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JAG1 is correlated to suppressive
immune microenvironment and
predicts immunotherapy
resistance in lung
adenocarcinoma
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Background: The current exploration of the tumor immunemicroenvironment is

enthusiastic, but few studies explored the impact of angiogenesis on the immune

microenvironment. Immunotherapy combined with anti-angiogenesis therapy

has become one of the first-line treatment for lung adenocarcinoma. Our study

aimed to explore the reasons for resistance of immunotherapy, and explore

markers for immunotherapy combined with anti-angiogenesis therapy.

Methods: First, by unsupervised clustering of 36 angiogenesis-related genes in

lung adenocarcinoma patients from TCGA database, AGS1 and AGS2 groups

were distinguished with significantly different clinical outcomes. Secondly, the

immune microenvironment and metabolic characteristics were analyzed. Next,

we used the GDSC and GEO database to analyze therapeutic responses. Then,

through multivariate Cox regression, the hub gene: JAG1, significantly related to

prognosis was selected, and further verified by multi-omics data. Finally, we

validated that patient with high JAG1 expression had a low immune-infiltrating

tumor microenvironment through single-cell transcriptomic data.

Results: Compared with the AGS1 group, AGS2 showed an immune “cold”

phenotype with lower lymphocyte infiltration, and was associated with worse

prognoses. At the same time, the immunosuppressive TGF-b response was

significantly higher in AGS2. Furthermore, the glycolysis ability of the AGS2 was

stronger than AGS1. The expression of JAG1 was significantly higher in the AGS2,

andwas significantly negatively correlated with the degree of immune infiltration,

accompanying with higher glycolytic capacity. The above results indicate that

patients with high expression of JAG1 may lead to immunosuppressive

phenotype due to its strong glycolytic capacity, thus making immunotherapy

resistance.
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Abbreviations: LUAD, lung adenocarcinoma; AGS, a

subtype; AGG, angiogenesis-associated genes; ICI,

inhibitor; PD-1, programmed death-1receptor; PD-L1

ligand; CTLA-4, cytotoxic T lymphocyte associated p

microenvironment; TCGA, The Cancer Genome Atlas;

Omnibus; TPM, transcripts per million; FDR, false discov

score; HRD, homologous recombination defects; ITH, in

WES, whole-exome sequencing; TMB, tumor mutation bu

derived suppressor cell.
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Conclusion: Patients with high expression of JAG1 enhanced glycolytic capacity

was likely to cause suppressed immune microenvironment. JAG1 may be a

marker for resistance of immunotherapy. Combining anti-angiogenesis therapy

could be considered to improve the prognosis of those patients.
KEYWORDS

lung adenocarcinoma, angiogenesis, tumor immune microenvironment,
glycolysis, JAG1
Introduction

Angiogenesis is the growth of blood vessels from the existing

vascular bed. It is a constant process throughout life in both health

and disease. In solid tumors, the complex biological process of

angiogenesis is involved in sustaining the tumor microenvironment,

growth, and metastatic dissemination (1).

Inhibition of vascular endothelial growth factor (VEGF) or

VEGF receptors (VEGFR) is a common therapeutic strategy in

oncology because VEGF is the critical mediator of angiogenesis

in cancer. The first VEGF signaling pathway inhibitor was approved

in 2004 (Bevacizumab) and has been approved for use in diverse

solid tumors. VEGF inhibitors are still continuously investigated

nowadays (2).

Bevacizumab was approved for the first-line treatment of

patients with advanced non-squamous NSCLC in combination

with chemotherapy in 2006 based on the results of phase III trials

ECOG4599, which demonstrated bevacizumab added to

chemotherapy improved both progression-free survival (PFS) and

overall survival (OS) versus chemotherapy alone (3).

It is well-known immune checkpoint inhibitors (ICIs) which

block coinhibitory molecules such as CTLA-4, programmed cell

death protein-1 (PD-1), and the related programmed death-ligand 1

(PD-L1) have changed the treatment scenario of advanced NSCLC

first-line setting as breakthroughs. Both the U.S. Food and Drug

Administration and the China National Medical Products

Administration (NMPA) approved over ten indications of ICIs

each for NSCLC clinical practice, including PD-1inhibitor

(pembrolizumab/nivolumab/camrelizumab/tislelizumab/

sintilimab), PD-L1 inhibitor (atezolizumab/durvalumab/

sugemalimab), CTLA-4 inhibitor (ipilimumab). Most of which

are immune combination therapy (4–6).

Although immunotherapy has proven to be an effective and

important new strategy for the management of LUAD patients, only
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a part of patients benefits from immunotherapy (7). This phenomenon

may be attributed to the varied heterogeneity of the immune

microenvironment among individuals (8). Therefore, it is important

to further explore the regulatory mechanisms of the tumor immune

microenvironment to optimize the management of immunotherapy.

Phase 3 randomized trial IMpower150 compared first-line

therapy with bevacizumab plus carboplatin plus paclitaxel (BCP)

versus atezolizumab plus BCP (ABCP) for patients with metastatic

non-squamous NSCLC. Median OS was 4.5 months longer in the

ABCP arm versus in BCP arm (19.2 months vs 14.7 months; hazard

ratio for death, 0.78; 95% CI, 0.64 to 0.96; P=0.02). PFS was longer

in the ABCP arm versus in BCP arm (8.3 vs. 6.8 months; HR,0.62;

95% CI, 0.52–0.74; P <.001). The result demonstrated that PD-L1

inhibitor (atezolizumab) added to VEGF inhibitor (bevacizumab)

and chemotherapy significantly improved PFS and OS among

metastatic non-squamous NSCLC compared to VEGF inhibitor

and chemotherapy only, regardless of PD-L1 expression and EGFR

or ALK genetic alteration status (9).

Bispecific antibodies (bsAbs) contain two different antigen-

binding sites in one molecule, making it possible to block

immune checkpoints and VEGF simultaneously. AK112 is the

first anti-PD-1/VEGF bsAbs worldwide. AK112 binds to human

VEGF-A, which is involved in tumor angiogenesis, and to human

PD-1, a cell surface receptor expressed primarily on activated T cells

and inhibits their activation. A phase Ib/II study NCT04900363

demonstrated that AK112 was well-tolerated and presented

remarkable anti-tumor efficacy as first or second-line therapy for

advanced NSCLC was reported in 2022 ASCO. HB0025 is another

bsAbs targets both PD-L1 and VEGF. The in vitro and in vivo data

from preclinical studies indicate HB0025 offers the potential for

significant clinical benefits. Both AK112 and HB0025 are continued

for further research and testing in clinical trials (10).

Identifying predictive biomarkers to optimize the benefit of

angiogenesis inhibitors remains an ongoing challenge (11). This

study takes angiogenesis-associated genes (AAGs) as an entry point

to investigate the association among angiogenesis, tumor

microenvironment, and clinical outcome. We systematically analyzed

the expression of 36 AAGs and their effect on lung adenocarcinoma

patients’ development, prognosis, and TME. We attempt to elucidate

the reason of certain lung adenocarcinoma may not respond to

immunotherapy. Our results indicate that JAG1 expression is a

biomarker for a worse prognosis, and patients with JAG1 expression

might benefit from a combination of immunotherapy with

angiogenesis inhibitor or bispecific antibodies able to block VEGF.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1091488
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


He et al. 10.3389/fonc.2023.1091488
Methods

Data collection and procession

Figure S1 showed a flowchart of this study. The Lung

adenocarcinoma (LUAD) mRNA expression profiles and related

clinical data were collected from The Cancer Genome Atlas (TCGA)

data portal. The mRNA expression data were transformed to values in

transcripts per million (TPM). Gene Expression Omnibus (GEO)

databases: GSE135222 and GSE126044 were downloaded from the

GEO repository. Angiogenesis-associated genes (AGG) were obtained

from GSEA Molecular Signatures Database (MSigDB-hallmark gene

sets), a total of 36 genes in “HALLMARK_ANGIOGENESIS” pathway

was extracted from the hallmark sub database.
Identification of angiogenesis-associated
group

Unsupervised clustering was used to separate patients into two

groups, named angiogenesis-associated subtypes (AGSs)]. Next, a

Kaplan-Meier (K-M) plot was developed to measure the OS

differences. AGG that met the criterion of false discovery rate (FDR)

<0.05 between AGS1 and AGS2 were identified as differentially

expressed, and enrichment analysis was performed subsequently.
Identify the immune landscape of AGS

Infiltrating stromal cells and immune cells constitute the main

part of normal cells in tumor tissue. They not only disrupt tumor

signals in molecular research, but also play an important role in

cancer biology. Based on “Estimating stromal cells and immune

cells in tumors using expression data” (ESTIMATE) - a method that

uses gene expression characteristics to infer the proportion of

stromal cells and immune cells in tumor samples, we calculated

the stromal and immune scores of AGSs.

Next, we obtained five immune expression signatures: wound

healing (W.H), macrophage regulation (M.R), lymphocyte infiltration

(Lym. Inf), IFN-g response (IFN-g), and TGF-b response (TGF-b); C1-
C6 immune subtypes of each TCGA LUAD samples from Thorsson

et al. (12). Moreover, we compared them between AGSs. Considering

that immune infiltration was related to measures of DNA damage, we

compared several measures of DNA damage, including fraction

alteration, number of segments, aneuploidy score (AS), homologous

recombination defects (HRD), and intratumor heterogeneity (ITH),

which also achieved from Thorsson et al.
The description of AGSs'
mutation landscape

The whole-exome sequencing (WES) data obtained from the

TCGA database was used to describe the mutation spectrum and
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interaction between AGSs, and then searched for specific

hypermutation. Next, we calculated the tumor mutation burden

(TMB) score with exons uniformly counted as 40M regions and

compared it between two AGSs.
Compare the immune microenvironment
of AGSs

We performed ssGSEA to calculate scores of immune

cells, whose markers were achieved from TISIDB (http://cis.hku.

hk/TISIDB/), and compared their scores between AGSs. To

assess the immune state for AGSs, we compared the expression of

the following marker genes of myeloid-derived suppressor

cells, which have been proven causes the immunosuppressive

microenvironment: CD33, ITGAM, OLR1, S100A9 (13, 14).
Metabolic capacity assessment and drug
susceptibility analysis

We collected four major metabolic pathways from MSigDB and

previous studies (15, 16), including glycolysis, fatty acid oxidation,

pentose phosphate pathway, and glutamate metabolism (Table S1).

Furthermore, we used the “pRRophetic” package (17) to

predict the treatment response of each LUAD sample, which

was determined by the half maximal inhibitory concentration

(IC50) based on the Genomics of Drug Sensitivity in Cancer

(GDSC) database.
Identification and validation of hub genes

The Univariate and multivariate cox regression analysis was

performed to delineate the prognostic gene signature. Then, we

analyzed the correlation of signature gene expression and measures

of immune state, including lymphocyte infiltration and TGF-b
pathway activation. Finally, JAG1 was selected as signature gene

because its expression was significantly negatively correlated with

lymphocyte infiltration and positively with TGF-b pathway.

To validate the function of JAG1, we analyzed the correlation

between its expression and markers of basal cells, including

endothelial cells: PECAM1, CD34, ICAM1, PTPRC; fibroblast cell:

LUM, DCN, COL1A1; mesenchymal stem cells: ZEB1, MME,

ANPEP, ITGB1, THY1, TCF4, and SOX2. Furthermore, we

divided the patients of TCGA LUAD datasets into two groups

based on JAG1 expression, samples with expression greater than the

mean value were classified as JAG1-high group, otherwise as JAG1-

low group. Then we compared their scores of glycolysis and fatty

acid oxidation between JAG1-high and JAG1-low groups. Finally,

we analyzed the JAG1 expression in two immunotherapy cohorts.

We also performed a correlation analysis between JAG1 and

immunotherapy signatures expression including CD274 (PD-L1)

and CTLA4 (18).
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The description of immune landscape at
single-cell transcriptome level

The single-cell transcriptome data obtained from GSE131907,

which inc luded 208,506 ce l l s der ived from 58 lung

adenocarcinomas from 44 patients, which covered primary

tumor, lymph node and brain metastases, and pleural effusion in

addition to normal lung tissues and lymph nodes. 12 of them were

primary tumor samples. In order to reduce the heterogeneity

among samples, we selected them for the following analysis. The

single-cell transcriptome data were preprocessed using the “Seurat”

package, and the cell annotation used results provided by the

authors. We calculated percentages of cell types among samples,

and analyzed their correlation with JAG1 positive cell rate. To

explore the relationship between T cell status and JAG1 expression.

We used ProjecTIL to parse human scRNA-seq T cell data in the

context of murine TIL profiles (19), and described the atlas of T

cells. Then, we researched the relationship between JAG1 positive

ratio and subtype percentage. Furthermore, we counted the

proportion of each subgroup of T cells in JAG1 positive and

negative cells, and compared the T cell subgroup composition in

them. Finally, we calculated the active scores of four metabolism

pathways, then compared them between JAG1 positive and

negative cells.
Cell-cell communication analysis between
JAG1-positive and negative samples

First, the positive rate of JAG1 at the single-cell level was not

considerable overall, so we observed the distribution of JAG1-

positive cells among various cells types by JAG1 staining.

Considering that the clinical assay usually detects on tumor cells,

we divided the samples into two groups by the proportion of

positive cells in the epithelium. The cell-cell interaction strength

between the two groups was analyzed by the “Cellchat” R package,

which predicted major signaling inputs and outputs for cells and

how those cells and signals coordinate for functions using network

analysis and pattern recognition approaches (20). Further, based on

the ligand receptor database, significant signal flow and ligand-

receptor interaction in the positive group were found out.
Statistical analyses

All analyses were performed using R software (version 3.6.1).

Differences between groups were evaluated using Wilcoxon rank-

sum tests for continuous data and Fisher’s exact tests for categorical

variables. Pearson’s test was used for the correlation analysis. The

center point-based partitioning method with the pam() function in

the “cluster” package was used to perform unsupervised clustering.

ssGSEA scores were calculated using the GSVA package. K-M plots

were constructed using the Kaplan–Meier “survival” package. All

analyses were two-sided, and statistical significance was set at P

< 0.05.
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Results

Identification of AGS dependent on
angiogenesis-associated genes

Firstly, we divided lung adenocarcinoma patients into two

groups based on 36 angiogenesis-associated genes, which we

named angiogenesis-associated subtypes (AGSs). 11 genes of

AGGs showed significant differences between two AGSs,

including JAG1, VCAN, POSTN, COL3A1, COL5A2, FSTL1,

ITGAV, FGFR1, STC1, SPP1, and SERPINA5 (Pall < 0.05,

Figure 1A). Overall, AGS2 exhibited an abundant enrichment of

AGGs. Importantly, we found that patients with AGS2 had a poorer

prognosis than those with AGS1 (Figure 1B), and enrichment

analysis showed AGS2 significantly active PI3K-Akt signaling

pathway and epithelial mesenchymal transition (Figure 1C, Figure

S2A). Additionally, we compared tumor purity and immune scores

between the AGSs, and the results showed that patients in AGS2

had higher stromal scores (P < 0.05) but no difference in immune

scores (Figure 1D). More importantly, we analyzed the five immune

expression signatures between AGSs, and found that AGS2 had

significantly lower lymphocyte infiltration, accompanied with

higher TGF-b response, which indicated AGS1 is an immune

“hot” phenotype, while AGS2 is an immune “cold” phenotype

(Pall < 0.05, Figure 1E). All above mentioned suggested that

angiogenesis-associated genes enrichment may reprogram the

“cold” phenotype of tumor immune microenvironment, thus

leading to different survival outcomes.
Prognosis-worse AGS2 exhibited an
immunosuppressive state on transcriptome
and genomic levels

To research the competence of tumor microenvironment, we

calculated the ssGSEA score of 28 immune cells based on markers

from the TISIDB database. The comparison results showed that

AGS2 exhibited obviously lower activated CD8 T cells, and a variety

of other immune cells also showed significant differences

(Figure 2A). Considering the importance of myeloid-derived

suppressor cells (MDSCs), which were known to suppress

immune responses by inhibiting T cell proliferation and

activation, we compared markers of MDSCs between AGSs. We

found that CD33, ITGAM, OLR1, and S100A9 were significantly

expressed higher in AGS2 (P = 2×10-4, 2.86×10-10, 1.47×10-10,

8.2×10-3, respectively, Figures 2B–E).

The comparison of DNA damage measures, including AS,

HRD, ITH, altered fraction, and number of segments, were all

significantly stronger in AGS2 than in AGS1, representing a poorer

prognosis of tumor patients with immunosuppressive state (Pall <

0.05, Figures 3A–E). Next, we described the mutation spectra of

AGSs, and revealed several high-frequency mutations. For example,

FLG was specifically mutated in AGS2 (Figure 3F). Additionally, the

mutation interactions were weaker in AGS2 (Figure 3G). There was

no difference in TMB between AGSs (Figure 3H).
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Significant activation of glycolysis may
induce immunosuppressive myeloid cells

Considering that metabolic activation could affect the tumor

microenvironment, we compared scores of four major metabolism

pathways between AGSs. The result demonstrated that glycolysis is

obviously activated in AGS2. Several studies have shown that tumor

cells tend to select the metabolic mode of glycolysis, which leads to

the accumulation of lactic acid in the microenvironment, thereby

promoting the function of immunosuppressive cells such as TAMs,

MDSCs and Treg (13). At the same time, fatty acid oxidation was

suppressed in AGS2 (Pall < 0.05, Figure 4A). Drug susceptibility

prediction was performed using “pRRophetic” package based on the
Frontiers in Oncology 05
GDSC database. Screening of drugs sensitive to ARG2 group

patients, and the result showed that patients in AGS2 were more

sensitive to 15 drugs than ARG1, such as such as ABT 263

(navitoclax), cisplatin, dasatinib AP.24534 (ponatinib), and

midostaurin (Pall < 0.05, Figure 4B).
JAG1 expression was negatively correlated
with lymphocyte infiltration as a marker
gene of AGS2

Multivariate regression analysis was performed to identify hub

regulatory factors. JAG1 and STC1 showed significant effect on
B

C

D E

A

FIGURE 1

Identification of AGS clusters. (A) The heatmap of 26 AGGs expression in AGS1 and AGS2. The significantly different expressed genes were colored
by red. (B) The Kaplan–Meier plot of the comparison in the overall survival between two clusters. (C) The KEGG enrichment pathway of different
genes between AGS1 and AGS2. (D) The boxplot of Stromal and immune score calculated by ESTIMATE between AGS1 and AGS2. (E) The boxplot of
five immune expression signatures scores calculated by ssGSEA between AGS1 and AGS2. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
ns represents p value is not significant.
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prognosis (hazard ratio (HR): 1.20, P = 0.028; HR: 1.15, P = 0.021,

respectively, Figure 4C). Kaplan–Meier plot of the comparison in

the overall survival between JAG1-high and JAG1-low groups

shown in Figure 4D. JAG1, a ligand of the Notch signaling

pathway, regulates cell differentiation and proliferation in various

cancers. To verify the relationship between JAG1 expression level

and immune microenvironment, we performed the correlation

analysis, which showed that the expression of JAG1 was obviously

negative with lymphocyte infiltration, and positive with TGF-b
response (R=-0.13, P = 5×10-3; R=0.25, P = 3.246×10-8, respectively,

Figures 4E, F). Furthermore, the EMT pathway was also positively

correlated with JAG1 expression obviously (R=0.23, P=1.431×10-7,

Figure 4G). However, the expression of STC1 did not show the same

consequence (Figures S3A, B). Moreover, the JAG1 expression was a

negative correlation with immune cell score, positive correlation

with stromal score, although not significant (R = -0.04, P = 0.34; R =

0.06, P = 0.16, respectively, Figures S3C, D). Assessing the level of

JAG1 in multi-omics, we found that JAG1 can be detected from

either copy number amplification or methylation level (Figures

S3E, F).
Frontiers in Oncology 06
JAG1-high patients had activated glycolysis
and were prone to immunotherapy
resistance

Previously, we found more stromal cells in AGS2, and we

explored the relationship between markers of various types of

stromal cells and JAG1 expression. The result demonstrated that

most markers positively interrelated with JAG1, especially

mesenchymal stem cells, such as ITGB1 (Figure 5A). Next, we

compared the activation of glycolysis and FAO pathway between

JAG1-high and JAG1-low groups, which revealed that JAG1-high

patients had stronger activated glycolysis than JAG1-low. (P < 0.05,

Figures 5B, C). In order to explore the efficacy of immunotherapy,

we used two datasets of PD1/PD-L1 treatment cohorts to compare

the expression of JAG1 between treatment-sensitive and resistant

groups, accompanied with a correlation analysis of JAG1 expression

with PD-L1 and CTLA4 expression. The results indicated that

JAG1-high patients had higher expression of PD-L1 and CTLA4

than JAG1-low group (R=0.18, P = 5.563×10-5; R=0.09, P =

4.149×10-2, respectively, Figures 5F, G). Moreover, JAG1-high
B C D E

A

FIGURE 2

The immune landscape of AGS clusters. (A) The boxplot of the ssGSEA score of 29 immune cells based on markers from the TISIDB database.
(B-E) The boxplot of MDSC markers: (B) CD33, (C) ITGAM, (D) OLR1, (E) S100A9. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
ns represents p value is not significant.
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patients were resistant to pure anti-PD-L1/anti-PD1 therapy

(Figures 5D, E). The treatment resistance is likely a glycolysis-

mediated immunosuppressive microenvironment resulting

from angiogenesis.
Patients with a higher proportion of JAG1
positive cells had less T cell infiltration, and
most were Treg cells

To explore T cell status at the single-cell level accurately, we

described the single-cel l transcriptome atlas of lung

adenocarcinoma from GSE131907. The cell annotation was
Frontiers in Oncology 07
downloaded from the original research. Firstly, we counted the

compositional proportions of cell types among samples and sorted

them by the proportion of T lymphocytes. Explore the relationship

between the rate of JAG1+ cells and T lymphocytes, we found that

the patients with a higher percentage of JAG1+ cells were mainly

characterized by lower T cell infiltration (Figures 6A, B).

Comparing the correlation between the rate of JAG1+ cells and

the proportion of each cell type, we found that it was significantly

positively correlated with malignant epithelial cells, and negatively

with T lymphocytes, indicating that patients with high JAG1

expression had higher tumor purity, lower T cell infiltration

(Figure 6C). Furthermore, we annotated subpopulations of T

lymphocytes by ProjecTIL, and divided them into nine
B C D E

F

G H

A

FIGURE 3

The genomic landscape of AGS clusters. (A-E) Measures of DNA damage, (A) aneuploidy score, (B) homologous recombination defects, (C)
intratumor heterogeneity, (D) Fraction altered, and (E) number of segments between AGS1 and AGS2. (F) The mutation spectrum of two clusters.
(G) The mutation correlation of two clusters. (H) The violin plot of tumor mutation burden between AGS1 and AGS2.
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subgroups, including CD8+ terminally-exhausted (Tex) effector

cluster, CD8+ precursor-exhausted (Tpex) cluster, CD8+ effector

memory cluster, CD8+ early active cluster, CD8+ naïve cluster,

CD4+ naïve cluster, CD4+ follicular-helper (Tfh) cluster, CD4+

Th1-like cells, and a cluster of regulatory T cells (Treg). The TSNE

plot showed that the distribution densities of various T cell types in

the JAG1+ and JAG- subsets were quite different (Figure 6D). At the

same time, we calculated the fold change value of the proportion of

T cell subsets in JAG1+ and JAG1- subsets, which manifested that

Treg is enriched in the JAG+ subgroup, CD8+ early active cells are

enriched in the JAG1- subgroup (Figure 6E). Finally, we evaluated

the activation of metabolic pathways between JAG1+ and JAG1-

groups, and found that glycolysis, pentose phosphate pathway, and

glutamate metabolism activated special in JAG1+ cells, while fatty

acid oxidation was activated in JAG1- cells (Figure 6F).
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JAG1-positive epithelial cells produced
immunosuppressive interactions with
various cell types

To dissect the interactions of the tumor microenvironment, we

explored the intercellular communication between the JAG-positive

and JAG1-negative groups. First, we stained the expression of JAG1

on umap plot, and the results showed that: JAG1+ cells were mainly

distributed in epithelial cells, endothelial cells, fibroblasts and

myeloid cells (Figure 7A). Next, we counted the proportion of

JAG+ cells in epithelial cells in each sample and sorted them. Seven

samples had a very low proportion of positive cells (<10%), and we

defined them as JAG1-negative samples and the rest as JAG1-

positive samples (Figure 7B). Then, we compared the cell-cell

interaction strength between the two groups. Red represented the
frontiersin.or
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FIGURE 4

Validation of the correlation between JAG1 and immune microenvironment. (A) The boxplot of metabolism pathway activation between AGS1 and
AGS2. (B) The boxplot showed IC50 value representing drug responds. (C) The forest plot of multivariate Cox regression. (D) The Kaplan–Meier plot
of the comparison in the overall survival between AGS1 and AGS2. (E-G) The scatter plot of JAG1 expression and (E) lymphocyte infiltration, (F) TGF-
b response, and EMT pathway. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. ns represents p value is not significant.
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stronger interaction in the JAG1-positive samples in the heatmap.

The results showed that the JAG1-positive samples had stronger

cell-cell communication (Figure 7C). Furthermore, we classified the

ligand-receptor interaction and explored the signal flow that was

significantly activated between the two groups. The results showed

that most signal flows in the JAG1 positive samples was stronger,

including: SPP1 and SELL signal flow, which related to

immunosuppressive microenvironment, and tumor angiogenesis-

related pathway: NOTCH, VEGF, FGF signal flows (Figure 7D).
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Finally, we explored the significantly activated ligand-receptor

interaction in JAG1-positive samples. The result showed that the

HLA-A, HLA-B, HLA-C of epithelial cells, was significantly

strongly interacted with CD8A of T cells in JAG1-negative

samples, but not in JAG1-positive samples. Moreover, SPP1-

(ITGAV+ITGB5), SPP1-(ITGAV+ITGB1), and SPP1-(ITGA8

+ITGB1), which was associated with immunosuppressive,

occurred in JAG1-positive group. The CD46-JAG1 ligand-receptor

interaction occurred in epithelial cells and endothelial cells was
B C D E

F G

A

FIGURE 5

Metabolic characteristics and immunotherapy resistance of JAG1-high patients. (A) The pie plot showed the correlation of JAG1 expression and basal
cells markers. Colors represented correlation coefficients, blue for negative and red for positive correlations. And, the sector area also represented
the correlation. P < 0.05 was considered significant, and those that were not significant were marked with X. (B, C) The violin plot of glycolysis and
FAO pathway activation. (D, E) The expression of JAG1 between respond and non-respond group in two anti-PD1/PD-L1 immunotherapy cohorts.
(F, G) The scatter plot of JAG1expression and CD274, CTLA4 expression.
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obvious in JAG1-positive group, which suggested that targeting

CD46 in tumor cells may decrease the expression of JAG1, thereby

reducing the immunosuppressive phenotype (Figure 7E).
Discussion

Tumorigenesis-associated genetic alterations have been classified

into eight distinctive and complementary biologic capabilities, one of
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which is inducing angiogenesis. Tumor microenvironment (TME)

widely contributes to tumorigenesis, apparently including

pathological angiogenic process (21, 22). At the same time, tumor

cells promote angiogenesis and inflammation to evade surveillance and

clearance by the immune system (23).

In this study, we explored the prognostic value of AGGs in LUAD.

We observed different gene expression levels between the two AGSs

groups with significantly different prognostic outcomes, and found that

AGGs enriched in the prognosis-worse group: AGS2 and the opposite
B

CD

E F

A

FIGURE 6

Comparison of Treg proportion between JGA1+ and JAG- cells in single-cell level. (A) The TSNE clustering visualization of single-cell RNA
sequencing of lung adenocarcinoma colored by cell types. (B) The composition ratio of each cell type per sample. The percentage of JAG+ cells
was showed above colored from blue (low) to red (high). (C) The pie plot showed the correlation of JGA1+ cell proportion and each cell type’s
composition ratio. Colors represented correlation coefficients, blue for negative and red for positive correlations. And, the sector area also
represented the correlation. P < 0.05 was considered significant, and those that were not significant were marked with X. (D) The tSNE plot of T cells
colored by subtype and divided into two groups based on JAG1 expression: JAG1+ and JAG1- group. (E) The fold change of T cell subset
composition of positive and negative cells. (F) The comparison of metabolism pathway activation between JAG1+ and JAG1- cells. *, P < 0.05; **, P
< 0.01; ***, P < 0.001; ****, P < 0.0001.
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in the prognosis-favorable AGS1. There were 11 genes expressed

differently significantly between the two AGSs. Another pan-cancer

study calculated risk scores to evaluate AGGs’ prognostic value, in

which unfavorable genes for patient prognosis included all the 11 genes

we found (24).

Although immune scores showed no difference between groups

but immune expression signatures calculated by ssGSEA showed AGS2

had significantly lower lymphocyte infiltration (dominated by T and B

cells) and a higher TGF-bresponse. Absence or exclusion of T cells in

the tumor parenchyma character a cold phenotype (25). Nearly every

cell in the tumor microenvironment uniquely responds to TGF-b,
which plays complex roles in tumorigenesis, including angiogenesis

and immunosuppression (26–28).
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Herein, we explored transcriptome and genomic levels of AGSs.

Prognosis-worse AGS2 exhibited lower activated CD8 T cells, a key

determining the probability of clinical response to cancer

immunotherapies (29), by comparison of 28 immune cells

ssGSEA score between groups. Furthermore, the indicators

pointing to immunosuppression showed higher expression in

AGS2, including MDSCs-associated markers (CD33, ITGAM,

OLR1, S100A9) and DNA damage-associated measures (including

AS, HRD, ITH).

Metabolic reprogramming refers to a shared set of pathways

observed in highly proliferative tumors or cancer cells, which is a

hallmark of cancer as it is beneficial to the initiation, proliferation,

invasion, and metastasis of tumors in the TME (30). The
B C

D

E

A

FIGURE 7

The cell-cell communication between JAG1 positive and negative samples. (A) The TSNE clustering visualization of JAG1 expression. (B) Histogram
showed the composition of positive cell among 11 samples, ordered by percentage of JAG1+ cells. (C) The differential interaction strength of
JAG1positive and negative samples. Red represents stronger interaction in the JAG1 positive group, Blue represents stronger interaction in the JAG1
negative group. (D) Significantly activated signal flow between JAG1 positive and negative samples. (E) Dot plot showed significantly different ligand-
receptor interaction between two groups.
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comparison of four metabolism pathways scores between AGSs

showed AGS2 exhibited an obviously activated glycolysis pathway.

Aerobic glycolysis (the Warburg effect) (31) has been widely

accepted as a common feature of metabolic reprogramming,

which is a preference for glycolysis and lactate secretion in the

presence of oxygen, promoting the function of immunosuppressive

cells (13).

All the findings above indicated and partly verified AGS2 group is

an immune “cold” phenotype, which may respond poorly to immune

checkpoint blockade (ICB) monoclonal antibodies. Drug susceptibility

prediction results showed ARG2 group was more sensitive to 15 drugs,

including cisplatin, which is one of the platinum regimens. Although

targeted therapy and immunotherapy are all the rage now, platinum

regimens still take a crucial place in chemotherapy for incurable

NSCLC (32). Therefore, patients with similar characteristics of AGS2

may choose cisplatin among various Platina regimens according to

our study.

Several high-frequency mutations were revealed. The

prognosis-better AGS2 group had FLG as a specific mutation in

our study. FLG mutations had been proved as a tumor-associated

mutations in serval cancers, including gastric cancer (33), skin

cutaneous melanoma (34), prostate cancer (35), and cervical

cancer (36).

Furthermore, we derived JAG1 and STC1 from 11 genes with

significant differences in expression between two AGSs by

multivariate regression analysis. JAG1 expression showed negative

correlation with lymphocyte infiltration, positive correlation with

TGF-bresponse and EMT pathway activation significantly, but

STC1 did not. We finally decided JAG1 was a biomarker gene for

ARG2 group, which represented unfavorable prognosis

and immunosuppression.

JAG1 exists as an essential Notch ligand that triggers Notch

signaling through cell-cell interactions to promote tumor growth

and has been reported to correlate with a poor clinical prognosis in

multiple carcinomas, such as hepatocellular carcinoma (37), gastric

carcinoma (38), breast carcinoma (39), ovarian carcinoma (40). All

the studies indicated a negative correlation between JAG1 and

cancer prognosis. Multi-omics analysis in this study exhibited

that JAG1 can be detected from either copy number amplification

or methylation level.

We previously found more stromal cells in the AGS2 group,

which are determinants of the TME, nurture tumor cells, contribute

to tumor growth and metastasis, and also influence anti-tumor

immunity (41). Most markers of stromal cells positively interrelated

with JAG1 expression in our study, especially mesenchymal stem

cells. We further explored the correlation between metabolic

reprogramming and different JAG1 expression level, which

showed JAG1-high expression group had stronger activated

glycolysis than JAG1-low.

As immunotherapy has become prospering in the treatment of lung

cancer and we found that JAG1 high expression may have an

immunosuppressive microenvironment in this study. We further

explored JAG1 as a predictive biomarker for ICB treatment response

by comparing the expression level of JAG1 between treatment-sensitive

and resistant groups in two datasets of PD1/PD-L1 treatment cohorts.

JAG1-high exhibited resistance to anti-PD-L1/anti-PD1 monotherapy,
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with simultaneously high expression of PD-L1, CTLA-4. In clinical

treatment, patients with high PD-L1 expression were generally

considered to be sensitive to immunotherapy, but our result showed

that those patients were resistance. Simultaneous high expression of

multiple immune checkpoints was one of the potential causes of

resistance. Another important reason may be the immunosuppressive

microenvironment caused by glycolysis, according to the

previous discussion.

All the findings indicated that targeted JAG1/Notch pathway

signaling holds potential effective biological therapy for LUAD with

JAG1 high expression. Specific anti-human/rat JAG1 monoclonal

antibodies (mAbs) could inhibit notch signaling in vitro in various

tumor cell lines, such as 15D11 (42–44), J1-65D and CTX014. Even

though none of the mAbs has reported data from clinical trials, they

remain promising. AL101 and fosciclopirox were two notch

pathway inhibitors that reported preliminary data from phase 1/2

clinical trials in specific carcinomas in the 2022 ASCO

annual meeting.

On the other hand, Notch lies downstream of VEGF, and the

Notch pathway is involved in a feedback loop with VEGF. They play

distinct but complementary roles in tumor angiogenesis (45, 46). In

addition, navicixizumab (OMP-305B83) is a bispecific antibody

that inhibits the Notch pathway and VEGF pathway; Phase 1a trial

data showed preliminary signs of anti-tumor activity in multiple

tumor types, particularly in ovarian cancer (47).

At last, we described the immune landscape at the single-cell

level accurately by 11 LUAD samples data and got consistent results

with those mentioned above, patients with a higher proportion of

JAG+ cells had less T cell infiltration, and the most subtype were

Treg cells.

We further discovered that JAG1+ cells were mainly distributed

in epithelial cells, endothelial cells, fibroblasts, and myeloid cells

S ignal flows associated with the immunosuppress ive

microenvironment and tumor angiogenesis are stronger in JAG1-

positive samples, which also had significantly activated ligand-

receptor interaction in SPP1-(ITGAV+ITGB5), SPP1-(ITGAV

+ITGB1), and SPP1-(ITGA8+ITGB1).

A recent pre-clinical study suggested SPP1 as new potential

target could help minimize the immunosuppressive effect of

adjuvant chemoradiotherapy. Moreover, a study conducted on

mice showed that an increase in the expression of SPP1 in the

lung is responsible for the immunosuppressive metastatic niche

formation (48, 49). In addition, we observed that JAG1-positive

samples’ epithelial cells and endothelial cells had more obvious

CD46-JAG1 ligand-receptor interaction. Theoretically feasible to

reduce the immunosuppressive phenotype indirectly by targeting

CD46 to decrease the expression of JAG1.

Our study has several limitations. First, our results were confirmed

in both TCGA and GEO databases, it is necessary to validate these

results in a multicenter cohort. In addition, we observed data-level

correlations among glycolytic activation, the immunosuppressive

microenvironment, and poor patient outcomes, but the underlying

mechanisms were not elucidated. The regulation of each step involved

requires us to conduct more in-depth research in the future. This study

merely provides a hypothesis for the immune escape pattern of lung

adenocarcinoma patients.
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Conclusion

Our study revealed that angiogenic ability can stratify lung

adenocarcinoma patients, and the population with higher JAG1

expression characterized by poor prognosis, low degree of T

lymphocyte infiltration, high TGF-b response, and active

metastasis-related EMT pathway. These patients were resistant to

anti-PD-1/PD-L1 immunotherapy, the reason may be that

angiogenesis leads to the activation of tumor glycolysis, resulting

in an immunosuppressive tumor microenvironment. We suggested

treatment of anti-angiogenesis therapy with immunotherapy can be

considered for these patients to improve prognosis.
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