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Abstract – Unreliable information on harvest potential is a persistent challenge for the Indonesian
government and industry alike to manage an efficient supply chain of seaweed raw material. The use of
remote sensing technology to assess seaweed harvest potential has been scarcely available in the literature.
This current research aimed at estimating the harvest potential of seaweed Kappaphycus alvarezii through
remote sensing using supervised classification with maximum likelihood (MLC) and contextual editing
(CE) methods. This research evaluated the capabilities of different band combinations along with depth
invariant index (DII) to enhance the remote sensing accuracy in estimating seaweed harvest potential.
The seaweed classification using Worldview-2 imagery was compared with the in-situ references
(ground-truthing). The potential data bias resulted from different imagery acquisition timestamps with the
in-situ measurement was kept minimal as both data time stamps were ten days apart and within the same
seaweed culture cycle. The average dry weight of all seaweed samples collected during the research was
924 ± 278.91 g/m2 with culture ages between 1 and 40 days. The classification results based on MLCþCE
with a 5-band combination method without DII showed a better correlation and closer fit with the in-situ
references compared to the other methods, with an overall accuracy of 79.05% and Tau coefficient value of
0.75. The estimated total harvest potential based on the combined seaweed classes was 531.26 ± 250.29 tons
dry weight.
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1 Introduction

Seaweed remains the leading aquaculture product exported
by several Southeast Asian countries including Indonesia
(Sievanen et al., 2005; Benfield et al., 2007; Zamroni and
Yamao, 2011; Andréfouët et al., 2018). In Indonesia, small-
scale seaweed farmings are conducted in a combined areas
larger than Luxembourg and directly employs more than half-
million seaweed farmers (MMAF, 2015). In 2016, 11.6 million
tons of seaweed was produced by Indonesian farmers (FAO,
2018), an increase of almost twofold from the 2012 production
(FAO, 2014). The total farming areas were under 25% of the
total potential area of 1.12 million ha (Zamroni and Yamao,
2011) and have stayed relatively constant up to 2018 (MMAF,
2019). Seaweed Kappaphycus and Eucheuma dominates most
ding author: indrapratama@kkp.go.id
of the Indonesian seaweed products (Sievanen et al., 2005).
However, other genera such as Gracillaria (Zamroni and
Yamao, 2011) and Caulerpa (Perryman et al., 2017) are
gaining popularity among Indonesia’s seaweed farmers. The
importance of seaweed in generating significant additional
income has a positive effect on fish resource management. For
example, reduced fishing pressures on wild fish stock were
evident in many remote small-island waters due to fishermen
shifting to seaweed farming (Sievanen et al., 2005; Zamroni
and Yamao, 2011; Andréfouët et al., 2018).

However, seaweed production in Indonesia is difficult to
measure or predict due to the remoteness of most seaweed
production centers within the Indonesian archipelago. The
geographical disadvantage and limited communication infra-
structure in these remote areas have resulted in data distortion
or data loss along the seaweed market chains. As a result,
seaweed industries regularly experience supply shortages and
uncertainties due to failures to predict seaweed biomass
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Fig. 1. Study area in Nusa Lembongan Island.
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production (Mulyati and Geldermann, 2017). In most cases,
the industries desperately sourced seaweed supplies from
other producers or areas at a higher price (Sarinah and Djatna,
2015).

The Indonesian government also faces difficulties to
sustainably develop the industry due to the lack of reliable data
regarding the harvest potential of seaweed (Wright, 2017). The
ability to efficiently map the distribution of existing and
seasonally productive areas and determine new potential
suitable sites were quite challenging. These issue contributes to
inaccuracies in predicting the harvest potential of Indonesian
seaweed. Solving these inaccuracies are essential in reducing
the risk of supply uncertainties in the seaweed market chain
and the future development of seaweed aquaculture.

Using remote sensing in mapping of locations and potential
harvest of seaweed is an efficient method in terms of cost, time,
and resource use. It also has a greater coverage compared to
in-situ survey sampling. The current sensor and processing
technologies of remote sensing can determine various
characteristics of vegetation such as species variation, biomass
distribution, and chemical compounds (Silva et al., 2008).
However, remote sensing technology has some limitations to
accurately estimate certain submerged vegetations and
differentiate each of them due to spatial resolution, cost,
and cloud cover (Stekoll et al., 2006; Silva et al., 2008). For
example, the use of Landsat 7 ETM had a 50% greater area
measurement compared to the in-situ measurement of kelp
canopy area in South Alaska (Stekoll et al., 2006). Fortunately,
remote sensing accuracy to estimate aquatic vegetation
biomass can be increased by up to 80% through improvement
of ground-truthing technique, spectral comparison, satellite
resolution and sensor used, classification procedure, and
algorithm modification (Green et al., 2000; Silva et al., 2008).
Several studies have been carried out with the main objective
to improve identification technique of objects submerged in
shallow water through modification and development of image
processing algorithm with promising results and high
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accuracies (Tassan, 1996; Stekoll et al., 2006; Andréfouët
et al., 2004, 2017; Sagawa et al., 2010; Kanno and Tanaka,
2012; Wouthuyzen et al., 2016; Setyawidati et al., 2017,
2018a,b).

One particular method that is of interest to this research is
water column correction, also known as depth invariant index
(DII) developed by Lyzenga (1981). DII incorporates depth
information into the spectral classification method to reduce
the effect of water column on spectral reflectances (Ackleson
and Klemas, 1987). The combination of DII and spectral
classification methods such as Maximum Likelihood Classifi-
cation (MLC) could theoretically improve the prediction of
seaweed harvestable biomass. Mumby et al. (1998) proved that
applying the water column correction method in the initial
stage of image classification could significantly improve map
accuracies compared with only using the original bands.
Furthermore, combining DII with contextual editing could
improved the classification results compared to simply use the
original bands. Despite the classification results were not
always significant, this combined approach had collectively
produced higher map accuracy than applying DII or contextual
editing alone (Mumby et al., 1998). For the aforementioned
reasons, this research aimed at evaluating the effects of
incorporating DII into the multispectral maximum likelihood
classification with contextual editing in estimating seaweed
Kappaphycus alvarezii harvestable biomass.

2 Methods

2.1 Study area

The selected study site was a K. alvarezii seaweed farming
area located in a coastal shallow water at southernmost part of
Nusa Lembongan, Klungkung Regency, Bali, Indonesia
(Fig. 1). The seaweed farming was carried out traditionally
using a bottom long-line method where rope lines of 50–100m
long were stretched between two bamboo poles. Seaweed
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Type : Multispectral 8 Band

Date of acquisition : 1/04/2010

Time of acquisition (UTC) : 02:42:05.34 am
Spatial resolution : 2.0 m
Datum/Projection : UTM/WGS84
Sun azimuth (deg) : 63.3
Sun elevation (deg) : 70.2
Sensor Bands (nm) : Coastal (400–450); Blue (450–510);

Green (510–580); Yellow (585–625);
Red (630–690); Red Edge (705–745);
Near-IR1 (770–895); Near-IR2
(860–1040)
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seeds of around 50 g were tied along the ropes at a distance of
15–20 cm and harvested after 40 to 45 days (Sulistijo, 2002;
Anggadiredja et al., 2006). Seawater clarity in the area was
constantly 100% all year round with consistent muddy sand
seabed and classified as Jerlov water type I (Jerlov, 1977;
Armiyanti et al., 2013; Prawira et al., 2013).

2.2 Data collection

Two field surveys were conducted at the study site. The
first field survey was conducted between 17 and 19 March
2010 to determine the reference (control) points and measure
seaweed biomass. The second was carried out between 26 and
27 October 2010 to determine accuracy (training) points and
measure spectral reflectance of the cultured seaweed.
Sampling points were selected using stratified random
sampling technique by plotting 1�1m quadrat randomly
along line transects parallel to the shoreline at every 20–50m
to cover different substrates (i.e., seaweed, seagrass, and sand).
The coordinates of each point were recorded at the center of the
quadrat using a handheld GPS. There were 210 sampling
stations selected in the study site with a depth range of
0.8–2.2m (Fig. 1). In-situ biomass sampling was conducted at
20 selected sampling points using 1�1m quadrat divided into
25� 25 cm subquadrat of intersecting strings for practical
reason. Seaweed belonged to any of each subquadrat was
randomly collected from the main culture rope and stored in a
labeled sealable plastic bag. Each sample was rinsed with clear
seawater, drained, and weighed using a digital scale. The
sample was then transferred to a new labeled plastic bag for dry
weight measurement at the laboratory.

The sampling stations were categorized into two groups,
divided alternately between them by chronological order
during sampling works. The first group was the reference
(control) points which served as the initial points for image
classification. The second group was the accuracy (training)
points which served as ground-truthing of image classification
(Green et al., 2000; Congalton and Green, 2008). The selection
of sampling points was adjusted accordingly considering the
challenges during sampling activity such as time and resource
limitations as well as localized current, weather, tide, and tide
patterns (Congalton, 1991; De Gruijter, 1999; Green et al.,
2000; McKenzie et al., 2001; Holmes et al., 2006; Olofsson
et al., 2014).

The seaweed spectral reflectance was measured using a
Spectrometer Ocean Optics type USB2000. The spectral
reflectance was measured by pointing the spectrometer probe
to the submerged and emerged seaweed colonies at each
sampling point. All spectral reflectance measurements were
done between 10:30 and 13:30 local time when the sky was
clear with no clouds shadow to the seaweed target. The most
effective and useful spectral characteristics from this
measurement were used in the image classification to
distinguish seaweed biomass with other aquatic vegetations.
In general, the spectral reflectances of wild and cultivated
seaweed were quite similar. The spectral reflectances of
seaweed in the visible band with a wavelength range of
350–700 nm were relatively invariable. Higher variations and
intensities of seaweed spectral reflectances were observed in
the near-infrared (NIR) wavelength range of 700–900 nm
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(Pratama, 2010; Sagawa et al., 2010). However, penetration
limitation of NIR wavelength in the water column was the
reason for the ineffective use of NIR in underwater object
identification (O’Neill et al., 1987; Holmes et al., 2006;
Sagawa et al., 2010; Hamylton, 2011).

2.3 Image dataset

The imagery dataset used in this study was from the
Worldview-2 multispectral 8-Band acquisition date of 1 April
2010, commercially distributed in resampled pixel resolution
at 2.0m, geometrically and radiometrically corrected
(Level 2A). The Worldview-2 digital numbers were converted
to band-averaged spectral radiance (W ∙m�2 ∙ sr�1 ∙mm�1) and
top-of-atmosphere (TOA) reflectance (Updike and Comp,
2010). The TOA reflectances were then atmospherically
corrected and converted to surface reflectance using dark
object subtraction (DOS) method (Chavez, 1988). The dark
signal was acquired from a selected pixel in deep water on the
west coast of the study area. The relationship between surface
reflectance and seaweed biomass at the sampling points was
examined using exponential regression analysis.

The specification of WorldView-2 imagery used in this
research is as follows:
2.4 Image processing

Supervised classification with maximum likelihood (MLC)
and contextual editing (CE) were used in the image processing
in combination with and without DII before the image
classification process. The image processing procedures
consisted of four different methods (Tab. 1), which are
method I, II, III, and IV. The first and third methods (I and III)
applied supervised classification (MLC) only, while the second
and fourth methods (II and IV) applied DII in conjunction with
MLC. The combination of five visible bands (coastal, blue,
green, yellow, and red) was used in method I and II, while
method III and IV used one pair of the most effective visible
band as a comparison. All method described uses CE as the
subsequent element in the classification process.

DII is a correction technique developed by Lyzenga (1981)
to eliminate the influence of water columns on the spectral
reflectance of objects received by onboard remote sensing
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Table 2. Combination of bands for depth invariant index image
composite.

5 Band pair

C/B B/G G/Y Y/R

C/G B/Y G/R
C/Y B/R
C/R

C=Coastal (band 1); B =Blue (band 2); G =Green (band 3);
Y =Yellow (band 4); R =Red (band 5).

Table 1. Image processing methods used in this study.

Method

I II III IV

Band combination 5 5 2 2

Classification technique MLC DII þ MLC MLC DII þ MLC
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sensors. This method has been widely used in shallow seabed
mapping (Watkins, 2015; Manuputty et al., 2017). DII has
some advantages over other methods in terms of its simple
application and relatively higher accuracy in image spectral
transformation through the use of the attenuation coefficient of
a particular water body (Lyzenga, 1981; Flener et al., 2010;
Zoffoli et al., 2014). The transformation formulation using DII
can be expressed as follows:

Yij ¼ X ðlÞi � Ki
�
Kj
X ðlÞj ð1Þ

where:
X(l)i, X(l)j=The values of spectral transformation of band

i and j, determined from:

X ðlÞi ¼ ln LðlÞi � LðlÞ∞i

� � ð2Þ

L(l)i, L(l)j=Spectral reflectance of band i and j
L(l)∞i, L(l)∞j= Spectral reflectance of optically deep

water in band i and j
Ki=Kj

=Attenuation coefficient of water column in band i
and j, determined from:

Ki
�
Kj

¼ aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1ð Þ

q
ð3Þ

a ¼ ðsi � sjÞ.
2sij

ð4Þ

si, sj=Variance of band i and j
sij =Covariance of band i and j.

The basic principle of the DII algorithm for water column
correction is the differences of spectral reflectance of different
image pixels representing the same substrate feature deter-
mined by the water depth variation and the value of the
attenuation coefficient. The transformation of images using the
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DII algorithm produces a new image composite where the
pixel values are not the spectral reflectance of the substrate/
surface but the values represent the relationship between the
two bands’ spectral reflectances in which the influences of
water depth have been minimized (Lyzenga, 1981; Stumpf
et al., 2003; Flener et al., 2010; Zoffoli et al., 2014; Hoang
et al., 2015). In this study, visible band pairing in the DII
approach creates ten different band pairs in 5-band pairing
(Tab. 2) and one band pair in 2-band pairing, with attenuation
coefficient ratio derived from atmospherically corrected of
transformed reflectance (X(l)) values.

The image supervised classification was performed using
maximum likelihood (MLC) in conjunction with contextual
editing (CE) as the subsequent classification element. The
MLC method was used under the assumption that a normal
data distribution occurred in each band classification class. The
class of classification in each band is a function of pixel mean
and variance/covariance values based on reference points
dataset (Andréfouët et al., 2003, 2004; Benfield et al., 2007;
Richards, 2013). The mathematical model of each pixel in each
band classification is as follows:

giðxÞ¼ ln pðviÞ�1
�
2 ln

X
i

���
���� 1

�
2ðx� miÞT

X�1

i
ðx� miÞ

ð5Þ
where:

gi(x) =Discriminant function
vi=Spectral reflectance class, where i= 1,... M, and

M= number of classes
p(vi) = Probability of selected class vi

|
P

i| =Determinant from class data covariance matrix
x= n-dimension of the data, where n = number of bandsP�1

i =Reciprocal matrix
mi=Average vector.

MLC is a general classification method commonly used in
mapping shallow water seabed using high-resolution satellite
remote sensing imagery such as WorldView-2. This method
can produce a highly accurate classification of underwater
objects.

The use of contextual editing (CE) as the subsequent
element was done by applying specific limitations in the
classification process to consider generic patterns of habitat
distribution. Some a priori and a posteriori contextual rules
were used in the reclassification process of this study. Depth
and exposure were done automatically (a priori) as well as
shape and visual interpretation which was done manually
(a posteriori). Using the a posteriori CE approach, misclassi-
fication or spectral confusion results were edited/reclassified
into the appropriate classification categories. For example,
pixels representing a seaweed farmer boat and incorrectly
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classified as sands or aquatic vegetations were reclassified into
a corresponding class. The combination between MLC and CE
can reduce the occurrence of unwanted and miscategorized
classes through more specific class codification using spectral
classification pattern, value range, and parameter suitability
based on the known characteristic of the environment being
studied (Mumby et al., 1998; Green et al., 2000; Richards,
2003; Andréfouët et al., 2004; Benfield et al., 2007; Knudby
and Nordlund, 2011; Rioja-Nieto et al., 2013).

In the process of image classification, map features in this
study were categorized into three distinctive classes which
were seaweed, seagrass, and sand. The seaweed category itself
was divided into two classes differentiated by the weight group
per quadrat area (m2): Seaweed I for 0.5–1 kg, and Seaweed II
for 1–2 kg. The remaining ungrouped features were collec-
tively categorized as “others”.

2.5 Accuracy assessment

Image data processing involves two types of accuracy
calculations: positional accuracy, and thematic accuracy.
Positional accuracy describes how far the distance between
the position of objects in a map and the real world. Thematic
accuracy shows how accurately the objects are identified in the
map (McKenzie et al., 2001; Congalton and Green, 2008).
Thematic accuracy consists of two types of accuracy: user
accuracy and producer accuracy. User accuracy tells about the
probability of a classified image pixel to accurately represent
the real objects while producer accuracy indicates the
probability that every pixel in an image has been correctly
classified. The calculation of thematic accuracy can be done by
building a contingency matrix (Congalton and Green, 2008)
which includes the overall accuracy, user accuracy, and
producer accuracy. The calculation of each accuracy type is
presented as follows based on the method suggested by Foody
and Atkinson (2002):

Producer accuracy ðPAÞ ¼
Pk

i¼1 nii
niþ

ð6Þ

User accuracy ðUAÞ ¼
Pk

i¼1 nii
nþi

ð7Þ

Overall accuracy ðOAÞ ¼
Pk

i¼1 nii
N

ð8Þ

where:
k=Number of classes
nii=Number of correctly classified classes
nþi=Number of classified observation in i-class in the

reference map
niþ=Number of classified observation in i-class on the

map
N=Number of observation points.

It is important to note that these accuracy types still have
some biases affecting the overall classification result. User
accuracy measures the level of omission errors (excluding the
areas that should be included in a particular class), producer
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accuracy measures the level of commission errors (keeping the
areas that should be omitted from a particular class), and
overall accuracy contains both errors. To determine the
successful ratio of accuracy produced by the automated
classification process in comparison to reference data, the Tau
coefficient was used (Ma and Redmond, 1995; Næsset, 1996;
Mumby and Edwards, 2002; Couto, 2003). The Tau coefficient
is determined by:

T ¼ P0 � Pr

1� Pr
ð9Þ

where:
Po = overall accuracy
Pr= random agreement based on the number of classes,

calculated from:

Pr ¼ 1

N2

XM

i¼1
ni:xi ð10Þ

M= number of classes/group
i= class/group sequence
N = number of pixels
ni= number of rows in class/group i
xi= diagonal values in class/group i.

2.6 Seaweed biomass estimation

After classification and evaluation of its accuracy, the
harvest potential of seaweed could be calculated based on the
total seaweed farming area produced by the highest accuracy
classification method and in-situ measurement of seaweed
biomass (density, fresh weight/FW, and dry weight/DW).
Biomass here is defined as the total mass of an organism in a
given area (Simms, 2003; Barillé et al., 2010; Silva et al.,
2010), and can be calculated as follows:

Bx ¼ Wx

Aq
ð11Þ

where:
Bx= Seaweed biomass at sampling point x (g/m2 DW)
Wx= Seaweed weight at sampling point x (g DW)
Aq =Area of quadrat (m2).

The estimation of total seaweed biomass at the time of
sampling was obtained by multiplying the mean biomass from
each seaweed class with the total area of seaweed identified
from the image classification process, calculated as follows:

Bmean ¼ 1

N

Xn

x¼1
Bx ð12Þ

Btotal ¼ Bmean:Atotal ð13Þ

where:
Bmean =Mean seaweed weight of all sampling points

(g/m2 DW)
N =Number of biomass sampling data
Btotal = Total biomass of identified seaweed class (g DW)
Atotal = Total all area of identified seaweed class (m2).
f 13



Fig. 2. The research design of seaweed harvest biomass prediction.

Fig. 3. Spectral reflectances of seaweed K. alvarezii measured at
submerged and emerged.
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The calculation of seaweed biomass prediction was based
on Lambert–Beer Law which describes the relationship
between light attenuation of a species and its density.
Lambert-Beer law states that light absorption is proportional
to the thickness of aquatic vegetation pigments and water
columns. The spectrum transmission from this process could
be used to determine the composition and density of
submerged aquatic vegetation with great accuracy (Tucker
and Sellers, 1986; Beil et al., 1998; Stekoll et al., 2006;
Gitelson et al., 2008; Sekioka et al., 2008; Huesemann et al.,
2013).

The research design of this study is provided in Figure 2.
3 Results

3.1 Study area

The vegetation compositions of the study area were
dominated by cultured seaweed of K. alvarezii. The cultured
K. alvarezii was submerged at a depth around 0.4–1.2m and
has various age cultures from 1 to 40 days. Seagrass patches
from the species of Thalassia hemprichii, Enhalus acoroides,
andHalophila ovalis grew on the relatively homogenous sandy
substrates.
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3.2 Data collection

The measured spectral reflectances of emerged and
submerged seaweed are presented in Figure 3. The highest
spectral reflectance measured from above the water surface
was within NIR and green bands while submerged spectral
reflectance was within blue and green. Due to the limited
capability of the NIR band to penetrate the water column, the
blue band (450–510 nm) was the most effective, and the green
band (510–580 nm) was the second most effective one.

3.3 Image dataset

Mean surface reflectance transformed from the satellite
image at the reference points of each band is presented in
Figure 4. In this figure, the highest surface reflectance for
seaweed, seagrass, and sand were identified within blue and
green bands. Three bottom features have different values of
surface reflectance signaled from significant differentiation of
homogenous pixel for each feature.

3.4 Image processing

Results of the image transformation using four different
methods had produced a classification based on different
benthic features and the predicted biomass of seaweed
K. alvarezii as presented in Figure 5. The contextual editing
(CE) used to improve the classification process was based on
shape and visual interpretation of known objects. CE was used
to reclassify wave foam and seaweed farmer boat pixels
incorrectly classified as Seaweed, Seagrass, and mostly Sands,
into Others category. The predicted seaweed biomass was
classified into two classes based on the seaweed dry weight per
quadrat area (m2): Seaweed I for 0.5–1 kg, and Seaweed II for
1–2 kg.

3.5 Accuracy assessment

In general, method I has better values on overall accuracy
and Tau coefficient, especially on Seaweed II and Seagrass
f 13



Fig. 4. Mean surface reflectance for three bottom features of Nusa Lembongan beach. Error bars represent ±SE.

Fig. 5. The results of seaweed classification in Nusa Lembongan: I = 5 bands MLC; II = 5 bands DII and MLC; III = 2 band MLC; IV= 2 band
DII and MLC.
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classes, than the other three methods (Tab. 3). However, the
value of producer accuracy and user accuracy shows that
method IV performs slightly better in identifying Seaweed I
and Sand classes than the other especially method I.
Furthermore, using DII as a correction technique in image
processing did improve the classification accuracy while using
2 bands (Blue-Green) as found in method III and IV.
Contrastingly, DII did not improve the classification accuracy
when using 5 bands as found in method I and II.
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The total area of each class produced by the four methods is
presented in Table 4. Based on the image classification
analysis, method I had the largest coverage of Seaweed II area
(0.328 km2), while method III had the largest coverage of
Seaweed I area (0.526 km2). Considering the achieved
accuracy by each method, the total seaweed coverage area
resulted from method I was considered as the most accurate
and therefore used further to calculate the total seaweed
biomass.
f 13



Table 3. Seaweed classification accuracy at Nusa Lembongan, Bali.

Method Classification PA UA OA TC
(%) (%) (%)

I Seaweed I (1–2 kg) 67.86 79.17 79.05 0.75
MLC 5 Band Seaweed II (2–4 kg) 91.30 84.00

Seagrass 81.48 88.00
Sand 72.22 65.00
Others 88.89 72.73

II Seaweed I (1–2 kg) 68.00 68.00 68.57 0.63
DIIþMLC 5 Band Seaweed II (2–4 kg) 67.74 70.00

Seagrass 70.00 70.00
Sand 68.42 68.42
Others 70.00 63.64

III Seaweed I (1–2 kg) 58.62 60.71 58.10 0.52
MLC 2 Band Seaweed II (2–4 kg) 61.54 57.14

Seagrass 52.38 64.71
Sand 56.25 50.00
Others 61.54 57.14

IV Seaweed I (1–2 kg) 74.07 80.00 77.14 0.73
DIIþMLC 2 Band Seaweed II (2–4 kg) 78.57 81.48

Seagrass 70.83 68.00
Sand 81.25 81.25
Others 90.00 75.00

Table 4. Coverage area of each class from the image classification.

Coverage (Km2)

Class I II III IV

Seaweed I 0.149 0.372 0.526 0.178

Seaweed II 0.328 0.297 0.137 0.210
Seagrass 0.291 0.119 0.029 0.194
Sand 0.094 0.068 0.163 0.267
Others 0.035 0.041 0.042 0.048
All 0.897 0.897 0.897 0.897

Table 5. Seaweed biomass from in-situ measurement at Nusa Lembongan, Bali.

Fresh weight (g) Age (day) Dry weight (g) Biomass (g/m2 DW)

Min 205 1 35 560

Max 900 40 95 1520
Mean±SD 481.25 ± 183.52 17.5 ± 12.43 57.75 ± 17.43 924 ± 278.91
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3.6 Seaweed biomass estimation

The average dry weight of each seaweed sample collected
during the research was 57.75 ± 17.43 g. Using equation (12),
the average calculated biomass per meter square reached
924 ± 278.91 g/m2 (Tab. 5). The lowest biomass value was
560 g/m2 for the 1-day cultivated seaweed and the highest was
1520 g/m2 for seaweed that had been cultivated for 40 days.
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The average seaweed biomass was 777.14 ± 140.71 g/m2 for
Seaweed I and 1266.67 ± 206.99 g/m2 for Seaweed II areas
(Tab. 6). The total harvestable seaweed biomass (Eq. (13)) was
115.79 ± 20.97 tons for Seaweed I area and 415.47 ± 67.89 tons
for Seaweed II area. The total prediction of biomass harvest
combined from both classes was 531.26 ± 250.29 tons. The
exponential relationship between seaweed spectral reflectance
and biomass is presented in Figure 6. The highest relationship
f 13



Table 6. Seaweed stock assessment by classes identification.

Class Biomass (g/m2 DW) Stock estimation

Min Max Mean ±SD (Ton DW)

Seaweed I 560 976 777.14 ±140.71 115.79 ± 20.97

Seaweed II 1024 1520 1266.67 ±206.99 415.47 ± 67.89
Total 531.26 ± 250.29

Fig. 6. The relationship between spectral reflectance of different
bands and the measured seaweed biomass.
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between seaweed biomass and satellite surface reflectance
was the blue band with R2 = 0.9405 and green band with
R2 = 0.9386.
4 Discussion

The measurement of in-situ spectral reflectance of emerged
and submerged seaweed indicated the relatively strong
influence of water column and depth in object identification
and classification. Results of the in-situ measurements showed
that the NIR band has the highest value of spectral reflectance
for emerged (above the water surface) but the lowest for
submerged (under the water surface) seaweed. Theoretically,
the coastal band (band 1) has the highest water column
penetration. Thus, the band was supposed to be useful in
shallow water mapping. However, spectral characteristics data
from field measurements and satellite imagery showed that the
blue (band 2) and green (band 3) bands have higher spectral
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values compared to coastal (band 1). Several other studies
observed the dwindling capabilities and poor results of the
coastal band in water penetration due to atmospheric and
surface noises generated from high scattering and absorption in
short wavelengths such as inManessa et al. (2016a,b), Collings
et al. (2018), and Cross et al. (2018). A study by Miecznik and
Grabowska (2012) revealed that the coastal band only
penetrates deepest in pure water. Furthermore, Stumpf et al.
(2003) and Sagawa et al. (2010) confirmed that blue and green
bands have better water column penetration than other bands
and contain sufficient spectral reflectance to be used in
identifying underwater vegetation.

The image processing using 5-band MLCþCE has
produced the highest accuracy for the classification map with
the OA of 79.05% and TC of 0.75. These values indicated a
highly successful classification in coastal areas considering the
difficulty of delineating seaweed and seagrass classes in mixed
pixel conditions (Foody, 2008). Study at other locations in
Indonesia using Landsat-7 by Wouthuyzen et al. (2016),
GeoEye-1 by Setyawidati et al. (2018a), and Worldview-2 by
Setyawidati et al. (2018b), although resulted in slightly lower
accuracy, also reported the capabilities of image classification
process to successfully differentiates specific features within
brown macroalgae habitat. Cultured seaweed and wild
seagrass have a similar reflectance pattern but with different
spectral reflectance values (Fig. 4). Both vegetations also have
other differences in terms of habitat locations, growth depths,
and coverage patterns. For example, the classification map
results showed that the coverage pattern of seaweed formed
straight lines in rectangular patterns compared to the irregular
pattern of seagrass coverage. Seaweed was cultured suspended
in the water column (0.5–1m from the seabed and water
surface) compared to seagrass which grows at the seabed.
These locational growth differences according to Silva et al.
(2008) influence the overall spectral reflectance characteristics
of the submerged vegetation.

The high correlation between the spectral reflectance of
blue and green bands with the measured biomass indicated a
high accuracy which, in turn, can be used to validate the
estimation of seaweed harvestable biomass. However, the
combination of five bands in the classification process resulted
in higher classification accuracy rather than using only two
bands of the blue and green spectrum. This result indicates that
the coastal (band 1), yellow (band 4), and red (band 5) were
useful in the seaweed image classification process as well
although they have a lower correlation to biomass than blue
and green. Schalles (2006) and Silva et al. (2008) have both
argued that biophysical characteristics such as leaf coverage,
biomass density, vegetation orientation, and distribution could
be determined from the spectral reflectance of the submerged
f 13
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vegetation. High coverage and horizontal density correspond
positively to a spectral reflectance compared to low density and
vertical distribution of submerged vegetation. However, the
close relationship between vegetation biomass and spectral
reflectance occur on certain wavelength and cannot be
considered uniform on all wavelengths. The high density
and wide coverage of submerged vegetation could have low
spectral reflectance due to the spectral characteristics of the
wavelength (Louchard et al., 2003; Schalles, 2006; Silva et al.,
2008; Castillo-Santiago et al., 2010).

The higher overall accuracy of 5-band MLC than 2-band
DIIþMLC provides evidence that the DII method was not
necessarily useful in improving accuracy when using five
bands combination of MLC in image processing for seaweed
classification. However, within two-band combinations, the
DIIþMLC method was useful to remove water column
influence on the spectral reflectance of the cultured seaweed
and successfully able to differentiate it from other class
features. The use of satellite images with high spatial
resolution also contributed significantly to the high accuracy
of the MLC classification results. These similar results,
although performed with different band combinations, have
also been confirmed by Setyawidati et al. (2018a,b).
Furthermore, Stekoll et al. (2006) reported the overestimation
in estimating kelp canopy area using Landsat 7 imagery which
corresponds to the low spatial imagery. Overall, the 5-band
MLC and 2-band DIIþMLC methods have higher accuracy
and successfully differentiate mixed seaweed and seagrass
from other features compared to the other methods applied in
this study.
5 Conclusions

The accompanied in-situ spectral measurement suggested
that spectral reflectance of submerged vegetation within the
water column was different from the same emerged vegetation.
The finding is significant in terms of determining the band
combination used in classification and biomass estimation of
submerged vegetation, particularly seaweed.

The image processing methods developed in this study,
along with group separation in seaweed classification, offers a
significant improvement over the estimation of harvest
potential of seaweed for better management of seaweed
supply chain not only in Indonesia but also worldwide.
Furthermore, seaweed culture in Indonesia is conducted
consistently throughout the year. Thus, this research consid-
ered that the un-synchronized time stamp of satellite imagery
with the in-situ measurement poses minimal variation in terms
of seaweed growth and culture as they were only ten days in
date differences as well as within the same seaweed planting
calendar.

It should be noted that since 2015 seaweed farming on the
Nusa Lembongan study area has declined considerably due to
many factors including the low market price, ice-ice disease,
and tourism development throughout the region. In 2016, the
price of seaweed per kg dry weight in the Nusa Penida and
Nusa Lembongan region reach an all-time low since seaweed
farming was first introduced two decades ago. The price was
only USD 0.16 per kg for E. spinosum and USD 0.39 per kg
for K. alvarezii. Combined with the increasing prevalence of
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ice-ice disease, these situations prompt the seaweed farmers,
especially young people, to pursue other alternative means to
make a living. Their shift to other jobs was mostly to tourism
sectors as an obvious choice in this region which has been
increasing rapidly since 2011 (Keohane, 2016; Anonymous,
2019; Andréfouët et al., 2021). Nevertheless, this study can
still provide good baseline information when the seaweed
industry in this area was still in a good state and for other
seaweed cultivation areas that remain active as well.

Recently, a report by ABC News Australia in March 2021
titled “The Year Bali Tourism Stopped” describes the tourism
in Nusa Lembongan is in suspended animation due to the
COVID-19 pandemic. The report specifies that seaweed
farming in Nusa Lembongan that was once replaced by tourism
has found its footing again and helped the local communities to
get back on their feet (Davis, 2021). This new development
means that the information provided by this study could aid
local and national governments to seek market destinations of
potential large seaweed harvest from this area.
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