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Snow pear is very popular in southwest China thanks to its fruit texture and

potential medicinal value. Lignin content (LC) plays a direct and negative role

(higher concentration and larger size of stone cells lead to thicker pulp and

deterioration of the taste) in determining the fruit texture of snow pears as well

as consumer purchasing decisions of fresh pears. In this study, we assessed the

robustness of a calibration model for predicting LC in different batches of snow

pears using a portable near-infrared (NIR) spectrometer, with the range of 1033–

2300 nm. The average NIR spectra at nine different measurement positions of

snow pear samples purchased at four different periods (batch A, B, C and D) were

collected. We developed a standard normal variate transformation (SNV)-genetic

algorithm (GA) -the partial least square regression (PLSR) model (master model A) -

to predict LC in batch A of snow pear samples based on 80 selected effective

wavelengths, with a higher correlation coefficient of prediction set (Rp) of 0.854

and a lower root mean square error of prediction set (RMSEP) of 0.624, which we

used as the prediction model to detect LC in three other batches of snow pear

samples. The performance of detecting the LC of batch B, C, and D samples by the

master model A directly was poor, with lower Rp and higher RMSEP. The

independent semi-supervision free parameter model enhancement (SS-FPME)

method and the sequential SS-FPME method were used and compared to

update master model A to predict the LC of snow pears. For the batch B

samples, the predictive ability of the updated model (Ind-model AB) was

improved, with an Rp of 0.837 and an RMSEP of 0.614. For the batch C samples,

the performance of the Seq-model ABC was improved greatly, with an Rp of 0.952

and an RMSEP of 0.383. For the batch D samples, the performance of the Seq-

model ABCD was also improved, with an Rp of 0.831 and an RMSEP of 0.309.

Therefore, the updated model based on supervision and learning of new batch

samples by the sequential SS-FPME method could improve the robustness and

migration ability of the model used to detect the LC of snow pears and provide

technical support for the development and practical application of portable

detection device.

KEYWORDS
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1 Introduction

Snow pear enjoys widespread popularity in southwest China

(Wang et al., 2020; Wu et al., 2021). It has excellent fruit texture

and boasts some medicinal value (Zou, 2016). Lignin content (LC),

however, has a direct and negative effect on the fruit texture of snow

pears and on consumers’ decision to purchase fresh pear fruit (Tao

et al., 2009; Cai et al., 2010; Yan et al., 2014; Xue et al., 2019; Sheng

et al., 2020; Wu et al., 2021). More specifically, higher concentration

and larger size of stone cells lead to thicker pulp and deterioration of

the taste. In recent decades, the use of near-infrared (NIR)

spectroscopy has been an effective tool for the nondestructive and

rapid detection of the internal quality of fruits and vegetables (Xiaobo

et al., 2010). In particular, NIR spectroscopy, combined with the

chemometric methods, has been successfully used to predict the

soluble solids content (SSC), firmness, and moisture of fruits (e.g.,

apples, pears, tomatoes, peaches) by notable researchers (Zhang et al.,

2008; Rahman et al., 2017; Tian et al., 2018; Du et al., 2019). Although

the author and other researchers have studied the calibration model to

predict the LC of snow pears based on NIR spectroscopy (Sheng et al.,

2020; Wu et al., 2021), the robustness and accuracy of this model need

further study and more research to assess for variability of samples

and external variability of the measurement systems.

To obtain more stable and robust prediction results, researchers

typically have used partial least square regression (PLSR) to establish

calibration models based on the effective wavelengths from the full NIR

spectra for predicting the internal quality of fruits and vegetables. The

leave-one-out cross-validation method has been used to avoid

overfitting or underfitting by using too many or too few PLS

components in the PLSR algorithm, respectively (Douglas et al.,

2018). The optimal number of latent variables (LVs) was determined

by a full cross-validation of the calibration samples and an optimal

number was determined by the minimum value of the root mean

square error of cross-validation (RMSECV). The full-spectra PLSR

model, however, was time-consuming, redundant, and collinear

(Rahman et al., 2018). We used the variables selection method to

extract the effective wavelengths and were able to reduce the complexity

and increase the predictive ability of the PLSR model to detect the

internal quality of fruits and vegetable (Xiaobo et al., 2010; Balabin and

Smirnov, 2011; Xu et al., 2012; Jie et al., 2013; Deng et al., 2014; Li et al.,

2014). In recent years, many effective wavelengths selection methods

have been studied to predict internal quality based on NIR

spectroscopy. Tao used the successive projection algorithm (SPA) to

selected five optimal wavelengths for exploring an accurate and non-

destructive method to discriminate the sex of silkworm pupae using the

visible and near-infrared hyperspectral imaging technique (Tao et al.,

2019). Li used the synergy interval partial least squares (SiPLS)

combining with nonlinear SVM to developed a rapid quantitative

analysis model for determining the glycated albumin content based

on the attenuated total reflection–Fourier transform infrared (ATR-

FTIR) spectroscopy (Li et al., 2018). Du used the genetic algorithm

(GA) to optimize non-destructive prediction on property of

mechanically injured peaches during postharvest storage by portable

visible/shortwave near-infrared spectroscopy (Du et al., 2019). Deng

developed the bootstrapping soft shrinkage (BOSS) method for variable

selection in chemical modeling, and the method was used to select key

variables for measurementmoisture, oil, protein, and starch of corn and
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soy (Deng et al., 2016). Yan proposed a new computational method

stabilized bootstrapping soft shrinkage approach (SBOSS) for variable

selection based on the BOSS method for spectral variable selection in

the issue of over-fitting, model accuracy and variable selection

credibility (Yan et al., 2019). The competitive adaptive reweighted

sampling (CARS) is an effective method for selecting effective

wavelengths for multivariate calibration (Li et al., 2009; Jiang et al.,

2015). Wang used the CARS to identify the characteristic wavelengths

and simplify the PLS models for detection of juiciness of pear via VIS/

NIR spectroscopy (Wang et al., 2020). Yang used the CARS to select

feature variables for identification of unhealthy panax notoginseng

from different geographical origins based on ATR-FTIR spectroscopy

(Yang et al., 2019). Liang used the CARS to extract effective wavelengths

for prediction of holocellulose and lignin content of pulp wood

feedstock using NIR spectroscopy (Liang et al., 2020). The CARS has

been also used to select variables for predicting internal quality of

orange, dovyalis fruit, and pears by Song (Song et al., 2020), Mateus (de

Assis et al., 2018), and Wu (Wu et al., 2021), respectively. In this work,

these variables selection methods were used to extract effective

wavelengths from the full NIR spectrum.

The prediction results of one master calibration model to measure the

LC of different batches of snow pear samples has always had large errors

based on NIR spectroscopy (Nicolaï et al., 2008). The “different batches”

usually referred to the different measurement times, different seasons,

different geographical locations, and different fruit maturity of snow pear

samples (Anderson et al., 2021). Moreover, changes in the ambient

temperature of NIR spectrum acquisition and the instrument

components (such as the light source) could affect the accuracy and

robustness of the calibration model. Therefore, the prediction ability of

the model has to be checked routinely, because the NIR spectrum data was

affected by the possible failures of the mechanical modules of the NIR

spectrometer system (e.h., sensors, light sources, reference modules) in the

process of collecting NIR spectra (Mercader and Puigdomenech, 2014). In

addition, the error of calibrationmodel measuring the corresponding LC of

a new batch of snow pear samples has been significant for two reasons:

(1) the NIR spectrum of this new batch missed the feature information

corresponding to the measurement LC (Anderson et al., 2020); and (2) the

external effect of the new batch of snow pear samples produced interference

with NIR spectral information (Zeaiter et al., 2006). These variabilities in

spectral information were related to the different varieties of samples,

harvest season, andmeasured temperature. Therefore, to accurately predict

the LC of a new batch of snow pears, in this work, we updated the

calibration model using a semi supervision free parameter model

enhancement (SS-FPME). The objective of this work was to analyze the

accuracy and robustness of the calibration model to predict the LC of

different batches of snow pears based on NIR spectroscopy. We proposed

and applied the SS-FPME to update the PLSR model. The research

processes of this work are as follows: (1) The NIR diffuse reflectance

spectrum of four batches snow pear samples were obtained by an optic-

spectrometer system. (2)We built a calibrationmodel for themeasurement

of the LC of snow pears based on the most effective wavelengths from the

full spectrum of the optimal measurement positions of samples selected by

the SPA, SiPLS, GA, BOSS and CARSmethods. (3) The SS-FPMEmethod

was used to update the calibration model to predict the LC of batch B, C,

and D, and we compared and analyzed two ways to update the model.

(4) We evaluated the performance of the PLS model based on the

independent verification data sets.
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2 Materials and methods

2.1 Samples preparation

A total of 512 snow pears of four different batches of samples were

collected from the local fruit market at different time periods in

Shuangfu, Chongqing. The surface of these samples did not bear any

damage. The average fruit weight was 300–400 g. The shape was

round or flat, with the top and base uneven, the longitudinal diameter

around 8–9 cm, the transverse diameter around 9–9.5 cm, and the

fruit stone diameter of 2–3.5 cm. After each batch of samples was

collected and brought back to the laboratory, the snow pears were

washed, numbered, and stored in a refrigerator to ensure the accuracy

of the experiment. It took eight months to collect the NIR diffuse

reflectance spectra of the surface of the samples using a microfiber

spectrometer and to measure the standard reference values of the LC

according to the Klason method (Bunzel et al., 2011; Cybulska et al.,

2012; Assis et al., 2017). Among these samples, the NIR spectra and

LC reference value of the 160 samples in batch A were completed in

December 2020, and the 120 samples in batch B, 104 samples in batch

C, and 128 samples in batch D were completed in March 2021, May

2021, and July 2021, respectively. Different batches of samples in this

research referred to the different collection time points of NIR diffuse

reflection spectrum of the samples. As shown in Table 1, the batch A

samples were divided into a calibration set (60%) and a validation set

(40%) using the Kennard–Stone (KS) algorithm (Tao et al., 2019), and

the batch B, C, and D samples were divided into a model update

calibration set (40%) and a validation set (60%).
2.2 Spectral measurement

Based on the NIR diffuse reflectance spectrum acquisition system,

the NIR spectra of nine measurement positions (three stem-calyx

longitude, with an interval of 120°) intersected three latitudes (stem,

equator, and calyx) from nine spectral measurement positions (as
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shown in Figure 1) on the surface of four batches of snow pears that

were collected using a microfiber spectrometer (NIRQuest256-2.5,

Ocean Insight, Orlando, FL, USA). The microfiber optic spectrometer

had wavelengths ranging from 900 to 2500 nm, with a resolution of

9.5 nm and 512 data points. We set the integration time of the

microfiber optic spectrometer to 70 ms, the scanning number to 5,

and the number of smoothing points to 10. We obtained the average

NIR spectrum of one sample after three consecutive acquisitions at

each measurement point. The noise spectral data at both ends of the

spectral curve were removed, and the effective wavelengths ranged

from 1033 to 2300 nm, with 387 spectral points.
2.3 Reference LC measurement

To make the spectrum and LC correspond more accurately, the

fresh snow pear flesh (between 2 cm outside the core and 2 mm under

the pericarp of an intact pear) was made into a dry powder

immediately after the NIR spectrum acquisition. We used the

traditional Klason method to measure the LC reference value of

snow pears, and the statistical results are shown in Table 1. The snow

pear dry powder (500 mg) and 72% H2SO4 (30 mL) formed the mixed

solution; the solution was stirred evenly, sampled in boiling water

bath for 2 h, and diluted with deionized water. Then, the solution was

poured into a sand core funnel (diameter of 2.5 cm, particle retention

of 1.6 mm), filtrated, washed, dried, and weighed to obtained the LC

mass ratio (mg/g) of the sample. We conducted three chemical

repeated measurements and obtained the value with a relative error

within 5% was obtained.

The LC values of snow pear samples of batches A, B, C, and D

ranged from 75.05 to 81.04 mg/g, 74.78 to 80.80 mg/g, 75.48 to

81.42 mg/g, and 76.43 to 79.38 mg/g, respectively. Table 1 also shows

the lignin distribution of the calibration set and the prediction set, and

the LC range in the calibration set was bigger than that in the prediction

set for the batch A samples. This result was helpful to build a better

calibration model for detecting the LC of snow pears in batch A.
TABLE 1 Statistical data of lignin content (mg/g) of snow pear samples of four batches.

Batch Measurement time Data set Number Range (mg/g) Mean ± SD (mg/g) SEL

A 2020.12

All samples 160 75.05–81.04 77.87 ± 1.22 0.096

Calibration set 96 75.05–81.02 77.59 ± 1.20 0.109

Prediction set 64 75.85–81.04 78.27 ± 1.14 0.143

B 2021.03

All samples 120 74.78–80.80 77.75 ± 1.18 0.108

Calibration set 48 74.78–79.99 77.14 ± 1.09 0.157

Prediction set 72 76.27–80.80 78.16 ± 1.07 0.126

C 2021.05

All samples 104 75.48–81.42 78.03 ± 1.19 0.116

Calibration set 42 75.68–80.25 77.51 ± 1.10 0.170

Prediction set 62 75.48–81.42 78.39 ± 1.12 0.142

D 2021.07

All samples 128 76.43–79.38 77.93 ± 0.55 0.048

Calibration set 51 76.76–78.67 77.73 ± 0.49 0.068

Prediction set 77 76.43–79.38 78.06 ± 0.54 0.062
SD, standard derivation; SEL, standard error of laboratory.
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2.4 Theory of SS-FPME

For the multivariate calibration model, it was assumed that a data

set of NIR spectrum was X(mxn), the number of samples was m, the

number of variSSables was n, and the data set of the LC reference

value was Y(mx1). The linear relationship between X and y can be

established by the PLSR model, as shown in formula (1). The

predicted value ŷ could be calculated, as follows:

y = ½1X�
b0

b

" #
+ e = ŷ +e (1)

where b0 and b(nx1) were the intercept and regression coefficient

of the PLS model, respectively; 1 was the column vector of length n,

and its element was 1; and e was the prediction error between ŷ and y.

If only data sets for the NIR spectra and the LC reference value of

the new batch of snow pear samples were available, and no data set

was available for the NIR spectral of samples of the main batch, it

would be impossible to update the calibration model to predict the LC

of a new batch of snow pears using the standard strategy. In practical

applications, an updated calibration model is often necessary to

predict the LC of new samples. Therefore, it was necessary to apply

the semi-supervision free parameter model enhancement (SS-FPME)

to the updated calibration model. This method reduced the influence

of sample variability and external variability of measurement systems

to obtain an accurate and robust prediction result. The function

formula of SS-FPME was calculated as follows:

min

b0,s, bs
‖ y − ½1Xs�

b0,s

bs

" #
‖2

 !

s : t : corr(bs, bm) > rth

(2)

where Xs is the data set of the NIR spectra of samples of new batch

and the updated data set of the calibration model at the same time; b0,s
is the intercept; bs is the regression coefficient of calibration model of

the new batch sample, and rth is the constraint of the correlation

coefficient; and bm is the regression coefficient of calibration model of
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the original main batch sample, which could be analyzed and

calculated by PLSR model. We optimized the function formula (2)

of SS-FPME using the sequential quadratic programming method of

the fmincon optimization routine of MATLAB 2016b software. The

method to update the SS-FPME model required the regression

coefficient of the primacy model, the spectral data set of a few

samples from the new batch, and the data set of the corresponding

reference value. We used the root mean square error of the prediction

set (RMSEP) to evaluate the performance of the updated calibration

model, which was estimated based on the independent test set.
2.5 Method of updating model method
by SS-FPME

To comprehensively assess the prediction ability of the updated

calibration model of different batches of snow pears based on NIR

spectroscopy, we used the SS-FPME method to update the calibration

model of the old batch of samples based on the updated data set of the

new batch of samples to predict the LC of the new batch of samples.

We updated the master calibration model according to each new

batch of samples independently in the SS-FPME method, referred to

as the independent SS-FPME method (Figure 2A), and the master

calibration model was updated sequentially by multiple batches of the

samples, referred to as the sequential SS-FPME method (Figure 2B).

For the independent SS-FPME method, Figure 2A) shows the

updating process for the calibration model to predict the LC in the

four batches of snow pears. We used the PLSR to establish the master

calibration model based on one batch of snow pear samples (batch A),

and formed model A to predict the LC of batch A. To improve the

accuracy of the calibration model, we had to update the master model

(model A) from the calibration set of a new batch of samples (batch

B), and formed Ind-model AB to predict the LC of batch B. The

calibration set of the new batch of samples contained few samples,

and was called the update set. To accurately detect the LC of batch C

and batch D, we built the Ind-model AC and Ind-model AD from the
FIGURE 1

Diagram of the nine spectral measurement positions of one sample. The first longitude intersects the stem latitudes, equator latitudes, and calyx latitudes
form three spectral measurement positions: PI1, PII1, and PIII1. The second longitude and third longitude intersect to form six spectral measurement
positions: PI2, PII2, and PIII2, and PI3, PII;3, and PIII3, respectively.
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calibration set of batch C and batch D independently using the SS-

FPME method.

Figure 2B shows the updating process for the calibration model of

the sequential SS-FPME method for four batches of snow pears.

Similar to the independent SS-FPME method, we built model A (the

master model) from the calibration set of batch A using the PLSR

algorithm to predict the LC of batch A, and we updated model A to

form the Seq-model AB from the calibration set of batch B to predict

the LC of batch B. Then, we updated the Seq-model AB to form the

Seq-model ABC from the calibration set of batch C sequentially to

predict the LC of batch C, and we updated the Seq-model ABC to

form the Seq-model ABCD from the calibration set of batch D

sequentially to predict the LC of batch D. In this work, the

independent SS-FPME method and the sequential SS-FPME

method were used and compared to update the calibration model

to predict the LC of four batches of snow pears separately to improve

the accuracy and robustness of the calibration model to predict the

internal qualities of different batches of samples.
2.6 Evaluation model

2.6.1 PLSR modeling
The PLSR algorithm is a multivariate linear analysis method first

proposed by Wold and Krishnaiah, which is widely used in the

analysis of spectral data (Haaland and Thomas, 1988). The basic

principle of this algorithm is to obtain the score matrix by

decomposing the sample spectral matrix and sample concentration

matrix at the same time and to perform multiple linear regression.

Following are the main implementation steps of the PLSR. First, the

principal components of spectral matrix X and concentration matrix

Y of the sample are decomposed, as follows:

Xm�n = Tm�wPw�n + Em�n (3)

Ym�l = Um�wQw�l + Fm�l (4)

Where Xmxn is the spectral matrix of m samples at n wavelengths;

Ymx1 is the concentration matrix containing the content information of l

components ofm samples; Tmxw andUmxw are the score matrix; Pwxn and

Qmx1 are the load matrix; and Ewxn and Fmx1 are the residual matrix.

Then the linear regression of Tmxw and Umxw are processed as

follows:
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Um�w = Tm�w · Bw�w (5)

Where Bwxw is the regression coefficient matrix:

Bw�w = Um�w · TT
m�w(Tm�wT

T
m�w)

−1 (6)
2.6.2 Model evaluation indexes
Generally, correlation coefficient and root mean square error are

used as the evaluation indexes for NIR spectral data analysis,

including the correlation coefficient of calibration set (Rc), the root

mean square error of cross-validation (RMSECV), the correlation

coefficient of prediction set (Rp), and the root mean square error of

prediction set (RMSEP):

Rc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

o
n

i=1
(yi,a − yi,p)

2

o
n

i=1
(yi,a − yi,cm)

2

vuuuuut (7)

RMSECV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi,a − yi,p)

2

n

vuuut
(8)

In the calibration set, n is the number of samples, Yi,a is the

standard reference of the i-th sample, Yi,p is the predicted value of the

i-th sample, and Yi,m is the average value of the standard reference of

all samples:

Rp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

o
m

j=1
(yj,a − yj,p)

2

o
m

j=1
(yj,a − yj,pm)

2

vuuuuuut (9)

RMSEP =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
m

j=1
(yj,a − yj,p)

2

m

vuuut
(10)

In the prediction set, m is the number of samples, Yj,a is the

standard reference of the j-th sample, Yj,p is the predicted value of the

j-th sample, and Yj,pm is the average value of the standard reference of

all samples. The prediction model has a better accuracy and

robustness with the higher Rc and Rp (closer to 1), and smaller and

closer the values of REMSCV and RMSEP.
A B

FIGURE 2

Schematic of calibration model updating method based on SS-FPME: (A) independent SS-FPME method and (B) sequential SS-FPME method. Cal,
calibration; Pre, prediction.
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3 Results and discussion

3.1 Master calibration model to predict LC

Based on NIR spectroscopy, we established the prediction model of

the LC of snow pear samples in batch A, which was used as the master

model for the detection of LC in four batches of samples in this study. To

deduct the influence of instrument background or drift on the signal,

eliminate random noise, and improve the signal-to-noise ratio, the first

derivative (1-Der, polynomial order = 1, smoothing points = 11), second

derivative (2-Der, polynomial order = 2, smoothing points = 11),

standard normal variate transformation (SNV), and multiplicative

scatter correction (MSC) were used and compared to pretreat the raw

average NIR spectra of nine measurement positions at each sample. We

carried out the preprocessing methods using the software Unscrambler X

10.4 (CAMO PRECESS AS, Oslo, Norway). The results shown in Table 2

indicated that the predictionmodel using the SNV preprocessing method

achieved better performance. Compared with the no preprocessing

method, Figure 3 showed that the Rc and Rp were improved from

0.807 and 0.850 to 0.822 and 0.857, respectively, whereas the RMSECV

and RMSEP were reduced from 0.710 and 0.603 to 0.679 and 0.602,

respectively. Therefore, we further analyzed the LC detection model

based on the NIR data after SNV preprocessing.

Hundreds or thousands of wavelengths in the full spectra of

samples may contribute more collinearity and redundancies and

contain useless or irrelevant information. This makes the

calibration process more time-consuming, is less convenient to

meet high-speed spectroscopy features, and reduces the prediction

accuracy of the calibration model to measure the LC of snow pears.

To eliminate the uninformative wavelengths, predigest the calibration

model, and improve the prediction results in terms of accuracy and

robustness, we selected and compared 19, 76, 80, 24, and 20 effective

wavelengths (as shown in Figure 4) to build a model to predict the LC

of snow pears using the successive projections algorithm (SPA),

synergy interval partial least squares (SiPLS), genetic algorithm

(GA), bootstrapping soft shrinkage (BOSS), and competitive

adaptive reweighted sampling (CARS) methods, respectively.

In the SiPLS method, we divided the full spectra into 20

subintervals, and selected the 1st, 8th, 15th, and 18th subintervals

as the effective regions. During the process of CARS effective

wavelengths selection, we set the number of Monte Carlo sampling

runs, the maximal principal value, and the number of cross validation

to 100, 10, and 10, respectively. The number of iterations and cross-

validation of the BOSS algorithm were set to 2000 and 5, and the

maximum number of latent variables was set to 20. The statistical data

in Table 3 show that the number of latent variables (LVs) of the model
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(SNV-CARS-PLSR) established based on the effective wavelengths

selected by the CARS method was the lowest, which was eight LVs.

The Rc of model (SNV-GA-PLSR) obtained by the GA method was

the highest, which was 0.846, the Rp of the model (SNV-SPA-PLSR)

by the SPA method was the highest (0.863), and the RMSECV and

RMSEP values of the model (SNV-GA-PLSR) by the GAmethod were

the lowest (0.637 and 0.624).

According to the results, the SNV-GA-PLSR model (master

model A) had higher Rc and Rp values of 0.846 and 0.854 and

lower RMSECV and RMSEP values of 0.637 and 0.624 (as shown in

Figure 5), respectively. Moreover, the difference between the Rc and

Rp and the RMSECV and RMSEP also was smaller. Therefore, the

SNV-GA-PLSR demonstrated better prediction performance for

measuring the LC of snow pears, which we used as the prediction

model for the four batches of snow pear samples in this study.

As shown in Figure 6, the 80 selected effective wavelengths were

distributed mainly at 1160 nm, 1198 nm, 1328–1344 nm, 1420–1430 nm,

1552–1575 nm, 1670–1693 nm, 1798 nm, 1821–1831 nm, 1844–1854

nm, 1929–1952 nm, 2063–2086 nm, 2128–2138 nm, 2183–2212 nm,

2264–2277 nm, and 2290–2300 nm. The NIR spectral region primarily

contained the frequency doubling and combination bond information for

C-H, N-H, andO-H, which was sensitive to the concentrations of organic

materials. LC is the organic molecule and the C-H, N-H, and O-H were

the most important groups with the main active ingredients. Thus, it is

possible to use NIR methods for determination of LC in snow pear. Of

these, 1160 nm and 1198 nm were associated with the third overtone of

C-H; 1420–1430 nm was associated with the second overtone of the

H2O, O-H, N-H, and C-H combination; 1552–1575 nm was associated

with the first overtone of N-H; 1670–1693 nm and 1798 nm were

associated with the first overtone of C-H; 1821–1831 nm was associated

with the second overtone of the C=O stretch; 2063–2086 nm was

associated with the H2O and O-H combinations; 2128–2138 nm was

associated with the N-H combinations; 2183–2212 nm was associated

with the N-H+C-C combinations; and 2264–2277 nm and

2290–2300 nm were associated with the C-H+C-H combinations.

The Table 4 showed that SNV-GA-PLSR model can also simply

the calibration model and improve the prediction performance for

measuring the lignin content of batch B, C and D snow pears.
3.2 Robustness of the updated model by
SS-FPME method

For the batch B samples of snow pears, we used master model A

to directly measure the LC of the prediction data set of the batch B

samples (Bpre), with the Rp of 0.823 and RMSEP of 0.641, as shown
TABLE 2 Performance of model based on the different preprocessing methods for measuring LC of batch A of samples.

Preprocessing method Number of wavelengths LVs Rc RMSECV Rp RMSEP

NONE 387 10 0.807 0.710 0.850 0.603

1-Der (11) 387 9 0.812 0.699 0.847 0.624

2-Der (11) 387 8 0.747 0.805 0.787 0.716

SNV 387 9 0.822 0.679 0.857 0.602

MSC 387 10 0.821 0.683 0.848 0.618
fron
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in Figure 7A. Based on the independent SS-FPME method, we

obtained a new regression coefficient matrix (bs_AB) by using the

regression coefficient matrix of master model A (bm_A) to

supervise the learning of the calibration data set of the batch B

samples (Bcal). Ind-model AB was established to predict the LC of

Bpre, and the predictive ability of the updated model (Ind-model

AB) was improved to a certain extent. Figure 7B shows that the Rp

value increased from 0.823 to 0.837, and the RMSEP value decreased

from 0.641 to 0.614.
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For the batch C samples of snow pears, Figure 8A shows that the

performance of using master model A to directly detect the LC of the

prediction data set of the batch C samples (Cpre) was poor, with an

Rp of 0.602 and RMSEP of 1.703. Based on the independent SS-FPME

method, we obtained the regression coefficient matrix (bs_AC) and

the Ind-model AC using the bm_A constraint supervision to learn the

calibration data set of the batch C samples (Ccal). The prediction

performance was greatly improved, with an Rp of 0.940 and RMSEP

of 0.433, as shown in Figure 8B. Based on the sequential SS-FPME
A B

DC

FIGURE 3

(A) Average spectra of each sample after SNV preprocessing, (B) the RMSECV versus the number of PLS components, (C) the performance of the PLSR
model for measuring LC in the calibration set, and (D) the prediction set.
FIGURE 4

Distribution of effective wavelengths selected by SPA, SiPLS, GA, BOSS, and CARS methods.
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method, we used the regression coefficient matrix (bm_A) of master

model A in supervised learning Bcal to first construct the bs_AB, and

then we used the bs_AB in supervised learning Ccal to construct

bs_ABC, and established the Seq-model ABC to measure the LC of

the prediction data set of the batch C samples (Cpre). Compared with

the Ind-model AC, the prediction performance was further improved:

the Rp value increased from 0.940 to 0.952 and the RMSEP value

decreased from 0.433 to 0.383, as shown in Figure 8C.
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The analysis process for the batch D samples was the same as that

for the batch C samples, and the experimental results are shown in

Figure 9. First, master model A was directly used to measure the LC of

the batch D samples, and the performance was poor, with the Rp of

0.413 and RMSEP of 0.916 (Figure 9A). Then, we built the Ind-model

AD based on the calibration data set of the batch D samples (Dcal)

and bm_A in the independent SS-FPMEmethod. The Rp and RMSEP

of the Ind-model AD to detect the LC of the prediction data set of the

batch D samples (Dpre) were 0.806 and 0.322 (Figure 9B),

respectively. For the sequential SS-FPME method, we built the

bs_ABCD and Seq-model ABCD by updating the Seq-model ABC

based on the Dcal and bs_ABC. The Rp and RMSEP of Seq-model

ABCD were 0.831 and 0.309 (Figure 9C), respectively. Therefore, the

sequential SS-FPME method updated the master model based on SS-

FPME supervised learning of the new batch samples further increased

the Rp and reduced the RMSEP of prediction model to measure the

LC of the batch C and D samples, and further improved the

prediction performance of the updated calibration model.

Moreover, the prediction performance of the updated model based

on the sequential SS-FPME method was better than that of the

independent SS-FPME method. This result indicated that sequential

update enhanced the model features in the learning of

previous batches.

The constraint condition of regression coefficient had to be

adjusted in the process of updating the master model using the

independent SS-FPME method and the sequential SS-FPME

method, which contained the information variation of the NIR

spectra in the current batch and the new batch of snow pear
TABLE 3 Performance of the model based on different variables selection methods to measure the LC of batch A samples.

Variables selection method Number of effective wavelengths LVs Rc RMSECV Rp RMSEP

NONE 387 9 0.822 0.679 0.857 0.602

SPA 19 9 0.828 0.670 0.863 0.639

SIPLS 76 11 0.816 0.692 0.782 0.898

GA 80 10 0.846 0.637 0.854 0.624

CARS 24 8 0.840 0.647 0.859 0.645

BOSS 20 12 0.809 0.704 0.806 0.691
fron
A B

FIGURE 5

Performance of the SNV-GA-PLSR model for measuring the LC of batch A samples. (A) the calibration set, and (B) the prediction set.
FIGURE 6

Distribution of the 80 effective wavelengths selected by the GA
method.
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samples. Figures 10A, B show the evolution process of the regression

coefficients of master model A in the independent SS-FPME method

and the sequential SS-FPME method, respectively. This illustration is

helpful to better understand the batch adjustment of the regression

coefficients. Compared with the regression coefficient of master

model A, the regression coefficient of the updated batch B model

was basically the same as that of batch A, whereas the regression

coefficients of the updated batch C and D models varied greatly, thus

improving the prediction performance of the model. The difference of

regression coefficients was unique for each batch of samples. It was

difficult, however, to extract information related to chemical

composition to analyze the causes of these spectral changes.

Although we used the same microfiber optic spectrometer to

collect the NIR spectra and followed the same standard procedures to

measure the LC reference for each batch of samples, the performance
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of detecting the LC of the batch B, C, and D samples using master

model A was poor, with lower Rp values and higher RMSEP values.

The varieties in the NIR spectra of the samples occurred for several

potential reasons, including changes in the detector light source, the

acquisition environment temperature, the operation of spectral

collection and reference value determination, and the process and

equipment of the sample pretreatment. In this study, Table 5 shows

that the updated model using the SS-FPME method based on the

batch A samples could improve the performance of predicting the LC

of the batch B, C, and D samples. Compared with the independent SS-

FPME method used to update the master model, the sequential SS-

FPME method could enhance the model features from previous

supervised learning and obtain better prediction perfosssrmance.

Therefore, the updated model based on supervision and learning of

a new batch sample using the sequential SS-FPME method could
TABLE 4 Performance of the model based on GA method to measure the LC of batch B, C and D samples.

Batch Variables selection method Number of effective wavelengths LVs Rc RMSECV Rp RMSEP

B
NONE 387 9 0.760 0.757 0.780 0.717

GA 80 10 0.798 0.698 0.807 0.674

C
NONE 387 9 0.846 0.600 0.857 0.694

GA 80 10 0.867 0.550 0.937 0.411

D
NONE 387 9 0.693 0.039 0.657 0.412

GA 80 10 0.717 0.373 0.756 0.353
fron
A B

FIGURE 7

Performance for predicting LC of batch B of samples by (A) master model A and (B) Ind-model AB.
A B C

FIGURE 8

Performance for predicting LC of batch C of samples by (A) master model A, (B) Ind-model AC, and (C) Seq-model ABC.
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improve the robustness and migration ability of the model to detect

the LC of snow pears and provided technical support for the

development of a portable detection device.
4 Conclusion

We examined the robustness of the calibration model used to predict

the LC of different batches of snow pears based onNIR spectroscopy. The

results showed that the performance of the calibration model updated

using the SS-FPME method with a small number of samples from a new

batch of snow pears was improved. The NIR spectra at nine different

measurement positions of snow pear samples purchased at four different

periods were collected by a microfiber optic spectrometer. Then, the

average NIR spectra of each sample in batch A were processed by 1-Der

(11), 2-Der (11), SNV, and MSC pretreatment methods. Next, we

selected 19, 76, 80, 24, and 20 effective wavelengths and compared

them to build a model to predict the LC of snow pears using SPA, SiPLS,
Frontiers in Plant Science 10
GA, BOSS, and CARS variable selection methods, respectively. As a

result, the SNV-GA-PLSR model (master model A) had higher Rc and

Rp values of 0.846 and 0.854, lower RMSECV and RMSEP values of

0.637 and 0.624, and the difference between the Rc and Rp and the

RMSECV and RMSEP were also smaller. Thus, this model was used as

the prediction model for detecting the LC in the other three batches of

snow pear samples. Although we used the same microfiber optic

spectrometer to collect the NIR spectra and followed the same

standard procedures to measure the LC reference for each batch of

samples, the performance of detecting the LC of the batch B, C, and D

samples by the master model A was poor, with lower Rp values and

higher RMSEP values. We used and compared the independent SS-

FPME method and the sequential SS-FPME method to update master

model A for predicting the LC of snow pears.

For the batch B samples, the predictive ability of the updated model

(Ind-model AB) was improved: the Rp value increased from 0.823 to 0.837,

and the RMSEP value decreased from 0.641 to 0.614. For the batch C

samples, the performance of the Seq-model ABCwas improved greatly: the
A B C

FIGURE 9

Performance for predicting LC of batch D of samples by (A) master model A, (B) Ind-model AD, and (C) Seq-model ABCD.
A

B

FIGURE 10

Evolution process of regression coefficients of master model A in (A) the independent SS-FPME method and (B) the sequential SS-FPME method.
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Rp value increased from 0.602 to 0.952, and the RMSEP value decreased

from 1.703 to 0.383. For the batch D samples, the performance of the Seq-

model ABCD was also improved: the Rp value increased from 0.413 to

0.831, and the RMSEP value decreased from 0.916 to 0.309. Moreover, the

prediction performance of the updated model based on the sequential SS-

FPME method was better than that of independent SS-FPME method,

which indicated that the sequential update enhanced the model features in

the learning of previous batches. Therefore, the updated model based on

supervision and learning of new batch samples according to the sequential

SS-FPMEmethod improved the robustness and migration ability of model

to detect the LC of snow pears and provided technical support for the

development of a portable detection device.
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