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Functional Near-Infrared Spectroscopy (fNIRS) is an innovative and promising
neuroimaging modality for studying brain activity in real-world environments.
While fNIRS has seen rapid advancements in hardware, software, and research
applications since its emergence nearly 30 years ago, limitations still exist
regarding all three areas, where existing practices contribute to greater bias
within the neuroscience research community. We spotlight fNIRS through the
lens of di�erent end-application users, including the unique perspective of a
fNIRS manufacturer, and report the challenges of using this technology across
several research disciplines and populations. Through the review of di�erent
research domains where fNIRS is utilized, we identify and address the presence
of bias, specifically due to the restraints of current fNIRS technology, limited
diversity among sample populations, and the societal prejudice that infiltrates
today’s research. Finally, we provide resources for minimizing bias in neuroscience
research and an application agenda for the future use of fNIRS that is equitable,
diverse, and inclusive.
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1. Introduction

Functional Near-Infrared Spectroscopy (fNIRS) is a portable, lightweight, and versatile
non-invasive brain imaging modality that allows for the monitoring of brain activity by
measuring changes in hemoglobin concentrations using optical light. It shares similarities
with Functional Magnetic Resonance Imaging (fMRI), as they both measure hemodynamic
activity in the brain. fNIRS has allowed neuroscience researchers to make strides by studying
real-life scenarios, high workload environments, and face-to-face interactions (Hirsch et al.,
2021), which are often unable to be studied using fMRI. Both fNIRS and fMRI measure
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changes in blood flow in the brain, however fNIRS has emerged
as a popular approach as it is portable, captures both oxygenated
and deoxygenated hemoglobin concentrations (Hoshi andMichael,
2005), has a higher tolerance to motion, and is much less
expensive to operate than fMRI (Scarapicchia et al., 2017). As
compared to Electroencephalogram (EEG), fNIRS, and EEG are
complementary neuroimaging techniques; EEG measures changes
in electrical changes in the brain while fNIRS measures changes in
blood flow (Li et al., 2022). EEG lacks spatial resolution however
presents higher temporal solution, whereas fNIRS has better spatial
resolution and is restricted by its lower temporal solution caused
by the slower hemodynamic response (Li et al., 2022). EEG is
substantially lower in cost compared to fNIRS, however many
manufacturers encourage and support the concurrent use of both
technologies due to their complementary features (see Li et al., 2022
for a full comparison).

Since its development in the 1990s, fNIRS has progressed in
terms of hardware and analysis techniques over the last three
decades. Frans Jöbsis, an optical researcher, discovered the use of
NIRS to monitor the hemodynamic activity of the brain during
hyperventilation (Chance et al., 1962). The first studies using fNIRS
investigated general cognition in relation to metabolism in the
brain (Chance et al., 1992), differences in signal based on gender
and handedness (Okada et al., 1993), and the effect of psychiatric
disorders on brain activity (Okada et al., 1994). Originally, fNIRS
devices recorded only single-channel data formed by one source
and one detector, namely the first single-site instrument was
the NIRO-1000 developed by Hamamatsu Photonics in Japan
(Ferrari and Quaresima, 2012). Since then, fNIRS technology
has advanced rapidly with newer, wearable, high-density systems
developed all over the world from both large manufacturers and
laboratory-developed systems including from Mexico (Gorostieta-
Esperon and Jiménez-Ángeles, 2019), Japan (Kubo and Kubo,
2015), Europe (Piper et al., 2014; Pinti et al., 2015), China (Liang
et al., 2016), and the U.S. (Ayaz et al., 2013; Tsow et al., 2021).
Robust improvements in hardware have allowed investigation of
unique domains not previously explored, such as movement-heavy
activities like yoga (Dev et al., 2019; Dybvik and Steinert, 2021),
unpredictable outdoor environments (McKendrick et al., 2016),
and other naturalistic environments (Pinti et al., 2018), human-
robot interaction (Le et al., 2022), collaborations between two or
more agents (Czeszumski et al., 2020), and in sensitive populations
(Arenth et al., 2007). Because these systems remain lightweight and
portable, they are ideal for non-invasive brain measurement in a
number of complex real-world scenarios (Le et al., 2022).

As the capabilities of fNIRS grow, however, so does the
infiltration of bias in fNIRS research. Therefore, we gathered
researchers spanning multiple disciplines including human-
computer and -robot interaction, team science, software
engineering, affect measurement in the brain and merging of
fMRI/fNIRS modalities to study deep brain activity, as well as
aging and injury research. Researchers were brought together to
discuss their unique applications of fNIRS in their research, issues
regarding fNIRS hardware and software, and how diversity, equity,
and inclusion impact their research. This paper synthesizes the
researchers’ perspectives to glean commonalities and reviews each
application domain represented to highlight its unique research

questions, challenges, and expectations for the future. We also
provide a unique perspective from a fNIRS manufacturer on the
challenges and opportunities as they view the field in light of the
diverse needs of their end user research populations.

While the researchers come from a diverse set of application
domains, several common trends emerged: while analysis software
and methods have drastically improved, there still lacks a
standardized fNIRS methodology to be used universally, due in
part to the frequent inaccessibility of educational resources. On the
other hand, amelioration of hardware has allowed for investigation
in novel scenarios and samples not previously accessible, and
new high-density fNIRS systems now allow for comprehensive
whole-brain measurement (Wang et al., 2021). Despite these
improvements in fNIRS technology, a growing concern within the
overall research community, especially in the field of neuroscience,
is the presence of bias regarding the collection and diversity
of data from limited populations (Webb et al., 2022). While
technological advancements have allowed the exploration of new
research spaces, the hardware itself makes it difficult to collect
fNIRS data on certain populations including people with darker
skin and hair (Kwasa et al., 2022) and those with sensory-
motor issues (Arenth et al., 2007). Another avenue for bias
is from prejudice and harmful views present in society that
infiltrate this type of research in many ways (Roberts et al., 2020;
Bradford et al., 2022), that will be explored later in the paper
(see Section 4).

Another pressing and overarching concern repeatedly
discussed by the researchers pertained to ethics in our scientific
practices and the bias that is present in many fNIRS-based
research pipelines (Yücel et al., 2021). It is expected that, because
research samples are typically young, white, undergraduate
students due to the lack of equitable research opportunities, bias
is already present in our datasets (Roberts et al., 2020). We also
examine the mechanisms behind societal and personal biases in
neuroscience research and provide suggestions for identification
and improvement.

The rest of this paper proceeds as follows: In Section 2, we
describe how fNIRS is used in the interdisciplinary application
domains of the researchers. In Section 3, we discuss the software
and hardware challenges that researchers in these fields currently
have with fNIRS and what implications these cause.We also discuss
sources of bias in methodological pipelines of fNIRS research and
how these can trickle down to adversely impact end users of fNIRS
systems. In Section 4, we provide a perspective of these challenges
and shortcomings in current fNIRS research, from the point of
view of a well-established fNIRS manufacturer. Lastly, in Section
5, we summarize future needs of the community to address the
challenges currently faced with respect to software, hardware, and
bias in fNIRS research.

2. Sampling of current fNIRS
application domains

In this section, we describe the myriad of application domains
represented by the researchers, and how each domain currently
uses fNIRS.
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2.1. Collaborative and complex task
environments

fNIRS is a promising sensor modality for research in
collaborative and complex environments. Major advantages
include its portability and flexibility as compared to other
neuroimaging devices. For decades, the monitoring, maintenance,
and enhancement of collaboration have been central research
areas for cooperative environments and occupations. These
environments and occupations have typically included, but are
not limited to, industry organizations, the military, aerospace,
education, hospitals, robot-operation, and natural disaster
response, all of which can be complex socially, technically,
and physically. Sensor and behavioral data are used to inform
curriculum, design of technical specifications, team composition,
and more with the overarching goal of maintaining or increasing
healthy, productive, or efficient collaboration. fNIRS has shown
merit in monitoring collaborative teamwork, including teams of
humans and humans with robots.

2.1.1. Collaborative problem solving
Collaborative problem solving (CPS) involves a group of two

or more individuals engaging in a coordinated attempt to construct
and maintain a joint solution to a problem (Roschelle and Teasley,
1995) and is considered a critical twenty-first century skill, as
much of the complex work in the modern world is increasingly
performed by teams (Graesser et al., 2018). Building on the rich
theoretical advances in the science of CPS, recent research has
turned its focus toward automatically analyzing CPS interactions
with the help of machine learning (ML) and natural language
processing. For example, researchers have used a variety of data
streams [e.g., speech (Pugh et al., 2021), eye gaze (Abitino et al.,
2022), body movements (Vrzakova et al., 2020)] collected during
CPS to automatically identify the display of different skills (e.g.,
identifying when a team is constructing shared knowledge vs.
resolving a disagreement through negotiation; Pugh et al., 2022).
Such research often takes a multimodal approach (i.e., using data
from multiple modalities), operating under the assumption that
multiple data streams together (e.g., speech and body movement)
can give a more complete picture of CPS processes than a single
data stream (e.g., speech alone; Vrzakova et al., 2020).

With the advent of non-invasive brain imaging modalities,
including fNIRS, to measure brain activity in realistic, face-
to-face interactions, the field is beginning to explore the
coordination of brain signals during social and collaborative
interactions. Through studying these interactions, interbrain
synchrony (IBS) has emerged as a behavior exhibited by teams
during cooperative activities in which their brain signals become
temporally coordinated (Hu et al., 2018). Synchrony reflects
the attunement of one person to another’s psychophysiological,
cognitive, emotional, and behavioral state (Azhari et al., 2019).
While we have learned some about IBS between two people, it has
yet to be explored extensively in teamwork settings, and in relation
to oneself. Literature is starting to emerge concerning how IBS may
be able to predict collective performance in teams (Reinero et al.,
2021) as detected by “hyperscanning,” the simultaneous recording
neurological data of two or more people. Yet most of these works

have been solely focused on educational settings (Bevilacqua et al.,
2019; Davidesco et al., 2019; Davidesco, 2020). These studies have
found increased learning flow and communication among students
and teachers when their brain signals are in sync. Another scenario
that has been studied concerns polarized political views: pairs of
people with opposing views watched the same political video clip
yet elicited different responses in their brains (van Baar et al., 2021).

Most hyperscanning studies cases have focused on assessing
previously mentioned IBS, which has been implicated in
joint attention, interpersonal communication, coordination,
cooperation, and decision-making (Czeszumski et al., 2020).
However, there is significant potential to move beyond IBS
in this space. CPS involves a number of distinct processes
that arise as a team works together to solve a problem (e.g.,
constructing shared knowledge vs. negotiating), and the neural
mechanisms underlying these processes likely differ substantially.
Future work could integrate the fNIRS hyperscanning paradigm
with theoretically grounded annotations of CPS in order to
investigate the differences in neural activity (both within a single
brain and between teammates’ brains) during these distinct
processes. Additionally, incorporating fNIRS into CPS research
is a promising step toward deepening our understanding of
an understudied component of collaboration: the role of affect
or emotion. However, available methodologies for objectively
measuring these latent affective states, and investigating the ways
that they contribute to (in)effective CPS, are limited. In future
work, fNIRS could serve as a complement to existing methods (e.g.,
observational coding, self-report surveys) by providing a window
into teammates’ internal states, in order to investigate the role that
affect plays in CPS.

2.1.2. Mental state detection
The effect of complex tasks and environments on cognition

can be better understood through the examination of one’s mental
state during said task or condition. fNIRS allows exploration of
mental state during high-stress or high-intensity situations to better
understand tasks that require high cognitive load. fNIRS has been
used to study states including engagement and attention during
flight simulation (Gateau et al., 2015, 2018; Liu et al., 2021), mental
fatigue while driving (Ahn et al., 2016; Huve et al., 2018), the effect
of mental stress on state classification (Al-Shargie et al., 2015; Al-
Shargie, 2019; Katmah et al., 2021), andmind-wandering and visual
attention (Durantin et al., 2015; Murata et al., 2015; Friedman
et al., 2018). A better understanding of the various cognitive states
during complex tasks can lead to in-the-loop systems that take
fNIRS data as an input and act accordingly based on one’s mental
state. For example, one research group developed a neurofeedback
system called NeuroDesignScience designed to take live fNIRS
signals recorded during transmeridan flight on pilots to detect and
mind-wandering and subsequently re-engage the pilot (Liu et al.,
2021). As fNIRS continues to advance in terms of flexibility and
accessibility, more feedback-loop systems could be designed for
several occupations and scenarios.

2.1.3. Human-robot interaction
Human-robot collaboration is becoming increasingly prevalent

in many realms of complex and collaborative environments
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including rehabilitation, surgery, and the overall medical
field (Raje et al., 2021), physical interactions in work (Smids
et al., 2020), for those with cognitive (Scassellati et al., 2012)
and physical (Van den Heuvel et al., 2016) disabilities and
teamwork for task completion [Howell-Munson et al., 2022, for
a full review of Human-Robot Interaction (HRI) applications,
see Veling and McGinn, 2021]. Understanding how humans
perceive a robot is salient in improving and increasing these
interactions One unique application is to determine if and
how people form a Theory of Mind of robots (Pittman et al.,
2022). This research utilizes brain signals as an independent
evaluation method of how humans perceive robots and
compares the outcomes to computational tools like predictive
ML that also seek to determine how people will perceive
certain robots.

fNIRS provides the unique ability to probe the neural
correlates of HRI as well as reveal the underlying mechanisms
of psychological constructs essential to robot perception, such as
Theory of Mind (Yorgancigil et al., 2022). There are very few
mechanisms that allow machines to understand human behaviors,
and fNIRS may provide a unique implicit (i.e., not self-reported)
and real-time neurofeedback mechanism. This would provide
novel insights toward the design and development of socially
intelligent robots across multiple domains. fNIRS is a propitious
technique to implement real-time human feedback that machines
can understand to influence and ultimately improve HRI. The
requirements for this address the current challenges around
the application, feasibility, and reliability of fNIRS evaluations.
For example, it can be experimentally tested how humans
perceive distinct types of robots using fNIRS (Kawaguchi et al.,
2012; Canning and Scheutz, 2013). From this, ML algorithms
can be developed that can predict how a robot design is
perceived, scaled to a larger amount of robots designs, and
then be independently verified by comparing ML predictions
with the fNIRS evaluation of the predictions as a baseline. This
combination might allow for understanding human cognition
in relation to robot perception and is crucial for implementing
natural interaction capabilities in social robots. The potential
impact of this research reaches from better understanding social
robots and fNIRS capabilities to the implementation of better
social robots in healthcare, elderly care, social assistance, and
education (Hubbard et al., 2021; Kim et al., 2021; Pittman et al.,
2022).

Robots show great promise in helping those varying
socioeconomic status, in settings like schools and hospitals.
However, many HRI studies study interactions with typically
white and young samples, often sourced from universities,
which are often not representative of the desired population
(Leichtmann et al., 2022). A narrow sample may allow
researchers to miss how cultural and racial differences impact
HRIs. Lower socioeconomic status may be associated with
more adversity to a robot due to lack of education and
experience with such technology (Su et al., 2022). Many of
these concerns surrounding lack of diverse sampling for HRIs
also apply to the realm of collaborative problem solving,
where current samples and in-laboratory tasks may not be
representative of the rich and diverse collaborations that occur in
real life.

2.2. Special populations and use cases

fNIRS research has been successful in measuring the brain
activity of members of sensitive populations including those
recovering from an injury, those with chronic illness who often
experience negative affect, and other inherently disadvantaged
populations. Exploring these subsets of participants and unique
clinical cases with fNIRS has resulted in novel research findings and
revealed limitations of using existing fNIRS technology to study
historically underrepresented populations.

2.2.1. Rehabilitation
Aging, injury, intervention, or a combination of these topics

of research (e.g., following intervention in a population with brain
injury) highly benefit from the investigation of cognitive workload
associated with them. Studying the functional brain activity in those
with physical disabilities or deficit can benefit these populations
by designing tools to assist them or by better understanding the
sequelae of their condition. For instance, there is great promise
in rehabilitation tools that utilize a brain-computer interface for
mobility assistance (Khan et al., 2018). An assistive system built
to adapt to one’s brain signal or mental state is yet another
useful application of adaptive automation using neurotechnology,
like fNIRS.

One specific use of fNIRS imaging in this area of research
was to evaluate prospective changes in prefrontal cortex (PFC)
activation following non-invasive brain stimulation and working
memory training in healthy older adults. Older adults who
completed working memory training and had improved working
memory performance experienced reduced PFC activation
during the working memory task, regardless of whether they
received neurostimulation (Stephens and Berryhill, 2016). In
this application of fNIRS, it was quite difficult, if not impossible,
to acquire data from adults with thick or dark hair. Fortunately,
because the sample was older adults, data acquisition was successful
from most individuals because their hairlines had recessed over
PFC. However, there were a number of participants from whom
data could not be acquired, a significant limitation at the time.
Furthermore, participants were required to remain seated during
data acquisition, as a cart-based (i.e., non-mobile) fNIRS system
was employed. In more recent applications of fNIRS, there has
been increased success in acquiring data during movement-based
tasks, which is essential for understanding neural underpinnings
of functional movements. Specifically, fNIRS imaging has been
paired with a dual task assessment, the Dual Task Screen (DTS),
in athletes with and without sports-related concussion. The DTS
requires athletes to complete an obstacle walk, a verbal fluency
task, a hand-eye coordination task, and a mental math task
(Aumen et al., 2020). Given the nature of these tasks, participants
wear a mobile fNIRS device on their backs, which transmits
data wirelessly to a laptop computer. Thus far, this device has
supported acquisition of high-quality fNIRS data, and the data
processing pipelines support identification and removal of motion
artifacts (i.e., confounds). Still, data have been lost from some
athletes with coarser hair and/or darker hair and skin, limiting the
generalizability of findings.
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2.2.2. Clinical applications of fNIRS
fNIRS has also proven to provide several clinical applications

including assisting the diagnosis and monitoring the treatment of
Alzheimer’s disease, schizophrenia, dyslexia, Parkinson’s disease,
childhood disorders, post-neurosurgery dysfunction, attention
disorders, and more (Rahman et al., 2020). Whilst fNIRS has
offered substantial findings in these applications, it is still not yet
well-suited for clinical use. This is due to the device’s flexibility,
which allows for infiltration of the signal and cannot be trusted
as completely accurate. fNIRS also only offers information about
cerebral bloodflow, which could assist in the clinical process, yet it
does not measure the rest of the brain including the deeper cortical
structures (Irani et al., 2007). Evidence suggests that fNIRS may be
used to explore brain functions and possibly assist clinicians with
a faster and accurate diagnosis in the future (Rahman et al., 2020).
fNIRS has not moved to real clinical practice yet mostly due to its
lagged temporal resolution and susceptibility to motion and other
physiological artifacts, which may lead to bias as we can only use
fNIRS in lab-based environments for now (Chen et al., 2020). For
a more detailed review of fNIRS clinical applications, please see
Rahman et al. (2020).

2.2.3. A�ect measurement in the brain with fNIRS
and fMRI

Affect is a fundamental property of brain function and is
disturbed in people with chronic illness and pain (Hu and
Gruber, 2008). In a recent study, Čeko et al. (2022) used
multiple types of negative affect stimuli combined with fMRI
and predictive modeling to identify brain patterns encoding
common and stimulus type-specific negative affect that jointly
shape our subjective experience. Arising from this foundational
fMRI work is the need to incorporate ecologically valid approaches
to better understand affective processes in naturalistic settings
(i.e., “in-the-wild”) and for those with chronic illness who face
unique challenges.

One such approach showing great promise is fNIRS. fMRI
and fNIRS both explore brain activity by measuring blood flow in
the brain. fNIRS can be used in naturalistic experimental contexts
when fMRI is not available and affords slightly better temporal
resolution. fNIRS being non-invasive is also beneficial to sensitive
populations who often experience pain and negative affect who
may not be able to modulate their real-life behavior in an fMRI
scanner. However, commercial fNIRS devices have poor spatial
resolution and cannot detect brain activity in deeper subcortical
and inferior cortical regions. To enable neuroimaging researchers
to take advantage of the complementary strengths of these two
modalities, researchers aim to explore the correlation between these
two types of signals and develop novel methods for predicting
deep-brain activity as measured by fMRI from surface (cortical)
activity measured by fNIRS (Liu et al., 2015). This will provide
preliminary roadmaps for fNIRS researchers to leverage fMRI
to improve modeling of brain data collected by fNIRS and for
fMRI researchers to add ecologically valid experiments with fNIRS
to their body of research. However, because of the inability of
fNIRS to measure certain populations, there remains a gap in

literature relating and comparing fMRI to fNIRS signals in these
sensitive populations.

2.2.4. Neurodevelopment and adolescent studies
The flexibility of fNIRS has allowed developmental researchers

to explore many not well-understood cognitive processes in infants
and young children. Several advances have been made in this
research area with the use of fNIRS and we present some brief yet
noteworthy findings. Most neuroimaging developmental studies,
especially those using fMRI, are performed on sleeping or sedated
infants (Wilcox and Biondi, 2015), however fNIRS is an alternative
method that can be used on awake and engaged infants which
has allowed for some crucial developmental findings. Among
these notable studies the following have been studied in infants:
facial processing (Ichikawa et al., 2019), language acquisition
and development (Quaresima et al., 2012), visual and auditory
attention (Emberson et al., 2017), and parent-infant relationships
(Minagawa et al., 2018). Through the use of fNIRS, complex
neurological phenomena in different contexts have been studied.
For example, the effect of bilingualism on neurodevelopment have
been studied on both infants (Blanco et al., 2021) and young
children (Arredondo et al., 2017). Researchers have found differing
prefrontal functional organization in English-Spanish bilingual
children when compared to English-speaking children (Arredondo
et al., 2017). For a full review of neurodevelopmental applications
with fNIRS, please see Wilcox and Biondi (2015) and Azhari et al.
(2020).

The use of fNIRS with infants and children still presents
some challenges to researchers. Typically, the 10–20 international
mapping system is used to place fNIRS probes corresponding to
underlying cortical structures and this has been verified in adults
(Tsuzuki and Dan, 2014), however it cannot be assumed that these
cortical structures in children map as they do in adults (Wilcox
and Biondi, 2015). Some researchers have coregistered cortical
structures with fNIRS probes in infants, but only in specified areas
including frontal, parietal, and temporal regions (Lloyd-Fox et al.,
2014b). Still uncertain is the variability of hemodynamic responses
among infants which poses challenges for researchers as well; some
have found that the response is highly dependent on experimental
design and stimulus type (Issard and Gervain, 2018).

2.2.5. Understudied or marginalized populations
Certain populations including pregnant women, infants and

adolescents, the elderly, and people with disabilities are often
understudied due to limitations with traditional neuroimaging
techniques like restricted movement and other health- or age-
related restraints. These traditional neuroimaging approaches, such
as fMRI and PET (positron emission tomography), also require
participants to come to a neuroimaging site which increases the
effort required to participate in a research study. The lack of
mobility can prevent data collection from some participants with
limited financial resources, unpredictable schedules, or inadequate
caregiver support.

Compared to fMRI and PET, fNIRS offers mobility and safety
that makes it an excellent approach for many of these understudied
groups. First, fNIRS has been used to assess neural function
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in pregnant women (Roos et al., 2011). While many pregnant
women express concern about multiple exposures to fMRI during
pregnancy, they have minimal safety concerns about multiple
assessments of neural function using fNIRS. Second, fNIRS has
also been used with infants and young children. Compared to
fMRI and EEG approaches, fNIRS is relatively less sensitive to
the participants’ motion. This helps the investigation of the brain
activation in these young populations while they are awake and
interact with robots or other individuals such as their parents
(Lloyd-Fox et al., 2010; Wilcox and Biondi, 2015, see Section
2.2.4 for more). Third, the mobile fNIRS system minimizes
participant burden by facilitating research at the participant’s home
or other convenient locations. For example, fNIRS has been used
in examining the brain development of children in rural Africa
(Blasi et al., 2019). The fNIRS system was brought to a rural
village and the data was collected in a field station. While fNIRS
improves the inclusion of the populations who were previously
considered to be difficult to study and recruit, allowing these
populations to be better represented in the neuroimaging literature,
data collection in these less-constrained environments does not
come without challenges. Researchers that have extended their
work into understudied areas such as rural Africa (Lloyd-Fox
et al., 2014a; Jasińska and Guei, 2018; Blasi et al., 2019) have
reported technical issues including decreased signal quality due
to sweating caused by extreme heat and the overheating fNIRS
machines. Therefore, while the portability of fNIRS allows for
collection in more convenient locations for richer, more diverse
datasets, the data collection environment must be suitable for
data collection.

Certain populations with disabilities may also benefit greatly
from the merits of fNIRS technology, however there are often
hardware limitations for these populations. One area of interest
regarding fNIRS research is the study of auditory deficit and
deafness, especially in those living with a cochlear implant (CI,
Saliba et al., 2016). fNIRS has successfully been used in those
with CIs yet not without unique challenges. Obtaining meaningful
measurements of cortical activity has proven difficult in this
population due to noise caused by CIs, therefore it is essential
that during cap placement and design of optode layout, CI
placement is considered (Saliba et al., 2016). Saliba et al. (2016)
designed a custom fNIRS cap to not intrude with one’s CI. This
limitation is one that major fNIRS distributors should consider
when designing caps.

Cognitive disabilities have also been studied with fNIRS,
with much work focused on Autism Spectrum Disorder
(ASD), a neurodevelopment disorder in which many of the
neuromechanisms are yet to be understood (Zhang and Roeyers,
2019). One unique of fNIRS to this population include the ability
to study neurodevelopment starting at a young age (Conti et al.,
2022) to better understand the neural mechanisms of ASD. fNIRS
is also advantageous compared to fMRI in this context as some
with ASD can hardly control their hyperkinetic behavior or endure
the enclosed space and loud noises (Zhang and Roeyers, 2019).
Thus, fNIRS is a quieter and less-invasive method to use for those
with these sensitivities. However, many of those with ASD struggle
with sensory-motor issues (Piek and Dyck, 2004) that may prohibit
them from wearing a fNIRS cap for an extended time or at all
(Su et al., 2021). The development of remote, non-contact fNIRS

systems where a cap is not required shows great promise for this
population (Hirshfield and Meier, 2020).

Historically marginalized populations [e.g., the racially and
ethnically underrepresented and low socioeconomic status (SES)]
have been difficult to recruit for neuroimaging studies due to
mistrust of participating in research, likely stemming from the
historical harm and systemic inequities exclusive to marginalized
populations (Dotson and Duarte, 2020). These groups tend to
hesitate and even opt not to participate in studies using these
approaches due to perceived risks (Scharff et al., 2010). There are
also less research opportunities for these populations due to the fact
that they are not representative of the general population (Roberts
et al., 2020) causing these groups to be largely understudied.

While fNIRS offers solutions (i.e., portability, safety) to many
of the obstacles posed by other techniques that prevent equal
representation in research, the problems stemming in historical
and societal biases are not as simple to solve. Going beyond
the capabilities of fNIRS technology, these issues rooted in
past discriminatory practices and a history of racism must be
addressed on the systematic level, as echoed by Webb et al. (2022).
Researchers, institutional review boards, scientific journals, and
funding agencies have a shared responsibility to employ equitable
research practices, including incentivizing the participation of
marginalized groups and requiring demographic reporting (for
more recommendations see Table 1 of Webb et al., 2022).

3. Discussion

By collecting input from the focus group of researchers
spanning from many disciplines, we collated current challenges
and concerns with fNIRS considering software, hardware, and the
future of research.

3.1. Current limitations in fNIRS software

As echoed by researchers in varying fields, beginning research
with fNIRS can be daunting due to inadequate open-source
educational resources and lack of data pre-processing and analysis
standards. As a community, we must improve openly available
educational tools that are comprehensible for researchers not
familiar with neuroscience imaging methods and that are inclusive
of all populations. Because analysis method selection first begins
with experimental design, education is essential to carrying out
proper pre-processing and analysis to produce meaningful results.
Several analysis software programs have emerged to pre-process
and analyze fNIRS data, each having different capabilities, but most
currently require at least mid-level expertise.

Regarding pre-processing, there is a multitude of filters and
statistical methods available to pre-process fNIRS data, yet little
documentation on how and when each method should be applied.
Users must understand how the fNIRS signal should appear
and when it is infiltrated with artifacts caused by motion or
physiological confounds. These artifacts can create false results
if not corrected during pre-processing. With many toolboxes
and software options, users also find it hard to verify the steps
made by the program. Modeling the signal is another step in
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which researchers must consider phenotypic characteristics of
their sample pool. When modeling an fNIRS signal, there are
several parameters that must be modified to properly convert
the signal. Differential pathlength factor is one measure that
must be modified based on age which converting the raw
optical signal to hemoglobin concentrations using the modified
Beer-Lambert Law (Kamran et al., 2018). Thus, it is important
to modify pre-processing and analysis steps depending on the
participant pool.

Both open-source and closed-source software options for
analysis of fNIRS exist. Open-source resources, however, often
do not offer ample documentation. Online communities and
forums have helped new and existing users find support but
have not solved this issue. Improvements have been made with
processing software available in different programming languages,
namely NIRS-SPM (Ye et al., 2009), Homer (Huppert et al.,
2009), and NIRS AnalyzIR Toolbox in MATLAB (Santosa et al.,
2018), and more recently MNE-NIRS in Python (Gramfort et al.,
2014, for a full description of analysis software options, refer to
Table 2 of Almajidy et al., 2019). These options are all viable,
however new users have a difficult time choosing one over the
other. Many researchers have questioned what advantages, if any,
closed-source software options have over open-source resources.
fNIRS analysis requires intermediate statistical knowledge, which
is not widely practiced in many of the fields utilizing fNIRS in their
research. Finally, although it appears that high-quality data can
be acquired and there are good options for fNIRS data reduction
and processing, there is still ambiguity surrounding optimal fNIRS
data analysis.

Another gap in current analysis methods is the ability to analyze
and interpret data in real time. In the years to come, there will be
an increasing need to rapidly assess interactions with other agents
[robots, artificial intelligence (AI), automated systems] and adapt
the agent’s behaviors appropriately. In order to achieve that, there
needs to be real-time, machine interpretable human feedback that
goes beyond objective measures. Further, real-time data analysis
should be processed and displayed in user interfaces that aid direct
individual or group decision making or fed into autonomous,
virtual assistants that communicate with the human’s suggested
actions. To make the displayed data robust and reliable, software
must have reliable and standardizedmethods for the pre-processing
and analysis of fNIRS data.

Blood oxygenation likely will not be the only
psychophysiological trend being monitored with wearable sensors
during extreme conditions such as human spaceflight missions,
so future extreme and dangerous habitats will need to sync
concurrently collected physiological data, pair the information
with environmental data, build models of workload and task
performance, and effectively report findings. As we move into
these more real-world and unpredictable environments, software
must be developed to account for drift over long durations of
sensor use or changes in physiological states of crewmembers.
Thus, these systems must assess data quality in real time and either
1. pre-process and clean data or 2. make recommendations on how
to adjust the sensors to improve data quality.

To educate the community, we encourage researchers to work
on collating educational resources accessible to those new to fNIRS.
As we learn more about the brain in different environments and

scenarios, the need for a single repository for data storage and
shared pipelines based on application use is evident. The creation of
ERP CORE as a open-source resource and repository with example
data pre-processing and analysis pipelines for analyzing EEG
signals serves as an example of how an online fNIRS community
could be built (Kappenman et al., 2021). A gold standard for fNIRS
data processing should be created and shared within a user-friendly
platform, like that of ERP CORE (Kappenman et al., 2021), to
improve data acquisition and data sharing by researchers with and
without computer science expertise. Recently, efforts have been
made toward organizing fNIRS data into the standardized Brain
Imaging Data Structure (BIDS) format (Gorgolewski et al., 2016).

3.2. Perspectives on fNIRS hardware

Whilst current fNIRS technology demonstrates great progress
since the single-channel devices, newer hardware still has some
limitations and poses challenges for certain populations. fNIRS
technology uses optical light to measure hemodynamic activity
in the brain via differences in optical absorption rates (Chen
et al., 2020). Consequently, fNIRS devices struggle to represent
data collected from individuals with dark, thick hair and/or darker
pigmented skin, which only feeds the existing bias in the field of
neuroscience (discussed in detail in Section 3.3). Ambient light
interference (i.e., bright overhead lighting, sunlight) also makes it
difficult to achieve optimal data quality “in the wild” (McKendrick
et al., 2016).

Current gold standard fNIRS systems are costly, exist
in form factors that are overly obtrusive when considering
operational requirements in the field, and are not robust to
motion (Tsow et al., 2021). While some commercial non-invasive
wearable sensors exist that are better suited to the field than
laboratory grade sensors, they are prohibitively costly considering
normal “wear and tear” of extreme environments and are
inadequate for use over long durations because of discomfort
and variable reliability (Kyriakou et al., 2019). Portable fNIRS
devices should provide enough light sources and detectors to
allow for full-head coverage while maintaining a lightweight
acquisition device that transmits data to a wirelessly connected
computer. Many populations would benefit from hardware that
is comfortable to wear for hours on end, simple to don, and
robust to motion, sweat, skin oils, and other contaminants. This
package would need to be integrated into other wardrobes such
as extravehicular spacesuits, similar to how electrocardiogram
functions can now fit into a smartwatch (Isakadze and Martin,
2020).

fNIRS holds promise for adaptive automation or to generate
feedback that can be used in real time to calibrate human-agent
interactions appropriately if the hardware technology advances to
a point where fNIRS can generate reliable feedback as a wearable
device. fNIRS systems should continue to support high-density
measurements and for use in combination with fMRI and EEG,
taking advantage of their unique properties. Current fNIRS systems
are best suited for measuring brain activity from superficial cortical
regions, which eliminates evaluation of deep-brain structures,
which could be provided with concurrent fMRI measurement.
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3.3. How bias plays a role in fNIRS research

Because of the conspicuous presence of bias existing on
individual, institutional, and societal levels, it is vital to
acknowledge the impact that bias has on research outcomes
and how the exclusion of certain populations may exacerbate
preexisting societal injustices. There are multiple sources of bias
within neuroimaging and fNIRS research. The first source is
implicit bias, a subtle form where individuals may be unaware of
their discriminatory bias, often a result of being raised in a biased
society, can manifest itself in the neural data of many (Stevens
and Abernethy, 2018). For example, researchers found greater
amygdala activity, a marker of fear, in response to people of color
(Cunningham et al., 2004; Lieberman et al., 2005; Ronquillo et al.,
2007). People of color are often associated with fear response
because many are taught to fear based on someone’s appearance,
often stemming from early experiences (Stevens and Abernethy,
2018). The presence of implicit bias can result in unexpected brain
activity, which raises the importance of reporting demographics
like age, gender, race, etc. Researchers should accost the presence of
implicit bias in their work by lessening the shame associated with
personal ideals and acknowledging that personal bias may impact
their findings.

Explicit bias, where one is aware of their prejudices, is often
associated with feelings of shame, and those who aremore explicitly
biased are often better at controlling their reactions (Richeson
and Shelton, 2003). Richeson and Shelton (2003) and Richeson
and Trawalter (2005) found that regulation of racial bias taxes
executive functioning resources, which are often studied in fNIRS
research. This is further proof how personal bias can infiltrate the
fNIRS signals when bias is not intentionally being explored. This
again emphasizes why the presence of personal bias needs to be
acknowledged as it may influence experimental results.

Recently, AI systems have been shown to produce biased and
often derogatory results due to biased data being used to train ML
algorithms within the human neuroscience domain (Parker and
Ricard, 2022; Webb et al., 2022). Fairness in ML is a booming
field, where researchers are looking to diversify their teams and
their data to create more fair and equitable algorithms. A similar
effort should be paid by the fNIRS community as not having
equal representation of a certain population will result in other
populations disproportionately or exclusively benefiting from the
fruits of the research due to societal bias.

Because melanin affects light absorption, dark, thick hair,
and darker pigmented skin affect fNIRS data collection. In fact,
data collected on participants with darker skin and hair is
often discarded due to bad data quality (Webb et al., 2022),
creating a source of methodological bias. Popular devices such
as smartwatches and pulse oximetry monitoring devices that use
optical light face the same issue, leading to the exclusion of
meaningful data from a significant percentage of the general
population (Bradford et al., 2022). This has been an issue present in
most research, as people of color are notoriously underrepresented
in research, including general statistics datasets such as National IQ
datasets (Sear, 2022) and clinical psychology (Bradford et al., 2022).
fNIRS researchers must work to develop proper data collection

techniques for underrepresented populations including ensuring
proper cap size and using tools to optimize optode-to-skin contact.

It is essential to acknowledge the intersectionality of the
many groups understudied with fNIRS. In 2021, the U.S. Census
Bureau reported 19.5% of the country that live below the
poverty line are Black (Creamer et al., 2022). In the same
year, they reported that of Americans living with a disability,
25% live below the poverty line (Creamer et al., 2022). Several
other disadvantages may lead to increased poverty rates such as
employment status and level of education attained. Because of
the challenges of participating in research and other factors, these
populations continue be understudied and not supported by many
neuroimaging technologies.

There are several ways that bias can infiltrate research
(Figure 1). Societal biases, thoughts, opinions, and lived
experiences all contribute to what is recorded in a lab setting
by the means of infiltrating valuable neurophysiological data
[i.e., heightened amygdala activity in response to people of color
(Cunningham et al., 2004; Lieberman et al., 2005; Ronquillo
et al., 2007) and maintaining of bias taxes executive functioning
resources (Stevens and Abernethy, 2018)]. Another consideration is
that participation in research studies is affected by socioeconomic
disparities (i.e., not affiliated with an educational or research
institution, insufficient compensation for missed work, limited
research opportunities in certain areas of the world; Choy et al.,
2022). Further, modeling interactions with limited populations
leads to findings and technological advancements that are not
applicable to all. For example, CPS is often observed and measured
in groups that are similar in demographics (undergraduate
students studying at the same university), and future work must
investigate non-normative instances of CPS with more diverse
groups that differ in demographics and lived experiences. Relatedly,
positivity bias and significance bias, where failures or statistically
insignificant results go unreported and unpublished for various
socio-economic reasons, lead to interventions or measures seeming
more effective or correct than warranted (Collaboration, 2015;
Stanley et al., 2021). This can disproportionately affect populations
those studies did not sample because the results and methods will
become generalized in the literature despite being unreproducible
with different samples (Roberts et al., 2020). To move beyond the
racially, ethnically, and socioeconomically homogenous research
samples, all researchers, including researchers in the fNIRS field,
must address and aim to close this gap present in data (Dotson and
Duarte, 2020).

We selected a subset of papers that explicitly accounted for
phenotypic differences during analysis (Gemignani et al., 2018;
Nagels-Coune et al., 2020) or directly investigated the effect of
pigmented hair and skin on fNIRS signal quality (Fang et al.,
2018; Bronkhorst et al., 2019). A closer examination of these
selected papers (see Table 1) confirms that hair and skin color both
significantly affect brain imaging results. This also demonstrates
how few studies account for these effects in their analysis nor report
skin and hair characteristics in their work that may be influencing
results. While these papers offer practical advice to optimize
the fNIRS signals in dark-skinned and -haired subjects, fNIRS
researchers must consider effects due to phenotypic differences
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FIGURE 1

Biases present in society stemming from lived experiences and personal beliefs infiltrate the lab setting by e�ecting neurological data, providing small
unrepresentative samples, and preventing important samples from providing data due to hardware limitations.

TABLE 1 Brief literature review.

References Methods Results

Gemignani et al. (2018) Performed a linear mixed effect model with hair as a fixed effect. Model accuracy for deoxyHb using the generalized linear
model GLM) was significantly higher for blonde subjects
when compared to brown-haired subjects.

Nagels-Coune et al. (2020) Studied how certain characteristics of hair (thickness, root density,
and color) impact fNIRS results using a suitability questionnaire.

Subjects with lower suitability scores (based on hair/skin
color) generally had more channels with poor
signal-to-noise ratio.

Fang et al. (2018) Used Monte Carlo simulation to study light propagation using a
visible Chinese human corpse cryosection dataset.

Detected light intensity signal decreased by 15–80% when
scalp hair follicle density varied from 1–11%.

Bronkhorst et al. (2019) Studied how a simple head maneuver redistributed cerebral blood
volume to verify if photon transmission is sufficient in
darker-skinned subjects. They compared effects of a head tilt in a
pigmented vs. non-pigmented subject.

Data from a pigmented and non-pigmented had
comparable Hb patterns to effects of the head tilt. This tilt
is recommended as a test to confirm photon transmission
in subjects with pigmented skin.

during data analysis, such as treating hair color as a fixed effect in a
linear model (Gemignani et al., 2018).

4. Perspectives from creators of fNIRS
solutions

As the fNIRS field is still maturing, creators of fNIRS solutions
face plenty of exciting opportunities and motivating challenges.
Taking an inclusive perspective, we presently express what we
perceive as challenges and future directions shared by many
manufacturers of research-grade fNIRS devices, with particular
focus on the current researcher-motivated topics.

4.1. Phenotypic bias with hardware

Optimizing signal quality for participants in which typical
caps and optodes do not work presents an important challenge to
hardware development. Technical challenges often involve dark,
thick, and curly hair styles that greatly increase the distance from
optode to scalp and absorb a portion of the signal light (Bradford
et al., 2022). This creates a gap in the literature studying those with
cultural differences that keep them from wearing a typical fNIRS
cap and optodes. Some inspiring ideas have been presented recently
by the researcher community to help optimize the design of the
culturally-sensitive optodes and caps to better accommodate these
hairstyles, and we anticipate continued focus and advancements
in the industry to mitigate this important problem. For example,
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in May of 2022, two neuroscientists published similar concerns
on racial biases in the neuroscience domain (Parker and Ricard,
2022). In their article, they encourage the development of novel
neuroimaging devices that overcome the issues that come with
current technology such as the inability to penetrate through darker
hair and skin. They advocate for the creation of fNIRS and EEG
caps that are more accommodating to protective hairstyles (braids
and twists) and coarse hair types by lengthening the probes and
enlarging caps to cover thicker hair (Louis et al., 2022; Parker and
Ricard, 2022). Technology must advance to accommodate cultural
and phenotypic differences that are present all over the world.
fNIRS creators must focus on such efforts as well as be transparent
about how they are working to make fNIRS technology both more
accommodating and accessible to diverse participant pools.

As the technology continues to develop, some of the current
high-end fNIRS devices already contain features that help optimize
signal quality in the context of the challenging phenotypes of
darker hair and skin, including dynamic range adjustment for each
individual optode and more sensitive light detection technology.
However, there is still much to do to make fNIRS accessible to
all hairstyles, textures, and colors, which is why multiple studies
have recently launched with the aim of characterizing performance
systematically in across participants with different hair and skin
types to better understand the current state of the issue, identify
opportunities for improvement, and direct further technology
development (Nagels-Coune et al., 2020; Kwasa et al., 2022).

Another aspect of this issue involves the variability in the
setup and troubleshooting strategy between end users. Educating
researchers about the best practices for optimizing signal quality is
a matter of maximizing the likelihood of success with various hair
and skin types, and we will see a greater emphasis on training in
this regard.

4.2. Analysis software standardization

While the NIRx Aurora fNIRS software (NIRx Medical
Technologies) is one of the most widely used options for data
acquisition, there has yet to be a similarly widespread convergence
on fNIRS data analysis software for either real-time or offline
processing that is beginner-friendly, professionally supported, and
integrates the latest advanced approaches from signal processing
through statistical analysis.

A recent addition to the data analysis software options, Satori
by Brain Innovation (NIRx Medical Technologies), checks these
boxes, but it is still challenged by its newcomer status and the
divergence of analysis approaches that still characterize the fNIRS
field. And whereas Satori is built for offline analysis, Turbo-Satori
(Lührs and Goebel, 2017), another release from Brain Innovation,
is designed for real-time applications such as brain-computer
interfacing.

Although the foundational software exists, we need to enhance
our community engagement and enrich the feedback stream
that is crucial to optimize for application-specific solutions.
Ultimately, building a robust end-user community and increasing
efforts for analysis education and direct comparison of software
toolboxes will facilitate standardization and best practices. And
while the aforementioned toolboxes are commercial products, as

has developed in many other scientific domains, the coexistence
of open-source and closed-source software solutions for fNIRS
will better serve the multitude of end-users and their varying
requirements, expertise, and environments.

4.3. Future directions

Feedback from our extensive community of end users continues
to drive us forward and navigate through development initiatives.
With this compass, there is a lot to aim for in the future—portable,
robust, lightweight, wireless, high-density fNIRS devices that can
be used by all subjects and in all environments.

Currently, special detectors that contain internal gain
amplification exist for special user-cases but are more expensive
and bulkier than the more common non-amplifying type. In
the future, ultra-sensitive detectors will be widely available in
compact form, minimizing setup time and facilitating universal
fNIRS access.

Furthermore, only a fraction of the current research groups
goes through the process to derive the digitization of exact optode
location on all their participants. In the future, every sensor
location will be precisely known and registered to each individual’s
anatomy, reducing variability across recording sessions, subjects,
and experiments. Digitization of optode locations on a per-subject
basis, combined with sufficiently dense spatial sampling, would
also make it more feasible to make small adjustments to individual
optode locations to accommodate diverse hairstyles.

Reducing variability across sessions will greatly facilitate
the expansion into new clinical and consumer markets, where
recordings and results are less likely to be pooled across individuals.
Beyond precise optode localization, it is likely that multiple
fNIRS technologies, including continuous wave, time domain, and
frequency domain, will be used to address this issue and clear the
way for adoption in various settings. Expanding into new markets
and increasing the scale of production will further reduce the cost
of research devices and increase accessibility.

Lastly, the combination of fNIRS with another neural recording
technology (e.g., EEG, fMRI) is greater than the sum of its parts.
Simultaneously using multiple technologies allows for denoising
of signals and cross-validation of results. Continued integration of
modalities and standardization of associated analysis techniques
are key challenges that will greatly benefit the universal fNIRS
device of the future.

5. Conclusions and an agenda for
future research

5.1. Future of fNIRS software and hardware

The community must also work toward establishing
common pipelines for pre-processing and analysis based on
varying experimental design. While there are several toolboxes
and programs that carry out similar functions, there is little
documentation on why certain functions or filters should be used
depending on the data type and quality. Several of these tools make
it difficult to truly understand what each function is performing
on the data. This makes it difficult to recognize problems or
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abnormalities present in data. To standardize processing and
analysis pipelines, there should be an open-source repository
where data and pipelines can be stored, educational resources
available to fNIRS beginners, and a community forum where
researchers can collaborate. Efforts should also be made toward
developing tools that better visualize hemodynamic activity in the
brain (i.e., highlight what area of the brain is truly being activated).

Going forward, better standardization of data naming and
organization, and processing pipelines are needed to be able to take
the full advantage of this promising fusion of fNIRS and fMRI data.
While the fMRI community has made substantial progress on both
fronts, with the introduction of BIDS formatting for data naming
and organization, and a push toward the use of a uniform pre-
processing pipeline with excellent documentation and provenance
(i.e., fMRIprep; Esteban et al., 2019), the fNIRS field seems to be
lagging behind. We hope to see advances in this and a stronger
culture of open sharing of fNIRS data, as is becoming standard
(and often a requirement) for fMRI data, on platforms such as
Open Neuro which currently hosts 550 fMRI datasets. Salient
efforts to unite the community are underway with the formation
of the Society of fNIRS (Yücel et al., 2017), and recent publications
encouraging the standardization of fNIRS practices and the further
unification of fNIRS researchers (Pinti et al., 2019; Yücel et al.,
2021; Schroeder et al., 2022). These efforts may collectively raise
awareness and develop tools concerning the issues of personal,
societal, and methodological biases that impact fNIRS research.

While fNIRS hardware has changed rapidly over the last 30
years, there are still improvements to be made to harbor an
inclusive and informative research community. Important next
steps in the advancement of fNIRS hardware are to recognize the
current gaps in data and subsequent literature and to find ways
to optimize the signals for commonly marginalized populations.
Working toward equitable fNIRS technology, where data collection
is not restrictive of physical differences (such as skin and hair color),
will minimize the methodological bias present in fNIRS research.
The lack of inclusion of racial and ethnically diverse populations in
literature must be acknowledged and addressed.

5.2. Application agenda for the future

Furtherance in software and hardware development is vital for
the advancement of research within different application domains.
Researchers across domains wish for hardware advancements
that would allow for more “in the wild” feasibility to allow for
investigation in high fidelity environments such as in the workplace
(Martinez et al., 2022), outdoors (McKendrick et al., 2016), or even
at home (Tsow et al., 2021). Understanding the brain mechanisms
that drive everyday activities such as driving using a car-based
fNIRS setup would help discover novel information about these
processes like mind-wandering and distraction (Ogihara et al.,
2022). An at-home consumer level fNIRS setup would broaden
the applications of fNIRS research and make neuroscience research
more accessible to all (Tsow et al., 2021).

To make fNIRS more inclusive, more attention should be paid
to the underrepresented populations in which fNIRS is not a usable
or efficient technology, including those with CIs and sensory-motor

issues. We advise that either custom-made or customizable NIRS
caps could help alleviate this issue. Also, the possibility of remote
fNIRS should be further explored for those who cannot wear a cap
(Hirshfield and Meier, 2020).

Researchers have also expressed the way for less expensive,
more accessible ways to integrate fNIRS with compatible
modalities such as fMRI and EEG. Both modalities are
highly complementary to the fNIRS signal yet is not
attainable to many due to lack of funding and lack of
educational resources for going about research with multiple
brain-monitoring technologies.

5.3. A call to address bias

As echoed throughout this paper, there is a dire need for
researchers of all domains to address the bias present in their
work. Specifically, to advance in the field of neuroscience, we must
address how personal biases and lived experiences may impact
neural findings, how societal and institutional level bias may
prohibit the progression of research, how certain underprivileged
populations are unaware of research opportunities or how research
is purely inaccessible to many. Any researcher can make efforts
to expand recruiting efforts to create more diverse participant
samples, such as connecting with groups on campus and expressing
the importance of their representation in science. We can look
to the efforts made by the public health research and computer
research communities to reduce the bias in their respective
fields (e.g., Ford et al., 2018; Loi, 2021). Ethics committees and
institutional review boards can require investigators to record
the ways in which they are actively minimizing the bias in
their work (Kwasa et al., 2022), such as Boston University and
Boston Medical Center’s Reducing Implicit and Explicit Bias in
Research form (Boston University, 2022). Journals can reduce
publication biases of prioritizing novelty, by accepting replication
studies with more representative samples or modified methods
and meriting participant diversity in the review process (Roberts
et al., 2020). Moreover, modeling these efforts to junior researchers
will help them become the norm so future science is more
inclusive. Advocacy of hardware changes to accommodate sensitive
populations is also required to make fNIRS data more inclusive.

In summary, through the exploration of several user-inspired
research domains, we have revealed common limitations faced by
researchers regarding fNIRS hardware and software. We also raise
the issue of limitations caused by both implicit and explicit bias
present throughout society and in lab settings. Lastly, we offer
expert input on these issues and limitations from a group of fNIRS
distributors and what they expect for future advancements in fNIRS
technology and subsequent research. The future success of fNIRS
research will rely on the resolution of issues raised in this paper
as well as researchers working actively to reduce bias present in
their research.
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