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Drug combinations have been proposed to combat drug resistance in cancer, but
due to the large number of possible drug targets, in vitro testing of all possible
combinations of drugs is challenging. Computational models of a disease hold
great promise as tools for prediction of response to treatment, and here we
constructed a logical model integrating signaling pathways frequently
dysregulated in cancer, as well as pathways activated upon DNA damage, to
study the effect of clinically relevant drug combinations. By fitting the model to a
dataset of pairwise combinations of drugs targetingMEK, PI3K, and TAK1, as well as
several clinically approved agents (palbociclib, olaparib, oxaliplatin, and 5FU), we
were able to performmodel simulations that allowed us to predict more complex
drug combinations, encompassing sets of three and four drugs, with potentially
stronger effects compared to pairwise drug combinations. All predicted third-
order synergies, as well as a subset of non-synergies, were successfully confirmed
by in vitro experiments in the colorectal cancer cell line HCT-116, highlighting the
strength of using computational strategies to rationalize drug testing.

KEYWORDS

colorectal cancer, logical modelling, drug combinations, synergy, prediction

Introduction

Despite the fact that cancer is characterized by excessive proliferation, chemotherapies
and other therapies aimed at broadly targeting proliferating cells have had limited efficacy as
treatments of cancer (Marin et al., 2009; Munker et al., 2018). Targeted therapy, which is
treatment of cancer using drugs that specifically target proteins that play a role in the growth
control signaling network, has in several cases proven advantageous over chemotherapies, by
demonstrating improved efficacy, as well as reduced side-effects (Jonker et al., 2007; Price
et al., 2014; Fakih, 2015). Especially, specific molecular targeted agents have shown
significant effect in certain patient subpopulations, such as the effect of EGFR inhibitors
in EGFR-mutated non-small-cell lung cancers (NSCLC) (Solassol et al., 2019), BRAF
inhibitors in advanced BRAF V600-mutated melanoma (Kim et al., 2014), and PARP
inhibitors in cancer patients carrying BRCA mutations (Fong et al., 2009). Despite this
progress, the widespread use of targeted therapies is still limited, for several reasons. On one
hand, molecular heterogeneity among patients makes accurate patient stratification essential
for successful use of molecularly targeted agents. This process has for long been hampered by
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the relatively small number of biomarkers validated for response
prediction. On the other hand, pathway crosstalk, or rewiring of
signaling pathways, often leads to drug resistance and relapse of
disease (Ellis and Hicklin, 2009; Ahronian et al., 2015; Liu et al.,
2018). While the advancement of ‘omics technologies has led to
progress within biomarker discovery (Li et al., 2019; Srivastava and
Creek, 2019), the use of combination therapy, i.e., targeting of cancer
signaling networks at multiple points, was demonstrated to be a
promising strategy for overcoming obstacles related to inherent or
acquired drug resistance. The use of drug combinations to increase
the effect of treatment is supported by multiple successes from
in vitro and clinical cancer research, with dual inhibition of MAPK-
ERK pathway components (Khunger et al., 2018), and combined
inhibition of MEK and components of the PI3K signaling pathway
being some of the most prominent examples (Jokinen and
Koivunen, 2015; Arend et al., 2020). Of these, combined
inhibition of BRAF and MEK is, in addition, clinically used for
treatment of BRAF V600-mutated NSCLC and melanoma(Eroglu
and Ribas, 2016; Han et al., 2021). So far, low- and high-throughput
drug screens, as well as more hypothesis-driven investigations have
only identified a small number of synergistic drug combinations.
This is in part due to the enormous combinatorial space that needs
to be explored for synergistic combinations to be detected (Amzallag
et al., 2019). The size and complexity of cell signaling networks call
for the identification of synergistic drug combinations using various
kinds of computational models. Such models have been found
predictive of treatment response to both single and combined
cancer treatment (Sahin et al., 2009; Grieco et al., 2013; Flobak
et al., 2015; Saez-Rodriguez et al., 2015; Garland, 2017; AstraZeneca-
Sanger Drug Combination DREAM Consortium et al., 2019;
Niederdorfer et al., 2020). However, despite the even greater need
for computational assistance in predicting response to more
complex drug combinations, i.e., more than two drugs together,
few such studies have been conducted (Geva-Zatorsky et al., 2010;
Zimmer et al., 2016; 2017; Katzir et al., 2019). In light of studies
revealing cell line-specific resistance to pairwise drug combinations
(Tomska et al., 2018; Folkesson et al., 2020), we believe that
computational models predictive of responses to higher-order
drug combinations (>2 drugs) will fill an important gap in
computational medicine. In this study, we present a logical
model encompassing signaling pathways frequently dysregulated
in cancer, as well as pathways activated upon DNA damage and
repair. The model is intended for usage within studies of
combination effects of second- and higher-order combinations
involving drugs targeting MAPK, PI3K and TAK1/NF-kB
signaling pathways, as well as the clinically approved agents
palbociclib (CDK4/6 inhibitor), olaparib (PARP inhibitor),
oxaliplatin and 5FU (chemotherapeutic agents). The model was
constructed in the software GINsim and focuses on the targets of
drugs tested in our previously published high-throughput
combination screen (Folkesson et al., 2020). Following model
adjustments guided by drug response data of pairwise
combination treatment, we demonstrate the capacity of the
model to predict synergistic effects of three-way and four-way
(third- and fourth-order) drug combinations. All higher-order
combinations classified in silico as synergistic, as well as a subset
of predicted non-synergies, were successfully confirmed in a novel
in vitro screen investigating the effect of higher-order combinations

in the colorectal cancer (CRC) line HCT-116. Altogether, our results
highlight the advantage of using computational strategies for
rationalization of drug testing in vitro.

Materials and methods

Construction of the regulatory network

A prior knowledge network was constructed based on
information retrieved mainly from the databases KEGG
(Kanehisa et al., 2017) and Signor (Perfetto et al., 2016), as well
as from recent scientific literature. The network focused on the
proteins/mechanisms and pathways targeted by drugs in our
previously published high-throughput screen (Folkesson et al.,
2020) (Figures 1A, C; Supplementary Table S1, Supplementary
File S1: Results, figures, and tables). All interactions retrieved
from public databases were reviewed, and for the initial model
construction, the most well-described interactions were included. As
three out of the seven drugs that were evaluated in our previously
published screen are known to induce either DNA damage (5FU and
oxaliplatin) or inhibition of DNA damage repair (olaparib), related
pathways have been extensively described in our prior knowledge
network, including any differences in induced damage, and activated
repair mechanisms caused by the two DNA-damaging agents. See
“Model adjustment” for more details. A complete list of references
describing the molecular interactions included in this work can be
found in Supplementary Table S2 (Supplementary File S1: Results,
figures, and tables).

Logical modelling

Construction of a logical model
In order to perform simulations of cellular behavior upon drug

perturbations, the prior knowledge network was converted into a
logical model in the software suite GINsim, version 3.0.0b (Gonzalez
et al., 2006). In the logical model, components of the regulatory
network (genes, proteins, complexes, chemical components/
therapeutic agents, and phenotypes) are represented by nodes
(connection points). Activating or inhibiting interactions are
represented by edges. Apart from ‘Oxaliplatin’, ‘Fluorouracil’ and
‘Overall_phenotype’, all nodes are connected to a minimum of two
other nodes via directed edges (a minimum of one incoming and one
outgoing edge). ‘Oxaliplatin’ and ‘Fluorouracil’ act as input nodes,
i.e., nodes fixed at a specified activity level, without incoming
interactions and regulatory rules. ‘Overall_phenotype’ works as
an output node, providing rapid access to the simulated results.
The activity state (active/inactive) of non-input nodes is precisely
defined by their regulatory nodes and a set of logical operators (AND
(&), OR (|), NOT (!)), assembled into a logical rule that describes the
conditions for activity of the target node. The overall model fate is
determined by the output node ‘Overall_phenotype’, which can take
on one of three levels (1, 2, 3). Apart from the output node, all nodes
are Boolean. A complete summary of nodes and associated logical
rules of the models is presented in Supplementary Table S3
(Supplementary File S1: Results, figures, and tables). The initial
model contained 81 nodes and 142 edges.
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Model adjustment
In the initial unadjusted model, the activity of all non-input

nodes except DSB, representing double stranded DNA breaks, and
Overall_phenotype followed a standard default (equation 1), Target
node = (Activator 1 | Activator 2 | etc.) &! (Inhibitor 1 | Inhibitor 2 |
etc.)! (1) i.e., for a node to be active, at least one of its activating
regulators and none of its inhibiting regulators had to be active. We
constructed themodel so that the absence of perturbations, as well as
perturbation of single nodes, resulted in an output corresponding to
a proliferating cell phenotype (‘Overall_phenotype’ at its maximum
level, 3). To meet the assumption of no overall effect of single node
perturbations, subsequent model adjustments were guided by
reference data (drug combination effects) generated from low to
moderate drug concentrations, for which no significant effect on
apoptosis was observed upon single-drug administration.

Following initial analysis, the model was adjusted in order to
improve its ability to correctly classify synergistic and non-
synergistic drug combinations observed in HCT-116 cells in vitro
(Folkesson et al., 2020). The model was adjusted by stepwise
implementation of one or several of the following changes.

- Changing of logical rule(s) for existing nodes.
- Addition of edge(s) between existing nodes.
- Addition of new nodes.

Each step was counted to keep track of the number of changes. Since
the addition of a new node to a self-sustaining regulatory network
involves addition of a minimum of two edges as well as modifications
of at least one logical formula, we count these related changes together as
one model adjustment. Likewise, since adding an edge between two
existing nodes requires updating of the logical formula of the target node,
these changes are counted as one model adjustment. In general, when
adjusting a logical formula because of edge addition, the formula was first
defined by the standardized form above (equation 1) (Mendoza and
Xenarios, 2006). Any additional changes to the formula were counted as
separate adjustments. Changes were made in the order in which they are
listed in Supplementary Table S4 (Supplementary File S1: Results, figures,
and tables). Overall, the order ofmodel adjustments wasmotivated by the
synergy scoring order of the combinations of interest (Supplementary
Table S5, Supplementary File S1: Results, figures, and tables). The
adjusted model consisted of 85 nodes and 158 edges. A complete

FIGURE 1
Overview of the study. (A) Drugs tested in single and combined (pairwise) in a high-throughput screen by Folkesson et al. (Folkesson et al., 2020).
5FU, OXA, PI, 5Z, PD, PAL, and OLA are abbreviations of 5-fluorouracil, oxaliplatin, PI-103, 5Z-7-oxozeaenol, PD-0325901, palbociclib and olaparib,
respectively. (B) Regulatory network constructed around the targets of drugs tested in the published screen. The network in the figure represents an
arbitrary network of nodes connected through undirected edges. (C) Combination effects observed in the screen, where asterisks mark
combinations classified as synergistic (HSA score < −0.7) per cell line. Note that three cell lines (HCT-116, HT-29, and SW-620) were evaluated in the
published combination screen, whereas the logical model was mainly adjusted for HCT-116 cells. (D) Logical model simulations of the regulatory
network. The model was constructed in GINsim, adjusted based on response data from the screen (C) and used for prediction of response to higher-
order drug combinations. (E) In vitro validation of cellular response to higher-order drug combinations tested in silico (D).
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summary of nodes and associated logical rules of the models (initial/
adjusted) is presented in Supplementary Table S3 (Supplementary File S1:
Results, figures, and tables). GINsimmodel definition files are available in
the Figshare repository (see Data availability).

Stable state analysis and synergy quantification
An overall model output was defined based on upstream signaling

component activities, and ranged from 1 to 3, where lower numbers
correspond to growth-inhibited phenotypes and higher numbers
correspond to growing phenotypes. To determine the level of the
model output (1, 2, or 3), as well as the activity of non-input nodes
at baseline and upon perturbation, stable states analysis was performed
using the Compute stable states algorithm implemented in GINsim. By
making use of so-called decision diagrams for representation of the
Boolean functions of the model, the Compute stable states algorithm
enables computation of stable state(s) from an initial given condition
without the necessity to construct a state transition graph describing the
dynamical behavior of the model (Naldi et al., 2007). This allows
assessment of stable states also when working with larger networks
where the construction and simulation of state transition graphs is not
possible due to the size of the resulting graph. Due to the size of the
network, all simulations were run using synchronous updating. In cases
ofmultiple stable states, theAssess attractor reachability tool was used to
estimate the probability of reaching each of the suggested stable states.
Here, the evaluation of reachability is based on stochastic algorithms for
evaluation of probabilistic outcome(s) resulting from repeated analysis
of randomly sampled inputs (Naldi et al., 2018). Multiple such
algorithms are implemented in GINsim and in this work, attractor
reachability simulations were performed using the historically
commonly featured MonteCarlo algorithm. The simulations were
performed with 1,000 runs and a max depth of 1,000 as running
parameters. Also here, the simulations were run using synchronous
updating of the network. The stable state associated with the highest
probability was selected as the main stable state. The level of the model
output given by the stable state analysis was used for evaluation of
combination effects in silico. As the baseline (unperturbed) model was
associated with the highest output level (3) and since single-node
perturbation did not have a reducing effect on the overall output
level, perturbation of combinations of nodes which resulted in an
output level ≤ 2 were, in the case of pairwise combinations, considered
synergistic.Mathematically, this quantification of combination effects in
simulations is analogous to synergy quantification using the Highest
Single Agent (HSA) reference model, one of several mathematical
reference models often employed for cell laboratory experiments
(Lehár et al., 2007). Analyzed model perturbations and their in vitro
counterparts (Folkesson et al., 2020) are listed in Supplementary Table
S6 (Supplementary File S1: Results, figures, and tables). Nodes targeted
by model perturbations adhere exclusively to the list of primary targets
reported for each of the drugs that were tested in vitro (Supplementary
Table S1; Supplementary File S1: Results, figures, and tables).

Screening data

Reference data
Screening procedure

All details of the high-throughput screening procedure which
provided response data used as reference for model adjustment can

be found in the publication accompanying the dataset (Folkesson
et al., 2020). Briefly, the authors studied the effect of seven single-
drugs and all their pairwise combinations on the viability of three
colorectal cancer (CRC) cell lines (HCT-116, HT-29, SW-620). The
CellTiter-Glo 2.0 Viability Assay was used to assess viability of the
cells following 48 h of drug treatment. In this article, we have mainly
focused on data for HCT-116 cells.

Synergy scoring
The combination effects were quantified using the HSA

reference model. HSA scores < −0.7 were considered synergistic,
whereas everything else was considered non-synergistic. The
rationale for the choice of the HSA model and identification
of −0.7 as synergy cut-off value is given in Quantification of
synergy scores according to the HSA method (Supplementary File
S1: Results, figures, and tables).

Validation data

Cell lines, drugs, and reagents
For in vitro validation of predictions made by the computational

model, HCT-116 cells (CVCL_0291), obtained from the US
National Cancer Institute (NCI), were used. Cells were cultivated
in 1X RPMI-1640medium (Thermo Fisher Scientific) supplemented
with 10% fetal bovine serum (FBS, Sigma Aldrich), 2 mM L-
Glutamine (Sigma Aldrich) and 100 U/mL
Penicillin–Streptomycin (Thermo Fisher Scientific) and
maintained at 37°C with 5% CO2 and 80% relative humidity.
Passaging was performed according to in-house protocols as
described in (Folkesson et al., 2020). Cells were used at passage
numbers <20. Drugs used in the validation screen were olaparib
(OLA), oxaliplatin (OXA), PI-103 (PI) (Selleckchem), PD0325901
(PD), 5-fluorouracil (5FU) (Sigma Aldrich) and 5Z-7-Oxozeaenol
(5Z) (Enzo Life Sciences). The CellTiter-Glo 2.0 Viability Assay
(Promega) was used for viability assessment of cells in the screen. A
complete list of reagents and other material can be found in
Supplementary Table SM1 (Supplementary File S2: Materials and
Methods).

Screening procedure
For high-throughput validation screening of third-order

combinations PI + PD + OXA, PI + PD+5FU, OLA + PI + PD,
5FU + OLA + PD, 5FU + OLA + PI and 5FU + OLA+5Z, HCT-116
cells were robotically seeded (Biomek FXP Laboratory Automation
Workstation; Beckman Coulter) with 35 µL complete growth
medium in 384-well black tissue culture-treated plates (Corning)
at a density of 1,200 cells/well. Following seeding, plates were shaken
(1,600 rpm, 30s) to ensure uniform distribution of cells. The cells
were then incubated for 24 h (37 °C with 5% CO2 and 80% relative
humidity), whereafter drugs were added. Drugs (single, pairwise,
and triple combinations), as well as positive (digitonin,
staurosporine) and negative controls (DMSO) were added using
a Tecan D300e system. The DMSO concentration in the culture
medium never exceeded 0.5%. All treatment conditions are listed in
Supplementary Table SM2 (Supplementary File S2: Materials and
Methods). Details regarding dose selection can be found in Selection
of doses for third-order validation screening (Supplementary File S1:
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Results, figures, and tables). Each condition (drug/combination,
concentration) was tested in four technical replicates. Drug
addition was followed by shaking of the plates (1,000 rpm, 30 s)
and incubation at 37°C with 5% CO2 and 80% relative humidity.
Following 48 h of treatment, cell viability was assessed using
CellTiter-Glo 2.0, as described in (Folkesson et al., 2020). Cells
were also imaged (2 sites per well) at 0, 24 and 48 h post drug
addition. Imaging at 0 and 48 h was performed prior to drug
addition and viability measurement, respectively. A SpectraMax
i3x plate reader was used for all readouts. Two biological
replicates of the high-throughput validation screen were performed.

For validation screening of third-order drug combinations
OXA+5FU + PD and OXA+5FU + PI, and fourth-order
combination OXA+5FU + PI + PD, HCT-116 cells were seeded
with 90 µL complete growth medium in 96-well black tissue culture-
treated plates (Corning) at a density of 4,800 cells/well. Seeding was
followed by shaking of the plates (750 rpm, 30 s). The cells were then
incubated for 24 h (37°C with 5% CO2 and 80% relative humidity),
whereafter drugs (single, pairwise, triple and four-way
combinations) and a negative control (DMSO) were added
manually. All treatment conditions are listed in Supplementary
Table SM3 (Supplementary File S2: Materials and Methods).
Each condition (drug/combination, concentration) was tested in
two technical replicates. Drug addition was followed by shaking of
the plates (750 rpm, 60 s) and incubation at 37°C with 5% CO2 and
80% relative humidity. Following 48 h of treatment, cell viability was
assessed using CellTiter-Glo 2.0. A POLARstar Omega plate reader
was used for the readout. Three biological replicates were performed.

Data processing and statistical analysis
Confluency (high-throughput screen) was estimated by re-

analyzing brightfield images using the SoftMax Pro
6.5.1 software. For each well, the percentage of covered area was
estimated using settings specified in Supplementary Table SM4
(Supplementary File S2: Materials and Methods). For both
confluency and viability (CellTiter-Glo 2.0), treatment effects
were normalized to the plate-internal vehicle control (DMSO)
and reported as average ± standard deviation. Pearson’s
correlation coefficient has been used to quantify the association
between variables (high-throughput screen) and biological replicates
(high- and low-throughput screen).

Synergy scoring
The highest single agent reference model (Lehár et al., 2007) was

used for evaluation of combination effects in the validation screens.
HSA scores were computed by integrating the HSA excess value per
data point to generate an overall HSA score for each combination
across the tested doses. The latter was done to account for the fact
that while effect size and synergy resulting from perturbations
in vitro to some extent was dose-dependent, the corresponding
perturbations in silico were logical to their nature. An integrated
HSA excess score of 0 was used as cut-off, and combinations
resulting in an integrated score < 0 and > 0 were deemed
synergistic and antagonistic, respectively. Hence, in our in vitro
experiments, synergy was called when the overall effect of the
combination AB (for pairwise combinations), ABC (for triple
combinations) and ABCD (for the four-way combination) was
larger than the effect of the strongest underlying effector

component (powerset), i.e., A and B for AB; A, B, C, AB, AC
and BC for ABC; A, B, C, D, AB, AC, AD, BC, BD, CD, ABC, ABD,
ACD, BCD for ABCD. Viability data (48 h) were used as the main
data for assessment of combination effects. Confluency data were
used for supplementary purposes, with combination effects
evaluated at 24 h and 48 h. For each readout, combination effects
were evaluated based on the average response of the biological
replicates. In addition, for all tested higher-order combinations
the statistical difference in relative viability between the highest-
order combination versus the most effect underlying component
(per dose) was calculated using a two-sided Student’s t-test. For each
combination (third- or fourth-order) this was done per dose step
and involved all technical replicates from all biological replicates.

Screening reproducibility
For the high-throughput screen, intra-experiment reproducibility

was assessed for both viability and confluency data by computing the
Pearson correlation between the two biological replicates. The
correlation coefficients were 0.99 and 0.96 for viability and
confluency, respectively (Supplementary Figure S4A,
Supplementary File S1: Results, figures, and tables). Also, technical
variability was assessed by first computing the coefficient of variation
(CV) per treatment condition (4 replicates), followed by averaging of
all CV values across biological replicate and readout (Supplementary
Table S8 Supplementary File S1: Results, figures, and tables). The
technical variability was considered low for both readouts with a CV
of 6%–9%. In addition, inter-experiment reproducibility was assessed
by comparing data points (viability data only) common for the
reference screen (Folkesson et al., 2020) and the high-throughput
validation screen. The correlation coefficient for responses tested in
both setups was 0.96 (Supplementary Figure S4B; Supplementary File
S1: Results, figures, and tables). Response assessed by viability was
strongly correlated (0.96) with the confluency response
(Supplementary Figure S5, Supplementary File S1: Results, figures,
and tables), which was in concordance with results from the previous
screen (Folkesson et al., 2020). For the low-throughput screen, intra-
experiment reproducibility was assessed for viability data by
computing the Pearson correlation between all pairs of biological
replicates. The correlation coefficients ranged from 0.84 to 0.96
(Supplementary Figure S4C, Supplementary File S1: Results,
figures, and tables).

Results

Overview of the study

The logical model presented in this paper was developed to
computationally represent and analyze the joint influence of DNA
damaging therapies and targeted therapies in pairwise, third- and
fourth-order drug combinations. The model was built in the
software suite GINsim (Gonzalez et al., 2006) and focused on the
primary targets of drugs tested in our previously published
combination screen (Folkesson et al., 2020) (Figures 1A, B).
Following topological adjustments of the model, guided by drug
response data of pairwise combination treatment of CRC cells
(Figure 1C), we simulated response of HCT-116 cells to
treatment with higher-order drug combinations (Figure 1D).
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Higher-order drug combinations identified as potential synergies by
the model were further validated in an in vitro screen investigating
the effect of higher-order drug combinations in HCT-116 cells
(Figure 1E).

Construction and initial analysis of the
model

Description of the initial model
To adopt a regulatory network-based approach for the study of

cellular effects of second and higher-order drug combinations we
began with constructing a prior knowledge network encompassing
all proteins and associated signaling pathways targeted by drugs in

our previously published high-throughput combination screen
(Folkesson et al., 2020) (Figures 1A, C). The resulting regulatory
network comprised pathways mediating mitogenic signaling
(MAPK, PI3K and TAK1/NF-kB pathways), pathways signaling
the effect of DNA damage and repair induced by the
chemotherapeutic agents oxaliplatin and 5FU (Bakkenist et al.,
2018; Pilié et al., 2019), cell cycle components, and pathway-
crosstalk. For more details on network construction, see Details
on network construction, Supplementary File S1: Results, figures, and
tables.

To enable study of network behavior upon perturbations, we
formulated the regulatory network as a logical model using GINsim
(Figure 2A), as described in Materials and Methods. In the model,
two input nodes represented the effect of the chemotherapeutic

FIGURE 2
Features of the initial logical model. (A) Model topology; green arrows and red bar-headed lines indicate activation and inhibition, respectively.
Orange rectangular nodes correspond to drugs (Fluorouracil/5FU, Oxaliplatin) or drug targets (MEK, PI3K, CDK4_6_CycD, TAK1, PARP; also signaling
molecules). White rectangular nodes correspond to other signalingmolecules. Elliptic nodes correspond to phenotypes or cellular events associatedwith
DNA damage and repair. Nodes representing phenotypes apoptosis, growth arrest, G1/S transition and overall phenotype are colored in red, yellow,
green, and blue, respectively. (B) Stable states (row-wise) computed with the initial model for all individual drug perturbations (single-drug effect), and for
the unperturbed (baseline) model. Nodes are categorized based on their association with either a drug target or a phenotypic event.
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agents 5FU and oxaliplatin, whereas all other drug targets were
represented by ‘internal’ nodes. For assessment of model phenotype
at baseline and upon perturbation, three phenotypic pre-output
nodes (representing G1/S transition, growth arrest, apoptosis) were
included in the model. These nodes summarized into the output
node ‘Overall_phenotype’, capable of taking on values 1, 2, and 3,
where 3 corresponds to a proliferating cell. While a fourth output
level, Overall_phenotype = 0, was defined as an output level
resulting from inactivity of all pre-output nodes, this state was
not achievable, since either “G1/S transition” or “Growth arrest”
was defined to always be active.

Features of the initial model
To study the inherent signaling features of the initial model,

prior to directed adjustments, model stable states were computed for
several different conditions (Figure 2B). Here, ‘Baseline’ corresponds
to what we would define as an unperturbed cell in vitro (i.e., no drugs
added, and no ongoing DNA damage). The stable state associated
with the ‘Baseline’ condition displayed activity of growth-promoting
pathways and anti-apoptotic proteins, whereas pathways involved in
DNA damage response and repair were all inactive (Figure 2B). The
output value associated with the baseline stable state was the highest
possible, which is expected as the features mentioned have been
described for viable and growing cancer cells in vitro (Evan and
Vousden, 2001; Fattahi et al., 2020; Guo et al., 2020; Mukhopadhyay
and Lee, 2020). Using the initial computational model, we studied
the in silico effects of all single drugs tested in our high-throughput
screen (Folkesson et al., 2020). This was done by computing stable
states in the presence of in silico perturbations that either inactivated
nodes (MEK, PI3K, CDK4_6_CycD, TAK1, PARP) or fixed them in
the active state (Fluorouracil, Oxaliplatin) (Supplementary Table S6,
Supplementary File S1: Results, figures, and tables). Each such
perturbation was associated with a single stable state (Figure 2B).
A common observation with all perturbations was that although we
observed an effect on the activity of components (nodes) within the
pathway that was primarily targeted by each specific drug, the
activity of nodes associated with other pathways was rarely
affected. Additionally, none of the single drugs showed an
inhibiting effect on the global model output (i.e., Overall_
phenotype = 3). These aspects of our model are necessary
prerequisites to enable detecting responses to combinatorial
perturbations that exceed the response of single perturbations.
Overall, the results from the analysis of the initial model
indicated that the model correctly captured biologically plausible
signaling features present in unperturbed cancer cells in vitro.
Furthermore, upon single node inhibition or induction of DNA
damage, the model accurately engaged response and repair
mechanisms reported in the literature, still while allowing
additional effects of combination treatment to be observed.
Altogether, these results indicate that the model sufficiently
represents the cell fate decision mechanism to study synergistic
drug combinations affecting DNA integrity as well as cellular
growth.

Model adjustment improves predictability
As we seek to use the computational model for prediction of

cellular response to higher-order drug combinations,
i.e., combinations comprising more than two drugs, we first

improved the model’s ability to predict the response to pairwise
drug combinations. This was done by implementation of
adjustments in model topology and logical rules as described in
Materials and Methods. Drug response data for HCT-116 cells from
our previous combination screen (Folkesson et al., 2020) were used
as reference data for model adjustments, and the effects of model
adjustments on the output level were closely monitored by
continually comparing stable state analysis to reference data. The
reason for focusing on HCT-116 cells when performing model
adjustment was that the strongest as well as the largest number
of synergies were observed for this cell line in the reference screen.
Despite this, we wanted to investigate if it was possible to detect an
increased effect by the addition of a third and possibly fourth agent.
More details concerning specific model adjustments are summarized
in Supplementary Table S4 (Supplementary File S1: Results, figures,
and tables).

We found that the model’s predictive capacity improved by each
stepwise adjustment(s) guided by predictive performance for HCT-
116 cells (Figure 3). Of note, the inclusion of the node MLH1 as a
knockout (KO) played an important role for the predictive power of
the adjusted model. Here, the node knockout represents the HCT-
116 cells’ homozygous loss of MLH1 (Liu et al., 1995). Following
implementation of this and other (in total 13) adjustments
(Figure 3), the model correctly captured 12 out of 13 synergies,
and 7 out of 8 non-synergies observed in HCT-116 cells in vitro
(Folkesson et al., 2020). Of note, due to the inherent nature of the
model construction, where single-node perturbations were set to
have to have no effect on the overall phenotype, none of the
antagonistic pairwise drug combinations detected in our previous
screen (many of them involving the chemotherapeutic agent
oxaliplatin) were predicted as antagonistic by the model. Instead,
all pairwise perturbations which did not show an effect on overall
phenotype were classified as “non-synergies”. However, as our
primary aim was to use the model for prediction of synergistic
higher-order combinations and since the model was now configured
to closely mimic the synergy pattern of pairwise combinations in
HCT-116 cells (Figure 3), we hypothesized that the model would
also be effective for prediction of synergistic effects of higher-order
drug combinations in the same cell line (HCT-116).

Pairwise combinations rarely induce apoptosis in
silico

Next, we used our adjusted computational model to study the effect
size of pairwise combinations, to conclude whether synergistic higher-
order combinations (>2 drugs) would at all be detectable by the model.
To study the effect size of pairwise perturbations evaluated during
model adjustment (Figure 3), associated stable states were computed for
all combinations, followed by recording of the Overall_phenotype level
and activities of model nodes. Maximum effect was defined as Overall_
phenotype = 1, and hence an apoptotic phenotype, whereas Overall_
phenotype = 2, characterized by cell cycle arrest in G1/S phase, was
considered a medium effect. Perturbations with no effect on overall
phenotype were associated with the highest possible value for Overall_
phenotype, 3. Also, to gain further insights into possible mechanisms
underlying observed synergistic effects of pairwise combinations,
underlying single node perturbations were subjected to the same
analysis (stable state analysis and recording of node activity/level),
whereafter the differential activity of model nodes could be
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computed for all pairwise combinations as compared to the effect of
underlying single node perturbations (Figure 4). We found that none of
the 12 correctly predicted synergies entirely associated with the lowest
output level that corresponds to an apoptotic phenotype, Overall_
phenotype = 1 (Figure 4). Instead, we found that combined
perturbations, when synergistic, often resulted in arrest of the cell

cycle in G1/S phase (Figure 4), altogether resulting in the Overall_
phenotype = 2. When studying model attractor reachability, one
combination (PI + PD) was found capable of inducing apoptosis in
a fraction of the simulations (Figure 4), but since the probability for such
an outcome (assessed using theAssess attractor reachability algorithm in
GINsim) was found to be less than 0.3, growth arrest (Overall_

FIGURE 3
Adjustment of the model. The heatmap shows observed (in vitro in HCT-116 cells) and predicted (in silico) combination effects per adjustment step
in the conversion of the original model into the final “HCT-116 adjusted” model. Adj. 13 corresponds to the adjusted (final) model. Details of the model
adjustments are summarized in Supplementary Table S4 (Supplementary File S1: Results, figures, and tables).

FIGURE 4
Heatmap showing differential activation of model nodes upon combined perturbation compared to single node perturbation in the adjustedmodel.
Numbers between parentheses to the right of the combination name indicate the probability of reaching a specific stable state. Phenotypic output is
shown to the right. Note that combinations classified as non-synergistic in the reference screen were also simulated for a confirmatory purpose.
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phenotype = 2) was selected as the main output also for this
combination. The prediction of a cytostatic rather than cytotoxic
synergistic effect of evaluated pairwise drug combinations was
supported by data generated in the reference screen, which
demonstrated an increase in confluency over time for all tested drug
combinations (Supplementary Figure S6, Supplementary File S1:
Results, figures, and tables). Here, a decrease in confluency relative
to the starting point (drug addition) would have been sign of
cytotoxicity. However, as no marker of apoptosis was included for
most of the combinations evaluated in the reference screen, an
additional apoptotic effect in vitro cannot be ruled out.
Computationally, as none of the pairwise perturbations tested by the
model did on their own induce a maximum effect (apoptosis/Overall_
phenotype = 1), such an effect induced by e.g., perturbation of
additional nodes would theoretically still be detectable. We therefore
consider the model in its current adjusted state to be well suited for
exploring combination effects of higher-order drug combinations in
HCT-116 cells.

The model was next used for prediction of synergistic third and
fourth-order combinations in HCT-116 cells. Combinations
subjected to stable state analysis and all associated stable states
are listed in Supplementary Table S9 and Supplementary Table S10
(Supplementary File S1: Results, figures, and tables). For third and
fourth-order combinations, synergy was called when the effect of the
highest-order combination was larger than the effect of the most
effective lower-order treatment subset.

From 35 possible third-order drug combinations tested, three
(PI + PD+5FU, PI + PD + OXA and PI + PD + OLA) were
predicted as synergistic by the model (Figure 5A, Supplementary
Table S9, Supplementary File S1: Results, figures, and tables). In
all three cases, the probability of the stable state for the third-
order drug combination was 1. Of note, all three synergistic
third-order combinations involved combined inhibition of PI3K
and MEK (PI + PD). Two of them also involved
chemotherapeutic DNA damage. All three combinations were
associated with Overall_phenotype = 1, and an apoptotic

FIGURE 5
In silico effects of third-order drug combinations predicted for HCT-116 cells. (A) Stable states (row-wise) computed with the adjusted model for
synergistic third-order drug combinations and associated second-order combinations. The probability for the stable state of the third-order drug
combinationwas 1 in all three cases. (B) Suggestedmechanism accounting for the synergistic effects of third-order combinations in (A), exemplified for PI
+ PD+5FU. Synergistically activated BAX is highlighted in bold. Dashed arrows/bar-headed lines indicate indirect links between nodes.
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phenotype. According to the model, apoptosis was enabled by the
activity of the pro-apoptotic factor BAX, which was
synergistically activated upon third-order perturbation, but
not by any of the simulated single or pairwise drug responses
(Figure 5B). The model suggested that the presence of functional
BAX was crucial for synergy of these third-order combinations.
The latter was confirmed by performing simulations where the
activity of BAX was turned off (knocked out), whereupon none of
the three combinations showed synergy (results not shown). The
suggested mechanism is supported by literature stating that
higher-order drug combinations might be needed in order to
effectively kill CRC cells and that direct targeting of processes
such as apoptosis and cell cycle might be crucial for enhanced
cytotoxicity (Horn et al., 2016). According to further stable state
analysis of all possible fourth-order perturbations (35), none of
these combinations contributed with any additional effect
compared to third or second order combinations
(Supplementary Table S10, Supplementary File S1: Results,
figures, and tables).

Altogether, results from the tests indicate that the adjusted
model can be used for prediction of especially third-order drug
combinations with possible synergistic effects in HCT-116 cells.

Screening reveals synergistic effect of third-order
drug combinations in HCT-116 cells in vitro

To evaluate the predictive performance of the adjusted model,
the effect of higher-order drug combinations in HCT-116 cells was
assessed by a follow-up validation screen. An overview of the
general screening procedure is shown in Figure 6A. During
screening, cells were treated with all third-order drug
combinations predicted to be synergistic by the model (PI + PD
+ OXA, PI + PD+5FU, OLA + PI + PD), two randomly selected
third-order combinations with predicted non-synergy (OXA+5FU
+ PD, OXA+5FU + PI), one of the predicted fourth-order non-
synergies (OXA+5FU + PI + PD), as well as all underlying lower-
order treatments. Combination effects of second- and higher-order
drug combinations were evaluated based on viability data by
calculating the HSA excess per dose step (see illustration of the
meaning of HSA excess in Figure 6A), followed by integration of
HSA excess values across the entire dose range per combination, as
described inMaterials and Methods. We applied a cut-off at HSA =
0 for classification of synergy for higher-order drug combinations;
hence, drug combinations with integrated HSA excess scores <
0 and > 0 were considered synergistic and antagonistic,
respectively. While HSA as a reference model for synergy

FIGURE 6
Drug synergy validations. (A) Simplified overview of the screening procedure with synergy scoring exemplified for a second-order combination. (B)
Heatmap of HSA excess (viability-based) summed across the dose-ray per combination. Asterisks (*) indicate combinations predicted to be synergistic by
the computational model. (C) Viability dose-response curve for HCT-116 cells treated with the fourth-order combination OXA+5FU + PI + PD. The plot
shows the fourth-order combination and the two most potent lower-order combinations (PI + PD + OXA, PI + PD+5FU). Concentrations per dose
step are presented in the table. To make the plot clearer, error bars are not included.
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scoring often is considered less stringent in its classification of
synergy compared to several other reference models (such as the
Bliss independence and Loewe additivity models), and therefore
should be used with extra care, its mathematical analogy to how we
in this study defined synergy in silico made it suitable for
quantification of synergy also in vitro. A complete list of all
treatment conditions evaluated in the validation screen can be
found in Supplementary Table SM2 and Supplementary Table SM3
(Supplementary File S2: Materials and Methods).

All three third-order combinations predicted as synergies by the
computational model were confirmed statistically significant
synergistic (p < 0.05) at multiple doses in HCT-116 cells in vitro
in the high-throughput validation screen (Figure 6B; Supplementary
Figure S7 and Supplementary Table S11, Supplementary File S1:
Results, figures, and tables). We also found that the two
combinations OXA+5FU + PI and OXA+5FU + PD, which were
both predicted as non-synergies by the model, were non-synergistic
in HCT-116 cells in vitro (Figure 6B; Supplementary Figure S8 and
Supplementary Table S12, Supplementary File S1: Results, figures,
and tables), indicating that the adjusted model has the power to
correctly predict synergistic, as well as non-synergistic properties of
multiple third-order combinations in HCT-116 cells.

To hypothesize on further model refinements related to
modelling of DNA repair, we also screened three additional
third-order drug combinations; 5FU + OLA + PD, 5FU + OLA +
PI and 5FU +OLA+5Z. The computational model predicted none of
these combinations to be synergistic, as 5FU combined with either of
PD, PI and 5Z alone resulted in non-repairable DNA damage
(Figure 4). Hence, the model did not indicate additional repair-
compromising effects of PARP inhibition (OLA), although this
could be expected from a biological point of view (see Selection
of additional third-order drug combinations for screening,
Supplementary File S1: Results, figures, and tables). These
combinations were found to be synergistic when screening HCT-
116 cells (Supplementary Figure S7), in line with biological
reasoning, and indeed indicating that certain predictions most
likely would benefit from a multileveled representation of non-
repairable DNA damage.

Based on model predictions, none of the potential fourth-order
combinations (35) were expected to act synergistically in HCT-116
cells (Supplementary Table S10, Supplementary File S1: Results,
figures, and tables) and due to the experimental complexity of
fourth-order combinations (14 effector components to be
individually tested per fourth-order component), we chose to
limit the experimental follow-up to only one such combination,
OXA+5FU + PI + PD. The selected fourth-order combination
displayed a negligible negative HSA excess value in HCT-116
cells (Figure 6C).

To summarize, our combined computational-experimental
framework predicted and validated three novel third-order drug
combinations demonstrating synergistic effects in HCT-116 cells.

Discussion

Computational models hold great promise as supportive tools
within many fields of medicine. Models presented in the medical
literature span a wide range of application areas, from studies of

disease development (Baratchart et al., 2015) to biomarker discovery
(Ding et al., 2019) and treatment prediction (Eduati et al., 2020;
Folkesson et al., 2020; Kuenzi, 2020; Niederdorfer et al., 2020;
Tsirvouli et al., 2020). Prediction of treatment response is of
special importance within the field of cancer, where the time
spent on ineffective therapy will have severe consequences as it
may allow disease progression beyond treatment. Targeting cancer
using combinations of drugs has proven to be an efficient strategy to
improve therapy response (Yu et al., 2008; Zhang et al., 2009;
Halilovic et al., 2010; Haagensen et al., 2012; Holt et al., 2012;
Flanigan et al., 2013), but unfortunately, this method poses a huge
challenge to laboratory technicians and decision-making doctors in
clinical settings, as the number of available drug targets and
combinations is practically without limits. Here, predictive
computational models offer a useful alternative as they can
efficiently rationalize drug screening (Flobak et al., 2015; Eduati
et al., 2020; Niederdorfer et al., 2020).

Multiple models have successfully been used for studies of the
effect and mechanisms of single and pairwise drug combinations
(Flobak et al., 2015; Niederdorfer et al., 2020), but few and to our
knowledge exclusively statistical models have been optimized for
studies of higher-order drug combinations. In this study, we have
therefore focused on developing a computational mechanism-based
model aimed to predict the effect of higher-order drug combinations
in CRC. The topology of ourmodel encompasses signal transduction
pathways frequently dysregulated in cancer (MAPK/ERK, PI3K/
AKT and TAK1/NF-kB), as well as pathways underlying DNA
compromising and repair effects of two chemotherapeutic agents
(5FU, oxaliplatin). We believe that our model provides an important
improvement over existing models, where the majority have focused
on modelling either traditional signal transduction (Grieco et al.,
2013; Flobak et al., 2015; Niederdorfer et al., 2020) or DNA damage
(Mombach et al., 2014; Mombach et al., 2015; Gupta et al., 2020c;
Gupta et al., 2020b; Gupta et al., 2020a), but rarely both.

Aiming to ultimately use our model to predict effects of higher-
order drug combinations, we used data from a previously published
screen of pairwise combinations (Folkesson et al., 2020) as guidance
when adjusting the model topology. In the present study, the
topology was updated with the intention to correctly classify the
combination effects (synergy/non-synergy) of as many as possible of
the pairwise combinations tested in HCT-116 cells in the screen.
Subsequently, and without further adjustments, the model was used
to predict effects of third- and fourth-order combinations. We found
that, in general, topology adjustments required for prediction of
high-scoring pairwise synergies (Supplementary Table S5,
Supplementary File S1: Results, figures, and tables) could easily
be supported by the literature, whereas adjustments introduced to
predict lower-scoring synergies were considerably more exploratory.
An example of the latter was the inclusion of senescence-related
components, together with BRCA-activating interactions from
MEK, MYC and PI3K, to make the model predictive of the three
pairwise synergies PD+5FU, 5Z+5FU and PI+5FU. In the model,
absence (inactivation) of any of MEK, MYC and PI3K leads to
irreparable DNA damage in the presence of 5FU, thereby suggesting
that these components might represent mechanisms for the
synergistic effects of PD+5FU, 5Z+5FU and PI+5FU.

Our approach of manually reconstructing the model topology to
fit the model behavior to data is to be regarded as effect-based, rather
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than mechanistic, as no or very little molecular data (mutational
status etc.) of unperturbed cells were used. The adjustments
implemented in the refined version of the model were the ones
that we considered had the largest effect on the predictive power of
the model. Here, the inclusion of the node MLH1 as knockout (KO)
was found to play an important role for the predictive power of the
model, whereas the ectopic expression of PIK3CA, another well-
known mutation of HCT-116 cells, was not - hence the decision was
made not to include the latter as a model adjustment. In other words,
no traditional model calibration, like the one described by
Niederdorfer et al. (2020) and Flobak et al. (2015), was
performed. Instead, the refinement strategy presented here is
dependent on the availability of two-way dose-response data.
While this might reduce some of the model’s applicability in
cases where no such data are available, the result is in line with
what has previously been published by others, where mathematical
models’ ability to predict the effect of higher-order drug
combinations has been found to be dependent on calibration
using a minimum of two-way dose-response data (Geva-Zatorsky
et al., 2010; Zimmer et al., 2016; Zimmer et al., 2017; Katzir et al.,
2019).

By adjusting the model to fit data from HCT-116 cells in our
previous screen of pairwise combinations (Folkesson et al., 2020), we
were able to predict three synergistic third-order combinations from
a total of 35 combinations. In this context, it is worth mentioning
that since the screening data that were used as reference for the
model adjustment were generated based on pairwise perturbations
using relatively few drugs (seven), and all of them with unique
primary targets, it might be that the performance of the adjusted
computational model to some extent also reflects the potency of the
exact drugs that were used to generate the reference data. For
example, the in the reference screen the tested MEK1/2 inhibitor
PD0325901 (PD) was found to on its own have a significant impact
on viability. This might explain the absence of an additional
synergistic effect for several of the combinations where this drug
was involved in the drug screen. It could be speculated that the use of
a less potent MEK inhibitor, such as e.g., cobimetinib, would have
resulted in other synergistic drug combinations, which in turn would
have affected the model adjustment strategy and possibly also the
model’s ability to predict the effect of higher-order drug
combinations.

No fourth-order combinations (out of 35 tested) were predicted
to be synergistic. While the identification of synergistic fourth-order
combinations was not possible for combinations where underlying
combinations (pairwise and third-order) did on their own induce
maximum effect (apoptosis), this would still have been technically
possible for fourth-order combinations where none of the
underlying combinations induced an effect larger than G1 arrest.
No such synergistic fourth-order were however predicted. Overall,
the predicted frequency of synergistic higher-order combinations
was unexpectedly low, compared to results from e.g., a study by
Tekin et al. (2018), where the frequency of higher-order synergies
was found to increase with the number of drugs. The small number
of predicted synergies might have several explanations. First of all,
the topology of our model was constructed mainly around the
targets of drugs tested in the previous screen (Folkesson et al.,
2020), meaning that several pathways with known relevance for
CRC (e.g., Wnt and Notch signaling pathways) were not included. It

is possible that if we, already when constructing the first topology,
would have included components more distantly related to drug
targets, we also would have been able to capture effects currently not
manifested in the model. The same goes for model edges. The edges
connecting nodes in the initial unadjusted model were edges which
are all frequently described in the literature in relation to the
modelled pathways. Less well-described edges were not included
at the initial stage but were considered, however not necessarily
included, during model adjustment. Likely is also that the inclusion
of additional output phenotypes, such as growth arrest in G2/M
phase, as well as an allowance for the model to take on multiple
simultaneous phenotypes upon perturbation (e.g., apoptosis and
G1/S transition), would have contributed to larger search space for
any synergies to be found. Future iterations of the model should
therefore focus also on the simulation of G2 arrest. In addition, for
more precise simulation of specific molecular mechanisms/
phenotypes, such as apoptosis, future modelling attempts should
make use of calibration data from screens where these mechanisms
have been evaluated on a molecular level in addition to currently
used readout methods.

Although the limited amount of higher-order response data
from validation screening prevented us from performing a full
evaluation of the model’s predictive performance for HCT-116
cells, the obtained results support the predictive capacity of the
model: all three predicted third-order synergies were confirmed
in vitro in HCT-116 cells. We also found that three of the predicted
non-synergies demonstrated non-synergistic effects in vitro. The
clinical relevance of the model is manifested in the three correctly
predicted third-order synergies, which all encompass at least one
clinically approved drug. In this context, it should however be
mentioned that none of the by in vitro tests observed synergies
(HSA < 0) demonstrated statistically significant synergistic effects
over the whole tested dose range. This highlights that while
computational modelling may increase the efficiency of in vitro
screening, detecting synergies by screening is still not a trivial
undertaking.

While we in this study focused exclusively on the possible
therapeutic benefits provided by the use of higher-order drug
combinations, we also need to be aware of the possibility of different
toxicity profiles for higher-order drug combinations, that could
potentially cause severe side-effects when used clinically. Due to the
choice of only engaging documented primary targets when performing
in silico perturbations, in vitro effects resulting from off-target
engagement were likely not correctly depicted. We expect that
prediction also of side-effects of treatment will call for the use of
computational methods. Altogether, we believe that our model and
our modelling strategy holds great promise as an in silico pre-selection
tool when searching the vast combinatorial space for synergistic higher-
order combinations, as well as for further investigations of molecular
mechanisms underlying higher-order synergy.

Conclusion

Results from our study demonstrate that our model well represents
the response behavior of HCT-116 cells and has the capability to in the
same cell line correctly predict synergistic effects, and possibly also non-
synergistic effects of third-order drug combinations. Altogether, the
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model may serve as a solid base for further studies of mechanistic effects
of third and higher-order drug combinations.
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