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Abstract – Oligotrophic conditions may impose a nutritional challenge for the larval and early post-larval
development of bivalves during the search for a suitable benthic habitat. Here we investigated what
settlement cues might be important for mytilid populations in southeastern Brazil. Our results point to a
trophic trigger mediating larval settlement that may include an effect of saturated fatty acids, probably
linked to organic detritus and bacterial production deriving from terrestrial inputs. The prevalence of drifting
in this population suggests it may be a strategy for individuals to delay final settlement until encountering
favorable trophic environmental conditions.
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1 Introduction

Most marine benthic invertebrates exhibit a complex life
cycle that involves a planktonic larval phase followed by a
benthic juvenile and adult phase (Thorson, 1950). The duration
of the planktonic phase may vary considerably, from only
minutes to months (Pechenik, 1990). Throughout this time,
larvae may drift away from their place of origin, covering
distances frommeters to hundreds of kilometers (Jablonski and
Lutz, 1983; Pawlik, 1992). Larvae need to become competent,
i.e. fully-developed and able to metamorphose, before
reaching the benthos (Pawlik, 1992; Rodriguez et al., 1993).
Frequently, the competent stage ends when larvae receive a
highly specific settlement cue that indicates the presence of a
suitable habitat (e.g. Satuito et al., 1997; Bishop et al., 2006;
Thiyagarajan, 2010).

Larvae may respond to a series of stimuli (environmental
cues) over the course of habitat selection, such as substratum
texture and/or thermal capacity, presence of conspecifics,
biofilms, among others (Pawlik, 1992; Rodriguez et al., 1993;
Dobretsov, 1999; Thiyagarajan, 2010; Gribben et al., 2011).
For example, the composition of the bacterial community of
biofilms may inhibit or stimulate the attachment of benthic
invertebrates (Olivier et al., 2000). For mytilid populations,
biofilm-derived cues have been shown to act in a hierarchical
ding author: ines.agravasconcelosleal@uqar.ca
order together with planktonic ones, the last being more
influential if present (Toupoint et al., 2012a). Importantly, in
the absence of such cues, larvae remain adrift in the plankton
before metamorphosing to adult form, i.e. delaying metamor-
phosis (Pechenik, 1990; Pawlik, 1992). Recently, Martel et al.
(2014) reported that M. edulis larvae typically delay
metamorphosis in natural conditions c.a. 15 days. The authors
found that a small size at metamorphosis, associated with
shorter larval duration, resulted in greater settlement success
rates. Indeed, delaying metamorphosis may be a “double-
edged sword” due to a depletion of energetic reserves and
consequent decrease in larval condition (Pechenik et al., 1993;
Elkin and Marshall, 2007). Yet, for planktotrophic larvae, it
may be beneficial for a short-period of time; larvae may
increase their energy reserves in the presence of a patch of high
food resources and therefore increase their chance of finding a
suitable adult habitat (Philips, 2002).

The trophic conditions that larvae experience during their
planktonic development may greatly influence juvenile perfor-
mance (Pechenik et al., 1998; Philips, 2002; Emlet and Sadro,
2006; Thiyagarajan, 2010). The lipid content of pre-metamor-
phic larvae has been shown to be one of the factors explaining
settlement success of bivalves (pectinids, Pernet et al., 2004;
ostreids, Burke et al., 2008; mytilids, Rayssac et al., 2010).
Toupoint et al. (2012b) found that, over consecutive years,major
settlement peaks of Mytilus edulis were synchronized with
phytoplanktonicpulses rich in essential fatty acids.Based on this
evidence, the authors proposed the “trophic settlement trigger”
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hypothesis, suggesting a bottom-up influence of primary
production and dietary lipid quality on recruitment success
(Toupoint et al., 2012b). Moreover, Martel et al. (2014)
suggested that the recurring metamorphosis delays observed
for the same speciesmight be caused precisely by the absence of
a suitable substrate or a specific trophic cue to trigger settlement.

Even weeks after the first settlement, early mussel settlers
can re-suspend in the water column through drifting (e.g.
byssus, threads) or crawling, a process called secondary
dispersal (Lane et al., 1985; Armonies, 1992; Shanks and
Shearman, 2011; Le Corre et al., 2013). An analogous
behaviour found in terrestrial systems would be the “balloon-
ing” activity for the dispersal of many juvenile spiders (e.g.
Humphrey, 1987) and in marine systems the mucous threads
used for drifting by some gastropods (e.g. Martel and Chia,
1991). Le Corre and co-authors (2013) reported that secondary
dispersal of Mytilus spp. greatly contributed to local
recruitment dynamics, with several peaks throughout the
summer in a boreal estuary. Through secondary dispersal, post-
larvae may select a more suitable adult habitat, possibly far
from the initial settlement site, thus increasing their
distributional range (Shanks and Shearman, 2011). Despite
its contribution to the population dynamics of an array of
benthic invertebrates, the relative importance of post-larval
drifting is not well documented in the literature and may be
more common, at least for bivalves, than previously assumed
(e.g., Martel and Chia, 1991; Baker and Mann, 1997; Le Corre
et al., 2013).

The aim of this study was primarily to gain insights on
bivalve settlement dynamics in a subtropical region, where
populations of benthic invertebrates that dominate the upper
shores are often subjected to low food supply conditions
(Kasten and Flores, 2013; Flores et al., 2015; Kasten et al.
submitted). Such conditions may impose a challenge for
competent planktotrophic larvae and early post-larvae of
intertidal bivalves during their search for a suitable benthic
habitat, raising the question: what settlement cues might be
acting in subtropical oligotrophic regions? Here, we
addressed this question for mytilid populations in southeast-
ern Brazil by (1) characterizing nearshore trophic conditions,
and (2) examining shell variables of mussel post-larvae
indicative of drifting. We expect that under the effects of
settlement triggers, recruits will be characterized by lower
post-competency growth, i.e. restricted drifting, and lower
variation of shell morphometrics.
2 Material & methods

Populations of the mytilid Brachidontes solisianus
(Orbigny, 1846) were sampled in the southeastern coast of
Brazil. B. solisuanus dominates the mid intertidal zone of the
rocky shores of São Paulo State, together with chthamalid
barnacles (Petersen et al., 1986; Eston et al., 1986). During
February and March 2015, samplings were carried out at 7
random dates at two different sites on the São Sebastião
Channel (SSC): Baleeiro Head (23°4904500 S, 45°2502500 W),
located in the enclosed CEBIMar area, and Feiticeira Beach
(23°50045.7600 S, 45°24034.7900 W), located in Ilhabela. Sam-
ples were collected at the Center for Marine Biology of the
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University of São Paulo (CEBIMar/USP) and processed at the
Institute of Ocean Sciences of Rimouski (ISMER/UQAR).

To characterize the trophic resources available for the
seston-feeding post-larvae, three replicate samples (2 L per
replicate) were obtained at each sampling day and site.
Samples were filtered on a 20mmmesh sieve, stored in opaque
bottles and subsequently filtered on GF/F 25mm Whatman
filters for estimation of particulate organic matter (POM;
mgL�1), mass of total fatty acids of seston (MTFA; mgmg�1

POM) and its composition (% fatty acids), following the
protocol described in Toupoint et al. (2012b). MTFA were
further discriminated into saturated (SFA), monounsaturated
(MUFA) and polyunsaturated (PUFA) fatty acids. To test the
variability in trophic conditions in time (days) and space (sites
separated by a few km), two-way random effects ANOVAs
were run on POM and MTFA data. Because SFAs made up
most of the lipid contents (see results), this fraction was further
decomposed into specific fatty acids. The analogous PER-
MANOVA routine was run to test for temporal and spatial
variations. Euclidian distances and 9,999 permutations were
used to calculate pseudo-F ratios. These analyses provided a
measure of the consistency of seston SFA classes in the area.

To collect Brachidontes solisianus post-larvae, ten
multifilament nylon scouring pads (tuffy pads) were randomly
installed over a 100-m stretch along the lower midlittoral zone,
where adults predominate. Tuffy pads were replaced daily at
each site, and settlers extracted with a high-pressure jet of
seawater into a 100mm mesh sieve. After being identified
under a stereomicroscope (Monteiro-Ribas et al., 2006),
individual post-larvae were preserved for morphometric
analyses, which included the estimation of total shell length,
and its two components: prodissoconch II (PII) length and
dissoconch length (mm) (following the method described in
Martel et al., 1995, 2014). PII shell is secreted once the veliger
can feed in the plankton and until the competent pediveliger
metamorphoses into a post-larva (size at first settlement).
Dissoconch shell is secreted after this first settlement, when the
post-larva is crawling over the benthic habitat or re-suspended
in the water column (here considered ‘drifting’). The ratio
between the total shell length and PII length was used as a
proxy of drift and was compared between sites and among
daily cohorts. A total of 246 individual post-larvae were
collected and measured. Multiple linear regression analyses
were carried out to identify the environmental parameter(s)
(POM, SFAs, PUFAs, MUFAs) with the highest explanatory
power for the observed variation of post-metamorphic drifting.
Mass of total fatty acids was collinear to the mass of SFAs and
was not included in the analysis. No collinearity was observed
between any other pairs of the variables tested (r< ǀ0.70ǀ;
Dormann et al., 2013).
3 Results & discussion

Our results on the trophic status of the nearshore water
column agree with previous studies indicating that the SCC is
principally ameso-oligotrophic environment (Ciotti et al., 2010;
Kasten and Flores, 2013; Barbosa et al., 2016), considering the
relatively low POM (1.02± 0.03mgL�1) and MTFA measured
over this study (MTFA; 17.68± 1.06mgmg�1 POM).
Overall, organic inputs (POM) showed some spatial coherence
of 6



Fig. 1. Trophic conditions in the São Sebastião Channel throughout
the sampling period. A) Particulate organic matter (POM); B)Mass of
total fatty acids (MTFA); C) Composition of seston's saturated fatty
acids (SFA). Values shown are averages and error bars are SE.
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(Fsite =1.11; p= 0.332), with similar variation at both sites across
time (Fig. 1A), as suggestedby the lackof interactive site vs. date
effects (FdayXsite =1.00, p= 0.445) in spite of significant overall
temporal variation (Fday =4.50, p= 0.045). However, the trophic
quality of the organic inputs (as MTFAs) was markedly
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inconsistent across the spatial and temporal scales examined
(Fig.1B),with spatial contrasts foundat somesamplingdatesbut
not in others (FdayXsite =4.29; p= 0.003). Such inconsistencies
are typical of the effects of scattered and short-term
oceanographic processes (1–2days), leading to localized vertical
mixing and relative surplusproductionabove lowbaseline levels
(Ciotti et al., 2010; Kasten and Flores, 2013). In other words,
while the overall quantity of potential food sources varied
consistently through time at sites separated by a fewkm, the lipid
budget, which has been shown to be critical for a number of
invertebrate larvae (e.g. Phillips, 2002; Pernet et al., 2004;
Rayssac et al., 2010) is far more erratic.

A more detailed assessment of nearshore seston lipids
shows that, compared to most other coastal systems studied
worldwide (e.g. Budge and Parrish, 1998; Toupoint et al.,
2012b; Cabrol et al., 2015), the fraction of saturated fatty acids
(SFAs) in the seston is stable and remarkably high (87%;
15.47 ± 6mgmg�1 POM) and much higher than monounsatu-
rated fatty acids (MUFAs; 1.07 ± 0.62mgmg�1 POM) and
polyunsaturated fatty acids (PUFAs; 1.14 ± 0.63mgmg�1

POM) (Fig. 1B). The high concentrations of SFAs were
attributed to the high contribution of 16:0 and 18:0 fatty acids
(Fig. 1C), whose joint share remained around 91% (ranging
from 82 to 96%), with differences between sites on some dates
(PERMANOVA; pseudo-FdayXsite = 2.93, p= 0.002). The
amount of SFAs reported here differ considerably from those
reported for temperate (40–70%; Toupoint et al., 2012b) and
subarctic systems (≈ 30%; Cabrol et al., 2015). The SFA-
dominated lipid composition within our study area suggests
that the main food sources for benthic suspension feeders in the
SCC seemed to be bacteria and detritus, unlike several
temperate productive systems, in which phytoplankton blooms
make the bulk of primary production (Kelly and Scheibling,
2012). We observed that fatty acid trophic markers (Parrish,
2013) of diatoms (20:5n3) and dinoflagellates (22:6n3)
represented each less than 2% comparatively to the 5.9%
for fatty acids specific of bacteria (15:0, 17:0, 17:1 and 16:1n7)
and 6% fatty acids markers of mangroves, vascular and
terrestrial plants (18:1n9, 18:2n6, 18:3n3, 24:0). Because
sampling took place close to the end of the rainy season, it is
probable that this heterotrophic production had its origin on
land. Indeed, recent studies show that seasonal changes in
fluvial forcing drive terrestrial inputs of nutrients and
particulate organic matter in this system (Gorman et al. in
press).

Multiple regression analyses indicate that both POM and
SFAs (not PUFAs or MUFAs), may possibly trigger settlement
of B. solisianus, as assumed by the correlation of these
variables with estimates of post-metamorphic drift (R2 = 0.63;
p< 0.05; Tab. 1; Fig. 2A and B). These trophic signals appear
to be correlated with an early response of settlers within a
narrow size range and limited post-metamorphic drift (% CV;
R2 =0.65; p< 0.001; Fig. 2C). Based on previous studies
reporting shell morphometry on different bivalve species
(Martel et al., 2014), our results strongly suggest that post-
larval drifting behavior is commonplace in the area.
Decreasing coefficient of variation with increasing average
estimates of drift (Fig. 2C) suggests that, in the presence of any
positive settlement triggers, the whole larval pool in nearshore
waters will respond and settle, while in the absence of such
triggers only larvae that cannot further delay metamorphosis
of 6



Table 1. Summary statistics of the multiple linear regression analyses
explaining the variation of juvenile drifting according to the trophic
parameters of nearshore waters (particulate organic matter: POM;
saturated: SFA; monounsaturated: MUFA; and polyunsaturated fatty
acids: PUFA).

Variable Coefficient Std. Error t p

POM �1.034 0.391 �2.64 0.027

SFAs �0.058 0.016 �3.60 0.006
MUFAs 0.100 0.144 0.69 0.507
PUFAs 0.173 0.088 1.95 0.082
R-squared (R2) 0.633 Sum of

Squares (SS)
0.388

Adj. R-squared 0.470 F-statistic 3.878
SE of regression 0.158 Prob(F-statistic) 0.042

Fig. 2. ariables explaining juvenile drifting behaviour: A) Particulate
organic matter (POM), B) Saturated fatty acids (SFA). Panel C depicts
increasing variance with drift estimates. Dotted lines represent
confidence intervals (95%).
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will settle. Assuming that nearshore populations of competent
larvae would be comprised mostly by no- or early-drifters,
settlers responding to triggers would be of very similar size.
Differently, in the absence of such triggers, only long-term
drifters, with remarkably different size, would respond and
settle. Although there was a similar variation in shell
morphometrics at both sites across time (except at Feiticeira
Beach at days 1 and 3; Fig. 3), dissoconch lengths ranged from
13 up to 2,000mm. The importance of trophic processes in
determining settlement in the meso-oligotrophic SSC has been
already suggested for barnacles (Barbosa et al., 2016), but, so
far, the origin and importance of seston nutrients remains
unknown. The share of SFAs in lipid profiles has been shown
to be higher in marine subtropical organisms compared to
temperate or polar ones (Budge and Parrish, 1998; Colombo
et al., 2016). Specifically, organic detritus have been suggested
to be an important energy source for mussels at times when
primary production is scant (Rodhouse et al., 1984). High
levels of 16:0 and 18:0 SFAs have been observed in rocky
shore mytilids inhabiting environments abundant in detritic
matter and bacterial load, presumably having a structural-type
function (Galap et al., 1999; Freites et al., 2002). SFAs
accumulation has also been shown to be important for
zooplankton species (Cabrol et al., 2015). The authors
suggested that accumulating SFAs may be advantageous
under high energetic demands (e.g. demanding osmoregulato-
ry processes), given their efficient oxidation and high energy
yield. In oligotrophic conditions, patches of high quantity and
quality of food may thus be critical for the initial growth of
post-larvae. Other trophic cues have been shown to mediate
settlement in other mytilids. For instance, picoplankton species
involved in the diet of competent mussel larvae (pediveligers)
act as a trophic settlement trigger for Mytilus edulis (Jolivet
et al., 2016). Here, we propose that SFAs may play a similar
role, inducing larval settlement in the subtropical mussel B.
solisianus by signaling a favorable benthic environment on a
typically nutrient-depleted region. Such cues appsear to derive
from terrestrial inputs, which have been suggested to be an
important energetic subsidy to the nearshore food webs in this
area (Gorman et al. in press). Yet, planktonic-derived cues (i.e.,
phytoplanktonic exoproducts) have previously been suggested
as chemical cues potentially acting in the settlement of other
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mytilids (Toupoint et al., 2012b). Thus, one should not
overlook the multitude of cues that may influence (inducing or
inhibiting) the settlement of benthic invertebrates (i.e.,
conspecifics, biofilm, substrate characteristics), that were
of 6



Fig. 3. Shell morphometry of Brachidontes solisianus post-larvae at
Baleeiro Head and Feitieira Beach throughout the sampling period.
Averages and respective SEs are shown for prodissoconch II (PII) and
dissoconch (D) shells (marked in lined pattern). The indent shows the
delimitation of both shells drawn from an image of a primary B.
solisianus settler.
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not investigated here. Other cues, together with planktonic-
derived ones (i.e., nutritional cues), may as well stimulate the
settlement of B. solisianus in this subtropical region. This
study presents preliminary evidence suggesting the importance
of SFAs as a trophic trigger, but other stimuli not addressed
here may be important. Future studies should consider the
interplay of trophic and non-trophic signaling in the mediation
of larval settlement of marine benthic invertebrates.

4 Conclusion

We present results that preliminary support the hypothesis
of a trophic (i.e., nutritional) trigger mediating larval
settlement of the subtropical mytilid B. solisianus. It is
important to note, however, that the evidence we present here
is correlational, not necessarily involving a cause-effect
relationship. Such a trigger may include an effect of SFAs,
commonly linked to organic detritus and bacterial production,
possibly acting together with other local cues (i.e., presence of
conspecifics and/or biofilm). In the absence of these cues, a
considerable fraction of settlers were late post-larvae that
probably remained adrift for some time (building up a shell
size of up to 2mm, as reported). The prevalence of drifting
suggests this may be a strategy for individuals to delay final
settlement until encountering favorable trophic conditions,
which may be particularly adaptive in meso to oligotrophic
environments. From an ecological perspective, drifting may
also be an alternative means of transportation, allowing for
benthic species to better exploit available habitat,
Page 5
escape adverse conditions and potentially colonize new areas
(Martel and Chia, 1991). Further work should aim longer term
sampling to better assess seasonal trends of nearshore trophic
conditions that may mediate juvenile drifting and settlement in
this region.
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