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The development of the horticultural industry is largely limited by disease and
excessive pesticide application. MicroRNAs constitute a major portion of the
transcriptomes of eukaryotes. Various microRNAs have been recognized as
important regulators of the expression of genes involved in essential biological
processes throughout the whole life cycle of plants. Recently, small RNA
sequencing has been applied to study gene regulation in horticultural plants. In
this review, we summarize the current understanding of the biogenesis and
contributions of microRNAs in horticultural plant disease resistance. These
microRNAs may potentially be used as genetic resources for improving disease
resistance and for molecular breeding. The challenges in understanding
horticultural plant microRNA biology and the possibilities to make better use of
these horticultural plant gene resources in the future are discussed in this review.
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Introduction

MicroRNAs are a class of non-coding small-molecule RNAs in eukaryotes, mostly
21–24 nt in length, whose precursors are specific RNA sequences with hairpin structures
(Voinnet, 2009). MicroRNAs regulate target genes through transcript cleavage or
translational repression at the post-transcriptional level. Since the first report of plant
microRNAs in Arabidopsis in 2002 (Llave et al., 2002), many studies have shown that
microRNAs play vital roles in regulating biotic and abiotic stress conditions. MicroRNAs act
as environmental response factors, inducing plants to overexpress or downregulate certain
microRNAs or synthesize new miRNAs in response to stresses, promoting plant evolution
and adaptation.

Genome-based microRNA breeding has been applied to many horticultural plants,
including Solanaceae, Cucurbitaceae, and Cruciferae, thereby facilitating molecular breeding
at the single-nucleotide level. In the last few years, microRNAs have been shown to play vital
roles in various biological processes related to cell growth and differentiation, as well as the
regulation of immune responses and agronomic traits. Therefore, in this review, we collected
horticultural plant microRNAs through the sRNAanno database (Chen et al., 2021) to
summarize the functions of microRNAs and the key roles of their target genes in disease
resistance.

In the following section, we summarize recent findings and current progresses in the
involvement and roles of microRNAs in horticultural plant disease resistance. To date, a
variety of microRNAs have been identified in various plants and other organisms that play
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roles in regulating disease resistance signaling pathways, including
disease-resistance-related gene expression, hormone signaling, and
reactive oxygen species (ROS) production. We then propose
research perspectives in microRNA-based technologies in
horticultural plant disease control.

The biogenesis of microRNAs:
Biogenesis and mechanism of gene
regulation

MicroRNAs are transcribed by the action of RNA polymerase II
or III to produce the microRNA primary transcript (pri-microRNA)
(Bologna and Voinnet, 2014). pri-microRNA is then 5′-capped and
3′-polyadenylated. Depending on its stem–loop structure, pri-
microRNA is sequentially sliced by an RNase III family enzyme
DICER-LIKE1 (DCL1), forming the microRNA/microRNA*
duplex. During microRNA processing, DCL1 forms a complex
with other RNA-binding proteins such as HYPONASTIC
LEAVES 1(HYL1), SERRATE (SE), TOUGH (TGH), and DA/
WDLE (DLL) (Borges and Martienssen, 2015). After the action
of DCL enzymes, microRNAs undergo specific modifications that
affect their stability. The duplex is 2′-O-methylated at the 3′ end by
the methyl transferase HUA ENHANCER1 (HEN1) to prevent
degradation (Modepalli et al., 2018). Then, pri-microRNA is
exported from the nucleus to the cytoplasm via the HASTY

(HST) transporter (Park et al., 2005). In Arabidopsis, HST is
likely associated with the formation of the microRNA biogenesis
complex at microRNA genes, promoting the transcription and
processing of pri-microRNA rather than the direct export of
processed microRNA from the nucleus (Cambiagno et al., 2021).

In the cytoplasm, the mature microRNA strand is transferred
into Argonaute 1 (AGO1) protein to form the RNA-induced
silencing complex (RISC), which eventually generates a
functional single-stranded microRNA. Also, the other microRNA
strand degrades rapidly. Plant microRNAs regulate target genes at
the post-transcriptional level using both transcript cleavage and
translational repression mechanisms. RISC can specifically
recognize targeted mRNA degradation- or translation inhibition-
mediated gene silencing via the Watson–Crick complementarity
principle (Yu et al., 2017) (Figure 1).

Horticultural plant microRNAs are
highly diversified

With the deepening of the research on microRNAs in
horticultural plants, more and more sources of evidence show
that microRNA plays an important role in regulating many
aspects of the growth and development of horticultural plants.
To focus on microRNAs, we downloaded all the miRNAs of
33 phylogenetically representative horticultural plants (Figure 2)

FIGURE 1
MicroRNA biogenesis and mechanism. The pathway of microRNA biogenesis in plants is shown. pri-microRNA is the primary transcript. The
stem–loop structure of pri-microRNA is split in the nucleus by DCL1 to form amature transcript. A red strand (microRNA) and a green strand (microRNA*)
are generated. MicroRNA is stabilized by HEN1methylation before being exported to the cytoplasm by HST. The red strand is integrated into miRISC, and
the green strand is degraded. Depending on the degree of complementarity with the target site, miRISC cleaves mRNA, thereby inducing immediate
degradation or inhibiting the translation process. AGO, Argonaute; DCL, Dicer-like protein; HEN1, HUA ENHANCER1; HST, HASTY; pri-microRNA, primary
microRNA.
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from the sRNAanno database, including 19 types of vegetables,
11 types of fruit trees, and three types of ornamental plants. These
horticultural plants belong to the following families: Asteraceae,
Fabaceae, Apiaceae, Chenopodiaceae, Cucurbitaceae, Solanaceae,
Brassicaceae, Vitaceae, Musaceae, Bromeliaceae, Rhamnaceae,

Rosaceae, Actinidiaceae, Rutaceae, Theaceae, and Orchidaceae.
We collected 28 miRNA families to illustrate their conservation.
In vegetables, we counted 23, 25, 21, 18, 16, 23, 16, 22, 22, 25, 16, 26,
25, 22, 24, 21, and 22 microRNA families in Lactuca sativa, Glycine
max, Daucus carota, Spinacia oleracea, Beta vulgaris, Citrullus

FIGURE 2
Conservation of miRNAs of horticultural plants. A phylogenetic tree of representative horticultural plants is shown on the left; major groups in the
top left are the different families of horticultural plants: Asteraceae, Fabaceae, Apiaceae, Chenopodiaceae, Vitaceae, Musaceae, Bromeliaceae,
Rhamnaceae, Rosaceae, Actinidiaceae, Rutaceae, Theaceae, Orchidaceae, Cucurbitaceae, Solanaceae, and Brassicaceae. Different miRNAs are listed at
the top, grouped by conservativeness. Below the miRNAs, the colored circles indicate the presence of the component, while empty circles indicate
the absence of the component.
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lanatus, Cucurbita moschata, Cucumis melo, Cucumis sativus,
Capsicum annuum, Solanum melongena, Solanum tuberosum L.,
Solanum lycopersicum L., Brassica juncea, Brassica napus, Brassica
rapa, and Brassica oleracea, respectively. In these vegetable crops, we
found eight highly conserved microRNAs: miR156, miR159,
miR160, miR164, miR166, miR167, miR171, and miR172.
Among fruit trees, Malus domestica, Citrus sinensis, and Citrus
grandis lack only the miR858 family, while Pyrus bretschneideri
and Vitis vinifera lack not only the miR858 family but also the
miRNA828 family. A total of 16 miRNA families are highly
conserved in fruit trees, and 15 microRNA families are highly
conserved in ornamental plants. We counted 19, 26, and
16 microRNA families in Chrysanthemum nankingense, Camellia
sinensis, and Phalaenopsis Aphrodite. Highly conserved microRNAs
often play an important role in plant growth and development. In
four genera of Cucurbitaceae, we identified 23 microRNA families,
15 (65%) of which were found in all four genera. Within the
Solanaceae, we identified 26 microRNA families, of which only
eight (31%) were present in S. melongena. In five genera of the
Brassicaceae family, we identified 25 microRNA families, of which
20 (80%) were present in all five genera. It is worth noting that
miR535 is absent in other vegetable crops but present in
Chenopodiaceae including S. oleracea and B. vulgaris.

MicroRNAs regulate the expression of
disease-resistance-related genes

There are a variety of pathogens that cause plant diseases, and
the main ones in horticultural plants are bacterial, fungal and viral
pathogens. Many microRNAs exhibit complex expression patterns
and often regulate a series of biological processes through
microRNA–target gene interactions, including development,
signal transduction, environmental stresses, and host–pathogen
interactions (Zhai et al., 2011). MicroRNAs are involved in the
pattern (PAMP)-triggered immunity (PTI) and second-layer
effector-triggered immunity (ETI) pathways and regulate disease
resistance genes directly and indirectly (Zhang et al., 2019). Through
the existing research, it was found that miR482/miR2118 responds
to fungal infections caused by Phytophthora infestans and Fusarium
oxysporum in tomatoes by regulating the downstream target gene
NBS (Shivaprasad et al., 2012; Ji et al., 2018; Jiang et al., 2020; Hong
et al., 2021). In apples, a 22-nt microRNA named
miRcand137 compromises host resistance to Botryosphaeria
dothidea infection. miRcand137 directs the silencing of ERF14
that codes a transcription activator of several PR genes (Yu et al.,
2022). In addition to fungal diseases caused by oomycete pathogens
such as Fusarium oxysporum and Phytophthora infestans in
tomatoes (Ouyang et al., 2014; Jiang et al., 2018; Canto-Pastor
et al., 2019) and Plasmodiophora in B. rapa (Paul et al., 2021),
miR482-NBS modulates resistance to bacterial diseases. Meanwhile,
miR482-NBS plays an important role in regulating resistance to
vegetable viral diseases caused by cucumber mosaic virus (CMV) in
tomatoes (Feng et al., 2014). The genes of the serine/threonine
protein kinase (STK) family play a key role not only in adaptation to
abiotic stresses but also in activating plant defense mechanisms
(Afzal et al., 2008). Cheng et al. (2016) found that the application of
exogenous ABA resulted in multiple microRNAs targeting pathogen

resistance genes, with miR319 targeting STK, which belongs to the
STK family, being elevated. These receptors trigger signal
transduction cascades, leading to rapid defense responses,
hypersensitivity reactions, and programmed cell death to limit
pathogen proliferation. Overall, these findings suggest that
microRNA-mediated gene silencing might act as a key regulator
for R gene-mediated defense responses.

MicroRNAs are involved in plant
hormone signaling

Plant hormones like ethylene, salicylic acid (SA), and jasmonic
acid (JA) can act as signaling molecules involved in plant immunity,
and microRNAs play a regulatory role in the signaling of these
hormones (Dong et al., 2023). ARF acts as defense response
transcription factors (TFs) that interact with cis-elements in the
promoter regions of target genes to control the expression of
downstream genes and initiate a cascade of physiological and
biochemical responses in plant cells (Ramirez and Basu, 2009).
miR160 targeting ARF transcription factor in response to
Pseudoperonospora cubensis infection in cucumbers was identified
(Jin and Wu, 2015). In potatoes, novel regulatory mechanisms for
JA- and SA-mediated crosstalk in defense responses were identified,
with novel regulation of the SA pathway by JA through StNPR1 (a
defense gene) during infection with the potato necrotrophic
pathogen. In parallel, the miR160 target gene StARF16 (a gene
involved in growth and development) regulates StNPR1 gene
expression and thereby inhibits the SA pathway (Kalsi et al.,
2022). In B. rapa, miR319a is involved in regulating plant
resistance to stem rot disease caused by Sclerotinia sclerotiorum,
and overexpression ofMIR319A reduced plant resistance to SSR due
to interruption of the JA- and SA-related pathways (Dong et al.,
2021). AP2 belongs to the AP2/EREBP family of transcription
factors and plays an important role in pathogen resistance
(Cheng et al., 2016). AP2 is involved in the biological stress
response through the ethylene signaling pathway and protects
plants from pathogen attack (Zimmerli et al., 2004). Liang et al.
(2019) constructed a network of miRNAs and target genes
associated with cucumber–CGMMV interactions and found that
the target gene ethylene response transcription factor PAP2-7 of
miR172 regulates downstream gene expression in response to
pathogen defense. In tomatoes, overexpression of miR172a and
miR172b increased resistance to Phytophthora infestans infection
by suppressing the AP2/ERF transcription factor (Luan et al., 2018).
A new microRNA, can-miRn37a, was identified in pepper that
regulate resistance to anthracnose pathogen Colletotrichum
truncatum L. by suppressing the expression of ethylene response
factors (Mishra et al., 2018).

MicroRNAs regulate the production
of ROS

Reactive oxygen species (ROS) is an important defense response
of plants against pathogenic infestation. Increasing evidence points
to a potential role of microRNAs in oxidative stresses. In
Arabidopsis, miR398 targets two closely related Cu/Zn
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superoxide dismutases that can detoxify superoxide radicals (Sunkar
et al., 2006). In rice, miR528 negatively regulates viral resistance by
cleaving L-ascorbate oxidase (AO) messenger RNA, thereby
reducing AO-mediated accumulation of ROS (Wu et al., 2017).
Similar results were reported in tomatoes. Hong et al. (2019)
reported that transgenic tomato plants overexpressing miR482c
had reduced NBS-LRR expression and reduced ROS scavenging
capacity after late blight infection, and thus miR482 was a negative
regulator of tomato resistance. Sly-miR397 affects the expression
levels of ROS scavenging genes, altering H2O2 concentrations in
response to Phytophthora infestans and Oidium neolycopersici
infections (Guan et al., 2022). Sly-miR159 targets
SlMyb33 transcription factor, and SlMYB33 promotes the
expression of the resistance gene SlSw5a. Silencing neither
SlMyb33 nor SlSw5a leads to a decrease in the ROS level and
confers tomato leaf curl New Delhi virus susceptibility (Sharma
et al., 2021). miR6024 overexpression in tomato plants exhibits
downregulation of the target gene NLR, excessive accumulation of
ROS, and hypersusceptibility to A. solani infection; therefore,
miR6024–NLR interactions negatively regulate A. solani
pathogenesis in tomatoes (Dey et al., 2022).

Discussion

The horticultural plants comprise a large collection of plants that
significantly contribute to food, fuels, beauty of living places, and
ecosystems. Horticultural plants are mainly cultivated in solar
greenhouses and plastic greenhouses, with large temperature
difference, high humidity, and a threat to serious diseases. The
development of the horticultural industry is largely limited by
disease and excessive pesticide application. The most effective
strategies for preventing diseases in horticultural plants include
selecting disease-resistant gene resources and breeding disease-
resistant varieties.

In the past few years, microRNAs have emerged as important
regulators of both growth and disease resistance in horticultural
plants. Artificial targeting of microRNAs or targets is an attractive
approach for improving disease resistance and for molecular plant
breeding. There are two main challenges of microRNA research on
horticultural plants. The first challenge is the elaboration of the
disease resistance of certain microRNA. Understanding which
microRNA works in regulating disease resistance is an important
step. Although a great progress has been made in a few model

species, the same has not been achieved in many other horticultural
plants. The second challenge is the lack of an effective
transformation system in many horticultural plants. The
identified microRNAs need to be functionally validated in
horticultural plants. Recently, a set of tobacco ringspot virus-
based vectors was developed for studying microRNA function in
cucurbits (Fang et al., 2021), which shed light on microRNA
function in other horticultural plants. Therefore, we should
accelerate the identification and functional analysis of key
microRNAs involved in the disease resistance mechanism and try
to apply them to disease resistance breeding.
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