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Abstract – The Strait of Messina is located at the centre of the Mediterranean Sea and is considered a
biodiversity hotspot and an obligatory seasonal passage for different pelagic species such as sharks, marine
mammals, and billfishes. For the first time, in the Strait of Messina, our research group tagged a
Mediterranean spearfish (Tetrapturus belone) using a pop-up satellite archival tag (PSAT). The observation
of abiotic parameters (depth, light, and temperature) recorded by the PSAT confirmed that the tagged
specimen was predated after about nine hours. The tag was then regurgitated 14 days after the tag
deployment date. The analysis of collected data seems to indicate that the predator may be an ectothermic
shark, most likely the bluntnose sixgill shark (Hexanchus griseus).

Keywords: Billfish / behaviour / biologging / tracking / ectothermic shark attack / pop-up satellite archival tag /
Mediterranean Sea
1 Introduction
Understanding large vertebrates’ movements, ecology,

habitat, and behaviour is a challenging task, especially in a
marine environment. However, the fast technological advance-
ment of the last few decades has allowed researchers to use
biologging, applying electronic tags to study marine pelagic
vertebrates (Hays et al., 2016). Biologging is the utilisation of
any animal-borne device (biologger) that stores data collected
froma single ormultiple sensor (Boyd et al., 2004;Hooker et al.,
2007). Data stored by a biologger can be retrieved via satellite
transmission (satellite telemetry) or acoustic transmission
(acoustic telemetry) or can be downloaded after recovering
the electronic tag (for an exhaustive review, see Cooke et al.,
2004; Ropert-Coudert and Wilson, 2005; Cooke et al., 2012;
Hussey et al., 2015; Wilson et al., 2015).

Satellite telemetry devices are generally used to study
highly migratory species, especially their movements and
ding author: pietro.battaglia@szn.it
behaviour, mainly against time and depth in coastal or open
ocean areas. For instance, this technology has been used to
study pelagic species belonging to different taxa, such as
sharks, rays, tunas, tuna-like fishes, turtles, swordfish (Xiphias
gladius), other billfishes (Istiophoridae), escolar (Lepido-
cybium flavobrunneum), sablefish (Anoplopoma fimbria),
Atlantic salmon (Salmo salar), and American eels (Anguilla
rostrata) (Speare, 1995; Sedberry and Loefer, 2001; Canese
et al., 2004; Kerstetter et al., 2008; Block et al., 2011; Canese
et al., 2011; Dewar et al., 2011; Wilson et al., 2011; Béguer-
Pon et al., 2012; Pleizier et al., 2012; Chittenden et al., 2013;
Lacroix, 2013; Abascal et al., 2015; Carvalho et al., 2015;
Chapple et al., 2015; Echave, 2016; Arostegui et al., 2018;
Andrzejaczek et al., 2019; Arostegui et al., 2019). Moreover,
pop-up satellite archival transmitters (PSATs) have become the
best option to study animals that spend less time at the surface
(i.e. billfish, sharks, etc.), allowing one to record the
information from sensors (such as depth, temperature,
environmental light level, etc.; Hill and Braun, 2001). These
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Fig. 1. Study area (Strait of Messina, central Mediterranean), bathymetric information and tag deployment-detachment locations. Image created
using ARCGIS v. 10.8.1 while bathymetric data were obtained from digitalised IGM database.
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transmitters detach from the animal using a pre-programmed
release mechanism (Cooke et al., 2012) or when the animal is
dead. In some cases, the tagged specimens are vulnerable to
predators because of injuries or stress caused by the tagging.
However, the PSATs do not provide any direct information if
the tags or the tagged specimens are ingested by predators.
Nevertheless, analysing the light sensor data in combination
with the depth and temperature profiles (both internal and
external) might help to understand whether the tagged
specimen has been predated and infer what kind of predator
has interacted with it. In the literature, different cases of
predation on tagged fishes were reported regarding silver-stage
American eels (A. rostrata; Béguer-Pon et al., 2012),
Atlantic salmon (S. salar; Lacroix, 2014; Strøm et al.,
2019), opah (Lampris gattatus; Kerstetter et al., 2004;
Polovina et al., 2008), white marlin (Tetrapturus albidus;
Kerstetter et al., 2004), sailfish (lstiophorus platypterus;
Jolley and Irby, 1979), chinook salmon (Oncorhynchus
tshawytscha; Seitz et al., 2019), albacore (Thunnus alalunga;
Cosgrove et al., 2015), and southern bluefin tuna (Thunnus
maccoyii; Tracey et al., 2016). While the predator is often
identified at the macro-categories or family level (i.e. marine
mammals, endothermic fish, ectothermic fish, lamnid
sharks, etc.), one can often infer which predator species
interacted with the tagged individual based on ecological
knowledge.
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The main aim of this study is to report, for the first time, a
predation event on a Mediterranean spearfish (Tetrapturus
belone) after the application of a PSAT in the Strait of Messina
(located at the centre of the Mediterranean Sea). Based on the
data retrieved from the PSAT, one could infer post-release
predation on this billfish, which may be due to an attack by an
ectothermic shark.

2 Materials and methods

2.1 Study area

Tagging experiments were carried out in the Strait of
Messina, which is a narrow passage of seawater connecting the
Ionian and Tyrrhenian seas (Fig. 1). The Strait of Messina is
characterised by a peculiar hydrodynamic regime, regulated by
tidal currents and producing upwelling phenomena (Vercelli,
1925; Bignami and Salusti, 1990;Mosetti, 1991) that make this
area highly productive (Fortier, 1991) and concentrate
mesopelagic food resources in upper waters (Berdar et al.,
1983; Battaglia et al., 2017). For this reason, the Strait of
Messina represents an important feeding area for large pelagic
species such as X. gladius and T. belone (Romeo et al., 2009a)
as well as Atlantic bluefin tuna (Thunnus thynnus; Battaglia
et al., 2013). Therefore, this area holds high importance in the
migratory movements of pelagic marine animals between the
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centre and the western part of the Mediterranean Sea. Here,
the periodical abundance of large pelagic fish allowed the
development of a peculiar and ancient fishing activity using the
harpoon and the feluca, a type of boat (Romeo et al., 2009b;
Romeo et al., 2015; Battaglia et al., 2018), between April
and August. We used these vessels to perform tagging
operations.
Fig. 2. Harpoon vessel and equipment used for the tagging
experiment. ‘Feluca’ boat (a), plank (b), ‘must’ (c) harpooner during
fishing operations (d) and modified harpoon consisting in a 3.5m pole
equipped with the pop-up satellite archival tag (e).
2.2 Sampling vessel and equipment

Tagging experiments were carried out on board a harpoon
fishing vessel commonly used to target swordfish (X. gladius)
and occasionally Atlantic bluefin tuna (T. thynnus) and the
Mediterranean spearfish (T. belone) in the Strait of Messina
(Di Natale et al., 2005; Romeo et al., 2015; Battaglia et al.,
2018). The feluca is equipped with a long mast (25–40m) and
an elongated plank, having an adjustable length (25–40m),
ending with a pulpit, where the fisherman has the role of
harpooning the sighted animals. At the top of the ‘must’, a
maximum of four fishermen spend their time observing the sea
surface (such observation can reach up to ∼5m below the sea
surface) to sight fishes (Battaglia et al., 2018; Fig. 2a–d).

2.3 Tagging activity

Based on previous tagging activities carried out on board
felucca boats in the Strait of Messina, targeting swordfish
(X. gladius; Canese et al., 2004; Canese et al., 2008) and giant
devil rays (Mobula mobular; Canese et al., 2011), the
equipment was adapted and modified to best fit our target,
that is, T. belone. Indeed, the Mediterranean spearfish has a
slimmer body shape compared with the swordfish and the giant
devil ray; for this reason, to increase tagging success, the 3.5m
harpoon pole was modified by removing the harpoon tip and
inserting a customised short-handle tag pole with the
applicator pin, equipped with a stainless steel anchor,
connected to the tag via tether, and secured using two elastic
bands (Fig. 2e). On 17 August 2019, at about 08:00 (UTC
time), the first Mediterranean spearfish was tagged in the
position 38°1402600N, 15°3500600E, using a MiniPAT PSAT
(Wildlife Computers; https://wildlifecomputers.com). The
tagged T. belone individual swam at the surface in a group
of three animals directed towards the northern area of the Strait
of Messina and weighed about 12–15 kg. The weight was
visually estimated by four different fishermen and researchers
and corresponded to approximatively 150 cm of low jaw fork
length (LJFL).

The MiniPAT tag was attached to the dorsal musculature of
the fish, about 5 cm from the dorsal fin, in the direction of the
caudal fin. The tag was in pre-activated mode, which means
that the collection of environmental information (depth,
temperature, and light level at an interval of 75 s, which were
pooled in 6-h bins) started after the animal performed the first
dive below 5m. The tag was also programmed to detach from
the specimen via a corrosive burn wire mechanism (emergency
release mechanism) and to transmit data either 30 days after
activation or if it was floating at the surface or was at a constant
depth (variation of 2m) for more than three days. In addition,
the tag was programmed to detach when achieving the
threshold depth of 1700m to avoid reaching its crush depth and
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becoming inoperable. The tag buoyancy was checked in a
bucket full of seawater (∼50 L); the tag, equipped with an
anchor and tether, showed a slightly negative buoyancy.

2.4 Data analysis

Data from the recovered tag were retrieved using Tag
Agent v. 2.2.19.0 (https://wildlifecomputers.com). Time series
of temperature, depth, and light level as well as night/day
predator time series were constructed using the ‘ggplot2’
package (v. 3.2.1;Wickham, 2016), while time-at-depth (TAD)
histograms were constructed using the RchivalTag package (v.
0.0.7; Bauer, 2018). The depth bins were in 10m increments
from the surface to 50m and in 50m increments from 50 to
400m. The night and day profiles coincided with nautical dusk
and dawn times calculated using geographical coordinates at
the time of tag deployment as a position reference through the
‘suncalc’ package (v. 0.5.0; Thieurmel and Elmarhraoui,
f 11
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Fig. 3. Depth (a), light intensity (b) and temperature profile (c) retrieved from PSAT. The time of the deployment, predation, regurgitation/
egestion and pin burn activation for each profile is also shown.
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2019). Data analysis were performed using R v. 3.5.2 and
R-studio v. 1.2.5033 (2020-01-17; R Core Team, 2015;
R Studio Team, 2015), while the cartography was created using
ARCGIS v 10.8.1.

Since an anomaly on the light, depth, and temperature
profiles was evident, the data were re-analysed and compared
with information in the literature to confirm the hypothesis of a
predation event on the tagged fish. Therefore, to avoid making
wrong assumptions, we differentiated the following: (i) data
belonging to the Mediterranean spearfish; (ii) data recorded
from the predation event to tag regurgitation/egestion; and (iii)
data recorded after tag regurgitation/egestion. Finally, to
analyse the predator’s behaviour, only the TAD and night/
daytime series at the depth data belonging to point (ii) were
considered.
3 Results

The MiniPAT tag release happened, as scheduled, on 16
September 2019 (30 days after tagging); the signal was located
within 6 km east of the tagging area (latitude = 38°14016.800N;
longitude = 15°39046.800E; Fig. 1). Considering that the loca-
tion signal was not in real time, it was necessary to monitor
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the location signal until it stabilised before starting a tag
recovery expedition. Therefore, after monitoring the tag for a
few days, we observed a steady signal of location class (LC) 3
pointing to the Calabrian coast near the village of Villa S.
Giovanni (Italy). On 19 September, the tag was recovered
through an inspection on the beach around the LC 3 signal, and
the data were downloaded.

The time series dataset (light, depth, and temperature
profiles) showed an unusual vertical movement behaviour of
the T. belone individual tagged with the PSAT. Indeed, the time
and depth data series (Fig. 3) show that immediately after
tagging on 17 August 2019, at about 08:00 (UTC time), the
T. belone individual remained at a depth of 50m for about nine
hours. Then on the same day at 17:17, the tag started recording
an abrupt pressure change and showed short upward
movement, followed by movement to an approximate depth
of 270m. From this moment on, the tag recorded diel vertical
movements, with permanence in shallowwaters at night (about
40–270m) and deeper waters during the day (about 200–
370m). Simultaneous with the quick change in depth profile on
17 August, the light intensity profile returned a minimum
value. This value had been recorded for several days without
significant changes until 16 September; the tag may have
remained in a dark environment for the entire period, even
f 11
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when the depth profile showed that the tag had remained
periodically in shallow waters (Fig. 3b). Similarly, the
temperature profile changed from about 26 to 15 °C after 17
August. Figure 3c shows that the temperature values remained
almost constant (15–17 °C) until 16 September. Given the
absence of natural light, we could not estimate any horizontal
movement; indeed, geolocations (latitude and longitude) are
generally obtained using light intensity level measurements
and calculated from twilight events (Hill and Braun, 2001). On
1 September, the tag had begun to record an almost constant
depth; however, the pre-programmed emergency release
system (the software programmed to release the tag after 3
days of inactivity) was not activated. The tag remained on the
bottom until 16 September (the programmed tag release date),
when the pin burn release system was activated, releasing the
tag from the anchor and tether, resulting in tag surfacing
(Fig. 3a).

4 Discussion

The analysis of these data allowed us to formulate the
hypothesis of a predation event on the tagged fish.
Reconstructing the dynamics of the events, at about 05:00
on 17 August 2019, the Mediterranean spearfish was likely
dead ∼50m below the sea surface; we assume that it was eaten
by another large animal, along with the tag. Although the
tagging was apparently successful and the tagged fish seemed
vital soon after, the animal may have been stressed from the
recent tag application; the penetration of the applicator pin
with the anchor (about 8 cm) may have also caused serious
injuries and the death of the animal.

From this moment until 1 September, the tag remained in
the gastro-intestinal tract (GIT) of the predator, and after this
time, it was regurgitated/egested (Fig. 3). However, since the
PSAT is relatively big, it cannot have passed through the entire
GIT because of the presence of the spiral valve in the
elasmobranch GIT. Indeed, the valve lumen is too narrow to
allow the PSAT passage without causing damage to the animal
or obstruction in the digestive tract. Consequently, the tag was
likely regurgitated, as reported in some cases regarding the
regurgitation of ultrasonic tags in P. glauca (Hazin et al., 1994)
and Carcharhinus amblyrhynchos (Economakis and Lobel,
1998). Indeed, sharks have the capacity to maintain a healthy
alimentary tract by adopting a voluntary stomach eversion
manoeuvre to remove indigestible food items or objects
(Brunnschweiler et al., 2005).

After regurgitation, the tag remained at an almost constant
depth for 17 days given the negative buoyancy of the whole tag
assemblage (PSAT, tether, and stainless steel anchor). This
period of inactivity at a constant depth should have activated
the emergency release mechanism (programmed to release the
tag after 3 days), which failed. However, the release
mechanism was activated, as programmed, 30 days after tag
deployment.

This hypothesis is confirmed by the following data:

–
 In our research, the MiniPAT tag showed that in the first
nine hours, the tagged T. belone remained at a depth
between 40 and 60m. The bathymetric profile near the
deployment location was close to 50m in depth (Fig. 1).
These results most likely demonstrate that the animal was
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dead or immobilised soon after tagging, lying motionlessly
near or at the bottom, and its light movements were
probably current induced. Indeed, swimming for nine hours
without changing depth is highly unusual for T. belone, as
demonstrated by the data collected byArostegui et al. (2019),
which show that such a pattern was observed only sometimes
at night, when the T. belone spends hours at the sea surface.
Such a pattern is unknown for this species while it swims in
deeperwaters.Considering theabsenceofverticalmovements
for 9 h, we hypothesise that the tagged specimen was dead
soon after tagging.
–
 After this time (about 17:00, UTC time), we found
evidence that the animal had been eaten by a large predator.
The rapid vertical movement from 50m towards the
surface at about 17:00 on 17 August 2019 (Fig. 3a) was
likely due to the predator seizing the Mediterranean
spearfish together with the tag. Then we observed a deep
dive of up to 270m (Fig. 3a), along with a drop in light
level and temperature (Fig. 3b and c). After a successful
attack, the predator spent most of the recorded time
(>80%) in deep layers between 100 and 400m (Fig. 4b)
below the surface. This diving behaviour seems unusual for
T. belone, supporting our hypothesis of a predator attack.
This species prefers epipelagic layers between the sea
surface and 30m, remaining above the thermocline, with
rare excursions below 84m in depth (Arostegui et al.,
2018; ICCAT, 2006–2016).
–
 Between 17 August and 1 September, the tag recorded a
particular depth profile, indicating a diel vertical migration
pattern, with rises in shallow waters to 50–250m in depth
at night, remaining in these layers throughout the evening.
The animal migrated back into deeper layers (250–370m)
in the morning, staying there during the day (Fig. 4a). Such
a pattern of vertical habitat utilisation contrasts with
current knowledge on the behaviour and ecology of
T. belone, confirming our hypothesis of a predation event.
The minimum depth reached by the predator became
constantly shallower during the monitored period, reaching
50m at night, in correspondence with the less luminous
lunar phase (new moon). This behaviour may demonstrate
a relationship between the predator’s vertical migration
pattern and the lunar cycle.
–
 While the tag remained inside the predator, it recorded a
constant light level (18W/cm2), corresponding to a dark
environment (i.e. the stomach of the predator). Indeed, a
recent study (Comfort, 2012) demonstrated that MiniPAT
tags anchored at about 400 and 200m recorded light levels
between ∼30 and ∼130W/cm2 and that only tags attached
to sharks that dived below 600m (i.e. deeper than the
maximum depth recorded in this study) reported values of
light intensity <30W/cm2.
Starting from 14:35 on 1 September 2019, the light sensor
data indicated normal environmental light levels based on the
alternation of daylight and night periods. The temperature was
almost constant, with frequent peaks after the tag was
considered expulsed and deposited at an almost constant
depth (Fig. 3). While the tag remained in the predator’s
stomach, the temperature was almost constant (15–17 °C),
similar to the external water temperature in the study area



Fig. 4. Graphic representation of predator vertical movement. (A) Predator diving behaviour by date (days), time (h) and lunar phases
between 17th of August 2019 and 1st of September 2019. Blue line = dive profile, grey area = nautical twilight night event (time between
dusk and dawn) and white area = nautical twilight day event (time between dawn and dusk) (bB) percentage of Time at Depth (TAD) bar
plot. Depth bins = 0 (thresholds 0–9m), 10 (thresholds 10–19m), 20 (thresholds 20–29m), 30 (thresholds 30–39m), 40 (thresholds
40–49m), 50 (thresholds 50–99m). (C) percentage of Time at Depth (TAD) bar plot between 100 and 350m with 50m resolution Depth
bins = 100 (thresholds 100–149m), 150 (thresholds 150–199m), 200 (thresholds 200–249m), 250 (thresholds 250–299m), 300
(thresholds 300–349m), 350 (thresholds 350–399m). Yellow colour = daytime, black colour = night-time, error bars = standard deviation
(SD).
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(De Domenico, 1987). For this reason, we hypothesise that the
predator was an ectothermic species (cold-blooded).

Increases in temperature, light level, and depth after the
activation of the pin release mechanism were observed and
followed by tag emergence. The hypothesis of the light sensor
malfunctioning was rejected as the light intensity had
increased since 1 September 2019 (Fig. 3b), that is, after
tag regurgitation.

Based on these considerations, all the data recorded from
17 August to 1 September (Fig. 4b) can be attributed to the
presence of the tag in the predator’s stomach.

The predation of tagged animals is not a rare event, as
shown in Table 1. Cases of predation on tagged eels
(A. rostrata; Béguer-Pon et al., 2012) and Atlantic salmon
(Salmo salar; Lacroix, 2014; Strøm et al., 2019) were observed
and attributed to the porbeagle shark (Lamna nasus). In
another study, Cosgrove et al. (2015) described that lamnid
sharks such as shortfin mako (Isurus oxyrinchus) and
porbeagle (L. nasus) were possibly responsible for the
predation of tagged albacore tuna (T. alalunga). Furthermore,
Page 6 o
Jolley and Irby (1979) reported that one specimen of sailfish
(l. platypterus), tagged with an acoustic tag, was predated by
an unidentified shark. Kerstetter et al. (2004) demonstrated that
two white marlins (T. albidus) and one opah (L. gattatus),
equipped with PSATs, were eaten by a blue shark and an
unidentified endothermic shark, respectively. Additionally,
Hoffmayer (2009) described the attack of another endothermic
shark (shortfin mako) on a PSAT-tagged silk shark
(C. falciformis), while Polovina et al. (2008) hypothesised
that a shortfin mako (I. oxyrinchus) or a great white shark
(Carcharodon carcharias) was responsible for the death of a
satellite-equipped opah (L. gattatus).

In our case, as discussed above, the temperature values
remained constant (15–17 °C) while the tag was in the
predator’s stomach. For this reason, we hypothesise that the
predator was an ectothermic species (cold-blooded), thus
excluding any endothermic predator species (hot-blooded)
such as marine mammals, bluefin tuna, and Alopiidae and
Lamnidae sharks. Indeed, marine mammals have a body
temperature range of 36–38 °C (Whittow et al., 1974); bluefin
f 11
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tuna is an endothermic species (Carey and Lawson, 1973;
Shiels et al., 2015), while the abovementioned sharks
generally have a body temperature of about 8–14 °C above
the water temperature (Carey et al., 1981; McCosker, 1987;
Goldman, 1997; Bernal and Sepulveda, 2005). Furthermore,
it is highly unlikely that some other large billfish, such as
swordfish, ate an entire 12–15 kg Mediterranean spearfish.
Therefore, the predator may be an opportunistic shark
species. Several sharks are considered asynchronous oppor-
tunistic feeders (scavengers; Compagno, 1984; Cortés et al.,
2008) and are usually attracted by the chemical cues, fish
distress stimuli, and/or body fluids (i.e. blood released after
tag anchor application; Hobson, 1963; Tester, 1963)
generated by an animal in danger or in distress (Hogstedt,
1983), such as a recently tagged animal. Potential bathype-
lagic/bathydemersal species that should be excluded because
of their relatively small size (<200 cm; Compagno, 1984)
compared with their prey include the sharpnose sevengill
shark (Heptranchias perlo), the bigeyed sixgill shark
(Hexanchus nakamurai), and the picked dogfish (Squalus
acanthias). On the contrary, the predator is highly unlikely to
be the bramble shark (Echinorhinus brucus) despite its
maximum length of 300 cm (Compagno, 1984) since the most
recent report of this species in the Strait of Messina was in
1937 (Cipria, 1937) and it is considered a highly rare species
in the Mediterranean Sea (De Maddalena and Zuffa, 2003;
Kabasakal and Bilecenoglu, 2014). Similarly, the smalltooth
sand tiger shark (Odontaspis ferox) has been occasionally
reported near the study area (Fergusson et al., 2008) and
observed only once during fishing surveys conducted in the
Calabrian region between 2000 and 2009 (Sperone et al.,
2012). According to current knowledge, the study area has a
stable population of Hexanchus griseus (Celona et al., 2005;
Potoschi et al., 2010), an ectothermic shark that, in the
Mediterranean Sea, reaches up to more than 650 cm in total
length (Kabasakal, 2013) and prefers deep waters of up to
2500m (Jones et al., 2002, 2003) as well as temperatures
below 19°C (Comfort, 2012; Comfort and Weng, 2015). The
diel vertical migration patterns of this shark match with the
predator’s behaviour observed in our study. Indeed, H.
griseus usually stays in deep waters during the day (Comfort,
2012; Comfort and Weng, 2015) and moves towards shallow
waters at night (up to about 40m; Dunbrack and Zielinski,
2003; Andrews et al., 2009; Comfort, 2012; Comfort and
Weng, 2015).

To sum up the outcomes presented in this study, we
demonstrated the post-release mortality of a large pelagic fish
(T. belone) tagged with a PSAT. The interpretation of the
biologging data demonstrated predation or scavenging on the
tagged Mediterranean spearfish by an ectothermic shark.
The day/night behaviour observed resembled the pattern of the
bluntnose sixgill shark (H. griseus), which, based on the
current knowledge of the megafauna in this region, is highly
abundant in the Strait of Messina.
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