
 1589 

 
 

 
 

Research Article  
 
 

Strawberry Ripeness Assessment Via Camouflage-Based Data 
Augmentation for Automated Strawberry Picking Robot 

 
 Ferhat SADAK a,* 

 
a Department of Mechanical Engineering, Bartin University, Bartin, 74100, Turkey 

* Corresponding author’s email address: fsadak@bartin.edu.tr  
DOI: 10.29130/dubited.1075572 

 
 

ABSTRACT 
Vision-based strawberry picking and placing is one of the main objectives for strawberry harvesting robots to 
complete visual servoing procedures accurately. Occlusion is the main challenge in strawberry ripeness detection 
for agriculture robots. In this study, strawberry ripeness detection was proposed using a camouflage-based data 
augmentation strategy to simulate the natural environment of strawberry harvesting conditions. Yolov4, Yolov4 
tiny and Yolov4 scaled, and their traditional data augmentation and camouflage-based data augmentation 
derivatives were used to find out the effect of camouflage-based augmentation technique in overcoming the 
occlusion issue. Then the results were mainly evaluated based on mean Intersection over Union (IoU), F-1 score, 
average precision (AP) for ripe and unripe strawberries and frame per second (fps). Yolov4 tiny with camouflage-
based data augmentation technique has demonstrated superior performance in detecting ripe and unripe 
strawberries with 84% IoU accuracy ~99% AP for ripe and unripe strawberries at an average of 206-fps, satisfying 
the agriculture strawberry harvesting robot operation need. The performance of the suggested technique was then 
tested successfully using a dataset termed the challenge dataset in this study to demonstrate its performance in a 
complex and occluded strawberry harvesting environment. Camouflage-based data augmentation technique helps 
to increase the detection procedure of ripe and unripe strawberries toward autonomous strawberry harvesting robot. 
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Otonom Çilek Toplama Robotu İçin Kamuflaj Tabanlı Veri Artırma 
Yoluyla Çilek Olgunluğu Değerlendirmesi 

 
ÖZET 

Görüye dayalı çilek toplama ve yerleştirme, çilek hasat robotlarının görsel servo prosedürlerini doğru bir şekilde 
tamamlaması için ana hedeflerden biridir. Tarım robotları için çilek olgunluğunun saptanmasındaki ana zorluk 
oklüzyondur. Bu çalışmada, çilek hasat koşullarının doğal ortamını simüle etmek için kamuflaj tabanlı bir veri 
artırma stratejisi kullanılarak çilek olgunluğu tespiti önerilmiştir. Kamuflaj tabanlı veri artırma tekniğinin 
oklüzyon sorununun üstesinden gelmedeki etkisini bulmak için Yolov4, Yolov4 tiny ve Yolov4 scaled ve bunların 
geleneksel veri artırma ve kamuflaj tabanlı veri artırma türevleri kullanılmıştır. Daha sonra sonuçlar esas olarak 
ortalama kesişim değeri (IoU), F-1 skoru, ortalama hassaslık (AP), ve saniyedeki kare sayısı (fps) temel alınarak 
değerlendirilmıştir. Kamuflaj tabanlı veri artırma tekniğine sahip Yolov4 tiny, ortalama 206 fps'de olgun ve 
olgunlaşmamış çilekler için %84 IoU doğruluğu ~%99 AP ile olgun ve olgunlaşmamış çilekleri tespit etmede 
üstün performans göstererek, tarım çilek hasat robotu operasyon ihtiyacını karşılamıştır. Önerilen tekniğin 
performansını çilek hasat ortamında göstermek için bu çalışma kapsamında belirlenen bir veri seti kullanılarak 
başarılı bir şekilde test edilmiştir. Kamuflaj tabanlı veri artırma tekniği, otonom çilek hasat robotları için olgun ve 
olgunlaşmamış çileğin tespit prosedürünü artırmaya yardımcı olmuştur. 
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I. INTRODUCTION 
 

Deep learning's rapid advancement has brought considerable convenience to our lives, and academics 
in the area are demanding to contribute to its development. Agricultural robot technology is also fast-
evolving, and deep learning offers a wide range of possibilities for effective fruit detection [1]. 
Strawberry harvesting is the most time-consuming and labor-intensive part of the production process. 
Because manual harvesting does not meet the basic needs of the strawberry industry due to low 
production rates and a labour shortage, which has a negative impact on the industry's long-term viability 
and sustainability. Researchers have recently developed prototypes of commercial strawberry harvesting 
robots [2]–[4]. Target recognition and precise position detection (localization) of strawberry harvesting 
robots are difficult due to the complexity of the farm's natural environment and the unstructured features 
of the fruits. The natural factors include the intensity of the natural light, overlap of few fruits and 
occlusion of leaves. Therefore new solutions are necessary to overcome these challenges for developing 
autonomous strawberry harvesting robots [5]. 
 
Fruit ripeness detection has been investigated for various fruits to aid fully autonomous harvesting 
agriculture robots in making decisions about whether to pick the fruit. For instance, the colour and size 
values retrieved from RGB images, including 40 images for each of three stages, acquired using a 
computer vision system were used to determine banana maturity [6]. A total of 925 Cape gooseberry 
(physalis peruviana) fruit samples were gathered and manually graded into one of seven different 
maturity grades approaches to classify the ripeness of Cape gooseberry using three colour spaces (RGB, 
HSV, and L*a*b*) and the combination of four machine learning techniques [7]. 
 
To classify the different ripeness stages of tomatoes based on colour features, researchers employed an 
automated multi-class classification technique that included Principal Components Analysis (PCA), 
Support Vector Machines (SVMs), and Linear Discriminant Analysis (LDA) algorithms [8]. The Fuzzy 
Rule-Based Classification method (FRBCS) was used in a study to categorize the different ripeness 
stages of tomatoes, with six classes representing the six different phases of tomato ripeness [9]. The 
suggested FRBCS achieved a tomato ripeness classification accuracy of 94.29%. Based on the 
improving Otsu adaptive threshold algorithm and a novel feature in OHTA color space, an autonomous 
extraction method of strawberry maturity was examined in a complicated agricultural setting to assist 
fruit picking robot with a 95% extraction accuracy [10]. 
 
Deep learning (DL) approaches are currently widely recognized as the most promising technology for a 
wide range of computer vision applications, including medical robotics [11] and agricultural robotics 
[12], because they produce a superior performance to traditional machine learning techniques [13]. 
Faster-RCNN was used by Fanfang Gao et al. to detect apples, with an average precision of 0.909, 0.899, 
0.858, and 0.848 for non-occluded, leaf-occluded, branch/wire-occluded, and fruit-occluded fruit, 
respectively [14]. The average precision in the fruit occluded scenario dropped to 6.1 % compared to 
the non-occluded example, demonstrating the importance of occlusion and its negative consequences in 
agricultural harvesting robotics. The Faster R-CNN was also used to detect apples, mangoes, and 
almonds, and the average accuracy results show that using this method can improve the accuracy of fruit 
recognition if data augmentation techniques such as flip and scale augmentation are used, as opposed to 
transferring the weight between orchards [15]. However, the processing time for Faster-RCNN is not 
sufficient in real-time operation that can be used in agriculture robotics. 
 
You Only Look Once (YOLO) [16] and its improved versions are currently in high demand in various 
research fields, including agriculture robotics. YOLO's concept is to solve target detection as a 
regression task. Different research teams, for example, proposed apple detection based on an improved 
Yolov3 model [17], tomato detection based on a modified Yolov3 [18], and MangoYOLO based on 
Yolov3 and Yolov2(tiny) [19]. According to the Yolov4 model, occlusion performance is more accurate. 
As a result, more attention must be paid to the Yolov4 model [20] and its derivations to detect mature 
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and immature strawberries for robotic harvesting tasks accurately. For instance, a deep convolutional 
neural network was used to distinguish between mature and immature strawberries in a greenhouse. It 
was discovered that the mature class had a problem detecting occluded strawberries. In contrast, the 
immature class was confused by the backdrop colour [21]. Hence, the development of YOLO 
architecture as a feature extractor aside, attention is also given to the data augmentation techniques so 
that the model can be robustly used in the agriculture field. 
 
To overcome these challenges above, while using the superior performance of deep learning techniques, 
the development of new data augmentation techniques were shown to be useful [22]–[24]. Kamilaris et 
al. reviewed 40 research papers dealing with the use of deep learning in the agriculture field and showed 
that 37% of the reviewed paper utilized data augmentation techniques [25]. This is because increasing 
the number of training images improves the overall learning procedure and performance and for 
generalization purposes, which is critical when developing a robust detection and classification 
algorithm for agricultural robots. However, the developmental stages of deep learning algorithms mostly 
tried to benefit from classical data augmentation techniques in agriculture. This includes various 
rotation, scaling and intensity of the object in [26], image mirroring and rotation in 90-degree increments 
[27], flip, scale, flip-scale and in [15], image cropping, resized by a factor of 0.75 in [28]. These data 
augmentation techniques are commonly used in various research fields, such as medical robotics, and 
were not developed solely to serve agriculture robot autonomy. Furthermore, none of these studies 
developed data augmentation techniques that considered the nature of the agriculture field, such as 
occlusion. 
 
This paper proposes a camouflage-based data augmentation technique to be employed as a robust 
ripeness detection of a strawberry as a part of the autonomy of the strawberry harvesting robot. The 
technique is evaluated against traditional data augmentation techniques using Yolov4, Yolov4 tiny and 
Yolov4-scaled framework, and this technique can be generalized for any type of fruit to detect its 
ripeness stage. Later, experimental validations are presented to illustrate the generalization of the 
proposed technique.  
 
 

II. MATERIALS AND METHOD 
 

A. DATASET PREPARATION AND TRAINING 
112 images which consist of 443 ripe strawberries and 306 unripe strawberries, were created from a 
strawberry harvesting field in Turkey with the size of 416 *416 pixels. The dataset was prepared under 
a natural environment to simulate the real-world condition for strawberry harvesting. 80% of the data 
was used for training procedures, while 20% was used for testing purposes to evaluate the developed 
model. Given the size of our dataset, this ratio is sufficient to demonstrate the performance of the trained 
neural network and its generalization. The dataset was annotated using the graphical image annotation 
tool LabelImg, developed in [29]. A farmer with more than 30 years of experience in strawberry planting 
from Turkey's Bartin province performed the annotation of ripe and unripe strawberries. When classified 
as ripe or unripe, the annotation essentially relies on human perception. The bounding box was carefully 
drawn to the strawberry's outer margin based on the farmer's instructions. 
 
The training hyper-parameters were configured as follows: the number of max epochs was set to 6000, 
the learning rate was set to 0.001, the momentum was set to 0.949, and batch and subdivision were set 
to 64 and 16, respectively. The training procedure for all neural networks was carried out on Google 
Colaboratory. Google Colaboratory is a free Jupyter notebook environment that requires no installation 
and runs entirely in the cloud was used throughout our study. NVIDIA Tesla K80 GPU and 12 GB RAM 
were used with Google Colaboratory in all training procedures to make a reasonable comparison. Figure 
1 depicts a strawberry sample dataset as well as its annotation. 
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                                                          (a)                                   (b) 

 
Figure 1. (a) Sample dataset of mature and immature strawberry (b) Sample annotation of mature and immature 

strawberry by LabelImg. 
 

B. YOLOV4 
 
The Yolov4 model, a state-of-the-art real-time detection model, is an improved version of the Yolov3. 
The fundamental difference between the network structures of Yolov3 and Yolov4 is that in Yolov3, 
the DarketNet53 network is replaced with CSP DarketNet53, and the CSP DarketNet53 network, which 
is based on DenseNet, is employed as the backbone network in Yolov4. Additionally, the use of 
universal features such as Weighted-Residual-Connections (WRC), Cross-Stage-Partial-Connections 
(CSP), Cross mini-Batch Normalization (CmBN), Self-adversarial-training (SAT), and Mish-activation 
aids Yolov4 in achieving outstanding outcomes by increasing the learning capability of the 
Convolutional Neural Network (CNN). In comparison to Yolov3, Yolov4 is 12% faster and 10% more 
accurate. 
 
The Yolo network approaches the detection problem as a regression problem, generating boundary 
coordinates and probability estimates for each class. If the center of the observed object falls within the 
artificially specified place, the network performs target detection using the trained Yolov4 loss 
functions, which include the bounding box location loss (𝐿!"#$), confidence loss( 𝐿%#&'()*&%*), and 
classification loss ( 𝐿%+,--) [20]. 
 
𝐿𝑜𝑠𝑠 = 	𝐿!"#$ +	𝐿%#&'()*&%* +			𝐿%+,--                                                                                  (1) 
 
The CIoU loss, in comparison to the IoU loss, incorporates two new concepts: central point distance and 
aspect ratio measurement between ground truth and predicted bounding box, and uses these three metrics 
to improve the quality of the predicted bounding box. 
 
𝐶𝐼𝑂𝑈 = 	𝐼𝑂𝑈 − .!/0,0"#2

%!
−∝ υ                                                                                                (2) 

 
where 𝜌3(𝑏, 𝑏45) is the Euclidean distance between the prediction and real frames' center points, IOU 
defines the rate of overlap between the predicted and ground truth bounding box, and c signifies the 
diagonal distance of the smallest area that can contain both the prediction and real frames.  
 
∝=	 6

78"9$:6
                                                                                                                             (3) 

 
Here, ∝ is a positive trade-off parameter, 
 
υ = ;

<!
(𝑎𝑟𝑐𝑡𝑎𝑛 =

"#

>"#
	− 𝑎𝑟𝑐𝑡𝑎𝑛 =

>
)3                                                                                          (4) 

 
and υ measures the consistency of the aspect ratio. 
Where h is the height of the bounding box and w is the width of the bounding box. 
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𝐿!"9$ = 	1 − 𝐼𝑂𝑈 + .!/0,0"#2
%!

+∝ υ                                                                                         (5) 
 
C. YOLOV4 TINY 
 
The compressed version of Yolov4 is Yolov4 tiny. It is based on Yolov4 and is intended to simplify the 
network structure and decrease parameters. This makes it possible to use it on mobile and embedded 
devices. Yolov4 tiny has two Yolo heads compared Yolov4 model, which has three heads. Furthermore, 
Yolov4 tiny was trained from 29 pre-trained convolutional layers, whereas Yolov4 was trained from 
137 pre-trained convolutional layers, which directly impacts training and detection time. Instead of the 
CSPDarknet53 network used in the Yolov4 technique, the Yolov4-tiny approach employs the 
CSPDarknet53-tiny network as the backbone network. Instead of using the ResBlock module in the 
residual network, the CSPDarknet53- a small network employs the CSPBlock module in the cross-stage 
partial network. As a result, the gradient flow can propagate along two different network channels, 
increasing the gradient information's correlation difference. 
 
The FPS (Frames Per Second) of Yolov4 tiny is almost eight times faster than Yolov4. The accuracy of 
Yolov4 tiny is two-thirds that of Yolov4 when tested on the MS COCO dataset. As a result, the Yolov4 
model that should be used is determined by the application considering the model's accuracy and 
detection time. It should be noted that highly accurate and fast models are in high demand in the 
agricultural robotics industry. 
 
D. YOLOV4 SCALED 
 
Scaled Yolov4 is a set of neural networks built on top of the Yolov4 network, which has been enhanced 
and scaled without using any pre-trained model [30]. The Yolov4-scaled model employs a scaling 
strategy that alters the network's depth, width, resolution, and structure, such as image size, number of 
layers and channels while optimizing the model performance and inference speed. ResNet, ResNeXt, 
and the traditional Darknet backbone, as well as a few CSP-ized CNN backbones, are all considered in 
their network. Applying the concepts given out in the Cross-Stage Partial Networks is what it means to 
CSP-ize. The CSP is a new approach to designing CNNs that reduces computation by 50% for various 
CNN networks. In Yolov4 scaled, network architecture was improved by optimizing the backbone and 
Cross-stage-partial (CSP) connections and Mish activations. In contrast to Yolov4, where just one neural 
network was trained for all resolutions, a separate neural network is trained for each resolution of the 
network in Yolov4 scaled. 
 
E. PERFORMANCE EVALUATION 
 
Yolov4, Yolov4 tiny and Yolov4 algorithms were evaluated based on precision, recall, F-1 score, 
mAP@0.5, AP and Average IoU. 
 
Precision is defined as the purity of positive detections relative to the ground truth, indicating how many 
of the predicted objects had a matching ground truth annotation.  
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 ?@

?@:A@
                                                                                                                  (6) 

 
Recall is described as the completeness of the positive predictions compared to the ground truth, 
answering what proportion of actual positives was correctly identified. 
 
𝑅𝑒𝑐𝑎𝑙𝑙 = 	 ?@

?@:AB
                                                                                                                        (7) 

 
The harmonic mean of the model's precision and recall is used to calculate the F-score. 
 



 1594 

𝐹7	𝑠𝑐𝑜𝑟𝑒 = 	2 × CD*%(-(#&	×	D*%,++
CD*%(-(#&:D*%,++

                                                                                               (8) 
 
Intersection over Union is a metric used to evaluate the accuracy of an object detector on a given dataset. 
It is the rate at which the ground truth and prediction output overlap. Equation 9 shows the calculation 
of the IoU which gt refers to ground truth while po stands for prediction output.  
 
𝐼𝑜𝑈 = G45	∩	GC#

G45	∪	GC#		
                                                                                                                        (9) 

 
The visual demonstration of the IoU calculation on an unripe strawberry as an example is shown in 
Figure 2.  
 

                                                       
 

Figure 2. Intersection over Union (IoU) calculation. 
 
Average precision (AP) is an evaluation metric for measuring the accuracy of the object detector. It is 
the measure of the area under the precision-recall curve. Finally, mAP@0.5 (AP with IoU = 0.50) is 
calculated as the average of the AP values for each class (ripe and unripe strawberry in our case). 
 
F.  DATA AUGMENTATION 
In this study, eight traditional data augmentation techniques were applied: angle, saturation, exposure, 
hue, horizontal and vertical flip, Gaussian noise, and blur. 112 images were augmented for each 
augmentation procedure. The values and number of images set during the augmentation procedure in 
the Python environment are shown in Table 1.  
 

Table 1 The values and number of images set during the traditional augmentation procedure. 
 

 
Angle 

[-30 30] 
 

saturation 
=1.5 

 

exposure 
= 1.5 

 

hue=.1 
 

horizonta
l flip=0.5 

 

vertical 
flip=0.5 

 

gaussian 
noise=1 

 

blur=1 
 

Number of 
augmented 

images 
112 112 112 112 112 112 112 112 

 
G.  CAMOUFLAGE-BASED DATA AUGMENTATION TECHNIQUE  
 
The camouflage-based data augmentation approach is a simple technique used in this study to describe 
the location of distinct strawberry leaves in five various shapes and sizes. 50 images of ripe and unripe 
strawberries were used to generate artificial data, then used to generate data from five distinct strawberry 
leaves. The leaf was chosen randomly to illustrate the most common occlusion scenario that deep 
learning systems may face. The primary idea behind this method is to expand the training dataset when 
the developed deep learning-based algorithms fail to recognize strawberries in complex scenarios. This 
is because typical data augmentation techniques such as scaling, and rotation are ineffective for detecting 
strawberries since they do not replicate the strawberries' natural state. The demonstration of the artificial 
data produced using five different strawberry leaf is shown in Figure 3.  
 

Detected bounding box  

Ground truth 
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Figure 3. Illustration of five different strawberry leaf and the produced artificial data. 
 
 

III. RESULTS 
 

The results were evaluated based on precision, recall, F-1 score, AP-ripe strawberry, AP-unripe 
strawberry, mAP@0.5, Average IoU and frame per second (fps). Average IoU and fps are critical 
evaluation metrics since the overlap rate between ground truth and the detected bounding box for 
localization, and computational cost of detection for a real-time operation is a prerequisite for strawberry 
harvesting robots. The results were then revealed for Yolov4, Yolov4 tiny, Yolov4 scaled and Yolov4 
with traditional data augmentation, Yolov4 tiny with traditional data augmentation, Yolov4 scaled with 
traditional data augmentation, Yolov4 with camouflage-based data augmentation, Yolov4 tiny with 
camouflage-based data augmentation and Yolov4 scaled with camouflage-based data augmentation.  In 
this way, the usefulness of traditional data augmentation techniques and camouflage-based data 
augmentation techniques can be shown on state-of-the-art detection techniques, which are Yolov4, 
Yolov4 tiny and Yolov4 scaled in this study. Table 2 demonstrates the performance of deep learning 
models with different data augmentation approaches for detecting strawberry ripeness.  
 

Table 2 Performance evaluation of various deep models for strawberry ripeness detection. 
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Precision 0.80 0.79 0.79 0.78 0.76 0.83 0.93 0.95 0.92 
Recall 0.87 0.90 0.84 0.83 0.91 0.89 1.00 0.98 0.95 

F-1 score 0.83 0.84 0.81 0.81 0.83 0.86 0.96 0.96 0.95 
AP- ripe 

strawberry 0.9203 0.8989 0.8622 0.8859 0.9226 0.8896 0.9996 0.9849 0.9992 

AP- unripe 
strawberry 0.8482 0.8215 0.7708 0.8768 0.8338 0.7944 1.00 0.9987 0.9987 

mAP@0.5 0.8843 0.8602 0.8164 0.8813 0.8782 0.8420 0.9997 0.9918 0.9990 
Average IoU 0.6311 0.6194 0.6333 0.6052 0.5980 0.6784 0.8067 0.8434 0.7863 

Frame per 
second (fps) 30.45 206.61 33.19 30.64 205.88 33.25 30.62 206.73 33.45 
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On the left side of Figure 4, mAP@0.5, F-1 score, and Average IoU are evaluated and compared, and 
on the right side of Figure 4, AP for ripe and unripe strawberry is assessed and compared, as shown 
Figure 4. 
 

 
 

Figure 4. Performance evaluation of the model based-on mAP@0.5, F-1 score, Average IoU and AP for ripe 
and unripe strawberry ripeness detection. 

 
In the following sections, the results will be examined, and a case study will be conducted to verify the 
effectiveness of the proposed augmentation approach in strawberry ripeness assessment task. Then the 
results will be compared with the literature to show its superior performance. 
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IV. DISCUSSION 
 

As depicted from Table 2, F1 score for Yolov4 was calculated as 0.83, and its score was slightly 
decreased to 0.81 when the traditional data augmentation technique was used. On the other hand, its F1-
score was increased from 0.83 to 0.96, representing a 13% rise.  The AP for ripe strawberries was 
reduced by ~3%, and AP for unripe strawberries were increased by ~3%. Therefore, the mAP@0.5 was 
not changed between Yolov4 and Yolov4 using the traditional data augmentation technique. On the 
other hand, Yolov4 with a camouflage-based data augmentation approach has shown promising results 
for AP for ripe and unripe strawberry, 99 % and 100%, respectively. Compared to Yolov4 and Yolov4 
with traditional data augmentation techniques, approximately 17% and 19% increase were obtained in 
AP for ripe and unripe strawberries. One of the most important phenomena resulted in the IoU metric. 
While IoU for Yolov4 and Yolov4 with traditional data augmentation technique resulted in 63%, its 
value has increased by ~17% and reached ~80% when the camouflage-based data augmentation is used 
along with Yolov4. Hence, the camouflage-based data augmentation strategy enhances the accuracy and 
detector's capacity to localize. No significant changes were observed for the fps parameter, which 
reached ~30 fps for Yolov4 and its augmentation derivatives. 
 
F-1 score for Yolov4 tiny and Yolov4 with traditional data augmentation technique has only shown a 
1% difference in favor of Yolov4 tiny. On the other hand, the F-1 score has reached ~83% to 96% when 
Yolov4 is used with the camouflage-based data augmentation technique. AP for ripe and unripe 
strawberries was also increased ~3% and ~1% when Yolov4 tiny is used traditional data augmentation. 
However, AP for ripe and unripe strawberry was increased to 9% and 17%, respectively, while almost 
reached 100% AP for both ripe and unripe strawberry classification when camouflage-based data 
augmentation is used. IoU score for Yolov4 tiny and Yolov4 with traditional data augmentation 
technique almost obtained 60%, while this score has increased to ~84%, which is nearly 24% difference 
compared to Yolov4 tiny and its traditional data augmentation derivative. This is a crucial stage in 
developing an autonomous agriculture robot since the precision of localization directly impacts picking 
and placing the strawberry crop by the robot's end effector. The fps score has nearly remained constant 
for all, reaching 206 fps for Yolov4 tiny and its augmented versions. Yolov4 and its data augmentation 
derivatives have over seven times greater fps score. This is due to the Yolov4 tiny's lighter neural 
network architecture.  
 
F-1 score for Yolov4 scaled was obtained 81% and reached to 86% when it is used with data 
augmentation technique. On the other hand, its score has up to 14 % and reached a F-1 score of 95% 
when the camouflage-based data augmentation is used, demonstrating the effectiveness of this approach 
and its suitability within agriculture applications. AP for ripe and unripe strawberry was also increased 
~2% for Yolov4 scaled with traditional data augmentation compared to Yolov4 scaled. However, AP 
for ripe and unripe strawberries was increased by 13% and almost reached to 100% AP for both ripe and 
unripe strawberry classification when Yolov4 is used with camouflage-based data augmentation 
technique. IoU score was increased from ~63% to ~67% when Yolov4 scaled is used with traditional 
data augmentation technique, while 78% IoU score was obtained when Yolov4 scaled is used with 
camouflage-based data augmentation technique. Fps score has recorded almost the same for all, which 
got to ~33 fps for Yolov4 scaled and its augmentation derivatives. This is approximately 3% higher than 
Yolov4 and its data augmentation derivatives and almost seven times less than Yolov4 tiny and its data 
augmentation derivatives.  
 
Following the demonstration of the effectiveness of the camouflage-based data augmentation technique 
within each method, all models are evaluated and compared to each other based on mAP@0.5, F-1 score, 
and Average IoU on the left side of Figure 4, and AP for ripe and unripe strawberry on the right side of 
Figure 4. This is to determine the most promising ripeness detection neural network model and the data 
augmentation technique used. Figure 4 leads to the following conclusion. 
 

• Although Yolov4 and Yolov4 scaled and their data augmentation derivatives demonstrate ~30 
fps and 33 fps, respectively, Yolov4 tiny and its data augmentation derivatives illustrate almost 
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seven times faster processing speed of ~206 fps. However, since all models are meeting the real-
time operation to automate a strawberry harvesting robot, the fps score for all models included 
in their data augmented versions are all in an acceptable range.  

•  Yolov4 and Yolov4 tiny have shown similar behaviour when used with traditional data 
augmentation techniques. At the same time, YoloV4 scaled with traditional data augmentation 
technique were slightly superior to Yolov4 scaled in terms of mAP@0.5, F-1 score and Average 
IoU.  

• AP for ripe and unripe strawberry detection by Yolov4, Yolov4 tiny and Yolov4 scaled, and 
their traditional data augmentation techniques were similar to each other with no notable 
differences. On the other hand, Yolov4, Yolov4 tiny and Yolov4 scaled models used with 
camouflage-based data augmentation technique were superior to other models used in AP for 
ripe and unripe strawberry detection.  

• Overall, while differentiating between ripe and unripe strawberries, the camouflage-based data 
augmentation strategy enhanced the Yolov4, Yolov4 tiny, and Yolov4 scaled models in all 
evaluation criteria. Yolov4 tiny with camouflage-based data augmentation technique 
outperformed other models, achieving 84 % IoU and 99 % AP for ripe and unripe strawberries 
with a ~206 frames per second processing speed. These results are enough for use with the 
agricultural strawberry harvesting robot. Yolov4 tiny with camouflage-based augmentation 
approach can also be employed to the mobile phone due to its fast-processing speed.  
 

Therefore, based on the analysis of results, Yolov4 tiny with camouflage-based data augmentation 
technique was selected to conduct further investigation and comparison with the literature.  
 
A. A CASE STUDY ON CHALLANGE DATASET  
 
To demonstrate the efficiency of the Yolov4 tiny model when combined with the camouflage-based data 
augmentation technique for strawberry ripeness identification, a challenge dataset was constructed. This 
collection contains 57 strawberry objects, 36 of which are ripe and 21 of which are unripe. The dataset 
was carefully designed to handle the occlusion and complicated scene of a strawberry harvesting field 
where an autonomous strawberry harvesting robot operates. Only one out of twenty-one unripe 
strawberries could not be detected, whilst all ripe strawberries were accurately detected. Table 3 
demonstrates the detected ripe and unripe strawberries for each image used in the experiment. 
 

Table 3 Experimental results of correctly detected ripe and unripe strawberries. 
 

Image 
number 

Number of ripe 
strawberries 

Number of unripe 
strawberries 

Number of correctly 
detected ripe strawberry 

Number of correctly 
detected unripe strawberry 

0 5 0 5 0 
1 1 2 1 2 
2 3 0 3 0 
3 1 1 1 1 
4 2 1 2 1 
5 3 1 3 0 
6 3 1 3 1 
7 8 1 8 1 
8 1 4 1 4 
9 3 3 3 3 
10 1 5 1 5 
11 1 1 1 1 
12 4 1 4 1 

 
As demonstrated in Figure 5, the mean accuracy for ripe strawberries ranges from 92% to 100%, while 
the mean accuracy for unripe strawberries ranges from 51% to 100%. It should be noted that only images 
6 and 11 showed less than 70% mean accuracy for unripe strawberries since the unripe strawberries in 
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the image are hardly visible due to occlusion or are not entirely in the frame. However, the proposed 
method can still appropriately detect and classify strawberry ripeness. 
 

 
 

Figure 5 Mean accuracy for ripe and unripe strawberry for each image. 
 
Figure 6 is depicted to demonstrate the effectiveness of the proposed approach. Figure 6 shows the 
promising results of the Yolov4 tiny with camouflage-based data augmentation technique and shows the 
complex scene of the strawberry harvesting circumstance. For instance, in Figure 6a, the unripe 
strawberry on the left side of the image is partially visible, while the leaf occludes the ripe strawberry 
on the right side. The method used in this study is not affected by the complex scene and occlusion by 
the leaf and successfully detects and classifies the strawberry. Occlusion can occur because of the 
strawberry itself. Strawberry can also obscure other strawberries, resulting in misdetection or 
misclassification. Figure 6f depicts eight ripe strawberries and one unripe strawberry, with the ripe 
strawberries stacked on top of each other and the unripe strawberry partially visible. The proposed 
approach again successfully detected and classified the ripe and unripe strawberries. The rest of the 
images in Figure 6 are also mostly occluded, or the strawberries are partially visible. Under this complex 
environment, the proposed approach can detect the ripeness of strawberries as a part of the visual-
servoing of an autonomous strawberry harvesting robot.  
 

 
Figure 6 Example of detection results of ripe and unripe strawberries from the challenge dataset. 

(a) (c) (b) 

(f) (e) (d) 
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B.  COMPARISON OF OUR WORK WITH LITERATURE 
 
To the best of our knowledge, there is no publicly available benchmark to test strawberry ripeness 
detection. However, a few similar publications enable us to compare the proposed method in this study 
to the literature. Shao et al. [31]  used portable hyperspectral imaging to determine strawberry maturity 
with a 96.7 % accuracy. However, the proposed method does not operate in real-time, and occlusion, 
the primary problem in strawberry ripeness assessment, was not prioritized. Habaragamuwa, on the other 
hand, provided a strawberry mature and immature detection framework utilizing a deep convolutional 
neural network, which is the first application of strawberry ripeness detection to be published in 2018 
[21]. Occlusion is identified as the key issue and is excluded from the labeling process because it has 
reduced the AP by 50%. Our study has mostly focused on overcoming the occlusion issue to assist 
autonomous strawberry harvesting robots in picking the ripe strawberry while avoiding picking the 
unripe strawberry, regardless of whether the strawberries are occluded or not. This is consistent with the 
agricultural strawberry harvesting robot's real-time and natural operation conditions. This study has also 
shown that sufficient attention should be given to the data processing stage compared to the neural 
network architecture itself. The challenge dataset will be made accessible upon request so that 
researchers can put their approaches to the test in an obstructed strawberry harvesting scenario and 
compare the results provided in this study. 
 
 

V. CONCLUSION 
 

This study proposes a strawberry ripeness detection system through camouflage-based data 
augmentation technique. After the evaluation of the Yolov4, Yolov4 tiny and Yolov4 scaled, and their 
traditional data augmentation and camouflage-based data augmentation derivatives, Yolo tiny with 
camouflage-based data augmentation technique have established superior performance in detection of 
ripe and unripe strawberry with 84% IoU accuracy, ~99% AP for ripe and unripe strawberries at an 
average of 206-fps. Then, the performance of the proposed technique was tested on a challenging dataset 
and showed approximately above 92% to 100% mean accuracy for ripe strawberries. At the same time, 
the mean accuracy for unripe strawberries varies from ~51% to 100% due to occlusion or being partially 
in the frame for images 6 and 11. Real-time strawberry ripeness detection system in a complex and 
occluded strawberry harvesting environment was proposed to assist autonomous strawberry harvesting 
robots in completing visual servoing operations successfully. The proposed technique is not limited to 
strawberry harvesting robots but also can be used as a guide to be implementing it in other types of 
fruits. Future work will include an automated camouflage-based data augmentation framework in 
Python language specifically developed to assist for various fruit harvesting robotic applications that 
can be implemented automatically to the feature extractor used. 
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