3. Therefore, the minimum support is important because it greatly impacts the execution 

time. The empirical results showed that the most efficient SPM algorithm is PrefixSpan in terms of 

computational time. For this reason, in this study, we used the PrefixSpan algorithm.  

 

 

 

 

Figure 4. Runtime (seconds) for retrieving frequent patterns 

 

Figure 4 shows the impact of the minimum support threshold on the running times of the algorithms. 

Furthermore, the minsup parameter also impacts the number of patterns as well as the interestingness of 

patterns found. As reported in [6], setting it to a very high value may lead to finding no frequent patterns, 

while a too-low value may generate many uninteresting and non-useful patterns. Moreover, the minsup 

parameter has an impact on the length of the patterns. As one decreases the minimum support, the 

number of longer patterns increases on high-dimensional datasets. Tuning the minsup parameter to an 

optimum value is a challenging task, especially for inexpert analysts. Deciding on the minsup value 

requires a trial-and-error process and therefore it is a tedious procedure for inexperienced users [6]. It 

may be noted here that if a hierarchical relationship between items is defined, different minsup values 

can be determined for different levels, instead of a uniform value. In multi-level sequential pattern 

mining [32], it is required to use higher minsup values at higher levels and reduced them at lower levels. 

Furthermore, it may be also stated here that the traditional SPM algorithms assume that each item has 

the same importance. The concept of multiple minimum supports (MMS) [33] extends the problem by 

allowing users to specify different minsup values for different items to reflect their own nature. 
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V. CONCLUSION AND FUTURE WORKS 
 
This paper proposes a new framework, called Source Code Miner (SCodeMiner), which discovers 

frequent coding patterns within a software project. The proposed framework firstly transforms a source 

code into a sequence database and then applies a sequential pattern mining algorithm. This study is also 

original in that it compares four different algorithms in terms of computational time, including 

PrefixSpan, SPADE, BIDE+, and LAPIN. The experiments that carried out on an open-source software 

project showed that the proposed SCodeMiner framework is an effective mining tool in identifying 

coding patterns. 

 

The main findings of the study can be concluded as follows: 

 

 The empirical results showed that PrefixSpan outperformed the other alternative SPM algorithms 

(SPADE, BIDE+, and LAPIN) in terms of computational time. The results were obtained in a shorter 

time compared to the previous related studies [20-22] since it has been proven in [8, 30] that 

PrefixSpan is faster than PLWAP and GSP.  

 

 With the proposed SCodeMiner framework, the general structure of the source code is extracted for 

general purposes. On the other hand, some previous approaches typically proposed for a specific 

purpose such as for analyzing software versions [5, 19, 23], usage patterns [20], software clones [18], 

crosscutting concerns [26], or software vulnerabilities [12, 13, 15, 17].  

 

 The results showed that source codes usually contain frequent patterns of subroutine calls, 

mathematical operations, control flows, and loops such as <LOOP MATH IF FUNC ENDIF 

ENDLOOP>. On the other hand, when the source code of a graphic drawing tool is analyzed, the 

patterns can contain items related to drawing commands such as <getGraphics setColor drawRect 

setcolor fillRect dispose> as given in [20]. 

 

 The results showed that the number of frequent coding patterns decreased exponentially when the 

minimum support threshold increased. This behavior is also similar to the cases in [18, 20]. For this 

reason, an appropriate threshold value should be set to discover valuable frequent patterns. 

 

 When the length of patterns was investigated, the frequency of results was distributed in the shape of 

the “bell” curve. The number of 3-length and 4-length patterns is usually the highest. However, the 

skewness and kurtosis of the curve can change according to the minimum support threshold value. 

 

SCodeMiner has the potential to expand the application of data mining in the software engineering field, 

thanks to its advantages. Although found effective, it has several limitations. It is specially designed for 

the Java programming language; however, it is possible to extend the study for the other programming 

languages by only changing the tokenization step. Besides, it does not consider any user-defined 

constraint such as item constraint, time constraint, super-pattern constraint, or gap constraint. The 

patterns can be filtered according to a user-defined constraint. As a future study, we can use a closed, 

maximal, or high-utility SPM algorithm to present concise representations of coding patterns.  
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