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Introduction: Wearable monitoring systems for non-invasive multi-channel fetal
electrocardiography (fECG) can support fetal surveillance and diagnosis during
pregnancy, thus enabling prompt treatment. In these embedded systems, power
saving is the key to long-term monitoring. In this regard, the computational
burden of signal processing methods implemented for the fECG extraction
from the multi-channel trans-abdominal recordings plays a non-negligible
role. In this work, a supervised machine-learning approach for the automatic
selection of the most informative raw abdominal recordings in terms of fECG
content, i.e., those potentially leading to good-quality, non-invasive fECG signals
from a low number of channels, is presented and evaluated.

Methods: For this purpose, several signal quality indexes from the scientific
literature were adopted as features to train an ensemble tree classifier, which
was asked to perform a binary classification between informative and non-
informative abdominal channels. To reduce the dimensionality of the
classification problem, and to improve the performance, a feature selection
approach was also implemented for the identification of a subset of optimal
features. 10336 5-s long signal segments derived from a real dataset of multi-
channel trans-abdominal recordings acquired from 55 voluntary pregnant women
between the 21st and the 27th week of gestation, with healthy fetuses, were
adopted to train and test the classification approach in a stratified 10-time 10-fold
cross-validation scheme. Abdominal recordings were firstly pre-processed and
then labeled as informative or non-informative, according to the signal-to-noise
ratio exhibited by the extracted fECG, thus producing a balanced dataset of bad
and good quality abdominal channels.

Results and Discussion: Classification performance revealed an accuracy above
86%, and more than 88% of those channels labeled as informative were correctly
identified. Furthermore, by applying the proposed method to 50 annotated 24-
channel recordings from the NInFEA dataset, a significant improvement was
observed in fetal QRS detection when only the channels selected by the
proposed approach were considered, compared with the use of all the
available channels. As such, our findings support the hypothesis that
performing a channel selection by looking directly at the raw abdominal
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signals, regardless of the fetal presentation, can produce a reliable measurement of
fetal heart rate with a lower computational burden.

KEYWORDS

signal quality assessment, fetal electrocardiography, ECG, non-invasive fetal ECG, fetal
monitoring, machine learning

1 Introduction

Portable and wearable solutions for continuously monitoring
vital signs during daily-life activities allow unobtrusive data
measurement outside the hospital. In such a context, advanced
signal processing algorithms are required to provide reliable
information to detect pathologic conditions (Majumder et al.,
2017). This would allow monitoring both chronic patients and
healthy people to prevent possible diseases (Gaikwad and
Warren, 2009). Consequently, real-time telemonitoring of
clinical parameters for immediate processing and early
detection of symptoms is a hot research topic (Lanzola et al.,
2014). Specifically, the adoption of wearable fetal monitoring
systems by non-invasive multi-channel fetal electrocardiography
(fECG) could be exploited during pregnancy, thus allowing early
diagnosis and scheduling of in-utero treatment or postnatal
intervention. In the last decades, some fetal heart rate (fHR)
monitoring devices based on non-invasive fECG have been
introduced (Behar et al., 2019; Kahankova et al., 2020;
Rooijakkers and Springer, 2020). The first commercially
available system has been the wireless Monica AN24 monitor
by Monica Healthcare (Nottingham, United Kingdom), adopting
conventional electrodes placed on the maternal abdomen. Then,
disposable-patch systems were introduced, as the Novii Wireless
Patch System by GE Healthcare (Chicago, Illinois, United States),
the MERIDIAN M110 system by MindChild Medical (North
Andover, Massachusetts, United States), the PUREtrace and the
Nemo Fetal Monitoring System by Nemo Healthcare
(Veldhoven, Netherlands). Moreover, in order to guarantee
long-term continuous assessment of fetal wellbeing, many at-
home monitoring technologies have been proposed as the
wearable 5-channel monitor system by Bloomlife (San
Francisco, California, United States and Genk, Belgium) and
Imec (Leuven, Belgium and Eindhoven, Netherlands) featuring
the first integrated circuit produced for mobile fECG monitoring,
the FDA-cleared Invu device (Mhajna et al., 2020) by Nuvo (Tel
Aviv, Israel), and the Owlet Band (Lehi, UT, United States).
Generally, in these embedded systems, the power profile plays a
key role to save battery and allow for longer monitoring time. In
this sense, an important aspect is related to the signal processing
method implemented for the extraction of the fECG signals from
raw multi-channel trans-abdominal recordings. Indeed, several
issues affect the non-invasive recording of fECG signals, as their
low signal-to-noise ratio (SNR) (Peters et al., 2001; Sameni and
Clifford, 2010; Clifford et al., 2014; Donofrio et al., 2014) due to
the source and the propagation issues related to the fetal cardiac
electrical activity, but also to different bioelectrical interferences
(Jagannath and Selvakumar, 2014; Agostinelli et al., 2015) from
the mother, particularly the maternal ECG (mECG). Noises and
interferences overlap with the weaker fECG in various domains

(Sameni and Clifford, 2010; Agostinelli et al., 2015), and
especially in both time and frequency domains, thus requiring
powerful signal processing methods for the fECG to be effectively
recovered (Jaros et al., 2018).

The assessment of the raw input signal quality, to select the most
informative channels for the subsequent processing, could represent
a key step. Indeed, signal quality assessment (SQA) of non-invasive
abdominal recordings could allow preserving only those channels
exhibiting an adequate fECG content. In the past, SQA has been
widely exploited on adult ECGs in order to reject those signals
suffering from unacceptable noise level, and as such possibly leading
to incorrect clinical interpretations (Del Rio et al., 2011; Satija et al.,
2018). Different signal quality indexes (SQIs) were proposed and
adopted, to allow for automatic accurate estimation of R peak
(Johnson et al., 2015) and robust HR estimation (Li et al., 2007;
Orphanidou et al., 2015), to reduce alarms associated to false
arrhythmia and HR (Allen and Murray, 1996; Wang, 2002; Li
and Clifford, 2012; Behar et al., 2013; Daluwatte et al., 2016;
Shahriari et al., 2018), or, more generally, to identify clinically
acceptable ECGs (Behar et al., 2012; Clifford et al., 2012; Di
Marco et al., 2012; Zhao and Zhang, 2018), even in real-time
monitoring mobile devices (Redmond et al., 2008; Langley et al.,
2011; Moody, 2011; Silva et al., 2011; Hayn et al., 2012; Martinez-
Tabares et al., 2012; Liu et al., 2018), or along with their noise level
quantification (Johannesen and Galeotti, 2012; Li et al., 2014).

Nonetheless, besides discarding those “confounding” channels
extremely affected by noise, the SQA could be helpful in reducing
the computational burden of the fECG extraction algorithms, by
limiting the number of channels to be processed. Obviously, this has
consequences also on the architectural features for the processing
core in charge to execute these algorithms, which could represent a
hard specification for low-power portable fetal monitors, advocating
the adoption of advanced signal processing platforms for pursuing
real-time (Pani et al., 2013). Furthermore, both the time-varying
fetal orientation and their movements make some channels useless
in the fECG extraction process. As such, SQA has been used on
fECG signals after their extraction to improve fHR estimation by
signal quality metrics and artificial intelligence tools (Andreotti
et al., 2017; Varanini et al., 2017; Fotiadou et al., 2021; Shi et al.,
2022), but also to identify useful independent components after
blind source separation algorithms for optimal fECG signal recovery
(Karimi Rahmati et al., 2017; Jamshidian-Tehrani and Sameni,
2018). Nonetheless, SQA applied on the extracted fECG is biased
by the effectiveness of the algorithms adopted for fECG extraction or
fetal QRS detection (Mertes et al., 2022; Shi et al., 2022), which the
SQI identification was based on. Indeed, some authors explored the
adoption of SQA on the raw abdominal ECGs. Specifically, in (Liu
et al., 2014) a single SQI was adopted to guarantee an accurate fetal
and maternal QRS complexes location by considering a data-driven
threshold before fECG extraction and QRS detection. Conversely, in
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(Mertes et al., 2022) the authors exploited the time-frequency
representation of the abdominal signals to predict the quality of
non-invasive fECG signals by deep convolutional neural networks
(CNN), which however require power-hungry implementation for
edge computing on portable monitoring devices.

In this work, we propose an artificial-intelligence based SQA
method exploiting several SQIs for the identification of the raw
abdominal channels carrying the most informative components of
the fECG signal in a multi-channel non-invasive abdominal
recording, for a lighter fECG extraction and a more reliable fHR
estimation. To this aim, this study combined several SQIs and other
parameters from the scientific literature and used them as features
for a classifier trained to recognize those raw abdominal recordings
exhibiting a significant fECG content. The proposed SQI-guided
channel selection is aimed at the reduction of the number of
channels without a priori information on the fetal presentation
and orientation and, moreover, it is agnostic with respect to the
downstream fECG extraction algorithm. Accordingly, the proposed
method could be particularly useful to reduce the computational
burden of fECG extraction algorithms in wearable, low-power fetal
monitoring devices.

2 Materials and methods

A feature extraction step and a feature selection approach for
dimensionality reduction were initially carried out on raw multi-
channel abdominal recordings to model the proposed supervised

SQI-based channel selection approach, as detailed in the Section 2.1.
Then, the classifier was selected, trained, and tested on a real dataset
of abdominal recordings, as presented in Section 2.2 and Section 2.3.
Finally, different figures of merit were introduced in Section 2.4 and
used to quantitatively evaluate both the classifier performance and
the impact of the proposed channel selection approach on the fetal
QRS complex detection.

2.1 Feature extraction and selection for the
SQI-based channel selection

In order to extract the SQI features and model the SQI-guided
channel selection, the following algorithm was conceived. At first,
each abdominal signal, sampled at 500 Hz or properly resampled,
was segmented to obtain a variable number of 5-s long segments, as
in Andreotti et al. (2017). Then, a light preprocessing stage involving
a high-pass filtering at 1 Hz by a 4th-order IIR Butterworth filter was
applied to suppress eventual low-frequency noises, which is also easy
to be managed even in low-power implementations. The signal
coming out from this preprocessing contains both the fECG and the
mECG, beyond other physiological maternal interferences. For this
reason, from the fECG extraction perspective, this preprocessed
signal is referred to as “raw” in this work. Remarkably, in this step,
we aimed at developing a robust and reliable SQA-based channel
selection approach, thus we modelled it by introducing only a high-
pass filter with the lowest reasonable cut-off frequency, while
allowing the model to deal with powerline interference and all

TABLE 1 List of all features extracted from the 5-s long abdominal ECG segments, ranked according to the mRMR-based relevance score.

SQI Explanation

pband2 average power in the frequency range [10-20] Hz

seSQI spectral entropy; it is a measure of the spectral power distribution

pband4 average power in the frequency range [48-52] Hz

bas_pow standard deviation of the baseline extracted using a single-stage moving average filtering on 1-s window

pband3 average power in the frequency range [20-48] Hz

ss steepest slope in the recording

pband1 average power in the frequency range [0.5-10] Hz

HA highest amplitude in the recording

stdSQI standard deviation of the signal; it measures the variation of the amplitude

kSQI fourth moment of signal, or kurtosis. For a standard, noise-free and normal sinus ECG, the value is less than 5. Low kSQI usually reveals the
presence low-frequency noise such as baseline wander, Gaussian noise and power-line interference

pband5 average power in the frequency range [52-100] Hz

LA lowest amplitude in the recording

pSQI relative power in the fetal QRS complex, computed as the ratio between the powers in 5–15 Hz and 5–45 Hz bands

complexity ratio between the mobility of the first derivative of the signals and the mobility of the signal itself, wheremobility of a given time series x is defined as
the square root of the ratio between the variance of the first derivative of x and the variance of x

basSQI relative power of baseline, computed as the ratio between the powers in 0–3 Hz and 0–100 Hz bands, as in Andreotti et al. (2017)

sSQI skewness of the signal; it represents the dataset symmetry. If the symmetry is perfect, the skewness is 0. Due to the QRS complexes, ECG is supposed
to be highly skewed, whereas low skewness values are expected for the noise, characterized by approximately symmetric distributions. Therefore,
skewness is less robust to noise than kurtosis
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possible high-frequency noises, without limiting the fECG
signal band.

Based on the literature on ECG and fECG SQI presented above,
several features, both from the time and the frequency domains, as
reported in Table 1, were computed over the 5-s preprocessed
abdominal segments. In this work, such features were used to
train and test a supervised classifier, either considering all of
them simultaneously or after a feature selection. Feature selection
is a common practice in machine learning to reduce the
dimensionality of data by identifying only a subset of optimal
features that can effectively model the targeted output. Feature
selection may improve or leave the prediction performance
unchanged, while allowing for faster and efficient predictors, and
a better understanding of the data model (Guyon and Elisseeff,
2003). In this work, a feature selection based on the minimum
redundancy maximum relevance (mRMR) algorithm was adopted
to rank the features according to their relevance with respect to the
response variable (Chandrashekar and Sahin, 2014; Radovic et al.,
2017). Specifically, considering a stratified k-fold cross-validation as
the one exploited in this work (see Section 2.4), for each data
partition, the mRMR relevance score was derived and normalized
between 0 and 1. Then, a single relevance score vector was obtained
by summing the scores obtained for each feature across all the
possible iterations, thus computing a unique relevance value for each
feature. Finally, considering all the values in the single relevance
score vector, from the highest to the lowest one, the features were
ranked according to their relevance contributions and the first p
features leading to a sufficient amount of the total relevance, from
the most to the less important one, were selected.

2.2 Classification model

Compared to rule-based approaches, the adoption of machine
learning tools allows achieving high robustness by integrating
several features to support the decision on the channel selection.
In this work, among the possible feature-based supervised
classification models, an ensemble tree classifier was adopted for
the binary classification related to the SQI-based channel selection
task, which is also suitable for low-power device implementations.
Specifically, in order to avoid overfitting, default classifier
parameters offered in MATLAB were exploited (i.e., the
bootstrap aggregation method and 100 ensemble learning cycles,
with ten decision splits per tree at maximum), thus possibly
providing the readers with a more generic classification model to
be used on different datasets. This choice was also made by
considering the size of the adopted dataset, which was not large
enough to assess any parameters’ optimization procedure.

2.3 Dataset for training and testing the SQA-
based classification model

In this work, 170 real non-invasive 24-channel abdominal
electrophysiological recordings, which were acquired from
55 voluntary pregnant women between the 21st and 27th week of
gestation, were used. This gestational epoch was chosen in order to
deal with transabdominal recordings potentially leading to the most

reliable fECG signals in terms of morphology, with a limited impact
of the vernix caseosa, which significantly hampers non-invasive
fECG extraction from the 28th week of gestation (Oostendorp
et al., 1989a; Oostendorp et al., 1989b). The dataset exploited for
training and testing the SQA-based classification model was
obtained from such signals by extracting 127,992 5-s segments of
the raw abdominal channels, successively labelled as described
below. Signals were recorded at the Pediatric Cardiology and
Congenital Heart Disease Unit of the ARNAS G. Brotzu Hospital
in Cagliari (Italy). The study was approved by the Independent
Ethics Committee of the Cagliari University Hospital (AOU
Cagliari) and performed following the principles outlined in the
1975 Helsinki Declaration, as revised in 2000. All the voluntary
pregnant women provided their signed informed consent to the
recording, and all the signals came from healthy fetuses.

Electrophysiological recordings were performed with the
Porti7 portable physiological measurement system (TMSi,
Netherlands), following the electrode positioning shown in
Figure 1. This class IIa medical device, featuring a common
average amplifier with DC coupling, simultaneously samples
24 single-ended channels at 2048 Hz, with an input bandwidth
limited by the internal digital decimation filter to approximately
550 Hz. The digitization at 22 bits led to a 71.526 nV resolution.

On this dataset, a labelling process was carried out in order to
train the supervised classifier for the identification of the raw
abdominal channels carrying enough fECG information, thus
enabling to obtain good quality fECG traces after the application
of fully-featured fECG extraction algorithms. Therefore, all labels
were defined on fECG signals extracted by the algorithm presented
in (Fotiadou et al., 2018). Specifically, fECG extraction was
performed by blind source separation, as detailed in (Varanini
et al., 2013), then followed by fECG enhancement by time-
sequence adaptive filtering, to improve the quality of fECG
morphology and SNR (Fotiadou et al., 2018). Hence, an
abdominal channel was identified as informative only if the SNR
value computed on the extracted fECG signal was above 5 dB. The
other channels were labelled as non-informative. Nonetheless, to
ensure an accurate training for the classification model, the
automatic SNR-based labelling was double-checked by visual
inspection and, if necessary, corrected. Because of the prevalence
of non-informative labels, a random downsampling process was
performed to obtain a balanced dataset composed of 10,336 5-s
segments of the raw abdominal channels, equally distributed
between informative and non-informative labels. Some examples
of informative and non-informative segments included in the
dataset are depicted in Figure 2.

2.4 Performance evaluation

2.4.1 SQA-based classification performance
evaluation

In order to evaluate the SQI-based classifier performance, a 10-
time 10-fold cross-validation with stratified partitions was used.
Classification results were quantitatively assessed in terms of
accuracy (Acc), true positive rate (TPR, or sensitivity), true
negative rate (TNR, or specificity), positive predictive value (PPV,
or precision), and F1 score. Here, TP and TN denote the number of
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informative and non-informative channels correctly identified,
respectively, false positives (FP) represents non-informative
channels erroneously recognized as informative ones, while false
negatives (FN) represents informative channels erroneously
classified as non-informative ones. Each performance index was
evaluated on each fold and time, and the mean and standard
deviation values are provided hereafter.

Remarkably, for training and testing the SQI-based
classification model, the choice of the 10-time 10-fold cross-
validation was aimed at providing the model with a substantial

and balanced number of instances in the two classes (informative
and non-informative abdominal signals). For a more reliable
assessment limiting the bias due to a specific 10-fold
subdivision, the 10-fold partition was iterated ten times.
Though a leave-one-subject-out could have produced a result
with a reduced subject-based bias, the classifier testing was not
considered as the only performance index. In fact, in this study, the
impact of the SQA-based approach and its eventual weaknesses on
different completely unseen subjects were analyzed subsequently,
on a different real dataset, in terms of fetal QRS detection

FIGURE 1
Electrode positioning for the recording of all abdominal signals involved in training and testing the classification model. In each session, 24 unipolar
channels were acquired with an average-reference amplifier, exploiting 22 measuring electrodes on the abdomen and two on the back (in blue) of the
pregnant volunteer, along with a ground electrode (in grey), also on the back.

FIGURE 2
Examples of three informative (A) and three non-informative (B) 5-s segments included in the dataset adopted for SQA-based classification
modelling, after preliminary pre-processing by 4th-order IIR Butterworth high-pass filter at 1 Hz.
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performance, thus giving an overview of its potentialities in a real
application scenario.

2.4.2 Evaluation of the proposed channel selection
approach impact on fHR measurement

To assess the effect of adopting the proposed SQI-based channel
selection approach in the typical long-term monitoring scenario, we
evaluated its impact over the fetal QRS detection performance. To
this aim, we selected a state-of-the-art fetal QRS detector, i.e., the
maxsearch algorithm available from (Sameni, 2018), in two different
conditions:

- on the whole set of abdominal signals,
- only on those signals identified as informative by the proposed
SQI-based channel selection.

This test was performed on a set of 50 recordings derived
from a publicly available real multi-channel dataset of non-
invasive abdominal recordings, i.e., the NInFEA dataset (Sulas
et al., 2021), in which the fetal R-peaks were manually
annotated. Therefore, after an initial resampling at 512 Hz,
all features were extracted channel-wise and provided as
input to the classifier.

FIGURE 3
SQI-based classification results obtained by the ensemble tree exploiting all available features. In order to provide the reader with an accurate display
of the results, exact values are reported for the 25th and 75th percentiles and for the medians.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Baldazzi et al. 10.3389/fbioe.2023.1059119

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1059119


On this dataset, recorded during a pulsed-wave Doppler
simultaneous acquisition, a further pre-processing step was
required to deal with a stronger baseline wander. As such, a
more aggressive high-pass filtering stage was introduced, which
consisted of a 5th-order IIR Butterworth high-pass filter with cut-off
frequency of 3 Hz, following (Andreotti et al., 2017). Furthermore,
despite some abdominal channels were substantially affected by
powerline noise, they were rare cases among the available
24 channels, mainly because of bad contact due to the presence
of the active ultrasound probe in the nearby. As such, no notch
filtering was introduced also in this case, while preferring to discard

these channels by labelling them as non-informative, considering
the typical absence of usable fECG in these channels. Then, the fECG
component was extracted by means of a multi-reference QRD-RLS
adaptive filter, a general-purpose method exhibiting good results in
fECG extraction (Baldazzi et al., 2020; Sulas et al., 2020). Here, to
extract the fECG component from each abdominal trace, the multi-
reference QRD-RLS adaptive filter was fed with three non-coplanar
thoracic mECG leads as noise references, which were available for
each NInFEA recording, and with the number of taps and the
forgetting factor equal to 20 and 0.999, respectively, as in Sulas et al.
(2020). The selection of this kind of extraction algorithm allowed us

FIGURE 4
SQI-based classification results obtained by the ensemble tree exploiting only those features selected by the mRMR algorithm. In order to provide
the reader with an accurate display of the results, exact values are reported for the 25th and 75th percentiles and for the medians.
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to perform fECG extraction regardless of the number of abdominal
channels provided in input, thus without being affected by the
number of channels labelled as informative or not. Furthermore,
adaptive filters can be simply exploited in portable solutions
requiring low computational load.

Fetal R-peaks annotation was performed automatically and
then corrected manually, after a preliminary fECG extraction
step. Specifically, the fECG extraction and R-peak detection
algorithms presented in Jamshidian-Tehrani and Sameni
(2018), were exploited, following their implementation
released with the NInFEA dataset. Then, for each recording,
the detected fetal R-peaks were carefully analyzed by a clinical
expert, which visually inspected their annotations in each
multichannel-channel trace. For an even more reliable
annotation, all fetal R-peaks annotations were further
compared to the annotations of the V waves in the
synchronous pulsed-wave Doppler acquisition, by considering
a clinically reasonable distance between the electrical and the
mechanical ventricular activation [i.e., 200 ms, as also in Sulas
et al. (2021)]. Indeed, in order to consider abdominal signals
lasting at least 11 s and with a trustable fetal R-peaks annotation
by simple visual inspection, 50 signals out of 60 were selected
and considered for this analysis.

Different figures of merit were computed to evaluate the fetal
QRS detection performance obtained on the whole set of abdominal
signals and on the informative channels only, as:

ACCdet � TPdet/ TPdet + FPdet + FNdet( )
TPRdet � TPdet/ TPdet + FNdet( )
PPVdet � TPdet/ TPdet + FPdet( )

F1 scoredet � 2 · PPVdet · TPRdet( )/ PPVdet + TPRdet( )
in which TPdet denotes the fetal R peaks correctly identified by

the detector, FNdet the undetected fetal R-peaks and FPdet the
incorrectly detected ones. For this evaluation, a 50-ms tolerance
window was set, by assuming this window length as appropriate to
enclose a fetal QRS complex in the gestational age between 20th and
30th weeks (Taylor et al., 2003).

For this latter evaluation, statistical analysis was performed by
the non-parametric Kruskal-Wallis test for multiple comparisons
and by the Wilcoxon signed rank test for pairwise comparisons.
Specifically, in all statistical analyses, a significance level of 5% was
considered and the corrected p-values were reported according to
Bonferroni’s correction.

All data processing and performance analyses were carried out
in MATLAB R2022a (MathWorks Inc., MA, United States).

FIGURE 5
Fetal QRS detection results obtained by considering fECG signals extracted by all available abdominal channels (A), by the abdominal channels
identified as informative by the SQA-based approach exploiting all features (B), and by the abdominal channels identified as informative ones by the
proposed approach involving selected features only (C).
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TABLE 2 Number of raw abdominal channels identified as informative by the proposed approach exploiting all features or selected features only, with the clinical
information about the week of gestation and the fetal presentation of the recordings (L: left, R: right, O: occiput, S: sacrum, T: transverse, P: posterior A: anterior).
Data information for the adopted 50 recordings was taken from Sulas et al. (2021). Among the signals, some of themwere not used because of unreliable fetal QRS
annotation (marked with *) or because of too short duration (marked with‡).

Signals # in
NInFEA

Subject Gestational
week

Fetal
presentation

Number of channels identified as
informative (approach using all

features)

Number of channels identified as
informative (approach using

selected features)

1 1 27 vertex, OT 1 0

2 0 2

3 4 5

4 2 25 vertex, ROT 0 0

5 0 0

6 3 21 + 1 vertex, ROT 2 2

7 0 0

8 4 22 + 4 vertex, LOT 7 6

9p 5 24 vertex, LOT not used not used

10 6 24 + 4 breech, LST 5 3

11 4 8

12p 7 25 + 4 breech, LSA not used not used

13 8 21 + 5 breech, RSP 7 9

14 8 6

15 9 25 + 2 vertex, ROP 8 7

16 7 7

17 10 24 vertex, ROP 0 0

18p 11 26 + 6 breech, RST not used not used

19 12 22 + 4 breech, LSP 3 4

20 13 26 + 2 breech, LST 4 8

21 2 9

22p 14 25 + 1 vertex, LOP not used not used

23 15 24 + 1 breech, RSP 2 3

24 16 26 + 6 breech, LSP 5 5

25 17 26 + 3 vertex, LOP 1 2

26 18 24 + 1 vertex, LOP 5 4

27p 19 27 + 1 vertex, LOP not used not used

28 20 26 + 6 vertex, ROP 8 9

29 8 9

30 21 22 + 3 breech, LSP 6 6

31 22 27 + 5 vertex, ROP 4 7

32 4 7

33 4 7

34 23 25 breech, RSP 0 0

35 24 27 vertex, ROP 2 3

36 2 4

(Continued on following page)
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3 Results

3.1 SQA-based classification results

Figure 3 reports the results of the classification model when
all the 16 features were exploited. As can be seen, the ensemble
tree accurately identified informative and non-informative
abdominal channels (median ACC = 86.2%) and with high
precision (median PPV = 84.6%, median F1 = 86.5%), thus
highlighting the robustness of the SQA-based classification
approach for the identification of the raw abdominal
channels carrying the most informative components of the
fECG signal. Interestingly, the proposed model recognized
good-quality raw recordings with slightly higher performance
than bad-quality ones (median TPR = 88.4%, median
TNR = 84.0%).

Figure 4 depicts the classification performance achieved by the
SQI-based model with only the selected features. According to
preliminary investigations (data not shown), by considering the
80% of the total relevance, only the features from 1st to 9th in
Table 1 were exploited for computing the feature selection findings.
As can be seen from Figure 4, results remained high and stable
(i.e., median value for ACC = 83.5%, TPR = 86.2%, and TNR =
81.0%), despite the use of a reduced number of features led to slightly
lower metrics, with a performance decrease of about 2.6% on
average, and less precision overall (median PPV = 81.9%, median
F1 = 84.0%). In this case, the most informative channels in terms of
fECG contribution could be identified with ACC higher than 83%,
so that non-informative channels could be discarded, thus reducing
the computational burden for accurate fECG extraction methods
downstream, in turn minimizing power consumption in wearable
fECG monitors. Nonetheless, the same imbalance between TPR and

TABLE 2 (Continued) Number of raw abdominal channels identified as informative by the proposed approach exploiting all features or selected features only, with
the clinical information about the week of gestation and the fetal presentation of the recordings (L: left, R: right, O: occiput, S: sacrum, T: transverse, P: posterior A:
anterior). Data information for the adopted 50 recordings was taken from Sulas et al. (2021). Among the signals, some of them were not used because of
unreliable fetal QRS annotation (marked with *) or because of too short duration (marked with‡).

Signals # in
NInFEA

Subject Gestational
week

Fetal
presentation

Number of channels identified as
informative (approach using all

features)

Number of channels identified as
informative (approach using

selected features)

37 25 25 + 1 vertex, LOP 1 2

38‡ not used not used

39 26 24 vertex, OA 4 5

40 27 21 + 3 breech, RSP 8 10

41 9 10

42‡ 28 24 + 6 breech, LSP not used not used

43 29 23 + 4 vertex, ROP 7 8

44 6 8

45 30 23 vertex, OP 6 3

46 31 24 + 4 breech, LSP 11 11

47 32 21 + 1 vertex, LP 12 10

48 12 12

49‡ 33 22 breech, LSP not used not used

50 4 9

51 34 24 + 2 vertex, LOP 9 7

52 10 8

53 35 21 vertex, LOP 7 6

54 5 7

55 36 25 breech, LSP 8 9

56 8 10

57 37 23 + 6 vertex, OA 7 8

58 38 23 vertex, ROP 13 13

59p 39 27 + 3 vertex, LOP not used not used

60p not used not used
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TNR was preserved, despite the adoption of more features was
usually associated to better performance in terms of TNR.
Remarkably, even using a subset of features computed on the
preprocessed abdominal signals, we were able to achieve good
classification results, reducing even more the computational load.

3.2 Impact of the proposed SQA-based
channel selection approach on fetal QRS
detection

Figure 5 and Table 2 report the results obtained when assessing
the impact of the proposed SQA-based channel selection approach
on the NInFEA dataset, in terms of fetal QRS detection performance
and number of channels identified as informative, by using either all
the available features or those selected by the mRMR approach only.

As can be seen from Figure 5, the adoption of the proposed
approach significantly improved the fetal QRS detection
performance with respect to considering all available raw
abdominal channels (p < 0.0001 for all metrics), leading to an
average improvement across all metrics of 41.3% when all
features are maintained, and of 30.0% when only the selected
ones are considered. However, no statistical significance was
found when comparing the use of all available features and only
those selected by mRMR-based approach. Conversely, when looking
at Table 2, it is evident that the number of selected abdominal
channels by the proposed approach when considering all features or
only those selected by the mRMR-based approach is quite coherent,
but independent from the gestational age and fetal presentation,
with 5 ± 3 channels (mean ± standard deviation) selected when all
features are considered, and 6 ± 3 when only the selected ones were
retained across the 50 examined multi-channel recordings. For the

sake of the completeness, some abdominal segments from the
subjects showing the highest and the lowest number of signals
identified as informative by our approach (i.e., the 38th and the
2nd in Table 2, respectively) are depicted in Figure 6.

4 Discussion

In this work, several time-domain and frequency-domain SQIs
from the scientific literature were exploited to train a supervised
machine-learning approach for the selection of the raw, non-
invasive abdominal channels carrying the significant fetal
contributions. To the best of the authors’ knowledge, this
represent the first study looking at the quality of the abdominal
channels by means of machine learning approaches to select the best
ones to be used for subsequent fECG extraction. Although feature
extraction and classification were performed offline in this study,
they can be also implemented in real-time on digital signal
processing architectures, according to the literature in different
biomedical engineering fields (Pani et al., 2016).

From our results, the SQA-based classification approach
revealed high ACC, above 86% when all features were
considered, correctly identifying more than 88% of the
informative abdominal signals (see Figure 3). The proposed
method seemed to be more conservative and high-performing
when all features were considered, but good identification
performance was obtained also when only a restricted number of
features were taken into account (see Figure 4). Nonetheless, despite
our findings seemed to be less accurate than previous works (Mertes
et al., 2022) where 94% of ACC, PPV, and TPR were found, it should
be noted that a different dataset with a lower number of abdominal
traces was used to model a CNN-based approach, which conversely

FIGURE 6
Five 5-s long abdominal segments from the subjects showing the highest [i.e., the 38th, (A)] and the lowest number of informative signals [i.e., the
2nd, (B)] after preprocessing.
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could be hardly exploited in wearable, low-power fECG monitoring
devices. Indeed, our approach is aimed at limiting data complexity
by reducing the number of abdominal channels to be processed for
fECG extraction to those effectively carrying information on the
fECG signal. Remarkably, this SQA-based data reduction could be
extended even more, by stopping the processing when no reliable,
good channels are identified in input, by following the idea
presented in Orphanidou et al. (2015).

Furthermore, by looking at the possible impact of our
method on fetal QRS detection, it is evident that the
proposed approach introduced a significant improvement in
all evaluated metrics, even outperforming previous scientific
literature in this regard. Specifically, in Liu et al. (2014), the
authors developed a multi-step method based on SQA to
provide accurate maternal and fetal QRS complexes locations
from abdominal recordings. However, the adoption of a SQA
approach for the abdominal channel selection, to be later
processed, introduced an improvement slightly above 5% in
F1 score for fetal QRS detection. Despite the use of a different
dataset [i.e., the PhysioNet/Computing in Cardiology Challenge
2013 (Goldberger et al., 2000; Silva et al., 2013; Clifford et al.,
2014)], and a more elaborated fECG extraction algorithm, the
F1 score increase was definitely lower than this work. In fact, in
this work, fECG extraction was performed by the multi-
reference QRD-RLS adaptive filter as set in Sulas et al.
(2020), which is not expressly conceived for fECG extraction,
although able to provide excellent results.

5 Conclusion

In this work, a machine learning approach for the SQA of
non-invasive, multi-channel abdominal recordings was
presented, aiming at driving the channel selection to feed fully
featured fECG extraction algorithms. This aspect, which was
proven to significantly enhance fetal QRS detection
performance, also plays a key role in reducing the power
consumption associated with data processing in real-time fetal
ECG monitors, paving the way to the development of efficient,
wearable, low-power devices for fHR surveillance. Additionally,
the proposed approach can be used to identify the most-
informative channels in high-density recordings, or the best
electrode positioning from repeated measurements with a low
number of channels. This is particularly relevant when the
recordings are blinded to the fetal presentation, and could
allow dealing with substantial changes in the fetal
presentation, especially affecting the recordings in early
pregnancy.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.physionet.org/content/ninfea/1.0.0/.

Ethics statement

This study was reviewed and approved by the Independent
Ethics Committee of the Cagliari University Hospital (AOU
Cagliari). The participants provided their written informed
consent to participate in this study.

Author contributions

GB drafted the manuscript, performed the analysis and
computed the results. GB and ES developed the processing steps
and discussed the results. RV conceived the study and coordinated
ES activity during her internship period at TUE. MU contributed in
recording the dataset. RT coordinated the clinical unit and provided
clinical advice. LR and DP supervised ES during her PhD work. DP
supported in conceiving the study, defining the methods and
supervising GB, beyond coordinating the whole project. All
authors contributed to editing and revising the manuscript, and
approved it in its final form.

Funding

Part of this research was supported by the Italian Government
“Progetti di Interesse Nazionale (PRIN)” under the grant agreement
2017RR5EW3 - ICT4MOMs project.

Acknowledgments

The authors wish to thank the team headed by Dr. Roberto
Tumbarello, Division of Pediatric Cardiology, AOB Hospital
(Cagliari, Italy), for the support in the dataset collection, and
Mariachiara Vardeu for her support in the preliminary automatic R-
peak detection.

Conflict of interest

RV is one of the founders, and shareholder in Nemo Healthcare
BV, the Netherlands.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Bioengineering and Biotechnology frontiersin.org12

Baldazzi et al. 10.3389/fbioe.2023.1059119

https://www.physionet.org/content/ninfea/1.0.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1059119


References

Agostinelli, A., Grillo, M., Biagini, A., Giuliani, C., Burattini, L., Fioretti, S., et al. (2015).
Noninvasive fetal electrocardiography: An overview of the signal electrophysiologicalmeaning,
recording procedures, and processing techniques. Ann. noninvasive Electrocardiol. Off. J. Int.
Soc. Holter Noninvasive Electrocardiol. Inc. 20 (4), 303–313. doi:10.1111/anec.12259

Allen, J., andMurray, A. (1996). Assessing ECG signal quality on a coronary care unit.
Physiol. Meas. 17 (4), 249–258. doi:10.1088/0967-3334/17/4/002

Andreotti, F., Graser, F., Malberg, H., and Zaunseder, S. (2017). Non-invasive fetal
ECG signal quality assessment for multichannel heart rate estimation. IEEE Trans.
Biomed. Eng. 64 (12), 2793–2802. doi:10.1109/tbme.2017.2675543

Baldazzi, G., Sulas, E., Urru, M., Tumbarello, R., Raffo, L., and Pani, D. (2020).
Wavelet denoising as a post-processing enhancement method for non-invasive foetal
electrocardiography. Comput. Methods Programs Biomed. 195, 105558. doi:10.1016/j.
cmpb.2020.105558

Behar, J., Oster, J., Li, Q., and Clifford, G. D. (2012). A single channel ECG quality
metric. Computing in Cardiology, 381–384.

Behar, J., Oster, J., Li, Q., and Clifford, G. D. (2013). ECG signal quality during
arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 60
(6), 1660–1666. doi:10.1109/tbme.2013.2240452

Behar, J. A., Weiner, Z., and Warrick, P. (2019) “Special session on computational
fetal monitoring,” in 2019 Computing in Cardiology (CinC), Singapore. 1–4. doi:10.
22489/CinC.2019.030

Chandrashekar, G., and Sahin, F. (2014). A survey on feature selection
methods. Comput. Electr. Eng. 40 (1), 16–28. doi:10.1016/j.compeleceng.2013.
11.024

Clifford, G. D., Behar, J., Li, Q., and Rezek, I. (2012). Signal quality indices and data
fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 33 (9),
1419–1433. doi:10.1088/0967-3334/33/9/1419

Clifford, G. D., Silva, I., Behar, J., and Moody, G. B. (2014). Non-invasive fetal
ECG analysis. Physiol. Meas. 35 (8), 1521–1536. doi:10.1088/0967-3334/35/8/
1521

Daluwatte, C., Johannesen, L., Galeotti, L., Vicente, J., Strauss, D. G., and Scully, C. G.
(2016). Assessing ECG signal quality indices to discriminate ECGs with artefacts from
pathologically different arrhythmic ECGs. Physiol. Meas. 37 (8), 1370–1382. doi:10.
1088/0967-3334/37/8/1370

Del Rio, B. A. S., Lopetegi, T., and Romero, I. (2011). Assessment of different methods
to estimate electrocardiogram signal quality. Computing in Cardiology. IEEE, 609–612.

Di Marco, L. Y., Duan, W., Bojarnejad, M., Zheng, D., King, S., Murray, A., et al.
(2012). Evaluation of an algorithm based on single-condition decision rules for binary
classification of 12-lead ambulatory ECG recording quality. Physiol. Meas. 33 (9),
1435–1448. doi:10.1088/0967-3334/33/9/1435

Donofrio, M. T., Moon-Grady, A. J., Hornberger, L. K., Copel, J. A., Sklansky,
M. S., Abuhamad, A., et al. (2014). Diagnosis and treatment of fetal cardiac
disease. Circulation 129 (21), 2183–2242. doi:10.1161/01.cir.0000437597.
44550.5d

Fotiadou, E., van Laar, J. O. E. H., Oei, S. G., and Vullings, R. (2018).
Enhancement of low-quality fetal electrocardiogram based on time-sequenced
adaptive filtering. Med. Biol. Eng. Comput. 56 (12), 2313–2323. doi:10.1007/
s11517-018-1862-8

Fotiadou, E., van Sloun, R. J. G., van Laar, J. O. E. H., and Vullings, R. (2021). A dilated
inception CNN-LSTM network for fetal heart rate estimation. Physiol. Meas. 42 (4),
045007. doi:10.1088/1361-6579/abf7db

Gaikwad, R., and Warren, J. R. (2009). The role of home-based information and
communications technology interventions in chronic disease management: A
systematic literature review. Health Inf. J. 15, 122–146. doi:10.1177/
1460458209102973

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R.
G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new
research resource for complex physiologic signals. Circulation 101 (23), e215–e220.
doi:10.1161/01.cir.101.23.e215

Guyon, I., and Elisseeff, A. (2003). An introduction to variable and feature selection.
J. Mach. Learn Res., 1157–1182.

Hayn, D., Jammerbund, B., and Schreier, G. (2012). QRS detection based ECG
quality assessment. Physiol. Meas. 33 (9), 1449–1461. doi:10.1088/0967-3334/33/9/
1449

Jagannath, D. J., and Selvakumar, A. I. (2014). Issues and research on foetal
electrocardiogram signal elicitation. Biomed. Signal Process Control 10, 224–244.
doi:10.1016/j.bspc.2013.11.001

Jamshidian-Tehrani, F., and Sameni, R. (2018). Fetal ECG extraction from time-
varying and low-rank noninvasive maternal abdominal recordings. Physiol. Meas. 39
(12), 125008. doi:10.1088/1361-6579/aaef5d

Jaros, R., Martinek, R., and Kahankova, R. (2018). Non-adaptive methods for fetal
ECG signal processing: A review and appraisal. Sensors 18 (11), 3648. doi:10.3390/
s18113648

Johannesen, L., and Galeotti, L. (2012). Automatic ECG quality scoring methodology:
Mimicking human annotators. Physiol. Meas. 33 (9), 1479–1489. doi:10.1088/0967-
3334/33/9/1479

Johnson, A. E. W., Behar, J., Andreotti, F., Clifford, G. D., and Oster, J. (2015).
Multimodal heart beat detection using signal quality indices. Physiol. Meas. 36 (8),
1665–1677. doi:10.1088/0967-3334/36/8/1665

Kahankova, R., Martinek, R., Jaros, R., Behbehani, K., Matonia, A., Jezewski, M., et al.
(2020). A review of signal processing techniques for non-invasive fetal
electrocardiography. IEEE Rev. Biomed. Eng. 13, 51–73. doi:10.1109/rbme.2019.
2938061

Karimi Rahmati, A., Setarehdan, S. K., and Araabi, B. N. (2017). A PCA/ICA
based fetal ECG extraction from mother abdominal recordings by means of a novel
data-driven approach to fetal ECG quality assessment. J. Biomed. Phys. Eng. 7 (1),
37–50.

Langley, P., Di Marco, L. Y., King, S., Duncan, D., Di Maria, C., Duan, W., et al.
(2011). An algorithm for assessment of quality of ECGs acquired via mobile telephones.
Computing in Cardiology. IEEE, 281–284.

Lanzola, G., Ginardi, M. G., Mazzanti, A., and Quaglini, S. (2014). Gquest:
Modeling patient questionnaires and administering them through a mobile
platform application. Comput. Methods Programs Biomed. 117 (2), 277–291.
doi:10.1016/j.cmpb.2014.07.010

Li, Q., and Clifford, G. D. (2012). Signal quality and data fusion for false alarm
reduction in the intensive care unit. J. Electrocardiol. 45 (6), 596–603. doi:10.1016/j.
jelectrocard.2012.07.015

Li, Q., Mark, R. G., and Clifford, G. D. (2007). Robust heart rate estimation from
multiple asynchronous noisy sources using signal quality indices and a Kalman filter.
Physiol. Meas. 29 (1), 15–32. doi:10.1088/0967-3334/29/1/002

Li, Q., Rajagopalan, C., and Clifford, G. D. (2014). A machine learning approach to
multi-level ECG signal quality classification. Comput. Methods Programs Biomed. 117
(3), 435–447. doi:10.1016/j.cmpb.2014.09.002

Liu, C., Li, P., Di Maria, C., Zhao, L., Zhang, H., and Chen, Z. (2014). A multi-step
method with signal quality assessment and fine-tuning procedure to locate maternal
and fetal QRS complexes from abdominal ECG recordings. Physiol. Meas. 35 (8),
1665–1683. doi:10.1088/0967-3334/35/8/1665

Liu, C., Zhang, X., Zhao, L., Liu, F., Chen, X., Yao, Y., et al. (2018). Signal quality
assessment and lightweight QRS detection for wearable ECG SmartVest system. IEEE
Internet Things J. 6 (2), 1363–1374. doi:10.1109/jiot.2018.2844090

Majumder, S., Mondal, T., and Deen, M. J. (2017). Wearable
sensors for remote health monitoring. Sensors (Basel). 17 (1), 130. doi:10.3390/
s17010130

Martinez-Tabares, F. J., Espinosa-Oviedo, J., and Castellanos-Dominguez, G. (2012).
“Improvement of ECG signal quality measurement using correlation and diversity-
based approaches,” in Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (IEEE), 4295–4298.

Mertes, G., Long, Y., Liu, Z., Li, Y., Yang, Y., and Clifton, D. A. (2022). A deep learning
approach for the assessment of signal quality of non-invasive foetal electrocardiography.
Sensors (Basel). 22 (9), 3303. doi:10.3390/s22093303

Mhajna, M., Schwartz, N., Levit-Rosen, L., Warsof, S., Lipschuetz, M., Jakobs, M.,
et al. (2020). Wireless, remote solution for home fetal and maternal heart rate
monitoring. Am. J. Obstet. Gynecol. MFM 2 (2), 100101. doi:10.1016/j.ajogmf.2020.
100101

Moody, B. E. (2011). “Rule-based methods for ECG quality control,” in
2011 computing in Cardiology (IEEE), 361–363.

Oostendorp, T. F., van Oosterom, A., and Jongsma, H.W. (1989). Electrical properties
of tissues involved in the conduction of foetal ECG. Med. Biol. Eng. Comput. 27 (3),
322–324. doi:10.1007/bf02441492

Oostendorp, T. F., Van Oosterom, A., and Jongsma, H. W. (1989). The effect of
changes in the conductive medium on the fetal ECG throughout gestation. Clin. Phys.
Physiol. Meas. 10, 11–20. doi:10.1088/0143-0815/10/4b/002

Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., and Tarassenko,
L. (2015). Signal-quality indices for the electrocardiogram and photoplethysmogram:
Derivation and applications to wireless monitoring. IEEE J. Biomed. Heal Inf. 19 (3),
832–838. doi:10.1109/JBHI.2014.2338351

Pani, D., Barabino, G., Citi, L., Meloni, P., Raspopovic, S., Micera, S., et al. (2016).
Real-time neural signals decoding onto off-the-shelf DSP processors for
neuroprosthetic applications. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 993–1002.
doi:10.1109/tnsre.2016.2527696

Pani, D., Barabino, G., and Raffo, L. (2013). NInFEA: An embedded framework for
the real-time evaluation of fetal ECG extraction algorithms. Biomed. Technik/
Biomedical Eng. 58, 13.

Peters, M., Crowe, J., Pieri, J. F., Quartero, H., Hayes-Gill, B., James, D., et al. (2001).
Monitoring the fetal heart non-invasively: A review of methods. J. Perinat. Med. 29 (5),
408–416. doi:10.1515/jpm.2001.057

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Baldazzi et al. 10.3389/fbioe.2023.1059119

https://doi.org/10.1111/anec.12259
https://doi.org/10.1088/0967-3334/17/4/002
https://doi.org/10.1109/tbme.2017.2675543
https://doi.org/10.1016/j.cmpb.2020.105558
https://doi.org/10.1016/j.cmpb.2020.105558
https://doi.org/10.1109/tbme.2013.2240452
https://doi.org/10.22489/CinC.2019.030
https://doi.org/10.22489/CinC.2019.030
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1088/0967-3334/33/9/1419
https://doi.org/10.1088/0967-3334/35/8/1521
https://doi.org/10.1088/0967-3334/35/8/1521
https://doi.org/10.1088/0967-3334/37/8/1370
https://doi.org/10.1088/0967-3334/37/8/1370
https://doi.org/10.1088/0967-3334/33/9/1435
https://doi.org/10.1161/01.cir.0000437597.44550.5d
https://doi.org/10.1161/01.cir.0000437597.44550.5d
https://doi.org/10.1007/s11517-018-1862-8
https://doi.org/10.1007/s11517-018-1862-8
https://doi.org/10.1088/1361-6579/abf7db
https://doi.org/10.1177/1460458209102973
https://doi.org/10.1177/1460458209102973
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1088/0967-3334/33/9/1449
https://doi.org/10.1088/0967-3334/33/9/1449
https://doi.org/10.1016/j.bspc.2013.11.001
https://doi.org/10.1088/1361-6579/aaef5d
https://doi.org/10.3390/s18113648
https://doi.org/10.3390/s18113648
https://doi.org/10.1088/0967-3334/33/9/1479
https://doi.org/10.1088/0967-3334/33/9/1479
https://doi.org/10.1088/0967-3334/36/8/1665
https://doi.org/10.1109/rbme.2019.2938061
https://doi.org/10.1109/rbme.2019.2938061
https://doi.org/10.1016/j.cmpb.2014.07.010
https://doi.org/10.1016/j.jelectrocard.2012.07.015
https://doi.org/10.1016/j.jelectrocard.2012.07.015
https://doi.org/10.1088/0967-3334/29/1/002
https://doi.org/10.1016/j.cmpb.2014.09.002
https://doi.org/10.1088/0967-3334/35/8/1665
https://doi.org/10.1109/jiot.2018.2844090
https://doi.org/10.3390/s17010130
https://doi.org/10.3390/s17010130
https://doi.org/10.3390/s22093303
https://doi.org/10.1016/j.ajogmf.2020.100101
https://doi.org/10.1016/j.ajogmf.2020.100101
https://doi.org/10.1007/bf02441492
https://doi.org/10.1088/0143-0815/10/4b/002
https://doi.org/10.1109/JBHI.2014.2338351
https://doi.org/10.1109/tnsre.2016.2527696
https://doi.org/10.1515/jpm.2001.057
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1059119


Radovic, M., Ghalwash, M., Filipovic, N., and Obradovic, Z. (2017). Minimum
redundancy maximum relevance feature selection approach for temporal
gene expression data. BMC Bioinforma. 18 (1), 9–14. doi:10.1186/s12859-016-
1423-9

Redmond, S. J., Lovell, N. H., Basilakis, J., and Celler, B. G. (2008). ECG quality
measures in telecare monitoring. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE
Eng. Med. Biol. Soc. Annu. Int. Conf. 2008, 2869–2872. doi:10.1109/IEMBS.2008.
4649801

Rooijakkers, M. (2020). “Innovative devices and techniques for multimodal fetal
health monitoring,” in Innovative technologies and signal processing in perinatal
medicine. Editor Springer. Volume 1. 1st ed, 147.

Sameni, R., and Clifford, G. D. (2010). A review of fetal ECG signal processing; issues
and promising directions. Open Pacing Electrophysiol. Ther. J. 3, 4–20. doi:10.2174/
1876536X01003010004

Sameni, R. (2018). The open-source electrophysiological toolbox (OSET). version
3.14 [Internet]Available from: https://gitlab.com/rsameni/OSET/.

Satija, U., Ramkumar, B., and Manikandan, M. S. (2018). A review of signal
processing techniques for electrocardiogram signal quality assessment. IEEE Rev.
Biomed. Eng. 11, 36–52. doi:10.1109/rbme.2018.2810957

Shahriari, Y., Fidler, R., Pelter, M. M., Bai, Y., Villaroman, A., and Hu, X. (2018).
Electrocardiogram signal quality assessment based on structural image similarity
metric. IEEE Trans. Biomed. Eng. 65 (4), 745–753. doi:10.1109/tbme.2017.
2717876

Shi, X., Yamamoto, K., Ohtsuki, T., Matsui, Y., and Owada, K. (2022). Non-invasive
fetal ECG signal quality assessment based on unsupervised learning approach. Annu.
Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2022,
1296–1299. doi:10.1109/EMBC48229.2022.9870908

Silva, I., Behar, J., Sameni, R., Zhu, T., Oster, J., Clifford, G. D., et al. (2013).
“Noninvasive fetal ECG: The PhysioNet/computing in cardiology Challenge,” in
2013 computing in Cardiology (CInC) (United States, 149–152.

Silva, I., Moody, G. B., and Celi, L. (2011). “Improving the quality of ECGs collected
using mobile phones: The Physionet/Computing in Cardiology Challenge 2011,” in
2011 computing in Cardiology (IEEE), 273–276.

Sulas, E., Urru, M., Tumbarello, R., Raffo, L., and Pani, D. (2020). Systematic analysis of
single- and multi-reference adaptive filters for non-invasive fetal electrocardiography. Math.
Biosci. Eng. 17 (1), 286–308. doi:10.3934/mbe.2020016

Sulas, E., Urru, M., Tumbarello, R., Raffo, L., Sameni, R., and Pani, D. (2021). A non-
invasive multimodal foetal ECG–Doppler dataset for antenatal cardiology research. Sci.
Data 8 (1), 30. doi:10.1038/s41597-021-00811-3

Taylor, M. J. O., Smith, M. J., Thomas, M., Green, A. R., Cheng, F., Oseku-Afful, S.,
et al. (2003). Non-invasive fetal electrocardiography in singleton and multiple
pregnancies. BJOG 110 (7), 668–678. doi:10.1046/j.1471-0528.2003.02005.x

Varanini, M., Tartarisco, G., Balocchi, R., Macerata, A., Pioggia, G., and Billeci, L.
(2017). A new method for QRS complex detection in multichannel ECG: Application to
self-monitoring of fetal health. Comput. Biol. Med. 85, 125–134. doi:10.1016/j.
compbiomed.2016.04.008

Varanini, M., Tartarisco, G., Billeci, L., Macerata, A., Pioggia, G., and Balocchi, R.
(2013). A multi-step approach for non-invasive fetal ECG analysis. Comput. Cardiol.,
281–284.

Wang, J. Y. (2002). “A new method for evaluating ECG signal quality for multi-lead
arrhythmia analysis,” in Computers in Cardiology (IEEE), 85–88.

Zhao, Z., and Zhang, Y. (2018). SQI quality evaluation mechanism of single-lead ECG
signal based on simple heuristic fusion and fuzzy comprehensive evaluation. Front.
Physiol. 9, 727. doi:10.3389/fphys.2018.00727

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Baldazzi et al. 10.3389/fbioe.2023.1059119

https://doi.org/10.1186/s12859-016-1423-9
https://doi.org/10.1186/s12859-016-1423-9
https://doi.org/10.1109/IEMBS.2008.4649801
https://doi.org/10.1109/IEMBS.2008.4649801
https://doi.org/10.2174/1876536X01003010004
https://doi.org/10.2174/1876536X01003010004
https://gitlab.com/rsameni/OSET/
https://doi.org/10.1109/rbme.2018.2810957
https://doi.org/10.1109/tbme.2017.2717876
https://doi.org/10.1109/tbme.2017.2717876
https://doi.org/10.1109/EMBC48229.2022.9870908
https://doi.org/10.3934/mbe.2020016
https://doi.org/10.1038/s41597-021-00811-3
https://doi.org/10.1046/j.1471-0528.2003.02005.x
https://doi.org/10.1016/j.compbiomed.2016.04.008
https://doi.org/10.1016/j.compbiomed.2016.04.008
https://doi.org/10.3389/fphys.2018.00727
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1059119

	Automatic signal quality assessment of raw trans-abdominal biopotential recordings for non-invasive fetal electrocardiography
	1 Introduction
	2 Materials and methods
	2.1 Feature extraction and selection for the SQI-based channel selection
	2.2 Classification model
	2.3 Dataset for training and testing the SQA-based classification model
	2.4 Performance evaluation
	2.4.1 SQA-based classification performance evaluation
	2.4.2 Evaluation of the proposed channel selection approach impact on fHR measurement


	3 Results
	3.1 SQA-based classification results
	3.2 Impact of the proposed SQA-based channel selection approach on fetal QRS detection

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


