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Comparison of oxygen
supplementation in very preterm
infants: Variations of oxygen
saturation features and their
application to hypoxemic episode
based risk stratification
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Background: Oxygen supplementation is commonly used to maintain oxygen
saturation (SpO2) levels in preterm infants within target ranges to reduce
intermittent hypoxemic (IH) events, which are associated with short- and long-term
morbidities. There is not much information available about differences in
oxygenation patterns in infants undergoing such supplementations nor their relation
to observed IH events. This study aimed to describe oxygenation characteristics
during two types of supplementation by studying SpO2 signal features and assess
their performance in hypoxemia risk screening during NICU monitoring.
Subjects and methods: SpO2 data from 25 infants with gestational age <32 weeks and
birthweight <2,000 g who underwent a cross over trial of low-flow nasal cannula (NC)
and digitally-set servo-controlled oxygen environment (OE) supplementations was
considered in this secondary analysis. Features pertaining to signal distribution,
variability and complexity were estimated and analyzed for differences between the
supplementations. Univariate and regularized multivariate logistic regression was
applied to identify relevant features and develop screening models for infants likely
to experience a critically high number of IH per day of observation. Their
performance was assessed using area under receiver operating curves (AUROC),
accuracy, sensitivity, specificity and F1 scores.
Results: While most SpO2 measures remained comparable during both
supplementations, signal irregularity and complexity were elevated while on OE,
pointing to more volatility in oxygen saturation during this supplementation mode. In
addition, SpO2 variability measures exhibited early prognostic value in discriminating
infants at higher risk of critically many IH events. Poincare plot variability at lag 1 had
AUROC of 0.82, 0.86, 0.89 compared to 0.63, 0.75, 0.81 for the IH number, a clinical
parameter at observation times of 30 min, 1 and 2 h, respectively. Multivariate models
with two features exhibited validation AUROC>0.80, F1 score > 0.60 and specificity
>0.85 at observation times≥ 1 h. Finally, we proposed a framework for risk
stratification of infants using a cumulative risk score for continuous monitoring.
Conclusion: Analysis of oxygen saturation signal routinely collected in the NICU, may
have extensive applications in inferring subtle changes to cardiorespiratory dynamics
under various conditions as well as in informing clinical decisions about infant care.
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1. Introduction

Intermittent hypoxemic (IH) events, also known as desaturations,

are a common occurrence in preterm infants and pose a challenge in

maintaining a target oxygen saturation range (1, 2). IH in very preterm

infants is associated with multiple short- and long-term morbidities

such as retinopathy of prematurity and neurodevelopmental

impairment (3). Oxygen supplementation protocols attempt to

mitigate such outcomes by stabilizing oxygenation to a desired level

and reducing hypoxemic and hyperoxemic episodes (4–6). However,

hyperoxemia, resulting from high levels of supplemental oxygen or

prolonged exposure to it complicates the situation by potentially

leading to oxidative stress and injury (7, 8). The accumulative effect

of repeated episodes of hypoxemia/hyperoxemia has been associated

with alterations in vascular tone which may injure the vascular bed

of organs such as the eyes and the brain (9, 10). Arriving at a

suitable range for oxygen saturation in preterm infants which

minimizes deleterious health effects is hence challenging and

appropriate modes and protocols of oxygen supplementation in this

vulnerable population remains an extensively studied topic.

In one such study comparing low-flow nasal cannula (NC) oxygen

supplementation (11) with digitally-set servo-controlled oxygen

environment (OE) among preterm infants, we demonstrated that

use of OE reduced episodes of IH when compared with NC (12).

The most significant result of the study was that during OE, both –

IH (defined as SpO2 < 85% for ≥10 s) and severe hypoxemia (SpO2

< 80% for ≥10 s) – were reduced. In addition, the proportion of

time in hypoxemia (SpO2 < 85%) over 24 h was decreased during

OE compared with NC. It was suggested that these improvements in

hypoxemic parameters during OE may be due to a more stable

hypo-pharyngeal oxygen distribution with this mode of non-invasive

oxygen therapy. While hypoxemic parameters showed a difference

between OE and NC, the number of bradycardia events did not

differ, suggesting that the differences due to treatment modes were

to be found in oxygenation patterns rather than in heart rate data.

Studies on oxygen supplementation methods primarily seek to

establish appropriate oxygenation levels, check for compliance with

target ranges, compare automated vs. manual control of inspired

oxygen, enumerate improvements in occurrence of adverse cardio-

respiratory events among others (5, 13–15). However, there is

insufficient data on the characterization of the oxygenation

patterns exhibited by infants undergoing different modes of

supplementation. The differences in IH based outcomes between

the two supplementations in our study indicated that the dynamic

SpO2 signal may also exhibit temporal differences during these

treatments. Moreover, characterizing the oxygenation behavior may

help to better understand the observed reduction of hypoxemic

burden during OE compared with NC. In this work, our objective

was to describe the dynamic features of oxygen saturation in

infants during OE and NC, in greater detail by examining features

related to the distribution, variability, irregularity and complexity

of these data. Deriving the differences in SpO2 features between

the two modes of supplementation may explain how these are

related to the observed differences in the hypoxemic variables.

Frequency of hypoxemia events has been determined to depend on

various factors including gestational age, low birth weight, lower

baseline SpO2 and exhibits a lot of variability over the first few
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weeks of post-natal life (2). Oxygen supplementations regularize

breathing and reduce instabilities in blood oxygenation levels that

result in lower hypoxemic burden in preterm infants, while also

preventing occurrence of hyperoxemic episodes (6). In the NICU,

caregiving staff are often confronted with multiple alarms across the

unit requiring attention, limiting their time for sanitation procedures

potentially increasing risk of infection in the infants (16). Predicting

hypoxemia or concomitant cardiorespiratory events such as apnea/

bradycardia or risk stratification of infants based on their occurrence

burden can be helpful in designing interventions to prevent these

and provide better care and management in clinical settings (6, 17).

The challenge of predicting adverse events such as apneas which

are precursors of most desaturations in preterm infants using

cardio-respiratory signals and/or demographic and clinical variables

with methods drawn from machine learning and statistical modeling

is well presented in Lim et al. (18). As a preliminary step to

predicting the occurrence of the events themselves, in this work, we

considered the risk stratification of infants who experienced a

critically high number of IH per 24 h of observation in the NICU.

While this can be accomplished by enumerating the IH events

themselves, our intent was to assess the potential of SpO2 signal

characteristics in early risk screening of infants, prior to the

aggregation of such events in each infant. We determined the

shortest observation time from the start of monitoring to arrive at

such a risk assessment and proposed a framework for continuous

risk assessment using developed models that can be easily

implemented in the NICU during supplementations.

In this secondary analysis of oxygen saturation data collected during

a cross over trial of two supplementation methods, we hypothesized that

observed differences in IH events between the supplementations will

also be present in the oxygenation patterns of infants. We surmised

that variability measures of the SpO2 data will differ between the

interventions, as hypoxemia are a subset of severe desaturations from

baseline levels and were found to be fewer in time and duration

during OE. We tested this by estimating a comprehensive set of SpO2

measures describing the signal histogram, variability, irregularity, and

complexity and deriving differences between them during OE and

NC supplementations. In addition, we examined these features for

their discriminative ability in screening infants likely to exhibit a

critically high number of IH during a 24-h monitoring period and

whether such screening performance was enhanced during one type

of supplementation over another. The shortest observation time to

provide a stratification and a framework for continuous risk screening

was also proposed. A pulse oximetry-based model which can risk

stratify infants for hypoxemic burden in real time during NICU

monitoring may have far reaching applications in informing clinical

care and support for this vulnerable population.
2. Methods

2.1. Subjects, data acquisition and
pre-processing

The oxygen saturation data were obtained from preterm infants

<30 weeks’ gestation admitted to the level 4 Regional Neonatal

Intensive Care Unit at the University of Alabama at Birmingham as
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part of a study registered with www.clinicaltrials.gov (NCT02794662).

A detailed description of the study protocol and comprehensive

clinical information are available in Travers et al. (12). Infants

receiving oxygen therapy via nasal cannula with flow rates ≤1.0 liter

per kilogram per minute or oxygen environment were eligible for

inclusion if they met these criteria: off ventilator and/or continuous

positive airway pressure support for more than 48 h prior to study

entry, in an incubator for thermoregulation. Infants were excluded if

they had any of the following: a major malformation, a

neuromuscular condition that affected respiration, a terminal illness,

or a decision to withhold or limit support. Informed consent was

obtained from parents/legal guardians. This study approved by the

Institutional Review Board (IRB-UAB) at the University of Alabama

at Birmingham, had oversight provided by both IRB-UAB and an

observational and safety monitoring board, appointed by the NHLBI.

This single center randomized cross-over pilot study had a 1 : 1

parallel allocation of infants to the order of testing each of the two

interventions (oxygen environment or nasal cannula oxygen) using a

stratified permuted block design. The random allocation sequence was

generated by the Pediatric Research Office at the University of

Alabama at Birmingham and Children’s of Alabama. All infants

enrolled in the study had routine monitoring with oxygen saturation

averaging times of 7 s and uniform target saturation ranges of 91%–

95% for the duration of the study. The effective FiO2 for infants on

NC was calculated using standardized charts based on infant weight,

set FiO2, and cannula flow (19). It was used to swap from nasal

cannula to oxygen environment. The effective FiO2 was maintained

when swapping from oxygen environment to nasal cannula by using

the standardized charts. The set oxygen concentration while on OE

was the effective FiO2. Following a 24-h period on the first

intervention, the infants were crossed-over to a 24-h period using the

alternate mode. Then, the infants were crossed-over to a 24-h period

using the initial intervention before being crossed-over to another 24-h

period on the alternate intervention. The infants had a 15–30-min

period between supplementations during which data were not

recorded. Infants were swapped between modes of oxygen delivery

during this period and it allowed adequate time to ensure oxygen

saturations were stable on the new set FiO2 before restarting the

recording. Infants who no longer required oxygen therapy after

the end of at least the second 24-h recording period completed the

trial without further crossovers.

A sample size of 25 infants was required to determine if oxygen

environment decreased the number of intermittent hypoxemia

episodes by 20% in the 48 h crossover period on either intervention,

with a power of 80%, a two tailed type I error rate of 0.05, assuming

a standard deviation of 0.5 of the mean. Vital signs data were

collected using ixTrend (iexcellence, Wildau, Germany) software to

electronically capture real time numeric data sampled each second.

There were 90 records of data available for analysis, as some subjects

did not complete the third and fourth intervention periods.
2.2. Data analysis – descriptive measures of
SpO2 data

The data were preprocessed prior to analysis. Recording errors

caused missing values in the SpO2 data which were identified from
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the simultaneously recorded time vector. Together, these missing

values formed less than 1% of the total length of the available data

for each subject.

Oxygen saturation data from each day of monitoring were

analyzed by estimating descriptive measures over non-overlapping

intervals of 15 min and 2 h to capture dynamic behavior over short

and long time scales. Data segments with more than 5% missing

values were excluded from the analysis. For each subject, the

estimated measures were averaged over all available windows to

give the estimate over 24 h. In addition, signal measures were

averaged over 4 h to give measures at 6 time points spread over

the 24 h. Signal behavior related to the histogram, variability,

irregularity, and complexity was examined using the sample

moments, extended Poincare plot, sample entropy and generalized

multiscale entropy measures respectively. These indices have been

applied to a variety of physiological and biomedical signals to

assess numerous developmental as well as pathology related

conditions in infants such as neurodevelopment (20), adverse

outcome risk prediction (21, 22), sleep stage classification (23),

heart rate variability (24–26), cardiorespiratory dynamics (27), and

regulation (28, 29). A brief description of the measures is given

next and a schematic of the signal indices is presented in Figure 1.

2.2.1. Signal distribution
Based on common guidelines related to SpO2 processing (30),

data were described using the mean and variance, the first and

second moments of the histogram over 15 min intervals that took

into account the inherent non-stationarity of biomedical signals.

2.2.2. Descriptors of variability
The Poincare plot is a scatter diagram in the Cartesian plane with

the signal at a given instant plotted against its value from the previous

instant (31). The resulting point cloud in phase plane is oriented about

axes rotated 45° to the original axes and is characterized by measures

describing its distribution in the 2D plane. SD1 refers to the standard

deviation about the line of identity and comprises the short-term

variability of the signal. SD2 is a measure of the long-term variability

of the signal and is the standard deviation perpendicular to the line

of identity. An ellipse can be imagined overlying the point cloud with

SD1 and SD2 as the semi-minor and semi-major axes respectively.

Traditionally, Poincare plot analysis has been applied to heart rate

variability data at lag 1, to study the serial correlations within the

series (31, 32). This approach has also been extended to include

higher lags and applied to different physiological time-series to gain

information about temporal correlations and develop screening tools

for patients with conditions such as liver cirrhosis and asthma (33).

In this study, we analyzed the Poincare plots of the SpO2 signal over

windows of 15 min and estimated the variability indices at lags of 1–30.

For segments with missing data values, appropriate filtering was applied

so that the plotted data points correctly maintained the specified lag

between them (34). Besides the variabilities estimated at lag 1, we

quantified the correlations at higher lags by the area under the SD1

and SD2 curves between lags 5 and 30 as auSD1, auSD2 respectively.

2.2.3. Irregularity and complexity indices
The irregularity of the signal was quantified by the sample

entropy measure. It assigns larger values to sequences of greater
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FIGURE 1

Schematic of the descriptive measures of SpO2 data analyzed in this study.
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randomness or disorder and has been applied widely to biomedical

signals because of many attractive properties such as being

unaffected by short, noisy series with missing data points and

having relative consistency over a range of input parameters (35).

It is computed for a series x ¼ x1; x2; . . . ; xNf g as

Sm:En m; r;Nð Þ ¼ �ln
Am rð Þ
Bm rð Þ

� �
(1)

where Am and Bm are average number of template vectors

X ið Þ
m 1 � i � N �mð Þ of length m and mþ 1, such that the

distance between every pair of vectors is within a tolerance r, and

calculated as:

d X ið Þ
m ;X jð Þ

m

h i
¼ jjX ið Þ

m � X jð Þ
m jj1; 1 � j � N �m and j = i (2)

The generalized multiscale entropy (GMSE) method quantifies

the complexity of the dynamics of a set of features of the time

series related to local sample moments (36). This procedure first

rescales the original time series into non-overlapping windows of

length t and creates a new data series by calculating either the

mean (first moment) or the variance (second moment) of the data

points within that window. These data series can be represented as,

y tð Þ
j ¼ 1

t

Xjt
i¼ j�1ð Þtþ1

xj; 1 � j � N
t

(3)
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for coarse graining by the first moment. The subsequent entropy

computation of these series is the original multiscale entropy, MSE

introduced by Costa et al. (37). Generalized multiscale entropy of

volatility fluctuation, MSEv is the sample entropy estimate of these

coarse grained series when the data averaging in Equation (3) is

replaced by the unbiased variance of data. These two measures

differ in the coarse graining procedure and the lowest scale, t used

to create the rescaled series (36).

Template length in Sm.En computation, m was set as 2, and the

tolerance as r = 0.2 × standard deviation of the data window (38, 39).

Sample entropy was estimated over data windows of 15 min

(Sm.En_S) to study signal fluctuations over short time scales. The

multiscale measures were estimated over segment lengths of 2 h,

with scales from 1 to 30 for MSE and 5 to 30 for MSEv as

previously recommended (36). The signal complexity over higher

scales was quantified by estimating area under the generalized MSE

curves between 5 and 30, as auMSE and auMSEv (38). The sample

entropy at scale = 1 in the MSE analysis, Sm.En_L is a measure of

long term signal irregularity and was included as one of the

dynamic measures. Sample entropy and MSE were calculated using

codes available at PhysioNet website (https://physionet.org/) (40).
2.2.4. Statistical analysis
The estimated dynamical measures per 24 h were analyzed with

mixed linear models using both random effects (intercept) and fixed

effects of TREATMENT (OE, NC), DAYS (1, 2, 3, 4 of receiving

treatments) and SEQUENCE (ABAB or BABA, where A is OE, B

is NC) to account for the cross-over nature of the data (41). Prior
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to this, the normality of each measure was checked by the Shapiro-

Wilk procedure and if found to be non-normal, a log

transformation was carried out. The residuals in each case were

confirmed to be normal, following linear modeling. For the

measures which were significantly different between treatments,

their variations over 4-h time intervals were studied by a linear

model as above, which also incorporated TIME (6 levels) as a

repeated measure and an additional TREATMENT × TIME effect

included in the model. The subject effects were specified using

SUBJID, the subjects’ IDs and SUBJID × TREATMENT in the

repeated statement of the mixed linear model. An F-test for the

difference in measures between supplementations sliced by TIME

levels was carried out. All statistical analyses were completed using

SAS 9.4 (Cary, NC, USA).
2.3. Pulse oximetry based hypoxemia risk
screening

Another objective of this study was to assess the ability of the

oxygenation signal indices to identify infants likely to experience a

critically high number of IH episodes per day of monitoring in the

NICU. We evaluated the discriminative performance of signal

features estimated over the first 0.5, 1, 2 and 4 h of recording time

to detect infants who experienced greater than a critical threshold,

Nth of events over the whole day. Such infants were labeled as

“high-risk” or “1” and the rest were marked as “low-risk” or “0”.

IH was defined as an event with SpO2 < 85% and lasting for longer

than 10 s (12). Nth was chosen as the 75th percentile of all such

events aggregated from subjects’ data on all days of monitoring.

Since the threshold is determined by number of events, it is itself a

predictor of risk. Hence, we also included the number of IH

episodes experienced during the observation interval, HyxNum as

a feature in the risk screening models.

SpO2 features were first assessed individually for discriminative

ability between risk groups using logistic models. We also

addressed whether the features exhibited preferential performance

depending on the supplementation mode the subject was

undergoing on a certain day. Leave-one-subject-out strategy

(LOSOCV) was used for cross validation, in which each subject

was treated as the test subject for the univariate logistic model

developed using data from the rest (22). The set of features was

further reduced based on significance of coefficients and then

multivariate models with two features were developed by applying

lasso regularization (42). In this case, validation was done by

holding out all records from 20% of subjects and the whole process

was repeated 100 times with replacement. Accordingly, in each

trial, records from 5 subjects were included in the test group to

ensure there were always 17 to 18 records in the test set. This step

was necessary to maintain class balance in the test set as there

were some subjects who did not complete all 4 days of the

experiment. The data records of subjects remaining after forming

the validation set made up the training set.

In the final step, we demonstrated an approach that can be easily

adopted in a real time screening scenario for infants exhibiting high

levels of IH. A composite risk score was derived, that incorporated

the screening scores of a subject over previous observation points
Frontiers in Pediatrics 05
along with the one developed using data from the current time

interval. The final screening was carried out using this weighted

cumulative probability score. If si denotes the probability score

obtained from a model developed using data from an observation

interval i, the composite score, CSn for the nth interval is

determined as,

CSn ¼
Pn

i¼1 wisiPn
i wi

(4)

where wi is the weight or fraction applied to scores, si.

Performance of the univariate- and regularized logistic models

was evaluated by comparing results from the developed models

and the actual labels using confusion matrices. Several metrics

associated with different aspects of performance were calculated as:

sensitivity (Sn.) - proportion of correctly classified high-risk infants

among all high-risk infants, specificity (Sp.)- proportion of

correctly classified low-risk infants to all low-risk infants, accuracy

(Acc.) -proportion of all correctly classified infants, positive

predictive value (PPV) – proportion of correctly classified high-risk

infants among all those classified as high-risk, F1 score- the

harmonic mean of precision (PPV) and recall (Sn). In addition,

the area under the ROC curve (AUROC), a plot between the

sensitivity and (1-specificity) is used as a measure of discriminating

ability and a bootstrap with 1,000 replications was used to derive

95% confidence intervals for this measure. Figure 2 outlines the

IH risk screening procedure described here. A chi-square test for

equality of proportions was used to check whether signal features

had better classification performance for data from one

supplementation method over the other. The preprocessing, signal

measures estimation, model development and validation were all

carried out using MATLAB R2021b (Natick, Massachusetts, USA).
3. Results

3.1. Study participants

Twenty-seven infants were randomly assigned to the order of

intervention. Two infants were excluded from the analysis. One

infant was excluded due to withdrawn consent and the other infant

was weaned to room air before completing the first 24-h period on

oxygen environment. Twenty-five infants completed the study.

Figure 3 displays a flow diagram of the randomization and

inclusions to data analysis from the study cohort. Eighteen infants

completed 96 h of the study, 4 infants completed 72 h, and 3

infants completed 48 h of the study as they were no longer on

supplemental oxygen at 48 h.

A set of demographic and clinical characteristics of the infants is

given in Table 1. The main outcomes from the primary analysis of

this experiment are also included. While both the IH number and

proportion of time spent in hypoxemia were reduced while on OE,

the proportion of hyperoxic time was comparable between

supplementations. In addition, the number of FiO2 adjustments

were fewer in OE while there was no difference in the effective

FiO2 level during either intervention.
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FIGURE 2

Schematic representation of intermittent hypoxemia (IH) risk screening methodology.

FIGURE 3

Flow diagram showing screening, randomization, and the number of infants included in the final data analysis. OE is oxygen environment; NC is nasal cannula.
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3.2. Analysis of dynamic oxygen saturation
measures

The oxygen saturation data was characterized by data histogram

descriptors, Poincare plot variability indices, sample entropy and

multiscale entropy measures. Detailed description of these

estimations and their behavior in this cohort is provided in the

Supplementary Information Sheet.

SpO2 signal measures averaged over the observation period of

24 h were analyzed with mixed linear modeling to derive

significant differences between supplementation modes. Four

measures – variance, SD2_1, auSD1 and auSD2- were found to be

non-normal and log-transformed before linear modeling. The

boxplots of the measures, shown in Figure 4, represent the

distribution characteristics of each measure estimated for the two

applications of each mode of oxygen treatment. Mean and median

were very close for most measures but among variability measures,

the mean was higher than the median, especially for variance,
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SD2_1 and the auSD2 measures. This indicated positive skewness

of these measures, which was also evident from the long whiskers

and outliers, extending from the top of the box for these measures.

The fixed effects related to SEQUENCE and DAYS were non-

significant for these models suggesting that there were no cross-over

effects from one treatment to the next in the experimental procedure.

The irregularity measures, Sm.En_S [F(1,60.9) = 7.40, p = 0.009],

Sm.En_L [F(1,61.3) = 7.70, p = 0.004], and complexity measures,

auMSE [F(1,61.4) = 4.77, p = 0.03], and auMSEv [F(1,60.8) = 9.79, p =

0.003] were all significantly higher during OE than NC. Sm.En_S was

the only short-term measure that differed between the treatment

methods. The higher entropy values in OE pointed to more

irregularity in the oxygen saturation levels, both in the short- (15 min)

and long- (2 h) time scales when compared with NC. The multiscale

area measures, comprising the entropy estimates over a range of scales

were also found to be higher during OE, when the fluctuations relative

to mean and variance were studied. The difference between treatments

for the auMSEv measure was greater in magnitude, indicating higher
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TABLE 1 Baseline and clinical characteristics of study participants (N =25)
and outcomes by mode of oxygen supplementation.

Demographic and clinical characteristics

Male gender, no. (%) 14(56)

Race

White, no. (%) 18(72)

Black, no. (%) 5(20)

Hispanic, no. (%) 2(8)

Gestational age, weeks and days 27 3/7 (23 3/7 – 30 2/7)

Birth weight, grams 1010 (480 – 2080)

Days after birth at study entry 25 (4 – 86)

Weight at study entry, grams ± SD 1220 (800 – 2380)

Days ventilated before study entry, days (range) 10 (0 – 47)

Days on respiratory support, days (range) 64 (6 – 153)

Outcomes of primary study per 24 hours OE NC

*Number of episodes of Intermittent
Hypoxemia

98 (4 – 335) 136 (16 – 252)

*Proportion of time spent in Hypoxemia,
SpO2 < 85%

0.04 (0 – 0.14) 0.06 (0.01 – 0.13)

Time spent in Hyperoxemia, SpO2 > 95% 0.18 (0.02 – 0.55) 0.21(0.04 – 0.61)

*No. of FiO2 adjustments 5 (0 – 11) 7 (0 – 11)

Effective FiO2 during study 0.24(0.21 – 0.38) 0.25(0.21 – 0.43)

Values given as median (min -max) and number (%) where applicable.

*Denotes significant differences (p<0.05) between modes of supplementations.

FIGURE 4

Boxplots of SpO2 measures averaged over 24 h grouped by
supplementation. OE1,2 and NC1,2 refer to first and second applications
of oxygen environment (OE) and nasal cannula (NC) treatments
respectively. The red line in each box represents the median, and the
black circle, the mean of the measure. The outliers (red markers) are
values more than 1.5 times the interquartile range. The box whiskers
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irregularity in the dynamics of local volatility. None of the variability

measures differed between supplementations, though auSD1 was just

significant with higher value during OE vs. NC (ΔauSD1 = 3, p = 0.05).

The significant entropy measures were averaged over non-

overlapping intervals of 4 h each and fit with a linear model with

repeated TIME (6 intervals) variable, to study their variation over

the 24-h monitoring period. In all cases, only the fixed effect of

TREATMENT was found to be significant, implying that measures

differed between the supplementations. No significant

TREATMENT × TIME interaction or repeated TIME effects were

found. Hence no differences in the time evolution of measures

within each supplementation could be identified. However, the F-

test between measures at each time point showed significant

differences between supplementations as shown in Figure 5. Up to

half the recording time, Sm.En_L and auMSEv were higher during

OE compared with NC. Also, while Sm.En_S and Sm.En_L showed

differences in the latter part of the 24-h recording, auMSEv was

higher during OE even in the first 8 h of supplementation.

extend to the most extreme value not considered an outlier. Significant
differences from mixed linear analysis observed between treatments OE
and NC are marked as *p < 0.05, **p < 0.01.
3.3. Hypoxemia risk screening

Next, we assessed the efficacy of SpO2 features from the first few

hours of recording (Tobs) in identifying infants having greater than the

chosen threshold, Nth, of IH events per day. This threshold was set as

180 events, the 75th percentile of aggregated IH counts. Subject

records were labeled “High-risk” or “1” if they had more hypoxemias
Frontiers in Pediatrics 07
than Nth and were assigned “low-risk” or “0” otherwise. It was possible

that the same subject was assigned to high and low risk groups on

different days of monitoring, based on the number of IH events

experienced on a specific day. Hence the risk label was associated with

the subject record than with the subjects themselves. The number of
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FIGURE 5

Signal irregularity and complexity measures (mean ± SD) estimated at 6 time points of 4 h each over 24 h, for supplementations OE and NC. Error bars with the
same colored marker refer to measures for the first and second applications of the supplementations (OE1,2 and NC1,2). 1st time interval refers to 0–4 h, 2nd
time interval is 4–8 h and so on. The significant differences observed between supplementations at specific time points are marked. *p < 0.05, **p < 0.01.
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subject recordswithhigh riskwere 22 comprising a little less thanquarter

(24.4%) of the total records (N = 90) analyzed here.

3.3.1. Logistic screening models (LSM)
SpO2 measures were assessed using logistic regression

models utilizing the LOSOCV methodology and diagnostic

accuracy metrics were compiled for each (Table 2). Measures

estimated over observation points, Tobs = 0.5, 1, 2 and 4 h from

the start of recording were used to develop LSM. The

complexity measures, Sm.En_L, auMSE and auMSEv were

estimated over 2-h windows and hence their discriminating

ability over shorter observation times were not considered.

Comprehensive results from this analysis including those of

the chi-square test for the equality of proportion of correctly

classified records during each supplementation are available in

Supplementary Table S1.

Variability measures - variance, SD1_1, SD2_1 and areas

under the SD1 and SD2 curves- exhibited high discrimination

between risk groups, with AUROC [mean (SD)] 0.82(0.05), 0.87

(0.03), 0.84(0.05), 0.86(0.02), 0.83(0.04) over the 4 observation
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intervals accordingly. These features had validation AUROC >

0.75 even at Tobs = 0.5 h with the lower bound of the

confidence interval over 0.5, the value for a random classifier.

For Tobs < 2 h, the clinical HyxNum parameter had lower

AUROC than the Poincare plot measures. While specificity

from the variability features based models was quite high

(∼0.95) at the commonly used classification threshold of 0.5,

the sensitivity was found to be quite low with median (min,

max) of 0.38(0.18, 0.47). When a lower threshold was set at

0.4, we obtained higher sensitivity 0.55(0.32, 0.68) for these

models, with minimal decrease in specificity (Table 2 and

Supplementary Table S1). In comparison, HyxNum had

sensitivity of 0.18 at Tobs = 0.5 h and a maximum of 0.59 at

Tobs = 4 h at the lower classification threshold. At Tobs = 4 h,

SD1_1, SD2_1 and auSD1 exhibited sensitivities of 0.73, 0.64,

0.73 respectively (Table 2).

The test of equal proportions of accurate classifications had

insignificant differences for most signal features at observation

intervals less than 2 h. This meant that signal features

performed equivalently on validation data from the two
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TABLE 2 Performance metrics of logistic screening models (LSM) for hypoxemia risk using SpO2 features computed over specific observation intervals, Tobs.
Features with significant models at all Tobs are marked in bold.

SpO2 Features Obs. Time
in Hours

LOSOCV Metrics SpO2 Features Obs. Time
in Hours

LOSOCV Metrics

Acc. Sn. Sp. AUROC (95% CI) Acc. Sn. Sp. AUROC (95% CI)

Mean 0.5 0.73 0.00 0.97 0.44 (0.28,0.58) Poincare plot SD1
at lag=1, SD1_1

0.5 0.84 0.59 0.93 0.82 (0.67,0.91)

1 0.73 0.05 0.96 0.52 (0.39,0.67) 1 0.84 0.59 0.93 0.86 (0.73,0.94)

2 0.73 0.00 0.97 0.49 (0.35,0.63) 2 0.86 0.64 0.93 0.88 (0.77,0.95)

4 0.73 0.09 0.94 0.55 (0.38,0.68) 4 0.87 0.73 0.91 0.90 (0.78,0.96)

Variance 0.5 0.84 0.50 0.96 0.77 (0.60,0.90) Poincare plot SD2
at lag=1, SD2_1

0.5 0.86 0.55 0.96 0.78 (0.61,0.89)

1 0.86 0.50 0.97 0.80 (0.63,0.91) 1 0.84 0.55 0.94 0.83 (0.67,0.92)

2 0.80 0.32 0.96 0.81 (0.66,0.90) 2 0.81 0.45 0.93 0.84 (0.73,0.92)

4 0.84 0.50 0.96 0.89 (0.77,0.95) 4 0.88 0.64 0.96 0.90 (0.80,0.96)

Short-term Sample
Entropy, Sm.En_S

0.5 0.73 0.23 0.90 0.66 (0.51,0.78) Area under Poincare
plot SD1 curve, auSD1

0.5 0.83 0.59 0.91 0.83 (0.68,0.92)

1 0.73 0.36 0.85 0.70 (0.56,0.81) 1 0.89 0.68 0.96 0.86 (0.72,0.95)

2 0.73 0.36 0.85 0.67 (0.52,0.79) 2 0.84 0.59 0.93 0.86 (0.74,0.94)

4 0.76 0.36 0.88 0.70 (0.56,0.81) 4 0.89 0.73 0.94 0.89(0.74,0.97)

Long-term Sample
Entropy, Sm.En_L

2 0.70 0.05 0.91 0.57 (0.43,0.70) Area under Poincare
plot SD2 curve, auSD2

0.5 0.86 0.55 0.96 0.77 (0.60,0.89)

4 0.69 0.05 0.90 0.60 (0.45,0.73) 1 0.84 0.55 0.94 0.82 (0.68,0.92)

Area under multiscale
entropy, auMSE

2 0.71 0.05 0.93 0.58 (0.45,0.70) 2 0.81 0.45 0.93 0.83 (0.71,0.91)

4 0.69 0.09 0.88 0.60 (0.44,0.72) 4 0.84 0.50 0.96 0.89 (0.79,0.95)

Area under variance
based multiscale
entropy, auMSEv

2 0.76 0.00 1.00 0.03 (0.01,0.08) Number of IH in
Tobs, HyxNum

0.5 0.72 0.18 0.90 0.63 (0.47,0.77)

1 0.73 0.27 0.88 0.75 (0.60,0.85)

4 0.76 0.00 1.00 0.06 (0.03,0.13) 2 0.76 0.45 0.85 0.81 (0.72,0.89)

4 0.83 0.59 0.91 0.89 (0.80,0.95)

Acc. –Accuracy, Sn. – Sensitivity, Sp. – Specificity, AUROC – Area under ROC
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supplementations (Supplementary Table S1). At Tobs = 2 h, auSD1

was the sole predictor with significantly higher proportion during

OE. However, this behavior was not consistently exhibited. For the

4 h observation interval, auSD1 had equal accuracy in classifying

segments from OE and NC, whereas SD1_1 and HyxNum

showed increased accuracy during OE. Most signal features did

not show preferred predictive ability during a treatment mode,

which led us to disregard the mode of supplementation in

further modeling analysis.

3.3.2. Regularized logistic screening models (RLSM)
In the next step, multiple logistic regression models with two

predictors were developed to improve the screening performance of

univariate models by including more predictors, while

simultaneously ensuring that data were not overfit, by regularizing

using LASSO. At each Tobs, only features whose LSM provided

significant AUROC values (lower bound of the 95% CI > 0.5) were

included to develop RLSM. Mean, Sm.En_L, auMSE, auMSEv

measures were hence excluded as potential predictors. RLSM were

built on training data consisting of records from 80% of subjects

while the remaining were reserved as test cases. Proper

stratification of high-/low- risk cases in the two data sets was

ensured (23.5% in test set and 24.7% in training) and the
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validation process was repeated 100 times for each Tobs. In all

trials, although RLSM were significantly better than a constant

model, they were considered further only if at least one of the

predictors reached significance. More information regarding RLSM

such as the features selected, their occurrence statistics and

performance metrics are provided in Supplementary Table S2.

The number of significant RLSM models increased with

observation time. At Tobs < 2 h, the most frequently occurring

models had short-term sample entropy and Poincare plot SD1 as

features with F1 scores reaching a maximum of 0.85 and AUROC

of over 95%. At Tobs = 2 and 4 h, SD1_1 paired with HyxNum to

provide comparable performance. As Tobs increased from 30 min,

trials with variance as one of the model features, altered to include

either Sm.En_S or HyxNum as the variable that paired with SD1_1

to give significant models. The specificity and accuracy had median

values over 85% in all these cases. Models with two variability

based features selected together formed the majority of trials, but

failed the constraint of significance set for consideration. The rest

were significant models having one or three predictors, which were

also excluded for reasons of having been already included under

LSM (one predictor models) or to avoid overfitting accordingly.

Finally, to demonstrate the use of such screening models in a real

time scenario, we considered the RLSM at each Tobs with the highest
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F1 score and the highest AUROC < 1 (to avoid overfitting), to classify

subjects as high-/low-risk on each day of monitoring. In addition, the

final classification was based on the cumulative probability score as in

equation (4), by weighing risk scores at each previous time point by

0.6 and the current one by 0.4 to arrive at the composite score. We

found that this approach gave incremental accuracies from 87% to

91% and F1 values from 70% to 82% as Tobs increased from 0.5 to

4 h respectively (Table 3). These F1 scores meant that the

sensitivity and PPV of the screening at the shortest half hour

window was at least 70% or higher. Performance metrics observed

by applying risk scores computed using different combinations of

weights are in Supplementary Table S3. For most of these cases,

as expected, the classification accuracy and F1 scores improved

steadily over longer observation periods.
4. Discussion

This secondary analysis of oxygen saturation data collected from

extremely preterm infants exposed to supplemental oxygen revealed

subtle temporal variations in signal measures between two

experimental conditions. In addition, we demonstrated the utility

of signal features in screening for infants at high risk of having a

critically large number of intermittent hypoxemic events per 24 h,

as early as the first half hour of monitoring. The predictive value

of signal features was not reliant on the supplementation mode,

indicating their applicability to hypoxemia monitoring scenarios

irrespective of the treatment being administered. Oxygen saturation

patterns contain important information regarding differential

cardio-respiratory dynamics under various modes of oxygen

supplementation and can be utilized for prediction and modeling

of intermittent hypoxemia in preterm infants.

Comparing SpO2 indices describing different aspects of signal

behavior, we found that the signal irregularity and complexity

measures were consistently higher during OE supplementation. Besides

the sample entropy measures at short- and long-time scales (p < 0.01

for both Sm.En_S and Sm.En_L), the multiscale entropy related to the

signal mean (p = 0.03) and variance (p < 0.01) computed over higher

scales (from 5 to 30) were also determined to be elevated during OE

treatment mode when averaged over the whole recording time. It was
TABLE 3 Performance metrics of high-IH incidence detection with the cumulat
observation interval, Tobs

Tobs (Hours) RLSM features Validation

Acc. Sn.

0.5 Sm.En_S, SD1_1 0.94 0.75

1 Sm.En_S, SD1_1 0.94 1

2 auSD1, HyxNum 0.94 0.75

4 SD1_1, HyxNum 0.94 0.75

Sm.En_S - Short-term Sample Entropy, SD1_1 – Poincare plot SD1 at lag=1, auSD1 – area

Sensitivity, Sp. – Specificity, F1 – F1 score, AUROC – Area under ROC.
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noted from time varying analysis of measures, that the generalized

entropy related to local volatility (MSEv) remained higher in OE than

NC for more than half the recorded time per supplementation. These

findings support our hypothesis that oxygenation patterns of infants

show distinctive differences when there is varying hypoxemic burden

during supplementations. These differences were detected in the

irregularity and complexity parameters of the oxygen saturation levels

and not the variability parameters as was expected. Signal variability

measures, especially those derived from the extended Poincare plot

exhibited discriminative ability in identifying infants likely to

experience many IH events over the course of a day of monitoring in

the NICU. This screening had accuracy >80% within the first half

hour of the monitoring.

Our previous study on oxygen supplementation protocols in

infants established fewer IH and lesser time spent in them during

OE supplementation mode (12). In the present work, we probed

how these macroscopic changes were reflected in oxygen

saturation levels at various time scales. Descriptors of SpO2 data

histogram and Poincare plot variabilities remained comparable

pointing to dynamical similarities during these treatment modes.

Marked differences occurred only relative to signal entropy or

randomness, indicating more irregular oxygen saturation during

OE. The sample entropy statistic, based on information theory,

measures irregularity of signals by quantifying the repeatability of

a template in the data series and is especially suited for

comparing short, noisy data usually recorded in clinical and

biomedical experiments. A low sample entropy indicates more

regularity in data with persistent patterns while a higher estimate

suggests more randomness (43).

Physiological signals exhibit complex temporal fluctuations not

only in the signal itself, but in its local moments which can be

captured by the multiscale approach which encompasses scales in

addition to the shortest one. We adopted the generalized multiscale

approach and studied the signal complexity related to moments of

data at longer time scales. This method has been applied to

compare normal, healthy conditions as opposed to disease states in

adults by analyzing different physiological time series in various

fields of medicine and pathology (44). This study is a novel

application of the generalized multiscale approach to seek

understated changes in oxygen saturation signal variations in
ive risk score computed using chosen high performing RLSM models at each

metrics for chosen model Classification metrics

based on cumulative

risk score

Sp. F1 AUROC Acc. F1

1 0.86 0.96 0.87 0.7

0.92 0.89 1 0.88 0.73

1 0.86 0.88 0.89 0.75

1 0.86 0.96 0.91 0.82

under Poincare plot SD1 curve, HyxNum- number of IH in Tobs, Acc. –Accuracy, Sn. –
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infants. A key finding was that the oxygen saturation levels during

OE had higher complexity than during NC, relative to both sample

moments, and higher irregularity in signal volatility was observed

for at least two consecutive 4 h periods over the 24 h monitoring

period. Greater signal randomness and volatility may thus be

persistent features of oxygenation during OE, though this finding is

currently based on the analysis of simple differences and needs to

be further validated. Currently, the main focus of studies on

oxygen treatment protocols are optimization of time spent in the

target oxygenation range and efficacy of treatment on respiratory

distress outcomes (45, 46). Findings such as ours may lead to

better understanding of signal patterns exhibited during treatments

currently administered in infants with respiratory distress,

providing clues to their relative merits and efficacies.

The physiological underpinnings of these findings may be on how

oxygen saturation is affected by respiratory insufficiency in preterm

infants undergoing supplementation and on the immaturity of their

cardiorespiratory network (2, 47). Hypoxic events typically follow

apneas and are likely enhanced by depletion of pulmonary oxygen

stores at low lung volume, decreased blood oxygen carrying capacity,

and increased peripheral oxygen consumption (1). A recent study in

adults established a stronger causal relationship between SpO2

fluctuations and respiratory control during normobaric hypoxia

compared to hypoxia, with increasing SpO2 sample entropy as the

fraction of inspired oxygen, FiO2 was reduced (48). The higher

irregularity in oxygen saturation levels observed in the present study

may be a consequence of the response of an immature

cardiorespiratory network to the changes in FiO2 during OE

supplementation. This can be a direction of future investigation

where the behavior of SpO2 entropy measures immediately following

FiO2 adjustments is considered.

In spontaneously breathing infants supported with nasal

continuous positive airway pressure, hyperoxemias following FiO2

changes (usually increases) were found to be longer in duration

than the IH event duration (49). These overshoot hyperoxemias

shortened the length of desaturations thereby reducing the overall

hypoxemic duration. However, in our case, the proportion of

hyperoxemic time was comparable between supplementations.

Also, there were fewer FiO2 adjustments while on OE, and there

was no difference in the effective FiO2 concentration between

interventions (12). Hence, we cannot currently associate the

observed reduction in hypoxemic time while on OE to this effect.

On the other hand, the greater irregularity and volatility in oxygen

saturation may be acting to prevent sustained desaturations,

leading to the reduction in number of events and time spent in IH

during OE supplementation. Higher volatility of oxygenation

signifies rapidly changing SpO2 levels in OE leading to fewer

repetitions and/or absence of cyclic changes or patterns. This may

prevent the system from remaining in hypoxemic or desaturation

states, thus reducing the incidence and duration of clinically

relevant IH. An infant’s breathing in an oxygen environment,

although it more closely mimics spontaneous breathing than with

the nasal cannula, may be associated with increased work of

breathing due to reduced positive end-expiratory pressure, causing

instabilities to the breathing rate, leading to greater fluctuations in

oxygen saturation. Another possibility is that an infant’s breathing

with the nasal cannula apparatus may experience some element of
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nasal obstruction, which may mildly increase carbon dioxide levels,

thus increasing respiratory drive and causing lower oxygen

saturation signal entropy and complexity. However, carbon dioxide

levels were not recorded in this study. While the specific

mechanism needs to be investigated further, this finding suggests

that various modes of oxygen administration may modulate the

respiratory effort and thereby the underlying cardio-respiratory

dynamics during supplementation in preterm infants.

Occurrence prediction of adverse cardiorespiratory events,

especially bradycardia and apnea, in infants by varied methodologies

such as point process modeling (50), Gaussian mixture models (17)

and machine learning (18) is capturing a lot of research interest.

Advanced machine and deep learning techniques for hypoxemia

prediction among others are also being actively developed (51, 52).

It is well appreciated that preterm infants exhibit a lot of variability

in their hypoxemic burden in terms of the number of events

experienced and the total time spent in them (2, 53). A thorough

understanding of the relationship between SpO2 signal features and

hypoxemic outcomes in infants is a necessary first step before

resorting to computationally intensive modeling paradigms. With

model brevity in mind, in this study, we derived an SpO2 measures-

based classifier to screen infants with respect to the number of IH

they may experience on any given day of NICU monitoring. We

focused on three aspects in this analysis: (1) identifying descriptive

features capable of screening infants at risk of having IH greater

than a critical threshold, (2) testing whether the predictive

performance of these features favored one mode of supplementation

over the other, and (3) determining the shortest observation period

at the start of monitoring to provide reliable predictions.

Univariate analysis showed that variability measures from

extended Poincare plot analysis, SD1_1 and auSD1, distinguished

subjects at high risk, as early as the first half hour of monitoring.

Both these measures, which quantify correlations in SpO2

difference series, outperformed the clinical parameter HyxNum,

the IH count for each subject in an observation interval (Tobs).

For Tobs < 4 h, the HyxNum had lower discriminative ability

characterized by lower AUROC values when compared with

SD1_1 and auSD1. These and other variability measures had

higher diagnostic sensitivity and specificity as well, compared

with HyxNum, even at observation intervals of 4 h. The

variability indices were also chosen in a majority of trials in the

RLSM analyses and provided high F1 and specificity among other

metrics on validation data. Hence the ability of signal variability

measures to identify significant hypoxemia risk even with short

observation times is superior to that of conventionally

enumerated measures such as the number of observed

hypoxemias in the same observation period (HyxNum). This

finding suggests that signatures of future desaturations that

develop into hypoxemias are detectable in the signal dynamics

prior to the aggregation of the events themselves.

The comparison between proportions of correct classifications

during OE and NC did not exhibit any preference for either,

leading us to cautiously conclude that such screening models may

be applied for risk stratification irrespective of the treatments being

followed. A framework for real-time screening employing a

composite risk score demonstrated progressively increasing

accuracy and F1 scores in identifying high-risk subjects as the
frontiersin.org

https://doi.org/10.3389/fped.2023.1016197
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Ramanand et al. 10.3389/fped.2023.1016197
observation period widened. A risk screening tool as proposed here

can be easily incorporated into monitoring devices in the NICU

and early warnings of IH risk may be used to initiate interventions

to prevent or mitigate their occurrence over subsequent hours of

observation. However this methodology is currently only a proof of

concept and needs to be validated by adopting interventions in real

time based on risk stratification predictions and analyzing the

cardio respiratory data following it, as has been done previously in

interventional studies to improve breathing instability (54). In this

study, we did not investigate the underlying causes or nature of IH

events, which are known to be numerous and varied ranging from

immature respiratory control (2) to more acute reasons such as

abdominal contractions in ventilated preterm infants (55). SpO2

variability indices, which show promise in IH risk detection can be

assessed for their predictive capability on hypoxemic outcomes in

specific scenarios or arising from a subset of causes.

Our subject sample was limited in size but met the statistical power

requirements for the primary objectives described in (12). In addition,

it had the advantage of having subjects assessed in a randomized cross-

over experimental design which allowed each to act as their own

control. The finding of elevated complexity in oxygen saturation

patterns during OE poses several interesting research questions. How

does greater signal irregularity or complexity contribute to the observed

reduction in hypoxemic outcome measures observed in OE, while no

differences in signal variability are apparent? Yet another is whether

adjustments made to FiO2 during the experiment are followed by

hyperoxemic overshoots that lead to systematic changes in the signal

behavior and if so, are these changes consistent across treatment

protocols. More research along these lines, will help elucidate the

response mechanisms involved in stabilizing infant oxygenation levels

by supplementation. In developing the risk screening protocol, we

pooled subject data regardless of the different supplementation

methods they received, under the supposition that irrespective of

treatment differences, a risk stratification of infants for extreme

hypoxemic outcomes will inform care in the NICU. This was based on

our finding of no difference in the proportions of correct classifications

from either mode. While we determined SpO2 variability measures as

having prognostic value in predicting hypoxemic events, these results

will have to be validated on a larger subject sample. IH risk detection

using pulse oximetric measures may also find general application in

infants undergoing cardio-respiratory monitoring, albeit with rigorous

validation in diverse infant groups and scenarios. Tackling these issues

and the prediction of the timing of hypoxemia occurrence will be the

future directions of this work.
5. Conclusions

Analysis of the dynamic measures of oxygen saturation patterns

revealed differences in oxygenation patterns between OE and NC

oxygen supplementations. SpO2 signals had higher irregularity and

randomness in volatility while on OE. Greater fluctuations in the

blood oxygen levels occurring during OE may be contributing to

shorter desaturations, and in turn to fewer clinically relevant

hypoxemic events. Contrary to expectation, SpO2 variability measures

did not exhibit differences between the supplementation modes

considered here. On the other hand, the variability measures
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outperformed all other features in identifying subjects with high levels

of intermittent hypoxemia, irrespective of the type of supplementation

they were receiving. A model based on these features validated on a

bigger cohort will be simple yet effective in early risk stratification of

infants susceptible to adverse hypoxemic outcomes. Such models can

potentially be useful in clinical settings to modulate care to susceptible

infants and avert undesirable cardiorespiratory events.
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