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Periodontitis and inflammatory bowel diseases (IBD) are inflammatory diseases of

the gastrointestinal tract that share common features of microbial-induced

ecological dysregulation and host immune inflammatory response. The close

relationship between periodontitis and IBD is characterized by a higher

prevalence of IBD in patients with periodontitis and a higher prevalence and

severity of periodontitis in patients with IBD, indicating that periodontitis and IBD

are different from the traditional independent diseases and form an “Oral-Gut” axis

between the two, which affect each other and thus form a vicious circle. However,

the specific mechanisms leading to the association between the two are not fully

understood. In this article, we describe the interconnection between periodontitis

and IBD in terms of microbial pathogenesis and immune dysregulation, including

the ectopic colonization of the gut by pathogenic bacteria associated with

periodontitis that promotes inflammation in the gut by activating the host

immune response, and the alteration of the oral microbiota due to IBD that

affects the periodontal inflammatory response. Among the microbial factors,

pathogenic bacteria such as Klebsiella, Porphyromonas gingivalis and

Fusobacterium nucleatum may act as the microbial bridge between periodontitis

and IBD, while among the immune mechanisms, Th17 cell responses and the

secreted pro-inflammatory factors IL-1b, IL-6 and TNF-a play a key role in the

development of both diseases. This suggests that in future studies, we can look for

targets in the “Oral-Gut” axis to control and intervene in periodontal inflammation

by regulating periodontal or intestinal flora through immunological methods.
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1 Introduction

Periodontitis is one of the most common oral diseases and a

major cause of tooth loss in adults. Periodontitis is an infectious

disease caused by plaque biofilm that leads to the destruction of tooth-

supporting tissues, with clinical symptoms including attachment loss,

periodontal pocket formation, and alveolar bone resorption, which, if

left untreated, can gradually lead to tooth loosening or even tooth loss

(Petersen and Ogawa, 2012; Kinane et al., 2017; Van der Velden,

2017). There is a growing body of research showing that the health of

oral tissues interacts with systemic health (Taylor et al., 2000; Genco

and Sanz, 2020; Kapila, 2021; Larvin et al., 2022; Teles et al., 2022).

Notably, periodontitis is closely associated with several systemic

diseases, including atherosclerotic cardiovascular disease (Beck

et al., 2001; Van Dyke et al., 2021; Isola et al., 2022), diabetes

(Chapple et al., 2013; Genco and Borgnakke, 2020; Nibali et al.,

2022), adverse pregnancy outcomes such as miscarriage and preterm

delivery (Canakci et al., 2004; Sanz et al., 2013; Miranda-Rius et al.,

2021), rheumatoid arthritis(Bartold and Lopez‐Oliva, 2020; Möller

et al., 2020; González‐Febles and Sanz, 2021), Alzheimer’s disease

(Pizza, 2019; Kamer et al., 2020; Torrealba-Garcıá et al., 2021) and

inflammatory bowel disease (Cai et al., 2021; Imai et al., 2021; Zhang

et al., 2021a; Baima et al., 2022).

The oral cavity is a complex ecosystem in which microorganisms

accumulate and multiply, forming dental plaque (Listgarten, 1994;

Lourenço et al., 2014). Plaque is the basis for the survival, metabolism

and pathogenesis of oral bacterial, and it can serve as an arsenal for

bacterial pathogenesis, producing antigens that invade the deep

periodontal gingival mucosa and interfere with the host immune

defense system, thereby exacerbating the inflammatory response

(Murakami et al., 2018; Valm, 2019; Jakubovics et al., 2021). The

flora composition and oral ecology of patients with periodontitis

becomes more complex, as Socransky et al. suggested that

periodontitis is caused by specific pathogens such as “red complex”

bacteria (Porphyromonas gingivalis, Treponema denticola and

Tannerella forsythia)(Socransky et al., 1998), with Hajishengallis’

in-depth study of its pathogenesis revealing that the etiology of

periodontitis is a synergistic effect of a dysregulated microbial

community (Hajishengallis and Lamont, 2012), that is, bacteria

invade the host tissue and disrupt its immune protective

mechanisms, causing local periodontal tissue damage, while

facilitating the enrichment of other anaerobic bacteria and

increasing the pathogenicity of the entire microbial community,

resulting in an inflammatory response.

IBD is a non-specific chronic inflammatory disease of the

intestine that has received a lot of attention from scholars because

of its high incidence (Windsor and Kaplan, 2019; Agrawal and Jess,

2022; Upadhyay et al., 2022), mainly including ulcerative colitis (UC)

and Crohn’s disease (CD). UC mainly damages the colon and rectum,

while CD can damage any part of the gastrointestinal tract from the

mouth to the anus, with the end of the small intestine and the colon

being most commonly affected (Guan, 2019). The main clinical

manifestations of IBD are abdominal pain, diarrhea, bloody stools

and weight loss (She et al., 2020). Approximately more than 40% of

patients will present with extra-intestinal manifestations, such as oral,

ocular, cutaneous, hepatobiliary, urinary and neurological lesions

may be associated (Jose et al., 2009; Lankarani, 2013; Taleban et al.,
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2015; Hedin et al., 2018; Marotto et al., 2020). Oral lesions are the

most common extraintestinal manifestation in patients with IBD,

which can appear as the first symptom and are closely related to

disease activity, mainly in the form of recurrent oral aphthae (Sircus

et al., 1957), granulomatous inflammation (Dudeney, 1969)and

periodontitis (Byrd and Gulati, 2021). In addition, IBD is associated

with environmental factors, genetic susceptibility, gut microbiota and

host immune response (Ananthakrishnan et al., 2017; Khalili et al.,

2018; Sugihara et al., 2019; Amoroso et al., 2020; Agrawal et al., 2022),

among which gut microbes are crucial for the development of IBD (Ni

et al., 2017; Schirmer et al., 2019). Schreiber et al. found that bacterial

diversity in the intestine of IBD patients was reduced, with CD

patients having a reduced number of Firmicutes and an increased

abundance of Proteobacteria and Bacteroidetes, while UC patients had

a relatively mild degree of intestinal microbial dysbiosis, but the exact

pathogenesis of IBD is still unclear (Ott, 2004).

Periodontitis, one of the most common diseases of the oral cavity,

has been studied by countless scholars over the years. In 1889, Miller

first linked the theory of bacteria to oral disease, clearly implying that

bacteria play a role in the late stages of periodontal pathology (LÖE,

1993); in 1994, Socransky et al. classified microorganisms in

subgingival plaque into five complexes according to their

aggregation and pathogenicity (Socransky et al., 1998). Similar to

periodontitis, the signs and symptoms of IBD have been mentioned

throughout human history. In 1859, the British physician Samuel

Wilks identified UC as a separate disease; in 1932, Burrill Crohn et al.

described inflammation of the terminal ileum in an article, a disease

that came to be known as CD; in the 1950s, it was noted that

symptoms in patients with CD and UC responded to

corticosteroids and IBD was identified as a major intestinal

autoimmune disease (Malik, 2015). The oral manifestations of IBD

were first reported in the 1950s, initially focusing on aphthous ulcers

(Sircus et al., 1957); in 1969, Dudeney et al. described granulomatous

inflammation of the oral cavity in patients with IBD(Dudeney, 1969);

in the 1980s, cases of severe periodontitis in patients with IBD were

reported(Engel et al., 1988). Periodontitis may lead to low-grade

systemic inflammation and its association with other chronic

inflammatory diseases has been studied for many years. In the

1990s, scholars suggested that oral bacteria may spread into the

bloodstream through the ulcerated epithelium in periodontal

pockets and cause transient bacteremia (Asikainen and Alaluusua,

1993); in 1997, Madianos et al. found that Porphyromonas gingivalis

(P. gingivalis) significantly inhibited neutrophil migration induced by

stimuli such as Escherichia coli(Madianos et al., 1997); in 2015,

Nakajima et al. found that P. gingivalis causes changes in intestinal

bacterial composition and induces intestinal microbiota dysbiosis and

impaired barrier function(Nakajima et al., 2015); in recent years,

scholars have reported a significantly increased risk of ulcerative

colitis in patients with periodontal disease(Lin et al., 2018). All these

studies and reports provide favorable evidence for the existence of an

“oral-gut” axis in periodontitis and IBD (Figure 1).

The oral cavity and the intestine are the starting and ending

points of microbial aggregation in the digestive tract, housing unique

microbial groups associated with human health and disease (Lynch

and Pedersen, 2016), and both share some common flora, including

Streptococcus, Bacteroides, and Prevotella (Byrd and Gulati, 2021).

Most studies have shown that microorganisms in the oral cavity can
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be transmitted to the intestine through the digestive tract (Lira-Junior

and Figueredo, 2016; Atarashi et al., 2017; Schmidt et al., 2019;

Kitamoto et al., 2020a; Byrd and Gulati, 2021). Periodontal

pathogenic bacteria can ectopically colonize the gut from the oral

cavity, leading to disruption of the intestinal microbiota and inducing

an intestinal immune response, thereby exacerbating intestinal

inflammation (Atarashi et al., 2017), suggesting a unique

association between periodontitis and IBD.

At the same time, harmonious intestinal flora facilitates the

control of periodontitis, and the administration of intestinal

probiotics with inflammatory regulatory properties is considered

one of several new approaches to address bacterial imbalances in

periodontitis and prevent bone loss. Several clinical studies have

shown that adjuvant oral administration of the intestinal probiotic

(Lactobacillus reuteri) after basic periodontal treatment significantly

improves periodontal clinical signs (Ikram et al., 2018) and that gavage

of the probiotic significantly reduces the number of osteoclasts in the

alveolar bone of mice compared with oral inoculation of the probiotic

(Gatej et al., 2017). Treatment of IBD is closely related to periodontitis

healing and prevention (Newman and Kamada, 2022). Probiotics such

as Lactobacillus have beneficial activity for the treatment of

gastrointestinal diseases such as IBD, and related longitudinal

studies have shown that gavage of probiotics before the formation

of periodontitis in mice resulted in a significant increase in b-defensin
levels in intestinal and gingival tissues, significantly reduce the levels of

inflammatory factors in gingival tissues during periodontitis while

modulating intestinal barrier function and improving intestinal

inflammation, and alleviate alveolar bone resorption and

periodontal membrane destruction (Kobayashi et al., 2017). In

addition, altering the progression of chronic systemic inflammatory

disease through dietary control may have similarities to improving

chronic adult periodontitis (Dawson et al., 2014). Studies have pointed

out that certain therapeutic agents of CD, such as steroids, may be able

to prevent periodontitis (Chi et al., 2018). Currently, psoralen, vitamin

D, and other substances have been shown to achieve the treatment of

periodontitis by repairing the barrier of intestinal inflammation
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damage (Jagelavičienė et al., 2018; Machado et al., 2020; Liu et al.,

2021a). Moreover, Zhang et al. proved that with the improvement of

periodontitis, IBD was also significantly relieved after exosome

treatment (Zhang et al., 2021a). All of the above related longitudinal

studies suggest a strong bidirectional association between

periodontitis and IBD, with the treatment of one disease having a

beneficial effect on the other, which inspires that future studies could

use a drug to treat intestinal inflammation by improving the intestinal

flora while having a beneficial effect on the prevention and control

of periodontitis.

In terms of immune mechanisms, the digestive tract is the main

site of communication between the internal and external environment

and a key barrier against pathogen invasion, while its defense against

pathogen invasion includes both intrinsic and specific immunity, of

which the main one is the immune defense involving T lymphocytes.

CD4+ T cells are the main cell population mediating various host

protective and homeostatic responses and contain many

subpopulations (e.g., helper T cells, Th1, Th2, Th17 and regulatory

T cells, Treg) (Shale et al., 2013; Jaeger et al., 2021; Hong et al., 2022;

Yang et al., 2022), of which two CD4+ T lymphocyte populations

synergistically regulate adaptive immunity in the intestinal mucosa:

peripherally induced regulatory T cells (pTreg cells) and CD8aa-
expressing intraepithelial lymphocytes (CD4IELs) (Shale et al., 2013).

However, the exact mechanism of how CD4+ T cells recognize colony

antigens and differentiate into CD4IELs remains unknown.

According to a recent study by Bousbaine’s team published in

Science in 2022, b-hex-specific T cells induced by intestinal

commensal antigens can drive differentiation of CD4IELs and

regulate intestinal inflammation by expressing interleukin (IL)-10

(Bousbaine et al., 2022). This finding suggests us whether periodontal

inflammation can be controlled and intervened by modulating oral or

gut microbiota through immune means. Therefore, in this paper, we

discuss the association between periodontitis and IBD from both

microbial and immune mechanisms, which has important

implications for the pathogenesis and treatment of periodontitis

and IBD.
FIGURE 1

A general review of studies on the oral-gut axis.
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2 Correlations between periodontitis
and IBD

2.1 Prevalence and comorbidity

Periodontitis as a global public health problem has received wide

attention from scholars (Luo et al., 2021; Stødle et al., 2021; Alawaji

et al., 2022; Ju et al., 2022; Wu et al., 2022). TaeHyun Kwon et al.

found that about 42% of adults in the United States had periodontitis,

and 7.8% of them had severe periodontitis (Kwon et al., 2020). In

China, the prevalence of periodontitis in adults is as high as 80% to

90%, with chronic periodontitis accounting for 60% to 70% of the

prevalence (Meng, 2007). An epidemiological study by Frencken et al.

showed that the prevalence of severe periodontitis in the global

population remained at about 11.2%, and the prevalence of severe

periodontitis increased with age, with a sharp increase in the 30-40

years of age interval. It reaches a peak at the age of 40 years and

remains stable thereafter (Frencken et al., 2017).

As an immune-mediated chronic inflammatory disease, the

incidence and prevalence of IBD have continued to increase

worldwide over time, indicating that it has become a global disease

(Ye et al., 2019; Alatab et al., 2020; Kaplan and Windsor, 2020; Zhao

et al., 2021). The oral cavity is one of the most vulnerable areas for

extraintestinal manifestations of IBD, and numerous studies have

found that patients with IBD have a higher risk of periodontitis than

those without IBD (Papageorgiou et al., 2017; She et al., 2020; Zhang

et al., 2021c; Abrol et al., 2022). In addition, the severity and extent of

periodontitis suffered by patients with IBD was found to be greater,

with patients having significantly higher mean probing depth, plaque

index, calculus index, sulcus bleeding index, and attachment loss than

patients with general periodontitis (Zhang et al., 2020; Nijakowski

et al., 2021; Domokos et al., 2022). It has also been confirmed that

patients with periodontitis have a significantly higher risk of

developing IBD than healthy controls without periodontitis (Lin

et al., 2018; Kang et al., 2020; Madsen et al., 2022). All of the above

studies suggest a close bidirectional association between periodontitis

and IBD.
2.2 Microbial associations
of periodontitis and IBD

A large number of microorganisms colonize the human oral

cavity, including bacteria, fungi, viruses, protozoa, and mycoplasma

(Wade, 2013; Mosaddad et al., 2019). Among them, bacterial

communities can reach more than 1000 species, including

Actinomyces, Bacteroides, Firmicutes, Proteobacteria and Spirochete

(Dewhirst et al., 2010). In most cases, bacteria in the oral cavity

maintain a relative balance between flora, as well as a dynamic balance

between flora and host; however, when the normal flora loses its

mutual control or the microorganism and the host lose their balance,

it will cause the oral ecological environment to become dysfunctional

and the pathogenic bacteria will escape or inhibit the host’s defense

function, damaging the host tissue and eventually leading to the

development of periodontitis (Darveau, 2010). Mike et al. found a

significant increase in oral microbial diversity in patients with
Frontiers in Cellular and Infection Microbiology 04
periodontitis by 16S rRNA sequencing, with a high concentration

of Gram-negative bacteria in the subgingival flora, including the

classical “red complex” bacteria (Curtis et al., 2020). Notably,

Porphyromonas gingivalis (P. gingivalis), a Gram-negative,

specialized anaerobic bacterium, is considered to be the main

pathogen involved in the onset and progression of chronic

periodontitis (Reyes, 2021), attaching to mucous membranes,

periodontal pocket epithelium and other bacterial surfaces by a

series of adhesion factors, including bacterial hairs, hemagglutinins

and proteases (Lamont and Jenkinson, 2000) and can secrete large

amounts of proteases (e.g., gingipains), endotoxins (e.g.,

lipopolysaccharide, LPS), acid and alkaline phosphatases, indoles,

organic acids, and other virulence factors that destroy periodontal

tissue by degrading host proteins and evading host immune defenses

(Jia et al., 2019a; Xu et al., 2020), leading to clinical manifestations of

edema, neutrophil infiltration, and hemorrhage (Travis et al., 1997).

In addition, Settem et al. demonstrated that Fusobacterium nucleatum

(F. nucleatum) and Tannerella forsythia cause destruction of alveolar

bone by synergistically stimulating the immune response in

periodontal tissues (Settem et al., 2012), thus demonstrating that

the synergistic action of ecologically dysregulated microbial

communities plays an important role in the progression of

periodontitis. The microbial metabolites are necessary for

periodontal pathogenic bacteria to maintain their growth,

reproduction and pathogenesis. Compared to healthy subjects,

patients with periodontitis had significant differences in the

composition of salivary microbial metabolites with higher levels of

serine, serotonin, 4-hydroxycinnamic acid, hydrocinnamic acid and

isoleucine (Wei et al., 2022). Guan et al. noted that short chain fatty

acids (SCFAs) are important pathogenic factors in periodontitis, and

butyrate can damage the gingival epithelium by exerting destructive

effects on intercellular junctions, leading to cell death (Guan

et al., 2020).

The oral cavity and the intestine, as the two ends of the digestive

tract, share similar microbial pathogenic mechanisms. When the

intestinal microbial balance is disturbed, bacterial metabolites are

altered and a large number of virulence factors are released, which can

damage host tissues and eventually lead to an inflammatory response

(Glassner et al., 2020; Lavelle and Sokol, 2020; Lee and Chang, 2020).

The microbiota in the human gut consists mainly of Firmicutes,

Bacteroidetes, Proteobacteria and Actinobacteria, with Firmicutes (49-

76%) and Bacteroidetes (16-23%) predominating (Eckburg et al.,

2005; Frank et al., 2007). Host tissues provide a nutrient-rich

habitat for the gut flora, while the gut flora can provide short-chain

fatty acids and essential vitamins to the host (Mukherjee et al., 2020),

and the two complement each other in a harmonious symbiosis, a

mutual relationship known as symbiosis; however, when suffering

from IBD, the microbiota of the gut is altered, a change known as

ecological dysbiosis (Matsuoka and Kanai, 2014). Frank et al. found

that, in contrast to periodontitis, the diversity of the intestinal flora is

reduced in patients with IBD, with a decrease in the number of

Firmicutes and an increase in the number of Proteobacteria (Frank

et al., 2007). Changes in the composition of the gut microbiota lead to

altered bacterial metabolites, which may play a role in the

pathogenesis of IBD. Bile salt hydrolase (BSH), a metabolite of

intestinal bacteria (especially the thick-walled phylum), plays a key
frontiersin.org
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role in the modification of bile acids, which maintain the integrity of

the intestinal epithelial barrier and improve intestinal inflammation

through a negative feedback mechanism mediated by the farnesoid X

receptor (FXR) (Gadaleta et al., 2011; Ding et al., 2015; Gonzalez et al.,

2016). However, when compared to healthy individuals, the number

of BSH in Firmicutes was significantly lower in the intestine of IBD

patients, which led to a significant reduction in the anti-inflammatory

effect of FXR (Ni et al., 2017). Additionally, intestinal microbiota

metabolism can produce butyrate, an important energy source for

intestinal epithelial cells, and studies have found that the number of

butyrate-producing Faecalibacterium prausnitzii in the intestine of

IBD patients is significantly reduced, while reduced butyrate levels

induce an intestinal inflammatory response (Takaishi et al., 2008).

Choline is an essential dietary nutrient for humans, and intestinal

microorganisms (Firmicutes) play a key role in the degradation of

choline to trimethylamine (TMA), which is further metabolized in the

liver to trimethylamine N-oxide (TMAO), the level of which is

associated with many adverse host pathologies, including IBD. It

has been shown that TMAO levels are significantly elevated in mice

fed a choline-rich diet, which leads to increased expression of pro-

inflammatory cytokines, and that in colonic epithelial cells, TMAO

triggers activation of inflammatory vesicles and production of reactive

oxygen species in a dose- and time-dependent manner, thus playing a

potential role in the pathogenesis of IBD(Hosseinkhani et al., 2021);

in addition, recent studies have found elevated levels of circulating

TMAO in patients with stage III-IV periodontitis(Zhou et al., 2021),

suggesting a close relationship between intestinal flora metabolites

and periodontitis. All of the above studies suggest that alterations in

intestinal flora are closely related to the development of IBD.

It was found that microorganisms from the oral cavity can be

detected at low levels in stool (Schmidt et al., 2019), suggesting that

microorganisms from the oral cavity can spread to the intestine,

which also allows pathogenic bacteria to ectopically colonize the

intestine and consequently disrupt intestinal homeostasis and

abnormally activate the intestinal immune system, thus affecting the

development of IBD. Koji et al. suggest that the oral cavity can act as a

potential reservoir for intestinal pathogens (Atarashi et al., 2017). For

example, when periodontitis develops, Klebsiella and Proteus

proliferate in the oral cavity and can migrate to ectopically colonize

the lower gastrointestinal tract, thus causing activation of macrophage

inflammatory vesicles, which may exacerbate intestinal inflammation

(Kitamoto et al., 2020b). Candida, an important pathogenic fungus in

the body, is usually found in the oral cavity and intestinal tract of

normal people. Generally, small amounts of Candida do not cause

disease, but when the body becomes ecologically imbalanced, it can

multiply and cause disease. In recent years, numerous studies have

found that Candida is closely associated with both periodontitis and

IBD. Studies have shown that oral colonization by Candida is strongly

associated with the severity of periodontitis. Candidalysin directly

induces pro-inflammatory factors and NLRP3 inflammatory vesicles

thereby promoting an inflammatory response, and inhibition of

Candida albicans by antifungal agents is effective in reducing the

severity of periodontitis in women (Ho et al., 2020). Hiengrach et al.

found that oral Candida can promote the growth of intestinal bacteria

thereby inducing intestinal ecological dysbiosis, which in turn

promotes colonic inflammation (Hiengrach et al., 2020); Candida
Frontiers in Cellular and Infection Microbiology 05
albicans colonize the gut significantly more frequently and with

greater severity in patients with CD than in the healthy population

(Standaert-Vitse et al., 2009), whereas reducing intestinal fungus

reduces the severity of the disease. Furthermore, in the study by Li

et al. oral Candida can colonize the gut through the digestive tract and

disrupt the intestinal barrier by inducing the release of pro-

inflammatory factors, while in the pathogenic mechanism of

Candida candidalysin is a key virulence factor in promoting the

inflammatory response in the gut (Li et al., 2022b). Oral Candida

colonizes the intestine through the digestive tract and thus affects the

metabolic and ecological balance of the flora. Another study found

that after antibiotic treatment resulting in Candida-dependent oral

and intestinal inflammation, SCFA supplementation promoted fungal

clearance and restored Th17 and Treg cell SCFA by regulating T cell

cytokines, thereby improving the inflammatory response (Bhaskaran

et al., 2018). This close link between the oral and intestinal tracts is

crucial to our study of the oral-gut axis, and it seems that inhibiting

Candida colonization by modulating the intestinal flora as well as

microbial metabolites, and thus improving periodontitis through the

oral-gut axis may provide us with new therapeutic directions.

Furthermore, P. gingivalis and F. nucleatum, as pathogenic bacteria

of periodontitis, similarly affect the development of IBD. Lee et al.

showed that the number of P. gingivalis in the stool of CD patients

was significantly higher, and that P. gingivalis colonization of the

intestine led to the loss of intestinal surface epithelium, destruction of

crypt structures, and infiltration of inflammatory cells, ultimately

exacerbating the manifestation of intestinal inflammation (Lee et al.,

2022); Xiao et al. found that the establishment of a mouse

periodontitis model by oral administration of P. gingivalis resulted

in a significant increase in LPS levels and led to enhanced expression

of flavin monooxygenase3 (FMO3) (FMOs promotes the conversion

of TMA to TMAO) and plasma TMAO levels, which induced

intestinal ecological dysregulation and inflammatory responses

(Xiao et al., 2022); Jaclyn et al. found that F. nucleatum is present

in the intestinal mucosa of IBD patients and that the invasive

potential of F. nucleatum strains is positively correlated with the

disease status of the host, thus inferring that F. nucleatum can be used

as a potential biomarker for gastrointestinal diseases (Strauss et al.,

2011). In addition to the microbes themselves, their metabolites can

also enter the intestine via the oral-gut axis, thereby promoting

inflammation in the gut. Wang et al. found that periodontitis

upregulates the levels of the microbiota metabolite isoleucine (Ile)

in saliva, and that Ile translocated through the digestive tract to the

intestine and acetylated the NLRP3 protein through its metabolite

AcCoA to aggravate colon inflammation in mice (Wang et al., 2022).

Microbial metabolites are essential for the regulation of the ecology of

the host digestive tract, which in turn suggests that they could be a

common therapeutic target for periodontitis and IBD via the oral-

gut axis.

Systemic inflammation in patients with IBD also has an impact on

the composition of the oral microbiota, and Docktor et al. found an

increase in the number of Spirochaetes and Bacteroidetes and a

decrease in the number of Firmicutes and Fusobacteria in the oral

cavity of patients with IBD(Docktor et al., 2012); Said et al. found a

significant increase in Prevotella spp. in the salivary microbiota of

patients with IBD by bacterial 16S rRNA sequencing, while
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Streptococcus spp., which are most abundant in saliva in healthy

populations, were significantly reduced(Said et al., 2013). Another

study found that IBD causes a disruption of the thick-walled bacterial

gate in the patient’s oral cavity, the extent of which is closely related to

the severity of the disease, and that this ecological dysregulation

subsides over time after successful treatment of IBD (Elmaghrawy

et al., 2022). These bacteria enriched in the oral cavity of IBD patients

are in turn closely associated with periodontitis, and all of the above

studies suggest that IBD causes the development of periodontitis by

affecting oral ecological dysregulation.

Periodontitis-associated pathogenic bacteria can migrate to the

intestine and interfere with intestinal barrier function, thus causing

intestinal ecological dysregulation and chronic inflammation, while

IBD can cause changes in oral microbial composition and lead to the

proliferation of periodontitis-associated pathogenic bacteria,

suggesting that oral flora disorders are closely related to intestinal

flora abnormalities (Figure 2). This bidirectional association between

the oral cavity and the intestine, i.e., the existence of an Oral-Gut axis,

is of great significance and also suggests a possible common

immunomodulatory mechanism between periodontitis and IBD.
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2.3 Immune mechanism associations of
periodontitis and IBD

Although pathogenic microorganisms can directly destroy host

periodontal tissues by releasing virulence factors and metabolites, the

host immune response plays an equally important role in the

progression of periodontitis (Bosshardt, 2017; Bunte and Beikler,

2019; Pan et al., 2019). The host immune response to microorganisms

can be divided into intrinsic immune responses and adaptive immune

responses. The intrinsic immune system is the first line of defense

against pathogen invasion and consists of different cells (neutrophils,

macrophages, etc.) and factors (e.g. complement), among which

neutrophils continuously recruit, migrate and infiltrate at the site of

inflammation and secrete pro-inflammatory factors such as tumor

necrosis factor (TNF)-a, IL-8 etc., but their phagocytic function is

significantly reduced (Carneiro et al., 2012; Hajishengallis, 2019;

Vitkov et al., 2021); macrophages tend to differentiate towards M1

(pro-inflammatory) in periodontitis and increase the secretion of pro-

inflammatory mediators (e.g. interferon-g, IFN-g) as well as osteoclast
activity (Almubarak et al., 2020; Sun et al., 2021; Yang et al., 2021).
FIGURE 2

Microbial correlation between periodontitis and IBD (The bacteria underlined in the diagram are the ones mentioned in our paper). In periodontitis, the
oral flora is altered and P. gingivalis evades host immune defense to destroy periodontal tissue by releasing virulence factors such as proteases and
lipopolysaccharides; alterations in the composition of the intestinal microbiota leading to changes in bacterial metabolites such as BSH may play an
important role in the pathogenesis of IBD; through the oral-gut axis, periodontal pathogenic bacteria such as Klebsiella, P. gingivalis, and F nucleatum
can ectopically colonize the intestine and disrupt the intestinal barrier thus leading to intestinal ecological dysregulation and chronic inflammation. (A) P.
gingivalis produces virulence factors such as LPS. Source (Takeuchi et al., 2019). (B) P. gingivalis produces virulence factors such as proteases. Source
(Zhang et al., 2021d). (C) F nucleatum destroys the intestinal mucosa. Source (Liu et al., 2021b). (D) The role of FXR in IBD. Source (Ding et al., 2015).
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Moreover, T cell-mediated adaptive immune responses are crucial in

the development of periodontitis, and upon activation through the T

cell receptor (TCR), naive CD4+ T cells can differentiate into Th1,

Th17, and Treg cells and participate in different types of immune

responses (Zhu and Paul, 2010; Campbell et al., 2015; Gonzales,

2015). Philip et al. found that in the P. gingivalis infection-induced

periodontitis model, Th1 cell responses were significantly increased

and promoted the secretion of the pro-inflammatory factors IFN-g,
IL-1a and IL-1b; activated Th1 cells also highly express receptor

activator for nuclear factor-kB ligand (RANKL) and induce

osteoclastogenesis, thus causing a widespread inflammatory

response and alveolar bone destruction in periodontal tissue

(Stashenko et al., 2007). Unlike Th1 cells, Th17 cells mainly secrete

the pro-inflammatory factors IL-6, IL-17 and IL-23 to regulate the

development of periodontitis, among which IL-17 can promote

periodontal connective tissue and alveolar bone destruction by

regulating the expression levels of prostaglandin E2 (PGE2), matrix

metalloproteinases (MMPs) and RANKL (Cheng et al., 2014; Dutzan

and Abusleme, 2019; Huang et al., 2021; Kini et al., 2022). In contrast,

Treg cells play a role in reducing the inflammatory response mainly

through the secretion of anti-inflammatory factors IL-10, IL-35 and

transforming growth factor b (TGF-b) (Alvarez et al., 2018; Zhang

et al., 2021b). Zheng et al. found a Th17/Treg imbalance in patients

with chronic periodontitis, in which the Th17 ratio was upregulated

and the Treg ratio was downregulated, and the expression level of the

pro-inflammatory factor IL-17 was significantly increased while the

expression of the anti-inflammatory factor IL-10 was decreased, and

this imbalance ultimately led to the resorption of alveolar bone

(Zheng et al., 2019). Furthermore, recent studies have found that

Tregs (CD25/Foxp3 double-positive cells) may lose Foxp3 expression

and convert to exFoxP3 Th17 cells in periodontitis, and decreased

Tregs activity reduces the synthesis of TGF-b and IL-10, while these

exFoxp3 Th17 cells express high levels of RANKL and IL-17; in

contrast, when antibiotics were used to reduce the conversion of Treg

cells, the Th17/Treg cell imbalance in periodontitis in mice was

significantly inhibited and RANKL expression was suppressed,

resulting in improved bone resorption (Deng et al., 2021).

In both the innate and adaptive immune responses, macrophages,

neutrophils and T cells are important target cells for bacterial invasion

of the host, and pathogen molecules can be recognized by surface

receptors (e.g., toll-like receptors, TLR) of these cells, initiating

intracellular signaling pathways that lead to the release of various

inflammatory and chemotactic factors (Kawai and Akira, 2007; Oberg

et al., 2011; Fitzgerald and Kagan, 2020), such as macrophage colony-

stimulating factor (M-CSF) and RANKL, both of which are key

factors in the regulation of osteoclast activity (Cekici et al., 2013).

For example, P. gingivalis can activate TLR2 and TLR4 in a variety of

cell types, and TLR2 activation can upregulate the expression of M-

CSF, thus promoting osteoclast activation (Karlis et al., 2020);

meanwhile, bacterial LPS can induce IL-1b production through the

TLR pathway to upregulate RANKL, and binding of RANKL to its

receptor RANK triggers nuclear factor kB (NF-ĸB) signaling pathway,

which induces bone resorption (Cekici et al., 2013; Thummuri et al.,

2015; Tsukasaki, 2020). NF-ĸB is a specific transcription factor that

plays a major role in the inflammatory response. It is a key

transcription factor for intrinsic immune cells (e.g., macrophages)

and also plays a role in adaptive immunity by regulating TCR
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signaling to promote differentiation of Th1 and Th17 cells, and its

activation induces the production of pro-inflammatory cytokines

such as IL-1, IL-6, IL-12, IL-17 and TNF-a (Liu et al., 2017;

Venugopal et al., 2018; Mooney and Sahingur, 2020). In addition,

myeloid differentiation factor 88 (MyD88), a key junction molecule in

the TLR signaling pathway, binds to the activated TLR/IL-1R (TIR)

structural domain, which in turn transmits signals and releases a

series of pro-inflammatory factors (Kim et al., 2019; Chen et al.,

2020); on this basis, Madeira et al. showed that bacterial LPS can

activate the TLR4 pathway through MyD88 signaling to stimulate

RANKL expression and induce osteoclast activation; while MyD88

knockout mice reduced alveolar bone resorption by downregulating

TNF-a levels (TNF-a increases the expression of M-CSF and

RANKL) levels (Madeira et al., 2013). George et al. found that

P. gingivalis also activates complement C5a receptor-1 (C5aR-1)

and TLR2 in neutrophils and disarms the host protective TLR2-

MyD88 pathway via proteasomal degradation of MyD88, while

the close association between TLR2 and C5aR activates the

phosphatidylinositol 3 kinase (TLR2-Mal-PI3K) pathway, which

further prevents phagocytosis by neutrophils, facilitates the invasion

of other susceptible bacteria, and stimulates the production of

inflammatory cytokines, thereby promoting an inflammatory

response (Maekawa et al., 2014). Besides, MMP can also be

involved in the process of tissue destruction in periodontitis by

degrading the extracellular matrix. Luchian et al. showed that

MMP-8 and MMP-9 are the main metalloproteinases participating

in periodontal tissue destruction; MMP-8 activation promotes

neutrophil migration into the gingival sulcus, leading to extensive

destruction of periodontal tissue; while MMP-9 regulates IL-1, IL-6

and IL-8, engaging in the breakdown of proteins in connective tissue

and playing a key role in osteoclast-induced bone resorption (Luchian

et al., 2022). The high expression of MMP-8 and MMP-9 in chronic

periodontitis accurately reflects the patient’s condition and therefore

can be used as a biomarker for the diagnosis of periodontitis.

The pathogenesis of IBD is similar to that of periodontitis and is

also regulated by a combination of intrinsic and adaptive immunity.

Neutrophils and macrophages play an important role in the intrinsic

immune response in IBD. Neutrophil activation is followed by the

disruption of the intestinal epithelial barrier through the production

of high levels of reactive oxygen species (ROS) and the release of

proteases, pro-inflammatory cytokines and chemokines, such as IL-8,

TNF-a and leukotriene B4 (LTB4)(Wéra et al., 2016; Zhou and Liu,

2017; Kvedaraite, 2021); the number of macrophages in the intestinal

mucosa in IBD patients is increased, and the intestinal epithelium

damage is aggravated by producing a large number of pro-

inflammatory and chemokines, such as TNF-a, IL-1b, IL-12 and

IL-23, and enhancing the Th1 and Th17 cell responses (Bain and

Schridde, 2018; Na et al., 2019; Pan et al., 2022). CD4+ T cell-mediated

adaptive immunity also plays a crucial role in the development of IBD,

and Neurath et al. found that CD is characterized by Th1 immune

responses, with Th1 increasing the secretion of the pro-inflammatory

factors IFN-g and IL-2, while UC is a Th2-mediated disease that

produces excessive amounts of IL-5 and IL-13 (Neurath et al., 2002).

In addition to secreting inhibitory cytokines, Treg cells influence the

progression of IBD through cytokine deprivation-induced apoptosis

and IL-2. CD4+CD25+Foxp3+Treg cells express all three components

of the high-affinity IL-2 receptor (IL-2R): CD25, CD122 and CD132,
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which may compete with responder Foxp3-T cells for IL-2, consume it

and inhibit the proliferation of Foxp3-T cells by suppressing the

induction of IL-2 mRNA (and mRNA for other effector cytokines) in

responder Foxp3-T cells (Shevach, 2009). The constitutive expression

of the high-affinity IL-2 receptor containing CD25 allows Treg cells to

sustain cytokine uptake in their environment, and Pandiyan et al.

showed that in the presence of the pro-apoptotic protein Bim, Treg

cells in mouse models of IBD can induce apoptosis of effector CD4+ T

cells. The apoptotic pathway triggered is typical of cytokine

deprivation, being mediated by inactivation of the anti-apoptotic

phosphatidylinositol-3-OH kinase–dependent Akt kinase–Bcl-2

antagonist of cell death pathway and being dependent on the death-

promoting protein Bim (Pandiyan et al., 2007); furthermore, IL-2 is

not only important for the regulation of Treg cell homeostasis in vivo,

but also has a potent inhibitory function. Zhou et al. found that

group-3 innate lymphoid cells (ILC3s) in the intestine are the main

cellular source of IL-2, and that CD patients showed significant

depletion of IL-2 in the small intestine and a significant decrease in

Treg levels (Zhou et al., 2019). Clinical studies have demonstrated that

low doses of IL-2 can mediate immunomodulation and specifically

expand and activate the Treg cell population, thus serving as a

potential treatment strategy for patients with IBD (Klatzmann and

Abbas, 2015). In recent years, some studies have found that bile acid

metabolites, intestinal microbes and TCR signaling intensity act

synergistically to influence the balance of Th17/Treg cells, which in

turn exacerbates the progression of IBD (Britton et al., 2019; Hang

et al., 2019; Yan et al., 2020; Liu et al., 2020b). In particular, bile acids

control Th17 cell function by regulating the activity of the

characteristic transcription factor RORgt, while a decrease in the

abundance of Firmicutes in the intestine of IBD patients leads to a

decrease in secondary bile acid levels, which upregulate Th17

differentiation and induce an inflammatory response (Fitzpatrick

and Jenabzadeh, 2020); Hemarajata et al. found that intestinal

microbes and their bacterial products (e.g., Escherichia coli) can

directly act on TLR and other innate immune receptors to mediate

the differentiation of Th17 cells and suppress Treg cells, thereby

exacerbat ing intest inal inflammation (Hemarajata and

Versalovic, 2012).

Patients with IBD have damage to intestinal tight junction (TJ)

barrier, which is manifested by increased permeability of the intestine.

NF-kB is involved in regulating TJ barrier function and increasing

permeability in animal models of colitis (Yu et al., 2018; Kaminsky

et al., 2021; Li et al., 2022a), and studies have found that NF-kB
activity is increased in patients with IBD, and inhibition of NF-kB
signaling conduction improved the symptoms of colitis in mice (Lin

et al., 2019). Additionally, MMP-9 inhibits cell adhesion and wound

repair, which is elevated in intestinal tissues, serum and feces of IBD

patients and is strongly correlated with disease activity and degree of

inflammation (Meijer et al., 2007; Liu et al., 2013; de Bruyn and

Ferrante, 2018), while MMP-9 deficiency attenuates intestinal

inflammation in mice (Moore et al. , 2011). Rana et al.

demonstrated that MMP-9 can increase myosin light chain kinase

(MLCK) gene and protein expression through NF-kB p65 activation,

thereby inducing increased intestinal TJ permeability (Al-Sadi

et al., 2021).

Periodontitis and IBD can be interrelated through immune

mechanisms due to the presence of the oral-gut axis (Figure 3).
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Especially, pro-inflammatory cytokines are associated with the

pathogenesis of both periodontitis and IBD. IL-1b is known to

influence the progression of periodontitis and IBD, and Kitamoto

et al. found that Enterobacteriaceae isolated from the intestine were

unable to induce IL-1b secretion, whereas Enterobacteriaceae in the

oral cavity (e.g., Klebsiella) could induce intestinal inflammation by

activating inflammatory vesicles in macrophages mediating IL-1

signaling (Kitamoto et al., 2020b). Liu et al. found that F.

nucleatum, an important causative agent of periodontitis, increases

intestinal epithelial permeability, disrupts its integrity by disrupting

connexins, promotes the secretion of cytokines TNF-a, IFN-g, IL-1b,
IL-6 and IL-17 and reduces the secretion of anti-inflammatory

cytokine IL-10, thereby increasing intestinal inflammation (Liu

et al., 2020a). In addition, periodontitis leads to T cells, and

pathogenic T cells can migrate from the oral cavity to the intestine,

as periodontitis triggers the production of oral Th17 cells, which can

migrate to the intestine and expand in response to ectopically

colonized Klebsiella, thus promoting worsening intestinal

inflammation (Kitamoto et al., 2020b); Koji’s study concluded that

Klebsiella, after colonization of the intestine, induces Th1 cell

responses by stimulating the innate immune receptor TLR4 and

leads to a deficiency of the immunosuppressive factor IL-10,

thereby promoting inflammatory responses in the intestine, thus

demonstrating that Klebsiella, isolated from the oral microbiota, can

act as a strong inducer of intestinal Th1 cells (Atarashi et al., 2017).

The Th17/Treg ratio is closely related to the development of IBD, and

Lu et al. found that P. gingivalis in periodontitis stimulates CD4+ T

cell responses and increases the Th17/Treg ratio in the intestinal

lamina propria, upregulates Th17-related transcription factor

expression and production of the pro-inflammatory factors IL-17

and IL-6 through the TLR4 pathway, and downregulates the

expression of the Treg transcription factor Foxp3 and production of

the anti-inflammatory factors TGF-b and IL-10, thereby exacerbating

intestinal inflammation (Jia et al., 2020). In oral and intestinal

inflammation due to oral Candida infection, the Treg population

has a multilayered protective role, one for IL-17A induction in CD4+

T cells and another for immunomodulation to prevent excessive

inflammation. In a study by Bhaskaran et al, Foxp3 and IL-17A

expression in CD4+ T cells was effectively induced by

supplementation with SCFA, thereby increasing the frequency of

Foxp3+ Tregs and thus improving the inflammatory response due to

Candida infection (Bhaskaran et al., 2018).

Meanwhile, the immune response associated with IBD may also

contribute to oral inflammation. Dysbiosis of the gut flora not only

damages the intestinal barrier, but also disrupts the oral microbiota

and exacerbates bone resorption in periodontitis through Th17/Treg

imbalance. Yuan et al. found that long-term antibiotic use led to gut

ecological dysbiosis, which increased periodontitis-associated

pathogens in the oral cavity and decreased oral microbiota

probiotics associated with periodontal health, while Th17 cell-

associated pro-inflammatory cytokine (IL-17A, IL-6) expression

was upregulated and Treg cell-associated cytokine (Foxp3 and IL-

10) expression was decreased in periodontal tissues; in contrast, the

use of fecal microbiota transplantation (FMT) not only restored the

intestinal microbiota of the mice, but even reversed the Th17/Treg

imbalance in periodontal tissue and alleviated periodontitis(Yuan

et al., 2023). Katarzyna et al. found elevated levels of IL-1b, IL-6
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and TNF by measuring salivary inflammatory markers in patients

with IBD, with elevated levels of TNF-a and IL-6 being strongly

associated with the development of periodontitis (Szczeklik et al.,

2012); in the Figueredo team’s study, inflammation scores in gingival

tissue were significantly higher in patients with active IBD (including

four cytokines, IL-1b, IL-6, IL-21 and sCD40L) (Figueredo et al.,

2017); nevertheless, anti-inflammatory factors such as IL-4 decrease

with increasing levels of inflammation, and IL-4 levels were found to

be significantly lower in the gingival sulcus of IBD patients with

periodontitis (de Mello-Neto et al., 2021). This evidence suggests that
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IBD may be closely associated with the development of periodontitis

by decreasing the immune defenses of periodontal tissues.
3 Summary and prospect

At present, there is a growing body of research suggesting a

bidirectional association between periodontitis and IBD, with

microbial and immune factors combining to influence the

development of both diseases (Table 1). Bacteria invade host tissues
FIGURE 3

Immune mechanism correlation between periodontitis and IBD. In the pathogenesis of periodontitis, neutrophils are continuously recruited, migrate and
infiltrate at the site of inflammation and secrete pro-inflammatory factors such as TNF-a and IL-8, macrophages tend to differentiate towards M1 and
secrete IFN-g. P. gingivalis induces IL-1b production through the TLR pathway, upregulates RANKL and M-CSF expression, and activates the NF-ĸB
signaling pathway, thereby inducing bone resorption. The pathogenesis of IBD is similar to periodontitis, with neutrophils and macrophages inducing an
inflammatory response through the release of virulence factors, pro-inflammatory mediators, and enhanced Th1 and Th17 cell responses; MMP-9
increases MLCK expression and induces an increase in intestinal TJ permeability through activation of NF-kB p65. Due to the oral-intestinal axis,
periodontitis and IBD can be interrelated through immune mechanisms, with periodontal pathogenic bacteria ectopically colonizing the intestine,
increasing intestinal Th17 and Th1 cell responses and promoting intestinal inflammation; while Th17/Treg imbalance not only disrupts the oral microbiota
and exacerbates bone resorption, but also leads to intestinal ecological dysregulation. (A) Antibactericidal mechanisms of C5a-TLR2 cross-talk induced
by P. gingivalis. Source (Jia et al., 2019a). (B) M-CSF and RANKL induce bone resorption. Source (Karlis et al., 2020). (C) The role of bile acid and FXR in
Th17/Treg balance. Source (Yan et al., 2020). (D) MMP-9 causes increased intestinal permeability. Source (Al-Sadi et al., 2021).
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and cause ecological dysbiosis that damages host tissues and induces

host immune responses, leading to inflammation. Periodontitis-

associated pathogenic bacteria can ectopically colonize the intestinal

tract, thereby exacerbating intestinal inflammation, as evidenced by a

higher prevalence of IBD in patients with periodontitis, while the

inflammatory response to IBD can alter the composition of the oral

microbiota, as evidenced by a higher prevalence and severity of

periodontitis in patients with IBD. Among the microbial factors, we

highlight the role of Klebsiella, P. gingivalis, F. nucleatum and

Candida through the oral-gut axis in both diseases and the
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modulation of inflammation by microbial metabolites such as

short-chain fatty acids; while among the immune mechanisms, the

role of cytokines and the Th17/Treg balance contribute to the

bidirectional effect between periodontitis and IBD.

In this article, we mentioned that previous research with probiotic

supplementation, dietary control and exosomes can treat one disease

while benefiting the control of the other. In addition to this, recent

studies have found that related drugs exert important anti-

inflammatory effects in both the intestinal and oral cavity via the

oral-gut axis. In addition to this, recent studies have found that related

drugs exert important anti-inflammatory effects in both the intestinal

and oral cavity via the oral-gut axis. Berberine has been shown to be

widely used in the treatment of gastrointestinal disorders caused by

microbial infections. Jia et al. demonstrated that berberine increased

butyrate production in the intestinal microbiota, effectively restored

the intestinal barrier and significantly inhibited IL-17-related

systemic and local immune responses in ovariectomized (OVX)-

periodontitis rats, resulting in improved periodontal bone

resorption (Jia et al., 2019b); moreover, quercetin supplementation

was effective in restoring intestinal microbiota, enhancing butyrate

production in the gut and significantly improving intestinal ecological

dysbiosis in mice treated with antibiotics (Shi et al., 2020), and

Mooney et al. found that oral quercetin helped restore periodontal

tissue homeostasis and improved periodontitis by modulating the

inflammatory response and oral microbial composition (Mooney

et al., 2021). These studies open up new ideas for the future

treatment of periodontitis, that is, to prevent and control local

inflammation in the oral cavity by modulating the intestinal flora

or immune response while improving intestinal inflammation or

systemic inflammation with medication.

While numerous studies have demonstrated a close link and

bidirectional effects between periodontitis and IBD, there are still

some limitations. Periodontitis is an inflammatory disease caused by

dental plaque and is usually closely related to oral hygiene, patients with

chronic periodontitis are usually accompanied by poor oral hygiene,

however, studies have pointed to an inverse correlation between poor

oral health and IBD. People with IBD brush their teeth, floss and breath

fresheners more frequently, and those with CD have less plaque.

excessive oral hygiene may lead to dysbiosis in bacterial colonization,

dysregulated innate immune response, and promote inflammatory

processes; conversely, poor oral health may help induce immune

tolerance and suppress overreactive inflammation, thereby reducing

the risk of immune-mediated diseases such as IBD (Yin et al., 2017). In

addition, there are some confounding factors such as gender, age and

genetics for the study of the association between periodontitis and IBD.

Chemokines act in the recruitment of neutrophils and T lymphocytes

to the epithelium, which may trigger or promote inflammatory

responses, and one study showed enhanced production of

chemokines CXCL-8, CXCL-9 and CXCL-10 in oral buccal epithelial

cells only in children with CD compared to healthy controls and adults

with CD (Damen et al., 2006). Periodontitis and IBD are both chronic

inflammatory conditions based on a complex interaction of genetic,

environmental, microbial and immune factors, and both share similar

mechanisms in terms of bacterial action and specific host responses, but
TABLE 1 Key factors in the oral-intestinal axis (both microbiological
and immunological).

periodontitis

Microbiological
factors

P.gingivalis
F.nucleatum
Tannerella forsythia
Treponema
denticola
metabolites (SCFAs)

Immune factors

neutrophils
macrophages
Th17/Treg
imbalance
TNF-a, IFN-g,
TGF-b
IL-1, IL-6, IL-8, IL-
12, IL-17, IL-23
PGE2
MMPs
M-CSF, RANKL
NF-kB

IBD

Microbiological
factors

Firmicutes
Bacteroidetes
Proteobacteria
Actinobacteria
Faecalibacterium
prausnitzii
metabolites(BSH,
butyrate, TMAO)

Immune factors Neutrophils
Macrophages
Th17/Treg
imbalance
TNF-a
LTB4
IL-1b, IL-5, IL-8,
IL-12, IL-23, IL-13
NF-kB
MMP-9

Acting simultaneously in both
diseases via the oral-gut axis

Microbiological
factors

Klebsiella
Proteus
Candida
P. gingivalis
F. nucleatum
metabolites(Ile,
TMAO)

Immune factors

Th17/Treg
imbalance
TNF-a
IFN-g
IL-1b, IL-6, IL-17
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there are also different factors. Smoking, for example, is considered a

risk factor for both periodontitis and CD. However, its role in UC is

unclear, and some studies have even reported a protective effect of

smoking attributed to this condition (Indriolo et al., 2011).

In general, the relationship between periodontitis and IBD is a

two-way influence and even forms a vicious circle. In this paper, we

elaborate the mechanism of the intrinsic connection between the two

diseases through both microbiological and immunological

mechanisms, which provides us with directions for the future

treatment of periodontitis. In terms of microbiology, we can

evaluate the oral and intestinal microenvironment to find the

common pathogens or microbial metabolites of both diseases,

which can be used as biomarkers for diagnosis and even prevention

of both diseases, and through drug treatment, while regulating the

intestinal flora, via the oral-gut axis can also play a key role in the

treatment of periodontitis; additionally, regulating Th17/Treg balance

or inhibiting the related inflammatory signaling pathways through

immune means can be a common therapeutic target for both diseases.

All these deserve further thought and research.
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(2022). Patients with inflammatory bowel disease have a higher chance of developing
periodontitis: A systematic review and meta-analysis. Front. Med. 9. doi: 10.3389/
fmed.2022.1020126

Dudeney, T. P. (1969). Crohn’s disease of the mouth. Proc. R Soc. Med. 62 (12), 1237.
doi: 10.1177/003591576906201218

Dutzan, N., and Abusleme, L. (2019). T Helper 17 cells as pathogenic drivers of
periodontitis. Adv. Exp. Med. Biol. 1197, 107–117. doi: 10.1007/978-3-030-28524-1_9

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., et al.
(2005). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.
doi: 10.1126/science.1110591

Elmaghrawy, K., Fleming, P., Fitzgerald, K., Cooper, S., Dominik, A., Hussey, S., et al
(2022). The oral microbiome in treatment naïve paediatric IBD patients exhibits dysbiosis
related to disease severity that resolves following therapy. J. Crohns Colitis jjac155. 1–12.
doi: 10.1093/ecco-jcc/jjac155

Engel, L. D., Pasquinelli, K. L., Leone, S. A., Moncla, B. J., Nielson, K. D., and
Rabinovitch, P. S. (1988). Abnormal lymphocyte profiles and leukotriene B4 status in a
patient with crohn’s disease and severe periodontitis. J. Periodontol. 59, 841–847.
doi: 10.1902/jop.1988.59.12.841

Figueredo, C. M., Martins, A. P., Lira-Junior, R., Menegat, J. B., Carvalho, A. T., Fischer,
R. G., et al. (2017). Activity of inflammatory bowel disease influences the expression of
cytokines in gingival tissue. Cytokine 95, 1–6. doi: 10.1016/j.cyto.2017.01.016

Fitzgerald, K. A., and Kagan, J. C. (2020). Toll-like receptors and the control of
immunity. Cell 180, 1044–1066. doi: 10.1016/j.cell.2020.02.041
Frontiers in Cellular and Infection Microbiology 12
Fitzpatrick, L. R., and Jenabzadeh, P. (2020). IBD and bile acid absorption: Focus on
pre-clinical and clinical observations. Front. Physiol. 11. doi: 10.3389/fphys.2020.00564

Frank, D. N., St. Amand, A. L., Feldman, R. A., Boedeker, E. C., Harpaz, N., and Pace,
N. R. (2007). Molecular-phylogenetic characterization of microbial community
imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. 104, 13780–
13785. doi: 10.1073/pnas.0706625104

Frencken, J. E., Sharma, P., Stenhouse, L., Green, D., Laverty, D., and Dietrich, T.
(2017). Global epidemiology of dental caries and severe periodontitis - a comprehensive
review. J. Clin. Periodontol. 44, S94–S105. doi: 10.1111/jcpe.12677

Gadaleta, R. M., van Erpecum, K. J., Oldenburg, B., Willemsen, E. C. L., Renooij, W.,
Murzilli, S., et al. (2011). Farnesoid X receptor activation inhibits inflammation and
preserves the intestinal barrier in inflammatory bowel disease. Gut 60, 463–472.
doi: 10.1136/gut.2010.212159

Gatej, S. M., Marino, V., Bright, R., Fitzsimmons, T. R., Gully, N., Zilm, P., et al. (2017).
Probiotic lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of
experimental periodontitis. J. Clin. Periodontol. 45, 204–212. doi: 10.1111/jcpe.12838

Genco, R. J., and Borgnakke, W. S. (2020). Diabetes as a potential risk for periodontitis:
association studies. Periodontol. 2000 83, 40–45. doi: 10.1111/prd.12270

Genco, R. J., and Sanz, M. (2020). Clinical and public health implications of periodontal
and systemic diseases: An overview. Periodontol. 2000 83, 7–13. doi: 10.1111/prd.12344

Glassner, K. L., Abraham, B. P., and Quigley, E. M. M. (2020). The microbiome and
inflammatory bowel disease. J. Allergy Clin. Immunol. 145, 16–27. doi: 10.1016/
j.jaci.2019.11.003

Gonzales, J. R. (2015). T- and b-cell subsets in periodontitis. Periodontol. 2000 69, 181–
200. doi: 10.1111/prd.12090

Gonzalez, F. J., Jiang, C., and Patterson, A. D. (2016). An intestinal microbiota–
farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151, 845–859.
doi: 10.1053/j.gastro.2016.08.057
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