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Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
Purpose: This study aimed to develop prediction models for chronic postsurgical

pain (CPSP) after breast cancer surgery using machine learning approaches and

evaluate their performance.

Methods: The study was a secondary analysis based on a high-quality dataset from

a randomized controlled trial (NCT00418457), including patients with primary

breast cancer undergoing mastectomy. The primary outcome was CPSP at 12

months after surgery, defined asmodified Brief Pain Inventory > 0. The dataset was

randomly split into a training dataset (90%) and a testing dataset (10%). Variables

were selected using recursive feature elimination combined with clinical

experience, and potential predictors were then incorporated into three machine

learning models, including random forest, gradient boosting decision tree and

extreme gradient boosting models for outcome prediction, as well as logistic

regression. The performances of these four models were tested and compared.

Results: 1152 patients were finally included, of which 22.1% developed CPSP at 12

months after breast cancer surgery. The 6 leading predictors were higher

numerical rating scale within 2 days after surgery, post-menopausal status,

urban medical insurance, history of at least one operation, under fentanyl with

sevoflurane general anesthesia, and received axillary lymph node dissection.

Compared with the multivariable logistic regression model, machine learning

models showed better specificity, positive likelihood ratio and positive predictive

value, helping to identify high-risk patients more accurately and create

opportunities for early clinical intervention.

Conclusions:Our study developed predictionmodels for CPSP after breast cancer

surgery based on machine learning approaches, which may help to identify high-

risk patients and improve patients’ management after breast cancer.

KEYWORDS

chronic postsurgical pain (CPSP), breast cancer, prediction model, machine learning,
high-risk identification
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Introduction

Breast cancer is the most common cancer in women. Although

the ten-year survival rate of breast cancer has reached 82% (1, 2),

there are still 20% to 60% of surviving patients experiencing chronic

postsurgical pain (CPSP) after breast cancer surgery, resulting in a

reduced quality of life and functional impairments (3–5). Predicting

the risk of CPSP after breast cancer surgery can help clinicians

identify those with a higher risk of CPSP and leading to earlier

therapeutic interventions. In addition, identifying patients with a

lower risk of CPSP could also prevent unnecessary therapy, saving

limited medical resources.

Numerous factors have been found to be associated with CPSP

after breast cancer surgery in the past decade, including social-

demographic, intraoperative, and postoperative factors (6–8).

Several models to predict CPSP have also been developed, mostly

in European breast cancer patients (9–12). However, despite the

acceptable discrimination and calibration of those models, the low

clinical utility, especially positive predictive values (PPVs) around

0.2 at a 20~60% risk level of CPSP, limits their application in clinical

practice, making it still difficult to identify high-risk patients early

(9–12). Moreover, considering the different genetic, cultural and

social backgrounds between different ethnic groups, which may also

play an important role in this complex pathophysiological disease

status, the extrapolation of those tools in Asian patients may be

potentially limited.

Machine learning is a form of artificial intelligence that uses

computer algorithms to identify nonlinear data patterns within large

datasets to formulate outcome prediction and indicate improved

prediction performance compared to the traditional prediction

methods, which may be more suitable for the prediction of CPSP

(13, 14). For example, random forest (RF) designs meta estimators

that fit a number of decision tree classifiers on various sub-samples of

the dataset and uses average to improve the predictive accuracy and

control over-fitting. Gradient boosting decision tree (GBDT) gives a

prediction model in the form of an ensemble of weak prediction

models, which has strong generalization ability and performed well in

both classification and regression tasks. Extreme gradient boosting

(XGBoost) is an algorithm built on the GBDT framework and

processed the missing data efficiently and flexibly (15). These three

algorithms were also deep learning algorithms, the architecture of

machine learning designed to mimic the neurological structure of the

human brain, which might be more powerful than traditional

algorithms in data analysis and prediction (16). Therefore, in this

study, we intend to select these three algorithms with good fitting

ability to develop prediction models for CPSP in Asian patients with

breast cancer, and compare these models with logistic regression,

hoping to improve the performance and clinical utility of the

prediction models.

Contributions of this study:

1 This time we use machine learning approaches to develop

prediction models, intending to improve the clinical utility and help

clinicians identify high-risk CPSP patients more accurately

and confidently.
Frontiers in Oncology 02
2 Considering the different genetic, cultural and social backgrounds

between different ethnic groups, which may also play an important role

in CPSP, we focused on Chinese patients to explore predictors and

models more suitable for Chinese population.
Methods

Study population

The study was a second analysis based on the dataset from the

Chinese center in a multicenter randomized controlled trial (RCT,

NCT00418457), held from 2014 to 2016, which has previously been

described in detail (17–19). We enrolled women younger than 85

years with primary breast cancer without known extension beyond

the breast and axillary nodes (ie, believed to be tumor stage 1-3,

nodes 0-2) who were scheduled either for unilateral or bilateral

mastectomy, with or without implants, or for wide local excision

with node dissection. We excluded women who had previous

surgery for breast cancer (we allowed diagnostic biopsies and

guide-wire insertion), had inflammatory breast cancer, were

scheduled for free-flap reconstruction, had American Society of

Anesthesiologists (ASA) physical status of IV or higher, had

contraindications to either anesthetic approach, or had other

cancer not in long-term remission.

All the surgeries were conducted by the same surgical team, and

the perioperative analgesia was standardized. In the original trial,

patients were randomly assigned to either opioid analgesia (under

fentanyl with sevoflurane general anesthesia, GA group) or

paravertebral blocks (under paravertebral block with propofol

general anesthesia, PPA group). Tramadol was the first-line

postoperative analgesic in both study groups. Analgesia at home

during the first postoperative week consisted of ibuprofen,

acetaminophen, or a combination of acetaminophen and codeine.
Outcomes

The primary outcome was CPSP at 12 months after breast cancer

surgery. According to the 2016 International Association for the Study

of Pain (IASP) criteria (20), CPSP is defined as pain that occurs after

surgical intervention and lasts for at least three months, excluding

other potential causes (e.g. cancer recurrence and infection). In our

study, patients with modified Brief Pain Inventory (mBPI) > 0 at 12

months after breast cancer surgery in surgical area (breast, axilla, and

arm) were considered to develop CPSP (21).

Outcomes of breast cancer were also recorded within 12

months, including 1) recurrence of breast cancer in the ipsilateral

breast, thoracic wall, and axillary tissue with pathological

confirmation; 2) distant metastasis, including the occurrence of

breast cancer in the contralateral breast or any other remote organs

with pathological confirmation, or multiple lesions consistent with

metastases found on imaging examination; and 3) death from

any reasons.
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Data acquisition

Baseline characteristics including demographics, medical

insurance level, preoperative data, surgical data, pathology data,

and adjuvant therapies after surgery were acquired from the dataset

of the RCT (NCT00418457). In addition, pain-related data

including the presence of persistent pain of any kind,

preoperative pain in the operative area (breast, axilla, and arm),

opioid (fentanyl) consumption during surgery, postoperative pain

intensity ratings within 2, 24, and 48 hours after surgery were also

recorded in the dataset. Postoperative pain intensity was categorized

according to verbal numerical rating scale (NRS) from no pain

(NRS 0), mild pain (NRS 1~3), to moderate-to-severe pain

(NRS 4~10).

Outcome observation and follow-up information were also

obtained from the dataset of the RCT. All follow-ups were done

using one qualified investigator unaware of the patient’s random

assignments and intraoperative management, and they have tried to

contact not only the patients, but also their families and caregivers,

and tried at least 3 times at each follow-up time point (30 days, 3

months, 6 months, and 12 months after surgery) to ensure a high

proportion of successful follow-up (> 99%). Patients who withdrew

from the RCT, lost to follow-up, or had missing data were excluded

from our study.
Statistical analysis

The full dataset was randomly split into a training dataset (90%)

and a testing dataset (10%). Feature selection and model-

development were performed in the training dataset, and the

validation and evaluation of the models were performed in the

testing dataset. Continuous variables were converted to restricted

cubic splines for better fitting (22).

Recursive feature elimination (RFE) (23) is a feature selection

method that fits a model and removes the weakest features until the

specified number of features is reached. Features are ranked by the

model’s coefficient or feature importance attributes and attempted to

eliminate dependencies and collinearity that may exist in the model

by recursively eliminating a small number of features per loop. In this

study we used RFE for variables selection and pre-set 5 as the
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identified the final variables incorporated into the prediction model

based on the results of RFE, clinical experience and risk factors

mentioned in most studies (11, 12, 24, 25). In addition, we analyzed

the contribution (gain) of each identified variable to 12-month CPSP.

In the model-development phase, four prediction models

including conventional logistic regression, RF, GBDT and

XGBoost algorithm models, were constructed with the identified

variables for CPSP prediction, the overview of these four models are

shown in Table 1. Ten folds Grid-search cross-validation (26) was

used to select the best tuning parameters for the RF, GBDT, and

XGBoost models. The performances of these four models were

validated and evaluated using the area under the receiver operating

characteristic curve (AU-ROC) for discrimination and the

integrated calibration index (ICI), E50, E90 and Hosmer-

Lemeshow test for calibration (27). The diagnostic accuracy,

including sensitivity, specificity, positive and negative likelihood

ratios (PLR and NLR), and positive and negative predictive values

(PPV and NPV), was also calculated to compare the clinical validity

of different models.

All statistical analyses were performed by R 4.0.2 and python

3.8.0. A 2-sided P-value less than 0.05 was considered the threshold

for statistical significance.
Results

Baseline characteristics

A total of 1152 patients were finally included in the study,

excluding 8 lost to follow-up, 4 withdrew from the RCT, 18 having

missing data, 2 died within 12 months, and 69 with postoperative

recurrence within 12 months. The process of patient selection is

shown in Figure 1. 255 (22.1%) patients developed CPSP at 12

months after breast cancer surgery. According to the results of

univariable analyses in the full dataset using logistic regression, in

those patients with 12-month CPSP, the age, medical insurance

level, menstruation status, whether receiving axillary lymph node

dissection (ALND), surgical technique, and acute postoperative

pain (within 2 days after surgery) differed significantly from those

in patients without CPSP. Data is shown in Table 2.
TABLE 1 Overview of four prediction models.

Prediction
models Overview

Logistic
regression

An extension of the linear regression model for classification problems, used to examine the association of categorical or continuous independent
variable(s) with one binary outcome, more suitable for linear data pattern.

RF
An ensemble machine learning method for both classification and regression tasks, training a large number of individual decision trees on various sub-
samples of the dataset, and using average to improve the predictive accuracy and control over-fitting, more suitable for nonlinear data pattern.

GBDT
An iterative decision tree algorithm with strong generalization ability, which combines several weak prediction models (predictors with poor accuracy)
into a strong learner (a model with strong accuracy), performed well in both classification and regression tasks but with over-fitting.

XGBoost
Built on the GBDT framework and designed for supervised learning tasks such as regression, classification and ranking, which is a more regularized
model formalization to control over-fitting.
GBDT, gradient boosting decision tree; RF, random forest; XGBoost, extreme gradient boosting.
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Features selected in models

RFE was used for feature selection. As shown in Figure 2A,

according to the results of RFE, better discrimination appeared

when 12 or 6 variables remained (AUC was 0.720 and 0.735

respectively). Considering the clinical practicability of models, we

hoped to select as few predictors as possible when discrimination is

similar, so we selected 6 variables to be included, which were

medical insurance level, menstruation status, history of any

operation to anybody region, anesthetic technique, pathology

stage for nodes (stage N), and NRS 2 days after surgery.

According to the clinical experience and previous research (3, 5,

25), ALND would be more suitable as one of the selected predictors,

replacing the stage N, since ALND may potentially cause nerve

damage and is much preferred by breast cancer patients in China for
Frontiers in Oncology 04
the fear of tumor recurrence, even in patients whose stage N is 0 or 1.

In summary, urban medical insurance, including urban employee

basic medical insurance (UEBMI), urban resident medical insurance

program for self-employed and unemployed urban residents

(URMI), and commercial medical insurance (CMI), as well as

post-menopausal status, history of at least one operation, under

fentanyl with sevoflurane general anesthesia (GA group), receiving

ALND and higher NRS within 2 days after surgery were associated

with a higher risk of 12-month CPSP after breast cancer surgery.

Furthermore, we analyzed the contribution (gain) of each

feature selected above to 12-month CPSP. The importance of

each feature listed in the descending order was NRS within 2 days

after surgery > menstruation status > medical insurance level >

history of operation > anesthetic technique > whether receiving

ALND. Details are shown in Figure 2B.
FIGURE 1

Flow chart of patient selection and random splitting.
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TABLE 2 Baseline characteristics and univariable analyses for chronic postsurgical pain (CPSP) in full dataset.

Variables CPSP (n = 255) No CPSP (n = 897) Unadjusted OR (95% CI) P value

Preoperative factors

Medical insurance level

No 113 (44.3) 473 (52.7) Reference

NCMS 17 (6.7) 94 (10.5) 0.76 (0.43 to 1.32) 0.326

UEBMI+URMI+CMI 125 (49.0) 330 (36.8) 1.59 (1.19 to 2.12) 0.002

Age, y 50 ± 9 49 ± 10 1.02 (1.00 to 1.03) 0.016

BMI, kg/m2 23.7 ± 3.3 23.8 ± 3.2 0.99 (0.95 to 1.04) 0.805

Smoking history 4 (1.6) 11 (1.2) 1.28 (0.41 to 4.07) 0.671

Alcohol use 1 (0.4) 3 (0.3) 1.17 (0.12 to 11.33) 0.890

ASA physical status

1 173 (67.8) 643 (71.7) Reference

2~3 82 (32.2) 254 (28.3) 1.20 (0.89 to 1.62) 0.234

Menstruation status

Pre-menopausal 98 (38.4) 414 (46.2) Reference

Peri-menopausal 23 (9.0) 113 (12.6) 0.86 (0.52 to 1.42) 0.554

Post-menopausal 134 (52.5) 370 (41.2) 1.53 (1.14 to 2.06) 0.005

Depression 1 (0.4) 6 (0.7) 0.58 (0.07 to 4.88) 0.620

Chronic ß-blocker use 4 (1.6) 22 (2.5) 0.63 (0.22 to 1.86) 0.406

Preoperative pain in the operative area 126 (49.4) 439 (48.9) 1.02 (0.77 to 1.35) 0.894

History of operation *

0 107 (42.0) 437 (48.7) Reference

1 93 (36.5) 292 (32.6) 1.30 (0.95 to 1.78) 0.102

≥ 2 55 (21.6) 168 (18.7) 1.34 (0.92 to 1.94) 0.125

Preoperative neoadjuvant therapy 8 (3.1) 31 (3.5) 0.90 (0.41 to 1.99) 0.804

Tumor location

Left 121 (47.5) 462 (51.5) Reference

Right 130 (51.0) 424 (47.3) 1.17 (0.88 to 1.55) 0.271

Bilateral 4 (1.6) 11 (1.2) 1.39 (0.43 to 4.44) 0.580

Intraoperative factors

ALND 225 (88.2) 747 (83.3) 1.51 (0.99 to 2.29) 0.056

Surgical technique

Simple mastectomy 23 (9.0) 134 (14.9) Reference

Modified radical mastectomy 180 (70.6) 614 (68.5) 1.71 (1.06 to 2.74) 0.026

Wide local excision with node dissection 40 (15.7) 94 (10.5) 2.48 (1.39 to 4.41) 0.002

Others 12 (4.7) 55 (6.1) 1.27 (0.59 to 2.73) 0.539

Anesthetic technique

GA 128 (50.2) 443 (49.4) Reference

PPA 127 (49.8) 454 (50.6) 0.97 (0.73 to 1.28) 0.820

Pathology stage, tumor (T)

(Continued)
F
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Models development and comparison

We incorporated the 6 predictors mentioned above to construct

different prediction models using training dataset, including RF,

GBDT and XGBoost algorithm models, and multivariable logistic

regression model. The performances of these four models were then

evaluated and compared.

The results indicated that machine learning models (RF/GBDT/

XGBoost) had better discriminatory power compared with the

multivariable logistic regression model [AUC, 0.749 (95% CI

0.715 to 0.784)/0.755 (95% CI 0.722 to 0.789)/0.731 (95% CI

0.696 to 0.766) vs 0.631 (95% CI 0.589 to 0.672)] in the training

dataset, while there was no obvious difference among them in the
Frontiers in Oncology 06
testing dataset [(AUC, 0.749 (95% CI 0.661 to 0.838)/0.734 (95% CI

0.639 to 0.830)/0.741 (95% CI 0.641 to 0.840) vs 0.777 (95% CI

0.685 to 0.870)] (Figure 3). As for the calibration evaluated in the

testing dataset, the XGBoost model performed better than the

multivariable logistic regression model with lower ICI and higher

Hosmer-Lemeshow test P-value [ICI, 0.050 (95% CI 0.038 to 0.122)

vs 0.070 (95% CI 0.050 to 0.146); Hosmer-Lemeshow test P-value,

0.829 vs 0.059]. Other machine learning models (RF and GBDT)

did not show the apparent superiority in ICI, while they all had

higher Hosmer-Lemeshow test P-value than logistic regression

model [ICI, 0.093 (95% CI 0.053 to 0.168)/0.072 (95% CI 0.049 to

0.156) vs 0.070 (95% CI 0.050 to 0.146); Hosmer-Lemeshow test P-

value, 0.429/0.384 vs 0.059] (Table 3).
TABLE 2 Continued

Variables CPSP (n = 255) No CPSP (n = 897) Unadjusted OR (95% CI) P value

T0 1 (0.4) 7 (0.8) Reference

T1 145 (57.3) 513 (57.6) 1.98 (0.24 to 16.21) 0.525

T2 90 (35.6) 314 (35.2) 2.01 (0.24 to 16.52) 0.517

T3 10 (4.0) 28 (3.1) 2.50 (0.27 to 22.93) 0.418

T4 1 (0.4) 1 (0.1) 7.00 (0.22 to 226.00) 0.272

Tis 6 (2.4) 28 (3.1) 1.50 (0.15 to 14.57) 0.727

Pathology stage, nodes (N)

N0 145 (57.1) 506 (56.4) Reference

N1 52 (20.5) 228 (25.4) 0.80 (0.56 to 1.13) 0.205

N2 28 (11.0) 83 (9.3) 1.18 (0.74 to 1.88) 0.493

N3 29 (11.4) 80 (8.9) 1.27 (0.80 to 2.01) 0.320

Tumor TNM stage

0 5 (2.0) 32 (3.6) Reference

1 95 (37.5) 336 (37.6) 1.81 (0.69 to 4.77) 0.231

2 94 (37.2) 355 (39.8) 1.69 (0.64 to 4.47) 0.286

3 59 (23.3) 170 (19.0) 2.22 (0.83 to 5.97) 0.113

Postoperative factors within 12 months

NRS within 2 days after surgery

0 7 (2.7) 60 (6.7) Reference

1~3 123 (48.2) 547 (61.0) 1.93 (0.86 to 4.32) 0.111

4~10 125 (49.0) 290 (32.3) 3.69 (1.64 to 8.31) 0.002

Postoperative analgesic 61 (23.9) 239 (26.6) 0.87 (0.63 to 1.20) 0.382

Radiotherapy 102 (40.0) 333 (37.1) 1.13 (0.85 to 1.50) 0.403

Chemotherapy 190 (74.5) 678 (75.6) 0.94 (0.69 to 1.30) 0.725

Endocrine treatment 166 (65.1) 608 (67.8) 0.89 (0.66 to 1.19) 0.421
fron
Results presented as x ± s or n (%).
ALND, axillary lymph node dissection; ASA, American society of anesthesiology; BMI, body mass index; CI, confidence interval; CMI, commercial medical insurance; CPSP, chronic postsurgical
pain; GA, fentanyl with sevoflurane general anesthesia; NCMS, the new cooperative medical scheme for rural residents; NRS, numerical rating scale; OR, odds ratio; PPA, paravertebral block with
propofol general anesthesia; UEBMI, the urban employee basic medical insurance; URMI, the urban resident medical insurance program for self-employed and unemployed urban residents.
* Previous history of operation refers to any type of operation to any body region.
tiersin.org

https://doi.org/10.3389/fonc.2023.1096468
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sun et al. 10.3389/fonc.2023.1096468
According to the general incidence of CPSP in breast cancer

population, we evaluated the clinical validity of all the four

prediction models at a 20% risk level of CPSP. As shown in

Table 4, compared with the multivariable logistic regression

model, machine learning models (RF/GBDT/XGBoost) showed

higher specificity, PLR and PPV, which could help to identify

patients with high risk of CPSP [specificity, 0.914 (95% CI 0.810

to 0.971)/0.922 (95% CI 0.811 to 0.978)/0.907 (95% CI 0.797 to

0.969) vs 0.622 (95% CI 0.514 to 0.722); PLR, 4.200 (95% CI 1.699

to 10.381)/4.315 (95% CI 1.587 to 11.734)/3.658 (95% CI 1.481 to

9.038) vs 2.036 (1.451 to 2.857); PPV, 0.808 (95% CI 0.606 to 0.934)/
Frontiers in Oncology frontiersin.o07
0.846 (95% CI 0.651 to 0.956)/0.808 (95% CI 0.606 to 0.934) vs

0.370 (95% CI 0.243 to 0.513)], but with lower sensitivity, higher

NLR and lower NPV.
Discussion

Breast cancer is considered to be the most prevalent cancer in

women. As survival improves primarily due to earlier detection and

improvements in the therapeutic approaches (28), new challenges

emerge. Consistent with previous reports, 22.1% patients in our
A B

FIGURE 2

Feature selection for chronic postsurgical pain (CPSP) and the contribution (gain) analysis. (A) Feature selection using recursive feature elimination
(RFE). The X axis is the number of remaining variables in RFE. Set the minimum number of variables to 5. The Y axis is the area under the receiver
operating characteristic curve (AU-ROC) when different variables remain. AU-ROC is the best (0.735) when there are 6 variables left. (B) Shapley
additive explanation (SHAP) summary plots of the top 6 predictors of the XGBoost algorithm for CPSP. SHAP value reflects the feature importance
of every observation. The higher the SHAP value of a feature, the higher the risk of CPSP. A dot is created for each feature attribution value for the
model of each patient. Dots are colored according to the values of features for the respective patient and accumulate vertically to depict density.
Red represents higher feature values, and blue represents lower feature values. ALND, axillary lymph node dissection; NRS, numerical rating scale.
A B

FIGURE 3

Comparison of the prediction models for chronic postsurgical pain (CPSP) - receiver operating characteristic (ROC) curve in the training dataset (A)
and the testing dataset (B). AUC, area under the curve; GBDT, gradient boosting decision tree (blue); LR, logistic regression (red); RF, random forest
(green); XGBoost, extreme gradient boosting (purple).
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study developed CPSP at 12 months after breast cancer surgery,

which could reduce their quality of life (3–5).

At present, more and more prediction models are established to

identify the high-risk CPSP patients in advance (9–12). Sipilä R

et al. created a 6-factor risk index to predict persistent pain at 6

months after surgery using Bayesian model in Finland population

prospectively (9). Another 4-item preoperative risk score for

persistent pain at 4 months after surgery was developed with

multivariable logistic regression model in Switzerland (10).

Meretoja TJ et al. created a web-based risk calculator using

logistic regression analyses to assess the risk of persistent pain at

1 year after surgery in European breast cancer cohorts (11).

However, most of these models are conducted in European

patients, with a lack of studies on Asian patients, and the low

clinical utility limits their application in clinical practice. Machine

learning is a form of artificial intelligence that uses computer

algorithms to identify nonlinear data patterns within large

datasets to formulate outcome prediction (13), which may be

more suitable for the prediction for CPSP. Considering the poor

performance of machine learning algorithms chosen in previous

studies, this time we selected three representative machine learning

methods with good fitting ability, including RF, GBDT, and

XGBoost to develop prediction models, based on a high-quality

dataset and rigorous model evaluation, intending to improve their

clinical utility.

Our results suggested that, although the superiority of machine

learning models over logistic regression model in discrimination

and calibration are not particularly prominent, they performed

better in specificity, PLR, and PPV.We found that posterior positive
Frontiers in Oncology 08
probability, reflected by PPV, was around 0.8 using machine

learning methods, which reflects a large increase from the prior

probability of 0.2 (22.1%). That means the probability of developing

CPSP is as high as 80% if the patient was categorized as high risk

using our prediction model. This indeed could improve the models’

clinical utility and help clinicians identify high-risk CPSP patients

more accurately and confidently, so that appropriate treatments

could be taken promptly. Considering the high quality and low lost

to follow-up rate (<1%) of our dataset, these results were reliable

and convincing.

According to the feature selection, acute postoperative pain

which reflected by a higher NRS within 2 days after surgery, is one

of the risk factors for CPSP, consistent with previous research (29).

It has been reported that the paravertebral block could improve

early postoperative analgesia and prevent CPSP by impacting the

transition from acute to chronic pain (7, 8, 30). This may explain

why the patients under paravertebral block with propofol general

anesthesia (PPA group) had a lower risk of CPSP, compared with

those who under fentanyl with sevoflurane general anesthesia

(GA group).

Menstruation status was another important predictor for CPSP

after breast cancer surgery. It was found in our results that patients

under post-menopausal stage seemed to experience a higher risk of

CPSP. The decline of estrogen and various musculoskeletal and

climacteric symptoms may be the possible explanations (31).

However, some reports suggested a younger age was associated

with greater risk of CPSP (25). This might be related to the social

background difference in different ethnic groups. Post-menopausal

women are generally over 55 years old and tend to be retired in
TABLE 3 Comparison of prediction models for chronic postsurgical pain (CPSP) in the testing dataset - calibration metrics.

Logistic regression RF GBDT XGBoost

ICI 0.070 (0.050 to 0.146) 0.093 (0.053 to 0.168) 0.072 (0.049 to 0.156) 0.050 (0.038 to 0.122)

E50 0.070 (0.027 to 0.127) 0.109 (0.034 to 0.170) 0.071 (0.035 to 0.138) 0.046 (0.024 to 0.123)

E90 0.111 (0.095 to 0.307) 0.129 (0.107 to 0.303) 0.114 (0.083 to 0.286) 0.071 (0.064 to 0.257)

H-L P value 0.059 0.429 0.384 0.829
Each cell contains the appropriate calibration metric and its 95% confidence interval.
E50 and E90, the median and 90th percentile of the absolute difference between observed and predicted probabilities respectively; GBDT, gradient boosting decision tree; H-L, Hosmer-Lemeshow
test; ICI, integrated calibration index (a measure of calibration, which could be interpreted as weighted difference between observed and predicted probabilities); RF, random forest; XGBoost,
extreme gradient boosting.
TABLE 4 Comparison of prediction models for chronic postsurgical pain (CPSP) in the testing dataset - clinical validity at a 20% risk level.

Logistic regression RF GBDT XGBoost

Sensitivity 0.769 (0.564 to 0.910) 0.362 (0.240 to 0.499) 0.338 (0.226 to 0.466) 0.339 (0.223 to 0.470)

Specificity 0.622 (0.514 to 0.722) 0.914 (0.810 to 0.971) 0.922 (0.811 to 0.978) 0.907 (0.797 to 0.969)

PLR 2.036 (1.451 to 2.857) 4.200 (1.699 to 10.381) 4.315 (1.587 to 11.734) 3.658 (1.481 to 9.038)

NLR 0.371 (0.181 to 0.762) 0.698 (0.566 to 0.861) 0.718 (0.593 to 0.869) 0.729 (0.598 to 0.888)

PPV 0.370 (0.243 to 0.513) 0.808 (0.606 to 0.934) 0.846 (0.651 to 0.956) 0.808 (0.606 to 0.934)

NPV 0.903 (0.801 to 0.964) 0.589 (0.480 to 0.692) 0.522 (0.414 to 0.629) 0.544 (0.436 to 0.650)
Each cell contains the appropriate value and its 95% confidence interval.
GBDT, gradient boosting decision tree; NLR, negative likelihood ratio; NPV, negative predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; RF, random forest; XGBoost,
extreme gradient boosting.
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China. In most cases, their children, now adults, have left home for

work or study, making them experience low hormone levels and the

loneliness due to unaccompanied simultaneously. These might lead

to a more anxious mental status which could cause or aggravate the

feel of pain (32).

Recently Wang Y, et al. also constructed prediction models of

chronic pain after breast cancer surgery using a variety of machine

learning techniques (33). However, these models not only have

lower discriminatory power, sensitivity and PPV, but also do not

include psychosocial factors. Pain is a strongly subjective feeling

that is affected by the disease itself and relevant clinical factors, as

well as social factors, cultural backgrounds, psychological state, and

so on. Therefore, in this study, we also took medical insurance level

into consideration to represent patients’ social backgrounds and

reflect their psychosocial status. According to the current forms of

medical insurance in China, we divided patients’ medical insurance

level into no medical insurance, rural medical insurance, which is

the new cooperative medical scheme (NCMS) for rural residents,

and urban medical insurance, which includes UEBMI, URMI and

CMI (34). Our results demonstrated that patients with urban

medical insurance suffered a higher risk of CPSP. Urban medical

insurance could represent the urban residents. They usually have

higher economic and educational level and pay more attention

about their physical health, life quality, psychological condition and

self-feeling, therefore more prone to exacerbate the feeling of pain.

Conversely, patients living in rural areas, often with NCMS, may

suffer from a heavier burden of life, have a lower level of education

and self-focus, and thus seldom care about inconspicuous pain.

Our study also had several limitations. First, it was a secondary

analysis based on the dataset in one single center of a multicenter

RCT. Although the data in this study were accurate and complete

with low drop-out rate, relatively strict inclusion and exclusion

criteria in the original trial limited the external validity of our

results. Second, despite the machine learning models showed better

specificity and PPV, their sensitivity and NPV were not good.

Further studies were urgently needed to improve models’ general

performance. Third, our prediction model included some specific

cultural differences such as insurance in China, which might make

the global applicability of the model limited. Finally, psychosocial

factors may play an important role in CPSP after breast cancer

surgery. Although some psychosocial factors were included in our

analyses and model development, they are not enough, especially

lacking of data on underlying anxiety. Studies incorporating a more

comprehensive analysis of psychosocial factors should be conducted

in the future.
Conclusions

This study developed prediction models for CPSP at 12 months

after breast cancer surgery based on machine learning approaches,

which could assist clinicians to identify high-risk patients more

accurately and conduct clinical interventions in advance. Using

machine learning methods could be a novel approach to predict

CPSP and help tailoring precise management for patients with breast

cancer, leading to a better prognosis and an increased quality of life.
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