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Surface electromyography (sEMG) is a signal consisting of different motor unit
action potential trains and records from the surface of the muscles. One of the
applications of sEMG is the estimation of muscle force. We proposed a new real-
time convex and interpretable model for solving the sEMG—force estimation. We
validated it on the upper limb during isometric voluntary flexions-extensions at
30%, 50%, and 70% Maximum Voluntary Contraction in five subjects, and lower
limbs during standing tasks in thirty-three volunteers, without a history of
neuromuscular disorders. Moreover, the performance of the proposed method
was statistically compared with that of the state-of-the-art (13 methods, including
linear-in-the-parameter models, Artificial Neural Networks and Supported Vector
Machines, and non-linear models). The envelope of the sEMG signals was
estimated, and the representative envelope of each muscle was used in our
analysis. The convex form of an exponential EMG-force model was derived,
and each muscle’s coefficient was estimated using the Least Square method.
The goodness-of-fit indices, the residual signal analysis (bias and Bland-Altman
plot), and the running time analysis were provided. For the entire model, 30% of
the data was used for estimation, while the remaining 20% and 50% were used for
validation and testing, respectively. The average R-square (%) of the proposed
method was 96.77 ± 1.67 [94.38, 98.06] for the test sets of the upper limb and
91.08 ± 6.84 [62.22, 96.62] for the lower-limb dataset (MEAN ± SD [min, max]).
The proposed method was not significantly different from the recorded force
signal (p-value = 0.610); that was not the case for the other tested models. The
proposed method significantly outperformed the other methods (adj. p-value <
0.05). The average running time of each 250ms signal of the training and testing of
the proposed method was 25.7 ± 4.0 [22.3, 40.8] and 11.0 ± 2.9 [4.7, 17.8] in
microseconds for the entire dataset. The proposed convex model is thus a
promising method for estimating the force from the joints of the upper and
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lower limbs, with applications in load sharing, robotics, rehabilitation, and
prosthesis control for the upper and lower limbs.

KEYWORDS

electromyography, load sharing, convex optimization, artificial neural network, linear
regression

1 Introduction

Skeletal muscles generate forces to move different body parts or
stabilize the skeleton (Basmajian and Luca, 1985). Handgrip force is
one of the leading mechanical interactions between humans and the
outside environment (Cao et al., 2017). For example, handgrip force
has applications in opening doors, sports (Duc et al., 2008), military
(Henning et al., 2011), and so on. Estimating the generated force in
other body muscles like forearm muscles, biceps, triceps, and lower
limbs is essential. The amputation of the lower limb (toe/foot)
increased in the last few years (Spoden et al., 2019). Also,
diseases like stroke, spinal cord injury, and other disabling
disorders can cause disabilities. With the increment of
disabilities, a prosthesis that can compensate for a lost limb is
necessary. Surface electromyography (sEMG) could control
advanced prosthesis in amputees (myoelectric-controlled
prosthesis).

The sEMG is a signal consisting of different motor unit action
potential trains and is recorded from the skin. Because of the
possibility of misalignment of the electrode pair in conventional
sEMG recordings and muscle fiber direction (Staudenmann et al.,
2006), in addition to the fact that a pair of electrodes may not fully
and accurately represent the muscle activity and be vulnerable to the
innervation zone (IZ) effect, using High-Density sEMG (HD-
sEMG) is beneficial. In HD-sEMG, we can record from hundreds
of skin points, covering the target muscle’s whole or most volume.
HD-sEMG has applications in gait and movement analysis,
myoelectric control (Wang et al., 2017), biofeedback (Huang
et al., 2013), fatigue evaluation (Cifrek et al., 2009), gesture
recognition (Du et al., 2010), obstetrics, occupational medicine,
aging, rehabilitation, gaming, ergonomics, and force estimation
(Merletti and Muceli, 2019). One of the applications of HD-
sEMG and sEMG is the estimation of muscle force
(Staudenmann et al., 2005). The generation of force is always
related to the electrical activity of the HD-sEMG with limitations
to superficial muscles or motor units, and it depends on the
recruitment of motor units and the firing rate of active motor
units (Erim et al., 1996). Other factors that affect the sEMG are
muscle length and the IZ location. Estimation of muscle force has
various applications in biomechanics and kinesiology (Christophy
et al., 2012), exoskeleton control (Lenzi et al., 2012; Li et al., 2014),
prosthesis control (Castellini and Van Der Smagt, 2009), grasping
force (Gurari and Okamura, 2007; Farina and Holobar, 2015), and
military (Henning et al., 2011).

Many studies attempted to explain the EMG-force relationship
and estimate force in different muscles based on the sEMG signal.
Different studies were performed on biceps and triceps muscles
(Buchanan et al., 1993; Park andMeek, 1995; Luh et al., 1999; Clancy
et al., 2001; Potvin and Brown, 2004; Staudenmann et al., 2005;
Mobasser et al., 2007; Staudenmann et al., 2007; Nielsen et al., 2010;

Botter et al., 2011; Hashemi et al., 2012; Allouch et al., 2013;
Hashemi et al., 2013, 2014; Li et al., 2014; Na and Kim, 2016;
Huang et al., 2017; Xu et al., 2018), forearmmuscles (Youn and Kim,
2010; Liu et al., 2014), hand griping (Cao et al., 2017), and lower
limbs (Hayashibe et al., 2009; Amarantini et al., 2010; Menegaldo
and Oliveira, 2012; Hayashibe and Guiraud, 2013; Cao et al., 2015;
Rane et al., 2019). Different modeling of the problem was considered
in these studies, and various solutions were presented. Ma et al. (Ma
et al., 2020) predicted grasping force based on the sEMG with the
gene expression programming (GEP) and also compared the result
of the GEP algorithm with the Back Propagation (BP) neural
network algorithm. The GEP algorithm achieved a better overall
result than their study’s BP neural network algorithm. They
predicted grasping force in 20%, 40%, 60%, and 80% MVC and
reported root mean square error (RMSE) and correlation coefficient
(CC) in their work. In the 60%MVC, they achieved 7.5% RMSE and
95% CC. Chen et al. (2020) used three degrees of freedom (DoF) of
finger movement to predict force fromHD-sEMG based on only one
DoF (doing all of the finger movements sequentially in one
movement) in the training part. They used Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) methods,
with minimal numbers of trials (using 1-DoF trials only) to train the
model and then assessed on multi-DoF trials. The muscle crosstalk
was reduced using HD-sEMG, and the entire recording channels
were used. The authors showed that multi-DoF control for
individual fingers is possible with minimal training. Rane et al.
(2019) predicted force from the lower limb muscles with deep
learning and reported Pearson’s correlation coefficient (r) and
RMSE for fitness criteria. The best value of r was 0.91, and
RMSE was 126 (N) for the hamstring muscles in all test trials.
Xu et al. (2018) approached the force estimation problem in the
biceps brachii muscle with the CNN and long short-term memory
(LSTM) and their combination. The best model for the 50% MVC
had a %RMSE of 5.69.

Various performance indices were proposed in the literature for
the EMG-force problem. For example, Huang et al., (2017) used a
non-negative matrix factorization algorithm and a polynomial
model to estimate muscle force from the biceps brachii muscle.
They report % root mean square difference (RMSD), variability
accounted for (VAF), and the correlation coefficient in different
figures for all subjects in their studies. Cao et al. (2017) used extreme
machine learning (EML) algorithm to predict handgrip force using
the EMG signal of forearm muscles. They compared their algorithm
with the support vector machine (SVM) and multiple non-linear
regression (MNLR) and reported a comparable result in time and
accuracy with these algorithms. For the evaluation of the results,
they used RMSE and CC. Na et al. (Na and Kim, 2016) estimated
elbow flexion force using a muscle-twitch model with sEMG in the
fatigue condition and then compared their results with the mean
absolute value (MAV) method. To evaluate the results, they used R2
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and %RMSE criteria. Hashemi et al. (2014) used an angle-based
EMG calibration method and parallel cascade identification
(PCI) modeling to estimate muscle force in elbow flexion
and extension in different angles. They evaluated their
results with %RMSE criteria. The summary of the EMG-force
estimation algorithms and performance indices is presented in
Supplementary Table S1.

The EMG-force problem is a regression problem in which
regression diagnostics (e.g., residual signal analysis (O’Connor
et al., 2011; Giavarina, 2015) are essential in addition to the
goodness-of-fit indices. Moreover, a proper statistical method is
required for rigorous comparison of the proposed and state-of-the-
art methods. Otherwise, bias occurs (Davidson and MacKinnon,
1981).

In such studies, specific muscles were used, and the
generalization ability of such algorithms was not discussed. Thus,
there is a need for a new method that can be robust enough to be
used in different muscles and fast enough for real-world
applications.

Many approaches have been investigated in the literature for
solving the EMG-force relationship problems until now, including
the Hill model (Hill, 1938; Hayashibe et al., 2009; Hayashibe and
Guiraud, 2013), fast orthogonal search (Mobasser et al., 2007),
polynomial fitting model (Clancy and Hogan, 1997), parallel
cascade identification (Hashemi et al., 2012), different neural
network architectures (Choi et al., 2010; Mobasser and
Hashtrudi-Zaad, 2012; Su et al., 2021), non-negative matrix
factorization (NMF) (Huang et al., 2017).

Hill-type models have various problems. There is an error in
estimating force from EMG when there are different firing
frequencies, activation levels, and contraction speeds (Perreault
et al., 2003; Hayashibe and Guiraud, 2013). Hill’s model is
mainly based on macroscopic modeling and does not relate to
microscopic physiology. Besides the large error in different firing
frequencies, the error in the low motor unit firing rates is very high
(Perreault et al., 2003). Moreover, Hill’s model is not usually
practical when high, and low force contraction is simultaneously
considered because each of them needs to set the cut-off frequency of
the low pass filter differently (Hermens et al., 1999; Perreault et al.,
2003; Hayashibe and Guiraud, 2013). On the other hand,
polynomial fitting models tend to overfit when the number of
involved muscles increases (such as the lower limb dataset), and
their prediction error significantly increases (Clancy and Hogan,
1997). Also, in the NMF methods, the identification of features
depends strongly on the exact dataset and on converging to a set of
highly sparse factors (Burkholder and van Antwerp, 2013).

In this paper, we propose a new real-time convex algorithm to
estimate muscle force for the lower and upper limbs, and thorough
regression diagnostics and rigorous statistical comparison with the
state-of-the-art are provided.

2 Materials and equipment

In this study, we used two of our previously recorded datasets.
The first set is related to the lower limb (dos Anjos et al., 2017), while
the second is HD-sEMG and force in the upper limb (Botter et al.,
2011). The full description of the experimental protocol of both

datasets is available in the original papers, and here we describe them
briefly.

2.1 Participants

In the lower limb dataset, we recorded data from nineteen young
volunteers (14 male and 5 females, with age 26.0 ± 3.0 (MEAN ± SD)
(years)) and fourteen aged volunteers (12 male and 2 female, with
age70.0 ± 6.0 (years)). The physical activity of the participants was
assessed according to the international physical activity
questionnaire (IPAQ) (Booth, 2000), and they were then ranked
with minimally active (low) or active (moderate or high) scores
(Sember et al., 2020). Based on volunteer reports, none of them did
have any balance impairment, neurological disorders, muscular
injuries, or the intake of medications for body balance.

In the upper limb dataset, we recorded data from five healthy
male volunteers with an average age of 21.3 ± 2.8 (years), weight of
71.0 ± 3.4 (kg), and height of 174.3 ± 2.6 (cm).

In both datasets, all subjects gave informed consent to the
experimental procedure. The procedures were confirmed with the
Declaration of Helsinki and were approved by Politecnico di Torino
Research Ethics Committee.

2.2 Experimental setup

In the lower limb dataset, sEMG signals were recorded in signal
differential mode. All signals were amplified by a between-
individuals variable factor, ranging from 5,000 to 10,000, to
maximize the analog gain without saturation. The force signals
were recorded by a piezoelectric force plate (9286AA Kistler, Zurich,
Switzerland). Both sEMG and force signals were sampled
synchronously at 2048 Hz with a 12-bit analog-to-digital
converter (EMG-USB, OTBioelettronica, and LISiN, Politecnico
di Torino, Turin, Italy). We used linear array electrodes to record
the calf muscles’ activity: sEMG from tibialis anterior and medial
and lateral gastrocnemius muscles were detected with three arrays of
16 electrodes, each with 10 mm inter-electrode distance (IED),
whereas two arrays of four electrodes each with 10 mm IED were
used to sample EMGsmedially and laterally from soleus (cf Figure 1)
in (dos Anjos et al., 2017). For the gastrocnemius muscle, the most
proximal electrode was located 2 cm distal to the popliteal fossa, and
the arrays were aligned parallel to the longitudinal axis of each
gastrocnemius head. For the tibialis anterior muscle, the array was
aligned 1 cm laterally and parallel to the tibial crest, with the most
proximal electrode located 2 cm distal to the fibula’s head. The
soleus muscle’s lower border of the medial and lateral arrays was
positioned 3 cm distal to the medial gastrocnemius myotendinous
junction (dos Anjos et al., 2017).

In the upper limb dataset, sEMG signals were recorded from the
Biceps Brachii (BB), Brachioradialis (BR), Triceps Brachii lateral
(TBL), and medial head (TBM) during isometric voluntary flexions-
extensions with the angle of the elbow at 90 degrees. For recording
from BB, we used an HD-sEMG array of 64 circular electrodes
disposed into five columns and 13 rows with 8 mm IED (onemissing
corner electrode). For BR, TBL, and TBM recording, we used three
linear arrays of 8 electrodes with an IED of 5 mm. The main IZ was
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located for each muscle before placing the electrode array.
Depending on the subject’s anatomical features, we placed the
adhesive arrays either proximally or distally from the main IZ
location. We used paste to clean the skin before the recording
(Meditec-every, Parma, Italy). We recorded data in monopolar
mode with the same amplifier used in the lower limb
experiments, allowing for the synchronous recording of HD-
sEMG and force signals after amplifying the latter by a factor of
100 (Force Amplifier MISO-II, LISiN, Politecnico di Torino, Italy).

The force signal was shown to the subjects as real-time feedback
(Botter et al., 2011).

2.3 Experimental Protocol

In the lower limb experiments, participants were asked to stand
upright on a force plate with eyes open and arms alongside the body.
Ground reaction forces were measured in two conditions while

FIGURE 1
The Bland-Altman (BA) plot of the ANNmethod on the upper-limb (top) and the lower-limb (bottom) test dataset (50% hold-out validation). The BA
plot shows the scatter plot of the residual signal (predicted force minus measured force signal) (y-axis) and the measured force signal (x-axis), which
identifies the homogeneity of the residual signal at different measured signal levels. In addition to themean residual signal (i.e., bias), the upper and lower
boundaries (mean (residual signal) ± SD (residual signal)) are also shown.
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subjects: i) kept the position of their center of pressure at 65% of the
distance between the tip of the calcaneus bone and the tip of the
third metatarsal head and; ii) stood at ease. Both trials lasted 60 s,
and center-of-pressure visual feedback was provided in the first trial.
This task was selected to ensure a somewhat high degree of calf
muscle active loading while not threatening stability, particularly for
aged individuals. Five-minute intervals were applied between trials,
and their order was randomized.

In the upper limb dataset, each of the volunteers was asked
to do three maximum voluntary isometric flexions and
extension contractions for 5 s before starting the experiment,
and the highest was chosen as the Maximum Voluntary
Contraction (MVC). After a few pieces of training for each
subject, they were asked to perform a series of flexion-extension
force ramps for 25 s. Each series consisted of four isometric
ramps from different percentages (30%, 50%, and 70%)
extension MVC to flexion MVC and back. The single
differential signals were used to reduce muscle crosstalk
(Botter et al., 2011; Jafari et al., 2014).

3 Methods

3.1 Data Processing

The lower limb dataset was recorded in single differential
mode, and the signals were digitally bandpass filtered with a
fourth-order Butterworth filter in the 15–350 frequency band.
Given that we were interested in estimating the temporal force
profile, regardless of its absolute value, the center of pressure
position in the sagittal plane was taken as the ankle force signal
(Morasso and Schieppati, 1999). In the upper limb dataset, the
monopolar HD-sEMG signals were digitally bandpass filtered
(20–450 Hz with a fourth-order Butterworth filter), and the
force signal was low pass filtered (cut off at 1 Hz with a fourth-
order non-casual Butterworth filter).

3.2 Method description

This section briefly introduces the least square (LS) problem and
its solution based on calculus.

Suppose that we have linear equations Ax � b, where matrix A
has n rows (i.e., equations) andm columns (i.e., unknowns), x is the
unknown vector with m rows, and b is an n − vector. These
equations have a solution if b is a linear combination of columns
of A.

Formost cases, we need to find an x for r � Ax − b, that minimizes
the residuals. We choose x that can minimize the norm of the residual,
‖Ax − b‖. Minimizing the norm of the residual is similar tominimizing
its square. The problem of finding m − vector x̂ that minimize
‖Ax − b‖2 is called a least squares problem.

x̂ � argminx Ax − b‖ ‖2 (1)
This residual is an affine function. Affine functions are

considered linear functions, and they are convex. To solve this
problem, we must calculate the gradient.

zf
zxi

x̂( ) � 0, i � 1, . . . ,m (2)

Or we can consider it in vector notation

∇f x̂( ) � 0. (3)
The gradient in the matrix form is described below

∇f x( ) � 2AT Ax − b( ) � 0 (4)
The solution can be presented as the following:

ATAx̂ � ATb (5)
This equation is called a normal equation, and with the

assumption that columns of A are linearly independent, the
solution is calculated as below:

x̂ � ATA( )−1ATb (6)
If the matrix A is not full rank, the normal equation must be

solved with Moore-Penrose pseudo-inverse with the help of the
singular value decomposition (SVD) (Strang et al., 1993). When the
SVD is calculated, the reciprocal of the non-zero items of the middle
matrix is calculated while keeping the zero items, and multiplying
SVD matrices from right to left is then used as the pseudo-inverse
matrix.

3.3 The proposed mathematical model
This section proposes a new method for estimating the muscle

force from sEMG signals. The following relationship between
muscle force and activity is used in our study:

f t( ) � w0 +∑M

i�1wi × ln sEMGi t( )( ) (7)
t ∈ R, w ∈ R, M ∈ N

where, f(t) is the muscle force, M is the number of muscles,
sEMGi(t) is the envelope of the i muscle, and wi is the weight
of the ith muscle. The sEMG envelope was estimated by low-pass
(LP) filtering of the full-wave rectified sEMG signals. A second-order
zero-lag Butterworth LP filter with a cut-off frequency of 2.0 Hz was
used in our study, based on the SENIAM recommendations is 2 Hz
for slowmotions (Hermens et al., 1999). The median envelope of the
sEMG signals was then used as a representative envelope of the
analyzed muscle.

As we have discrete-time samples of the EMG and force signals,
the following notation is produced for N samples:

f 1[ ]
.
.
.
.

f N[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
.
.

ln sEMG1 1[ ]( )
.
.

.

.

.

.

.

.

.

.

.

ln sEMGM 1[ ]( )
.
.

.

.
1

.

.
ln sEMG1 N[ ]( )

.

.

.

.

.

.

.

.

.

.

.
ln sEMGM N[ ]( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

w0

w1

.

.

.
wM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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We can rewrite the formula 8 in the form of LS (Ax � b), whose
solution is provided by (6).

3.4 State-of-the-art
Various models were proposed in the literature to estimate the

force signal. We provided such mathematical models in Eqs 9–17
(Nurhanim et al., 2013; Nurhanim et al., 2014), shown as models
1-9.

Model 1: TR � ∑M

i�1ai × sEMGi + bi ×
������
sEMGi

√
(9)

Model 2: TR � ∑M

i�1ai× sEMGbi
i (10)

Model 3: TR � ∑M

i�1ai × e
bi

sEMGi (11)
Model 4: TR � ∑M

i�1ai× sEMGbi
i + ci× sEMGdi

i (12)
Model 5: TR � ∑M

i�1ai× sEMG4
i + bi× sEMG3

i + ci × sEMG2
i

+di × sEMG1
i + ei

(13)
Model 6: TR � ∑M

i�1ai + bi ×
������
sEMGi

√
(14)

Model 7: TR � ∑M

i�1sEMGai
i + e bi−cisEMGi( ) (15)

Model 8: TR � ∑M

i�1ai + bi × cos sEMGi( ) + ci × sin sEMGi( )
(16)

Model 9: TR � ∑M

i�1ai + bi × sin sEMGi( ) (17)

where, TR is the estimated force, sEMGi is the representative
envelope of the sEMG signal of the ith muscle, M is the number
of muscles, and ai, bi, ci, di, and ei are the unknown coefficients of the
ith muscle. Models 1, 5, 6, 8, and 9 are Linear-in-the-parameters
models whose solutions are provided by the LS method. However,
models 2, 3, 4, and 7 are not convex, and their parameters were
estimated using Particle Swarm Optimization (PSO), a meta-
heuristics population-based stochastic optimization algorithm
(Botter et al., 2011).

Also, other methods proposed in the literature were
implemented for comparison, including Ordinary Least Squares
(OLS) (Chatterjee and Hadi, 1986; Ziai and Menon, 2011),
Regularized Least Squares (RLS) (Kim et al., 2007; Xue et al.,
2009; Ziai and Menon, 2011), Support Vector Machine
(SVM)(Castellini and Van Der Smagt, 2009), and Artificial
Neural Network (ANN) (Setiono and Hui, 1995; Lin and
Buchanan, 2002; Castellini and Van Der Smagt, 2009; Ziai and
Menon, 2011).

The OLS method is based on the classical LS, which assumes a
linear combination of the muscle activity maps. The support vector
regression (SVR) was used as the extension of SVM to regression
problems. The linear SVM was used in our study, and the penalty
parameter was tuned using cross-validation on the estimation set
(Smola and Schölkopf, 2004; Chen et al., 2006). A feedforward
ANN with ten hidden layers and mean squared error (MSE) loss
function, Marquardt-Levenberg modification to the Gauss-Newton
algorithm (Hagan and Menhaj, 1994) with the initial learning rate
of 0.001 (with adaptive decrease and increase approaching the
Gauss-Newton to the steepest descent algorithm in borderlines
(Martin et al., 2000) were used in our study.

Note that the proposed model, OLS, and models 1,5,6,8, and
9 are linear-in-the-parameters (LIP) models since the output is a
linear combination of the model parameters, and any non-linear
input function can be used as their weight. Such models can be
solved by the LS, resulting in a global minimum (Pintelon and
Schoukens, 2012). Moreover, LIP models (a.k.a. Affine functions)
are convex (Beck, 2014).

3.5 Evaluation criteria
In this study, we used Pearson Correlation Coefficients (r),

coefficient of determination (R2) and adjusted R-squared (adj.
R2) for the goodness-of-fit between the original and the estimated
force signal from the sEMG signals on the test set. (Pearson’s)
Correlation is a criterion to show similarity:

r � ∑N
i�1 yi − �y( ) × ŷi − ŷm( )����������������������������∑N

i�1 yi − �y( )2( ) × ∑N
i�1 ŷi − ŷm( )2( )√ (18)

where, yi is the measured and ŷi is estimated force signals, �y and ŷm
are the average values of the measured and estimated force signals,
respectively.

The coefficient of determination (R2) is defined as the
following:

R2 � 1 − SSE
SST

(19)

where, SSE is error sum of squares:

SSE � ∑N

i�1e
2
i � ∑N

i�1 yi − ŷi( )2 (20)

And, SST is the total sum of squares:

SST � ∑N

i�1 yi − �y( ) (21)

Moreover, as the number of parameters of the analyzed models
are different, the adjusted R-squared (adj. R2) was also reported,
defined as the following:

adj.R2 � 1 − 1 − R2( ) × N − 1
N − k − 1

(22)

where, k is the number of parameters of the model to estimate.
The Bland and Altman plot was also used to describe the

agreement between the estimated and measured force signals.
The result is a scatter plot, where Y-axis shows the difference
between two measurements and X-axis shows the measured
signal samples (Bland and Altman, 1999; Giavarina, 2015).

3.6 Data allocation strategy
For models 2, 3, 4, 7, SVM, RLS, and ANN, 30% of the data was

used for estimation, while the remaining 20% and 50% were used for
validation and testing, respectively. These methods required cross-
validation on the training set (e.g., SVM, and RLS) to tune free
parameters or run PSO several times to select the best fit. For the
proposed algorithm and models 1, 5, 6, 8, 9, and OLS, 50% of the
data was used for estimation, and the remaining 50% was used for
testing. It thus provided the hold-out validation (50%) for the entire
model. The analysis and comparison of the results of different
methods were performed on the test set.
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The parameters of the PSO algorithm were tuned as the
following: The maximum iteration number was set to
(200 × number of model weights). Minimum adaptive
neighborhood size, self-adjustment weight, social adjustment
weight, and swarm size were set to 0.25, 1.49, 1.49, and
min(100, 10 × number of model weights), respectively
(Engelbrecht, 2007). The PSO algorithm was run ten times, and
the models with the best validation results were used. In this
procedure, the estimation set was used to estimate the EMG-
force parameters, and the RMSE of the predicted force compared
with the measured force signal on the validation set was calculated.
Since PSO is a stochastic optimization method, it could have
different results at different runs. The model with the lowest
RMSE was then selected among the ten runs. The interior-point
method proposed by was used to solve regularized least squares
(RLS) Kim et al. (2007). The lambda parameter was set to 0.01 based
on trial and error on the estimation and validation sets. The analysis
was performed on an Intel Core i7-8750H with 2.21 GHz CPU with
16 GB of RAM. The results of the running time analysis are provided
in MEAN ± SD [min., max.].

3.7 Statistical analysis
Results are reported as mean ± standard deviation. The

normality of the data was tested using the Shapiro-Wilk test.
Due to the normality of the data, different models were
compared using repeated-measures analysis of variance (rm-
ANOVA). The Bonferroni correction was used for a pairwise
comparison between the proposed method and the state-of-the-
art. The independent-samples t-test was used to compare the
Mean Absolute Error (MAE) of the proposed method in the
young and elderly groups of the lower-limb dataset. The paired-
sample t-test was used to identify whether the proposed method

has a significant bias (Mansourian et al., 2020). The association
between two normally-distributed variables was assessed using
Pearson’s correlation coefficient (r).

The Mann-Whitney U test was used to compare differences
between the eleven weights of the lower-limb model in two
(minimally active and active) independent groups. When the
Mann-Whitney U test was significant (discriminative features),
the receiver operating characteristic (ROC) curve was provided.
The Area under the ROC Curve (AUC) was also provided for
discriminative features. The best ROC cut-off was estimated for
each discriminative feature using Youden index J. The AUC of such
features was the tested using the method proposed by DeLong et al.
(1988).

The level of statistical significance was set to p-value = 0.05. All
data processing was performed offline using MATLAB version 9.10
(TheMathWorks Inc., Natick, MA, USA). All statistical analysis and
calculations were performed using IBM SPSS Statistics version 27
(IBM Corp).

4 Results

The performance of the different system identification methods
is presented for the upper-limb (Table 1) and lower-limb (Table 2)
datasets. Analyzed methods had statistically significantly different
results (F (4,567728) = 969.856; p-value < 0.001). The proposed
algorithm significantly outperformed the other methods (adj.
p-value < 0.05). The performance of the proposed method was
significantly higher in the young groups compared with the older
groups of the lower-limb dataset (p-value < 0.001). The proposed
method did not have a significant bias in the entire dataset (p-value =
0.610).

TABLE 1 The results of different models on the test set of the upper limb dataset in Mean ± SD [minimum, maximum] (50% hold-out validation).

Model Correlation (×100%) R2 (×100%) Adj. R2 (×100%)

1 97.70 ± 1.67 [94.95, 99.42] 95.54 ± 3.25 [90.16, 98.84] 95.59 ± 3.25 [90.17, 98.85]

2 83.66 ± 15.32 [60.04, 96.19] 71.86 ± 24.14 [36.05, 92.52] 71.87 ± 24.14 [36.05, 92.53]

3 1.22 ± .07 [1.15, 1.33] 0.01 ± 0.00001 [0.01, 0.017] 0.01 ± 0.00001 [0.01, 0.017]

4 90.27 ± 5.76 [83.23, 97.38] 81.75 ± 10.42 [69.26, 93.97] 81.77 ± 10.42 [69.28, 94.00]

5 31.36 ± 11.67 [14.40, 43.76] 15.50 ± 1.79 [0.09, 26.09] 15.51 ± 1.79 [0.09, 26.10]

6 99.14 ± 0.41 [98.43, 99.38] 98.29 ± 0.80 [96.88, 98.76] 98.30 ± 0.80 [96.89, 98.77]

7 74.87 ± 15.68 [56.76, 93.09] 50.03 ± 23.34 [32.22, 86.66] 50.04 ± 23.34 [32.22, 86.67]

8 42.19 ± 41.99 [5.30, 86.15] 31.91 ± 32.04 [0, 74.22] 31.92 ± 32.04 [0, 74.23]

9 33.27 ± 37.81 [7.64, 76.08] 22.51 ± 23.87 [0.32, 57.88] 22.51 ± 23.87 [0.32, 57.89]

OLS 94.14 ± 3.01 [89.12, 96.72] 88.70 ± 5.58 [79.40, 93.56] 88.70 ± 5.58 [79.40, 93.56]

RLS 94.14 ± 3.01 [89.11, 96.73] 88.70 ± 5.58 [79.40, 93.56] 88.70 ± 5.58 [79.40, 93.56]

ANN 87.21 ± 20.01 [51.56, 97.49] 79.26 ± 29.63 [26.59, 95.04] 79.24 ± 29.56 [26.51, 95.04]

SVM 95.49 ± 2.69 [91.38, 98.16] 91.24 ± 5.11 [83.50, 96.36] 91.24 ± 5.10 [83.50, 96.36]

The proposed algorithm 98.36 ± 0.85 [97.15, 99.03] 96.77 ± 1.67 [94.38, 98.06] 96.77 ± 1.67 [94.38, 98.06]

The Correlation Coefficient and Goodness-of-fit measures (R2 and adj. R2) were calculated between the reconstructed and measures force signals. Averaging was performed on five subjects.
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The residual signal was further analyzed using the Bland-
Altman plot. The Bland Altman plot of the best models (ANN,
OLS, SVM, and the proposed method) was shown in Figures 1–4 for
upper and lower limbs datasets. Since the OLS and RLSmethods had
comparable results, The Bland Altman plot of the OLS method was
provided.

The goodness-of-fit of ANN, OLS, SVM, and the proposed
method is shown on a sample recording from the upper-limb
dataset (Figure 5).

The proposedmethod was further analyzed regarding the scatter
plot between the predicted and measured force data in the upper
(Figure 6) and lower-limb (Figure 7) datasets. The predicted signals
of the proposed method and the measured force signals in different
subjects from the upper and lower limb datasets are provided in
Figure 8.

The envelope of the sEMG signal, the weighted activity of each
muscle estimated from Eq. 7, and the estimated vs. measured force
signals were provided for the upper (Figure 9) and lower-limb
(Figure 10) datasets.

The average running time of each 250 msec-epoch signal of
the training and testing of the proposed method was 30.3 ±
3.4 [27.6, 35.9] and 6.7 ± 2.2 [4.7, 9.5] for the upper limb and

25.1 ± 3.6 [22.3, 40.8] and 11.6 ± 2.4 [8.5, 17.8] for the lower-limb
dataset in us.

The weights of the muscle’s tibialis anterior (right leg), medical
soleus (left leg), and the intercept point were statistically significant
in the minimally active and active groups (p-value < 0.05). The ROC
curve of these three indicators was provided in Supplementary
Figure S1. Their AUC was 0.722, 0.574, and 0.914. The intercept
point significantly outperformed the medical soleus (left leg) in
terms of AUC (p-value < 0.05), while the intercept point and the
tibialis anterior (right leg) were comparable. The proposed model
could discriminate between active and minimally active subjects of
the lower limb dataset with Type I and II errors of 0.22 and 0.00,
respectively.

5 Discussion

5.1 The performance of the proposed
method

The proposed method had theminimum adj. R2 of 80.13% in the
entire test sets of the upper and lower-limb datasets (Tables 1, 2),

TABLE 2 The results of different models on the test set of lower limb dataset in MEAN ± SD [minimum, maximum] (50% hold-out validation).

Modela (Elderly)
correlation
(×100%)

(Elderly)
R2 ( ×100%)

(Elderly) adj.
R2 (×100%)

(Young)
correlation
(×100%)

(Young)
R2 ( ×100%)

(Young) adj.
R2 (×100%)

1 70.64 ± 13.06 [52.98,
97.29]

51.48 ± 18.95 [28.07,
94.66]

51.47 ± 18.93 [28.05,
94.65]

66.678 ± 15.91 [30.242,
89.37]

46.86 ± 20.36 [9.14,
79.95]

46.85 ± 20.34 [9.14,
79.94]

2 90.55 ± 2.11 [85.92,
92.88]

85.34 ± 4.00 [80.49,
90.80]

85.33 ± 3.97 [80.48,
90.79]

86.75 ± 15.22 [51.54,
97.93]

77.34 ± 23.20 [26.57,
95.90]

77.33 ± 23.18 [26.56,
95.89]

4 50.56 ± 31.05 [27.69,
87.98]

35.11 ± 37.17 [7.67,
77.41]

35.09 ± 37.16 [7.66,
77.40]

63.08 ± 12.46 [53.08,
77.05]

40.83 ± 16.40 [28.17,
59.36]

40.82 ± 16.38 [28.15,
59.35]

5 79.08 ± 8.39 [67.65,
95.53]

63.19 ± 13.60 [45.77,
91.25]

63.17 ± 13.58 [45.75,
91.24]

77.60 ± 11.76 [42.39,
92.19]

61.53 ± 16.44 [17.97,
85.01]

61.52 ± 16.43 [17.94,
84.99]

6 68.41 ± 0.11.63 [44.52,
86.49]

48.06 ± 15.37 [19.82,
74.81]

48.04 ± 15.35 [19.80,
74.76]

71.27 ± 13.93 [40.83,
96.33]

52.64 ± 19.52 [16.67,
92.80]

52.62 ± 19.51 [16.66,
92.78]

7 82.64 ± 13.63 [40.68,
94.28]

70.01 ± 18.34 [16.55,
88.89]

69.99 ± 18.33 [16.53,
88.86]

84.30 ± 11.23 [51.07,
93.18]

72.26 ± 16.36 [26.08,
86.82]

72.25 ± 16.34 [26.05,
86.80]

8 83.75 ± 9.31 [65.42,
94.61]

70.95 ± 14.88 [42.80,
89.52]

70.94 ± 14.86 [42.78,
89.50]

83.39 ± 9.34 [65.44,
96.40]

70.38 ± 14.97 [42.83,
92.93]

70.36 ± 14.96 [42.82,
92.91]

9 76.89 ± 14.98 [35.083,
91.16]

61.21 ± 19.91 [12.30,
83.10]

61.19 ± 19.89 [12.28,
83.08]

79.11 ± 12.42 [50.02,
98.19]

64.05 ± 18.64 [25.02,
96.41]

64.03 ± 18.62 [25.01,
96.39]

OLS 87.66 ± 10.23 [64.96,
97.35]

77.83 ± 16.81 [42.20,
94.77]

77.81 ± 16.78 [42.18,
94.75]

83.92 ± 15.922 [47.37,
98.13]

72.84 ± 24.76 [22.44,
96.31]

72.82 ± 24.75 [22.41,
96.30]

RLS 81.63 ± 16.96 [47.96,
96.63]

69.30 ± 24.79 [23.00,
93.37]

69.29 ± 24.75 [22.98,
93.35]

87.73 ± 9.55 [67.22,
97.55]

77.83 ± 16.14 [45.18,
95.16]

77.82 ± 16.11 [45.15,
95.15]

ANN 71.30 ± 23.39 [18.37,
94.85]

55.93 ± 27.72 [3.37,
89.98]

55.86 ± 27.60 [3.21,
89.96]

90.89 ± 10.14 [52.17,
98.41]

83.59 ± 15.38 [27.22,
96.86]

83.56 ± 15.24 [27.10,
96.85]

SVM 95.57 ± 2.06 [91.83,
98.22]

91.38 ± 3.93 [84.34,
96.48]

91.37 ± 3.92 [84.33,
96.47]

95.85 ± 2.29 [90.60,
98.41]

91.93 ± 4.35 [82.09,
96.86]

91.92 ± 4.34 [82.08,
96.85]

The proposed
algorithm

95.64 ± 2.03 [89.525,
97.37]

91.51 ± 3.81 [80.14,
94.81]

91.50 ± 3.78 [80.13,
94.80]

97.43 ± 1.27 [94.54,
98.98]

94.95 ± 2.46 [89.39,
97.97]

94.94 ± 2.45 [89.38,
97.96]

aThe third model had very large values in the lower limb dataset that resulted in zero goodness-of-fit in all indices. The Correlation Coefficient and Goodness-of-fit measures (R2 and adj. R2)

were calculated between the reconstructed and measured force signals. Averaging was performed on 19 and 14 subjects in the young and elderly groups.
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showing a proper goodness-of-fit (Figures 4–10). Since the number
of samples was much more than the number of parameters of the
models, adj. R2 and R2 indices were very similar (Eq. 22; Tables 1,
2). Based on the Bland Altman plots of Figure 4), the residual
signal of the proposed method has better homogenous variance in
the upper-limb dataset compared with the lower-limb dataset.
The regression line of the residual signal of the upper-limb dataset
was y = 0.006848–0.06733×x, while it was y = −0.0003940 +

0.00007351×x for the lower-limb dataset, where parameters x
and y are the measured and residual force signals.

The regression line of the scatter plots of Figures 6, 7 were y =
0.008371 + 0.9175 ×x (R2 = 85.6%), and y = 0.007631 + 0.9612×x
(R2 = 96.1%), respectively, showing proper fitness of the predicted
force signal (x) vs. the measured signal (y) in the upper and lower-
limb datasets. In the entire datasets, the maximum running time of
the proposed algorithm was 40.8 us and 17.5 us on the training and

FIGURE 2
The Bland-Altman (BA) plot of the OLS method on the upper-limb (top) and the lower-limb (bottom) test dataset (50% hold-out validation). The BA
plot shows the scatter plot of the residual signal (predicted force minus measured force signal) (y-axis) and the measured force signal (x-axis), which
identifies the homogeneity of the residual signal at different measured signal levels. In addition to themean residual signal (i.e., bias), the upper and lower
boundaries (mean (residual signal) ± SD (residual signal)) are also shown.
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testing datasets, respectively. Thus, it is suitable for real-time
applications.

The cut-off frequency of 2.0 Hz was used in our study for
envelope estimation. The sEMG amplitude during isometric
and quasi-static contractions was shown to have a frequency
below 5–10 Hz, and the optimal cut-off frequencies between
2–3 Hz were provided in the literature (Staudenmann et al.,
2010; Ranaldi et al., 2022). Such a cut-off frequency
compromises sEMG dynamics, muscle force difference, and

the time lag between those signals (Staudenmann et al.,
2010). Different cut-off frequencies could affect the
smoothness resulting in correlations among estimated sEMG
amplitude and any target signal, especially in non-slowly
varying signals (Ranaldi et al., 2022). Moreover, non-causal
digital filters were used in our study. In a real-time application,
however, causal filters must be used. Since both filters of the
sEMG and muscle force were non-causal, such a modification
should not be problematic.

FIGURE 3
The Bland-Altman (BA) plot of the SVMmethod on the upper-limb (top) and the lower-limb (bottom) test dataset (50% hold-out validation). The BA
plot shows the scatter plot of the residual signal (predicted force minus measured force signal) (y-axis) and the measured force signal (x-axis), which
identifies the homogeneity of the residual signal at different measured signal levels. In addition to themean residual signal (i.e., bias), the upper and lower
boundaries (mean (residual signal) ± SD (residual signal)) are also shown.
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Squared or absolute sEMG signals could be used for envelope
detection. While the former is optimal for normal distribution, the
latter is used when the distribution of the sEMG signals is more
centrally peaked (a.k.a., Laplacian) (Hogan and Mann, 1980; Clancy
and Hogan, 1999; Clancy et al., 2004). The distribution of our signal
epochs was mostly Laplacian, as identified by Goodness-of-fit Test
Statistics for the Laplace Distribution (Puig and Stephens, 2000).
Moreover, the variation of the absolute signal is lower than that of
the squared signal, resulting in a superior signal-to-noise ratio

(Clancy and Hogan, 1999). Thus, the absolute signal (a.k.a., full-
wave rectifier) was used in our study for envelope detection.

The proposed algorithm is a convex representation of models
2 and 4, in which the natural logarithm of the sEMG envelopes is
used. The logarithmic transformation is primarily used in
statistics to reduce the skewness of the data (West, 2022),
resulting in a more normally distributed dataset, which is
preferred in clinical practice (Feng et al., 2014). Such a
transformation is also helpful to use LS, a convex optimization

FIGURE 4
The Bland-Altman (BA) plot of the proposedmethod on the upper-limb (top) and the lower-limb (bottom) test dataset (50% hold-out validation). The
BA plot shows the scatter plot of the residual signal (predicted force minus measured force signal) (y-axis) and the measured force signal (x-axis), which
identifies the homogeneity of the residual signal at different measured signal levels. In addition to themean residual signal (i.e., bias), the upper and lower
boundaries (mean (residual signal) ± SD (residual signal)) are also shown.
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method, rather than stochastic optimization methods (e.g., PSO),
which are time-consuming and get stuck in local minima (Beck,
2014) (Tables 1, 2). Moreover, the logarithmic transformation, a
member of the Box-Cox family of transformations, could
improve the performance of the regression models in system
identification (Keene, 1995; Ljung, 1999).

The proposed model could classify active and minimally
active subjects of the lower limb dataset, mainly based on the
importance of the tibialis anterior muscle during sway protocol.

The algorithm’s sensitivity is 100% to identify active subjects,
while its specificity is 78% to detect minimally-active subjects.
Tibialis anterior muscle was shown as an essential muscle during
quiet standing sway in healthy and also subjects with
neurodegenerative diseases (such as Parkinson’s disease)
(Vette et al., 2017) (Warnica et al., 2014). The soleus is one of
the principal sources of proprioceptive information during
standing (Di Giulio et al., 2009), whose exercises might help
to reduce the risk of falling in the elderly (Lee and Yoo, 2017).

FIGURE 5
The comparison between ANN, OLS, SVM and the proposed method on a sample data from the lower-limb test dataset (50% hold-out validation).

FIGURE 6
The scatter plot of the proposed method (measured vs. predicted force data) upper-limb test dataset (50% hold-out validation).
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Figure 10 shows that the tibialis anterior (RL) or medial soleus
(LL) are mainly active during sway protocol. They are the
antagonist’s muscles and have important roles in postural
control (Nagai et al., 2012).

5.2 The stable solution to the LS problem

In the proposed algorithm, the matrix A in Eq. 6 is estimated
using the envelope of the sEMG signals (Eq. 8). We used the
stable solution of Eq. 6 (i.e., A\b) instead of calculating the
inverse matrix (ATA)−1, which is highly affected by the
condition number of the matrix (Pintelon and Schoukens,
2012; Beck, 2014). The condition number of the matrix A
equals the square root of the condition number of the matrix
(ATA). The condition number of the positive semidefinite matrix
(ATA) equals the maximum eigenvalue of (ATA) divided by the
minimum eigenvalue of (ATA) (Beck, 2014).

We further calculated the correlation between the adj. R2 and
the condition number of the matrix A (Eqs 6, 8). The average
condition number of matrix A was 763 ± 464. No significant
correlation was found between the goodness-of-fit and the
condition number of the matrix in the entire dataset
(r = −0.263; p-value = 110). Our method not only had proper
goodness-of-fit but also did not have a significant bias in the
entire dataset (p-value = 0.610).

In our model (Eq. 7), we also estimated the intercept point (w0).
If it is subtracted from the measured force signal (f(t)), the mean
value of the measured signal is removed, and the number of
estimated parameters is decreased. It is aligned with the
recommendation of the system identification guidelines to
remove the measured signals detrend before system identification.

5.3 The grey-box structure

The same LS model was used in our method for the upper and
lower-limb datasets, showing the generalization capability of the
proposed algorithm. However, our method’s goodness-of-fit and
residual signal analysis were better on the upper-limb dataset
than on the lower-limbs dataset (Tables 1, 2; Figure 4). It could be
that the number of involved muscles in the upper-limb dataset
was less than that of the lower-limb dataset. Moreover, unlike
black-box models such as ANN or SVM (Mokri et al., 2022), our
method is a grey-box model, in which the model interpretation is
possible (Figures 9, 10). The activity of each muscle could be
provided for each active muscle during recording to provide
insights into load-sharing problems (Rojas-Martínez et al., 2019).
Such information is also helpful in prosthesis control to identify
major active muscles when a limited number of electrodes are
used in practice.

5.4 Comparison with the state-of-the-art

Traditional EMG amplitude processing methods were used
for comparison with our proposed model. Since analyzed
methods had statistically significantly different results using
the rm-ANOVA (F (4,567,728) = 969.856; p-value < 0.001), the
pairwise comparison was performed, and to reduce the Type I
error, the Bonferroni correction was used in our study and adj.
p-value was reported. Overall, the proposed method
significantly outperformed the other methods (adj. p-value <
0.05), in terms of the goodness-of-fit measures. The comparison
between ANN, OLS, and SVM methods and the proposed
method on a recording from the upper-limb dataset was

FIGURE 7
The scatter plot of the proposed method (measured vs. predicted force data) lower-limb test dataset (50% hold-out validation).
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further provided in Figure 5. ANN does not provide proper
fitness among the analyzed models, as shown in the Bland-
Altman plot (Figure 1). It could be because the ANN method is a
black-box method, and they are not usually acceptable in
clinical applications.

The OLS did not have a good Bland Altman plot either
(Figure 2), showing that linear weights were unsuitable for the
EMG-force problem. However, OLS (a.k.a. Multiple Linear
Regression) has been widely used in the literature. It was shown
in the literature that the EMG-force relationship (i.e., the sEMG
envelope, which is smoothed rectified EMG by itself, and muscle
force) needs not be linear (Fuglevand et al., 1993; Hof, 1997),
especially in broad force range. The muscle force has different
biomechanical components, including the sigmoid shape between
excitation and muscle force (Fuglevand et al., 1993), which could be
approximated using the exponential forms.

5.5 Limitations and future activities

One of the limitations of our study is that we did not use a
random force trajectory. It was shown that such a force profile

could provide rich information about muscle excitation (Wang
et al., 2021), which is the focus of our future work. Using proper
signal processing methods, it is possible to identify not only the
frequency spectrum of the trajectory force signal to stimulate
different frequencies equally, but we can also provide training
and test sets without a medium-to-high degree of similarity to
reduce such a bias. However, the average correlation between the
epochs of estimation and test sets of the measured force signals
was −0.0046 ± 0.6812 and −0.0048 ± 0.5194 in the upper and
lower limbs datasets, respectively, showing low-to-medium
correlation of the measured force signal in estimation and test
sets in our study.

Also, the analyzedmethods did not consider the electromechanical
delay (Lacourpaille et al., 2013). Although properly incorporating the
delay parameter could improve the goodness-of-fit of the models
(Johns et al., 2016), it increases the complexity of the methods
(Corcos et al., 1992; Isermann and Münchhof, 2011) that might not
be suitable for real-time applications. Having implemented classical
signal conditioning methods on the sEMG signals, a delay is
introduced as a solution to this problem, although not a
systematic method. An accurate and efficient estimation of
this parameter will also be a focus of our future activities.

FIGURE 8
The measured and predicted force signals in different subjects from upper (D, E) and lower limb (A–C) test datasets (50% hold-out validation). The
y-label data was normalized and had normalized arbitrary units (a.u.).
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Moreover, in our study, a representative sEMG channel was
selected for each muscle. Alternatively, principal component
analysis (PCA) could improve the force estimation from
HDsEMG signals (Staudenmann et al., 2006).

Moreover, we did not compare our method with sEMG
superimposition, which uses motor control information rather
than traditional EMG amplitude processing, which has been
recently used in muscle force estimation (Savc et al., 2018). In
principle, it is possible to use parts of the sEMG decomposition
algorithms (such as, (Mohebian et al., 2019) to estimate muscle
activity index as to estimate muscle force. However, the running
time and the required number of electrodes of sEMG decomposition-
based methods are problematic in real-time force prediction
compared with fast and reliable EMG amplitude-based methods,
such as our proposed method.

It was shown in the literature that amplitude cancellation
distorts the spectrum of the rectified sEMG signal (Dideriksen
and Farina, 2019). Moreover, many factors influence the relation
between EMG amplitude and force, including the amount of
crosstalk from nearby muscles, the number and the discharge
rate of recruited motor units, Skin-electrode contact,
Interelectrode distance, Electrode size and shape, the orientation
of the recording array compared with the muscle fibers, Length of
the fibers, the shape of the volume conductor, and thickness and
inhomogeneities of the subcutaneous tissue layers. Moreover, the
same control strategy may generate signals with different amplitude
trends based on the motor unit locations (Farina et al., 2004).
Moreover, optimal smoothing and envelope detection depends on

the load-sharing scenario (Staudenmann et al., 2010). Thus, a
specific sEMG amplitude-force relation cannot have general
validity and could have a subject-by-subject and muscle-by-
muscle relationship. It was also shown in the literature that the
relationship between force and absolute sEMG is linear for small
muscles with narrow motor unit recruitment force ranges, while it is
non-linear for larger muscles with wide motor unit recruitment
force ranges (such as proximal leg or arm muscles) (Zhou and
Rymer, 2004).

However, our proposed method had an average goodness-of-fit
(R2) of 96.77 ± 1.67 (%) and 91.08 ± 6.84 (%) for the upper and
lower-limb datasets, respectively. The subjects-by-subject variations
are acceptable, as SD values are less than the uncertainty on the
mean values (i.e., MEAN divided by the number of subjects).

The primary elbow flexors are the biceps brachii, brachialis, and
brachioradialis, while the triceps brachii is the primary extensor.
Moreover, anconeus could contribute to elbow extension (Day,
2009). The brachialis muscle is a fusiform muscle located deep to
the biceps brachii. Since the sEMG of such deep muscles cannot be
collected with surface electrodes (e.g., brachialis muscle) remains a
substantial limitation and a significant cause of the error (Botter
et al., 2011). However, it could be assumed that the approximation
error term includes the activity of the deep muscle if such an activity
is not correlated with other agonist or antagonist muscles since the
residuals must be uncorrelated with the predictors in regression
analysis. Triceps brachii is the antagonist, and brachialis is a
synergist with biceps brachii. Thus, the condition applies to
elbow flexion and extension.

FIGURE 9
The envelope of the sEMG signal (top), the weighted activity of each muscle estimated from Eq. 7 (middle), and the estimated v.s. measured force
signals (bottom) in sample data from the upper-limb test dataset (50% hold-out validation). The y-label data has a normalized arbitrary unit (a.u.).
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For the lower limb muscles, we did not miss any major
muscles concurring with the production of plantar flexion
torque. Moreover, during quiet standing, dorsiflexors are
well-acknowledged to be silent (Di Giulio et al., 2009).
Therefore, the sEMG signals we collected from gastrocnemii
and soleus represent the net excitation commanding
plantar flexion. However, our sEMG signals were likely not
sensitive to changes in excitation of the proximal soleus
region, which is covered by the gastrocnemius heads. Of more
critical concern, though, is collecting sEMG sensitive to
mediolateral differences in soleus excitation, which have been
shown to change during quiet and perturbed standing (Cohen
et al., 2020; Cohen et al., 2021). With our experimental protocol,
sEMG signals were most sensitive and specific to the target
muscles, minimizing both Types I and II errors (Vieira and
Botter, 2021).

The required sample size of the experiment was calculated
based on the expected goodness-of-fit (e.g., R2), the number of
predictors, and the statistical power in our regression analysis
(Alasuutari et al., 2008; Stanley, 2022). For the upper limb
dataset, with the expected R2 of 0.964 (Jafari et al., 2014), five
variables, and a statistical power of 80%, the minimum sample
size was 8. For the lower limb dataset, however, with the expected
R2 of 0.960 (Mokri et al., 2022), 11 variables, and a statistical
power of 80%, the minimum sample size was 14. In our study, five
subjects participated in the upper limb study, while 33 subjects
were enrolled in the lower limb study. Thus, the reliability of
generalization of the lower-limb experiment is expected, while
this is not fully guaranteed in the upper-limb dataset.

6 Conclusion

In conclusion, we proposed a real-time grey-box model to
estimate muscle forces recorded at the joints. The goodness-of-fit,
residual signal analysis, and rigorous statistical comparison with the
state-of-the-art on the upper-limb and lower-limb datasets showed
that the proposed method is promising.
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