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Automatic electroencephalogram (EEG) emotion recognition is a challenging 
component of human–computer interaction (HCI). Inspired by the powerful feature 
learning ability of recently-emerged deep learning techniques, various advanced 
deep learning models have been employed increasingly to learn high-level feature 
representations for EEG emotion recognition. This paper aims to provide an up-
to-date and comprehensive survey of EEG emotion recognition, especially for 
various deep learning techniques in this area. We provide the preliminaries and basic 
knowledge in the literature. We review EEG emotion recognition benchmark data sets 
briefly. We review deep learning techniques in details, including deep belief networks, 
convolutional neural networks, and recurrent neural networks. We describe the state-
of-the-art applications of deep learning techniques for EEG emotion recognition in 
detail. We  analyze the challenges and opportunities in this field and point out its 
future directions.
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1. Introduction

Emotion recognition (or detection) is a major scientific problem in affective computing, 
which mainly solves the problem of computer systems accurately processing, recognizing, and 
understanding the emotional information expressed by human beings. Affective computing 
requires interdisciplinary knowledge, including psychology, biology, and computer science. As 
emotion plays a key role in the field of human–computer interaction (HCI) and artificial 
intelligence, it has recently received extensive attention in the field of engineering research. 
Research of emotion recognition technology can further promote the development of various 
disciplines, including computer science, psychology, neuroscience, human factors engineering, 
medicine, and criminal investigation.

As a complex psychological state, emotion is related to physical behavior and physiological 
activities (Cannon, 1927). Researchers have conducted numerous studies to enable computers 
to correctly distinguish and understand human emotions. These studies aim to enable 
computers to generate various emotional features similar to human beings, so as to achieve 
the purpose of natural, sincere, and vivid interaction with human beings. Some of these 
methods mainly use non physiological signals, such as speech (Zhang et al., 2017; Khalil et al., 
2019; Zhang S. et al., 2021), facial expression (Alreshidi and Ullah, 2020), and body posture 
(Piana et  al., 2016). However, their accuracy depends on people’s age and cultural 
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characteristics, which are subjective, so accurately judging the true 
feelings of others is difficult. Other methods use physiological 
activities (or physiological clues), such as heart rate (Quintana et al., 
2012), skin impedance (Miranda et al., 2018), respiration (Valderas 
et al., 2019) or brain signals, functional magnetic resonance imaging 
(Chen et al., 2019a), magnetoencephalography (Kajal et al., 2020), 
and electroencephalography, to identify emotional states. Some 
studies have shown that physiological activities and emotional 
expression are correlated, although the sequence of the two 
processes is still debated (Cannon, 1927). Therefore, the method 
based on calculating physiological signals is considered an effective 
supplement to the recognition method based on nonphysiological 
signals. The subject cannot control the automatically generated 
electroencephalogram (EEG) signal. For those who cannot speak 
clearly and express their feelings through natural speech or have 
physical disabilities and cannot express their feelings through facial 
expressions or body postures, emotion recognition of voice, 
expression, and posture becomes impossible. Therefore, EEG is an 
appropriate means to extract human emotions, and studying 
emotional cognitive mechanisms and recognizing emotional states 
by directly using brain activity information, such as EEG, are 
particularly important.

From the perspective of application prospects, EEG-based 
emotion recognition technology has penetrated into various fields, 
including medical, education, entertainment, shopping, military, 
social, and safe driving (Suhaimi et al., 2020). In the medical field, 
timely acquisition of patients’ EEG signals and rapid analysis of 
their emotional state can help doctors and nurses to accurately 
understand the patients’ psychological state and then make 
reasonable medical decisions, which has an important effect on the 
rehabilitation of some people with mental disorders, such as autism 
(Mehdizadehfar et  al., 2020; Mayor-Torres et  al., 2021; Ji et  al., 
2022), depression (Cai et al., 2020; Chen X. et al., 2021), Alzheimer’s 
disease (Güntekin et  al., 2019; Seo et  al., 2020), and physical 
disabilities (Chakladar and Chakraborty, 2018). In terms of 
education, the emotion recognition technology based on EEG 
signals can enable teaching staff to adjust teaching methods and 
teaching attitudes in a timely manner in accordance with the 
emotional performance of different trainees in class, such as 
increasing or reducing the workload (Menezes et al., 2017). In terms 
of entertainment, such as computer games, researchers try to detect 
the emotional state of players to adapt to the difficulty, punishment, 
and encouragement of the game (Stavroulia et  al., 2019). In the 
military aspect, the emotional status of noncommissioned officers 
and soldiers can be captured timely and accurately through EEG 
signals, so that the strategic layout can be  adjusted in time to 
improve the winning rate of war (Guo et al., 2018). In terms of social 
networks, we can enhance barrier-free communication in the HCI 
system, increase the mutual understanding and interaction in the 
human–machine–human interaction channel, and avoid some 
unnecessary misunderstandings and frictions through the 
acquisition of emotional information (Wu et al., 2017). In terms of 
safe driving, timely detection of EEG emotional conditions can 
enable a vehicle to perform intelligent locking during startup to 
block driving or actively open the automatic driving mode to 
intervene in the vehicle’s motion trajectory until parking at a safe 
position, thereby greatly reducing the occurrence of accidents (Fan 
et al., 2017).

Recently, automatic recognition of emotional information from 
EEG has become a challenging problem, and has attracted extensive 
attention in the fields of artificial intelligence and computer vision. The 
flow of emotion recognition research is shown in Figure 1. Essentially, 
human emotion recognition using EEG signals belongs to one type of 
pattern recognition research.

In the early EEG-based automated emotion recognition 
literature, a variety of machine learning-based studies, such as 
support vector machine (SVM; Lin et al., 2009; Nie et al., 2011; Jie 
et  al., 2014; Candra et  al., 2015), k-nearest neighbor (KNN; 
Murugappan et  al., 2010; Murugappan, 2011; Kaundanya et  al., 
2015), linear regression (Bos, 2006; Liu et al., 2011), support vector 
regression (Chang et al., 2010; Soleymani et al., 2014), random forest 
(Lehmann et  al., 2007; Donos et  al., 2015; Lee et  al., 2015), and 
decision tree (Kuncheva et  al., 2011; Chen et  al., 2015), have 
been developed.

Although the abovementioned hand-crafted EEG signal features 
associated with machine learning approaches can produce good 
domain-invariant features for EEG emotion recognition, they are still 
low-level and not highly discriminative. Thus, obtaining high-level 
domain-invariant feature representations for EEG emotion recognition 
is desirable.

The recently-emerged deep learning methods may present a possible 
solution to achieve high-level domain-invariant feature representations 
and high-precision classification results of EEG emotion recognition. 
The representative deep leaning techniques contain recurrent neural 
networks (RNNs; Elman, 1990), long short-term memory (LSTM; 
Hochreiter and Schmidhuber, 1997; Zhang et al., 2019), deep belief 
networks (DBNs; Hinton et  al., 2006), and convolutional neural 
networks (CNNs; Krizhevsky et  al., 2012). To date, deep learning 
techniques have shown outstanding performance on object detection 
and classification (Wu et al., 2020), natural language processing (Otter 
et  al., 2020), speech signal processing (Purwins et  al., 2019), and 
multimodal emotion recognition (Zhou et al., 2021) due to its strong 
feature learning ability. Figure 2 shows the evolution of EEG emotion 
recognition with deep learning algorithms, emotion categories 
and databases.

Inspired by the lack of summarizing the recent advances in 
various deep learning techniques for EEG-based emotion 
recognition, this paper aims to present an up-to-date and 
comprehensive survey of EEG emotion recognition, especially for 
various deep learning techniques in this area. This paper highlights 
the different challenges and opportunities on EEG emotion 
recognition tasks and points out its future trends. In this survey, 
we have searched the published literature between January 2012, 
and December 2022 through Scholar. google, ScienceDirect, 
IEEEXplore, ACM, Springer, PubMed, and Web of Science, on the 
basis of the following keywords: “EEG emotion recognition,” 
“emotion computing,” “deep learning,” “RNNs,” “LSTM,” “DBNs,” 
and “CNNs.” There is no any language restriction for the 
searching process.

In this work, our contributions can be summarized as follows:

 1. We provide an up-to-date literature survey on EEG emotion 
recognition from a perspective of deep learning. To the best of 
our knowledge, this is the first attempt to present a comprehensive 
review covering EEG emotion recognition and deep learning-
based feature extraction algorithms in this field.
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 2. We analyze and discuss the challenges and opportunities faced to 
EEG emotion recognition and point out future directions in 
this field.

The organization of this paper is as follows. We first present the 
preliminaries and basic knowledge of EEG emotion recognition. 
We  review benchmark datasets and deep learning techniques in 

FIGURE 1

Flowchart of emotion recognition using EEG signals.
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FIGURE 2

The evolution of EEG emotion recognition with deep learning algorithms, emotion categories and databases.
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detail. We  show the recent advances of the applications of deep 
learning techniques for EEG emotion recognition. We give a summary 
of open challenge and future directions. We  provide the 
concluding remarks.

2. Preliminaries and basic knowledge

2.1. Definition of affective computing

Professor Picard (1997) of the MIT and his team clearly defined 
affective computing, that is, the calculation of factors triggered by 
emotion, related to emotion, or able to affect and determine 
emotional change. In accordance with the research results in the field 
of emotion, emotion is a mechanism gradually formed in the process 
of human adaptation to social environment. When different 
individuals face the same environmental stimulus, they may have the 
same or similar emotional changes or they may have different 
emotional changes due to the difference in individual living 
environment. This psychological mechanism can play a role in 
seeking advantages and avoiding disadvantages. Although computers 
have strong logic computing ability, human beings cannot 
communicate more deeply when interacting with computers due to 
the lack of psychological mechanisms similar to human beings. 
Emotion theory is an effective means to solve this problem. 
Therefore, an effective method to realize computer intelligence is to 
combine logical computing with emotional computing, which is a 
research topic that many researchers focus on at present (Zhang 
S. et al., 2018).

2.2. Classification of emotional models

Many researchers cannot reach a unified emotional classification 
standard when conducting emotional computing research due to the 
high complexity and abstractness of emotion. At present, researchers 
usually divide emotion models into discrete model and dimensional 
space model.

In the discrete model, each emotion is distributed discretely, and 
these discrete emotions combine to form the human emotional world. 
In the discrete model, designers have different definitions of emotions, 
and they are divided into different emotional categories. American 
psychologist Ekman and Friesen (1971) divided human emotions into 
six basic emotions, namely, anger, disgust, fear, happiness, sadness, and 
surprise, by analyzing human facial expressions. Lazarus (Lazarus, 
1993), one of the modern representatives of American stress theory, 
divided emotions into 15 categories, such as anger, anxiety and 
happiness, and each emotional state has a corresponding core related 
theme. Psychologist Plutchik (2003) divided emotions into eight basic 
categories: anger, fear, sadness, disgust, expectation, surprise, approval, 
and happiness. These discrete emotion classification methods are 
relatively simple and easy to understand, and have been widely used in 
many emotion recognition studies.

The dimensional space model of emotion can be divided into 2D 
and 3D. The 2D expression model of emotion was first proposed by 
psychologist Russell (1980). It uses 2D coordinate axis to describe the 
polarity and intensity of emotion. Polar axis is used to describe the 
positive and negative types of emotion, and intensity coordinate axis 
refers to the intensity of emotion. The 2D emotion model is consistent 

with people’s cognition of emotion. Currently, the VA model that divides 
human emotions into two dimensions is widely used, which are the 
valency dimension and arousal dimension, as shown in Figure 3.

Considering that the 2D space representation of emotions cannot 
effectively distinguish some basic emotions, such as fear and anger, 
Mehrabian (1996) proposed a 3D space representation of emotions, and 
its three dimensions are pleasure, activation, and dominance, as shown 
in Figure 4. Centered on the origin, pleasure (P) represents the difference 
between positive and negative emotions; arousal (A) indicates the 
activation degree of human emotions; dominance (D) indicates the 
degree of human control over current things. At the same time, the 
coordinate values of the three dimensions can be  used to describe 
specific human emotions.

2.3. Deep learning techniques

2.3.1. DBNs
DBNs proposed by Hinton et al. (2006) are a generative model aim 

to train the weights among its neurons and make the entire neural 
network generate training data in accordance with the maximum  
probability.

At present, DBN has been applied to many areas of life, such as 
voice, graphics, and other visual data classification tasks, and achieved 
good recognition results. Tong et  al. used a DBN model to classify 
hyperspectral remote sensing images, improved the training process of 
DBN, and used the hyperspectral remote sensing image dataset Salinas 
to verify the proposed method (Tong et  al., 2017). Compared with 
traditional model classification methods, the classification accuracy of 
DBN model can reach more than 90%. In the text classification event, 
Payton L et al. proposed an ME learning algorithm for DBN (Payton 
et al., 2016). This algorithm is specially designed to deal with limited 
training data. Compared with the maximum likelihood learning 
method, the method of maximizing the entropy of parameters in DBN 
has more effective generalization ability, less data distribution deviation, 
and robustness to over fitting. It achieves good classification effect on 
Newsgroup, WebKB, and other datasets. The DBN model also achieves 
good classification results in speech classification events. Wen et al. tried 
to recognize human emotions from speech signals (Wen et al., 2017) 
using a random DBN (RDBN) integrating method. The experimental 
results on the benchmark speech emotion database show that the 
accuracy of RDBN is higher than that of KNN and other speech emotion 
recognition methods. Kamada S and Ichimura T extended the learning 
algorithm of adaptive RBM and DBN to time series analysis by using the 
idea of short-term memory and used the adaptive structure learning 
method to search the optimal network structure of DBN in the training 
process. This method was applied to MovingMNIST, a benchmark 
dataset for video recognition, and its prediction accuracy exceeded 90% 
(Kamada and Ichimura, 2019).

2.3.2. CNNs
The concept of neural networks originated from the neural 

mathematical model first proposed in 1943 (Mcculloch and Pitts, 1943). 
However, the artificial neural networks confined to the shallow network 
architecture fell into a low tide in the late 1960s due to the constraints of 
early computing power, data and other practical conditions. The real rise 
of neural network method began with AlexNet (Krizhevsky et al., 2012) 
proposed by Hinton et al. (2012). This CNN model won the Image Net 
Large Scale Visual Recognition Challenge (Deng et al., 2009) with a huge 

https://doi.org/10.3389/fpsyg.2023.1126994
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wang et al. 10.3389/fpsyg.2023.1126994

Frontiers in Psychology 05 frontiersin.org

advantage of 10.9%. Therefore, deep neural networks (DNNs) have 
gradually attracted extensive attention from the industry and academia. 
In a broad sense, the DNNs can be divided into feedforward neural 
networks (Rumelhart et al., 1986; Lecun and Bottou, 1998) and RNNs 
(Williams and Zipser, 1989; Yi, 2010; Yi, 2013) in accordance with the 
difference in connection modes between neurons. In accordance with 
the differences in use scenarios and HCI methods, the DNNs can 

be divided into single input networks and multi-input networks, which 
are continuously extended to a variety of HCI scenarios and have 
achieved breakthrough results (Wang et al., 2018), allowing AI products 
to be actually implemented in practical applications.

2.3.3. RNNs
Compared with CNNs, RNNs are better in processing data with 

sequence characteristics and can obtain time-related information in data 
(Lecun et al., 2015). Researchers have widely used RNNs in natural 
language processing, including machine translation, text classification, 
and named entity recognition (Schuster and Paliwal, 1997). RNNs have 
achieved outstanding performance in audio-related fields and made 
great breakthroughs. They have been widely used in speech recognition, 
speech synthesis, and other fields. Considering that RNN only considers 
the preorder information and ignores the postorder information, a 
bidirectional RNN (BRNN) was proposed (Schuster and Paliwal, 1997). 
To solve the problems of gradient disappearance and gradient explosion 
in the training process of the long sequence of RNN, researchers 
improved the structure of RNN and built a LSTM (Hochreiter and 
Schmidhuber, 1997). LSTM has modified the internal structure of RNN 
in the current time step, making the hidden layer architecture more 
complex, which can have a better effect in longer sequences and is a 
more widely used RNN in the general sense.

The bidirectional LSTM (BILSTM) can be obtained by combining 
LSTM and BRNN (Graves and Schmidhuber, 2005). It replaces the 
original RNN neuron structure in BRNN with the neuron structure of 
LSTM and combines the forward LSTM and backward LSTM to form a 
network. BILSTM retains the advantages of BRNN and LSTM at the 
same time. It can retain the context information of the current time 
node and record the relationship between the front and back features. 
Therefore, BILSTM improves the generalization ability of the network 

FIGURE 3

Two-dimensional model for valence–arousal.

FIGURE 4

PAD 3D emotional model.
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model and the ability to handle long sequences, and avoids the problem 
of gradient explosion and gradient disappearance according to the 
difference of connection modes between neurons.

In recent years, gated recurrent unit (GRU) networks (Cho et al., 
2014) were proposed. They discard the three LSTM gated (force gate, 
input gate, and output gate) networks, selects reset gate and update gate, 
and combines the current state of neurons and the hidden layer state, 
which are uniformly expressed as ht. Compared with LSTM, the GRU 
model is simpler, with fewer parameters and easier convergence.

3. Benchmark datasets

The proposed EEG emotion recognition algorithms should 
be verified on EEG data with emotion ratings or labels. However, some 
researchers are limited by conditions and cannot build a special 
experimental environment. Most researchers are interested in verifying 
their algorithms and comparing with relevant studies on the recognized 
benchmark datasets. Hence, a variety of open-source EEG emotion 
databases have been developed for EEG emotion recognition. Table 1 
presents a brief summary of existing speech emotion databases. In this 
section, we  describe briefly these existing EEG emotion databases 
as follows.

3.1. Database for emotion analysis using 
physical signals

DEAP is a large multimodal physiological and emotional database 
jointly collected and processed by Koelstra and other research 
institutions of four famous universities (Queen Mary University in 
London, Twente University in the Netherlands, Geneva University in 
Switzerland, and Swiss Federal Institute of Technology; Koelstra et al., 
2012). The collection scene for the DEAP database is shown in 
Figure  5, and it is an open-source data set for analyzing human 
emotional states. The DEAP database collected 32 participants for the 
experiment, where 16 of them were male and 16 were female. In the 
experiment, the EEG and peripheral physiological signals of the 
participants were collected, and the frontal facial expression videos of 
the first 22 participants were recorded. The participants read the 
instructions of the experiment process and wore the detection 
equipment before starting the data acquisition experiment. Each 
participant watched 40 music video clips with a duration of 1 min in 
the experiment. The subjective emotional experience in induction 
experiments was self-evaluated and rated on assessment scales that 

cover four emotional dimensions, namely, arousal, valence, 
dominance, and like. During self-assessment, the participants saw the 
content displayed on the screen and clicked to select the option that 
matched their situation at that time. The EEG and peripheral 
physiological signals were recorded by using a Biosemi ActiveTwo 
system. The EEG information was collected by using electrode caps 
with 32 AgCl electrodes. The EEG sampling rate was 512 Hz. The data 
set recorded 40 channels in total, the first 32 channels were EEG 
signal channels, and the last 8 channels were peripheral 
signal channels.

3.2. Multimodal database for affect 
recognition and implicit tagging

MAHNOB-HCI is a multimodal physiological emotion database 
collected by Soleymani et al. (2014) through a reasonable and normal 
experimental paradigm. The MAHNOB-HCI dataset collected EEG 
signals and peripheral physiological signals from 30 volunteers with 
different cultural and educational backgrounds using emotional 
stimulation videos. Among the 30 young healthy adult participants, 17 
were women and 13 were men, and the age ranged from 19 to 40. Thirty 
participants watched 20 different emotional video clips selected from 
movies and video websites. These video clips can stimulate the subjects 
to have five emotions: disgust, amusement, fear, sadness, and joy. The 
duration of watching videos was 35 to 117 s. The participants evaluated 
the arousal and potency dimensions rated on assessment scales after 
watching each video clip. In the data collection experiment, six cameras 
were used to record the facial expressions of the subjects at a frame rate 
of 60 frames per second. The collection scene for the MAHNOB-HCI 
database is shown in Figure 6.

3.3. SJTU emotion EEG dataset

The SEED is an EEG emotion dataset released by the BCMI 
Research Center in Shanghai Jiaotong University (SJTU; 
Zheng and Lu, 2015), and the protocol used in the emotion experiment 
is shown in Figure 7. The SEED dataset selected 15 people (7 men and 
8 women) as the subjects of the experiment and collected data of 62 EEG 
electrode channels from the participants. In the experiment, 15 clips of 
Chinese movies were selected for the subjects to watch. These videos 
contained three types of emotions: positive, neutral, and negative. Each 
genre had five clips, and each clip was about 4 min. Clips containing 
different emotions appeared alternately. In the experiment, the subjects 

TABLE 1 Description of public datasets.

Name Participants Documented Signals Stimulus Task models/ Emotions

DEAP 32 EEG, EMG, EOG, GSR, Temperature, and Face Video 40 Video clips VAD model

MAHNOB-HCI 27 EEG, ECG, GSR, ERG, Respiration Amplitude, Skin 

Temperature, Face Video, Audio Signals, and Eye Gaze

20 Video clips and 

Pictures

VAD model

SEED 15 EEG, Face Video, and Eye tracking 15 Video clips Positive, Neutral, and Negative

DREAMER 23 EEG, ECG 18 Video clips VAD model

SEED-IV 15 EEG, and EM 168 Video clips Happiness, Sadness, Fear and Neutrality

MPED 23 EEG、ECG、RSP、and GSR 28 Video clips Joy, Funny, Anger, Fear, Disgust, Sadness, and 

Neutrality
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had a 5-s prompt before watching each video. The subjects conducted a 
45 s self-assessment, followed by a 15 s rest. During the experiment, the 
subjects were asked to complete three experiments repeatedly in a week 

or even longer. Each subject watched the same 15 clips of video and 
recorded their self-evaluation emotions.

3.4. Dreamer

The Dreamer database (Katsigiannis and Ramzan, 2018) is a 
multimodal physiological emotion database released by the University 
of Western Scotland in 2018. It contains 18 audio-visual clips during the 
emotion induction experiments and collects the EEG and 
electrocardiogram (ECG) signals simultaneously. The video duration is 
between 65 and 393 s, with an average duration of 199 s. Twenty-three 
subjects with an average age of 26.6 years were invited to participate in 
the experiment. The subjects were asked to conduct a self-assessment 
between 1 and 5 points in the emotional dimensions of valence, arousal, 
and dominance after each emotional induction experiment.

3.5. Seed-iv

SEED-IV is another version of the SEED dataset released by SJTU 
(Zheng et al., 2018), which has been widely used in recent related work. 
The protocol of SEED-IV for four emotions is shown in Figure 8. Forty-
four participants (22 women, all college students) were recruited to self-
evaluate their emotions during the induction experiment, and 168 film 
clips were selected as the material library of four emotions (happiness, 
sadness, fear, and neutrality). It follows the experimental paradigm 
adopted in SEED, 62-channel EEG of 15 selected subjects were recorded 
in the three tests. They chose 72 film clips with four different emotional 
labels (neutral, sad, fear, and happy). Each subject watched six film clips 
in each session, resulting in 24 trials in total.

3.6. Multi-modal physiological emotion 
database

The MPED contains four physiological signals of 23 subjects (10 
men and 13 women) and records seven types of discrete emotion (joy, 
funny, anger, fear, disgust, sadness, and neutrality) when they watch 28 

FIGURE 5

Collection scene for the Deap database (Koelstra et al., 2012). 
Reproduced with permission from IEEE. Licence ID: 1319273-1.

FIGURE 6

Collection scene for the MAHNOB-HCI database (Soleymani et al., 2014). 
Reproduced with permission from IEEE. Licence Number: 5493400200365.

FIGURE 7

Protocol used in the emotion experiment (Zheng and Lu, 2015). Reproduced with permission from IEEE. Licence Number: 5493480479146.
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video clips (Song et al., 2019). The experiments are divided into two 
sessions with an interval of at least 24 h. Twenty-one EEG data are used 
as training data, and the remaining 7 EEG data are used as test data.

4. Review of EEG emotion recognition 
techniques

4.1. Shallow machine learning methods for 
EEG emotion recognition

The emotion recognition method of EEG signals based on machine 
learning is usually divided into two steps: manual feature extraction 
and classifier selection (Li et al., 2019). The feature extraction methods 
mainly include time domain analysis, frequency domain analysis, time 
frequency domain analysis, multivariate statistical analysis, and 
nonlinear dynamic analysis (Donos et al., 2018; Rasheed et al., 2020). 
Principal component analysis, linear discriminant analysis (LDA; 
Alotaiby et al., 2017), and independent component analysis (Ur et al., 
2013; Acharya et al., 2018a; Maimaiti et al., 2021) are widely used 
unsupervised time-domain methods to summarize EEG data. 
Frequency domain features include spectral center, coefficient of 
variation, power spectral density, signal energy, spectral moment, and 
spectral skewness, which can provide key information about data 
changes (Yuan et al., 2018; Acharya et al., 2018a). The abovementioned 
time-domain or frequency-domain methods have limitations and 
cannot provide accurate frequency or time information at a specific 
time point. Wavelet transformation (WT) is usually used to decompose 
EEG signals into their frequency components to express the 
relationship between signal information and time. Time frequency 
signal processing algorithms, such as discrete wavelet transform 
analysis and continuous wavelet transform, are a necessary means to 
solve different EEG behavior, which can be described in the time and 
frequency domains (Martis et al., 2012; UR et al., 2013). Statistical 
parameters, such as mean, variance, skewness, and kurtosis, have been 
widely used to extract feature information from EEG signals. Variance 
represents the distribution of data, skewness represents the symmetry 
information of data, and kurtosis provides the peak information in 
data (Acharya et al., 2018a).

In classifier selection, previous work mainly used shallow machine 
learning methods, such as LDA, SVM, and KNN, to train emotion 
recognition models based on manual features. Although the method of 
“manual features+shallow classifier” has made some progress in previous 
emotion recognition systems, the design of manual features requires 

considerable professional knowledge, and the extraction of some 
features (such as linear features) is time consuming.

4.2. Deep learning for EEG emotion 
recognition

Traditional machine learning techniques extract EEG features 
manually, which not only have high redundancy in the extracted 
features, but also have poor universality. Therefore, manual feature 
extraction techniques can not achieve the ideal results in EEG emotion 
recognition. Obviously, with the increasing progress of deep learning 
technology (Chen B. et al., 2021), EEG emotion recognition research 
ground on various neural networks has gradually become a research 
hotspot. Different from shallow classifier, deep learning has the 
advantages of strong learning ability and good portability, which can 
automatically learn good feature representations instead of manually 
design. Recently, various deep learning models, such as DNN, CNN, 
LSTM, and RNN models, were tested on public datasets. Compared 
with CNN, RNN is more suitable for processing sequence-related tasks. 
LSTM has been proven to be capable of capturing time information in 
the field of emotion recognition (Bashivan et al., 2015; Ma et al., 2019). 
As a type of sequence data, most studies on EEG are based on RNN 
and LSTM models. Li et al. (2017) designed a hybrid deep learning 
model by combining CNN and RNN to mine inter-channel correlation. 
The results demonstrated the effectiveness of the proposed methods, 
with respect to the emotional dimensions of Valence and Arousal. 
Zhang T. et al. (2018) proposed a spatial–temporal recurrent neural 
network (STRNN) for emotion recognition, which integrate the feature 
learning from both spatial and temporal information of signal sources 
into a unified spatial–temporal dependency model, as shown in 
Figure 9. Experimental results on the benchmark emotion datasets of 
EEG and facial expression show that the proposed method is 
significantly better than those state-of-the-art methods. Nath et al. 
(2020) compared the emotion recognition effects of LSTM with KNN, 
SVM, DT, and RF. Among them, LSTM has the best robustness 
and accuracy.

EEG signals are essentially multichannel time series signals. Thus, 
a more effective method for emotional recognition of EEG signals is to 
obtain the long-term dependence of EEG signals based on RNN. Li 
et  al. (2020) proposed a BILSTM network framework based on 
multimodal attention, which is used to learn the best time 
characteristics, and inputted the learned depth characteristics into the 
DNN to predict the emotional output probability of each channel. A 

FIGURE 8

Protocol of SEED-IV for four emotions (Zheng et al., 2018). Reproduced with permission from IEEE. Licence Number: 5493600273300.
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decision-level fusion strategy is used to predict the final emotion. The 
experimental results on AMIGOS dataset show that this method is 
superior to other advanced methods. Liu et al. (2017) proposed an 
emotion recognition algorithm model ground on multi-layer long 
short-term memory recurrent neural network (LSTM-RNN), which 
combines temporal attention (TA) and band attention (BA). 
Experiments on Mahnob-HCI database demonstrate the proposed 
method achieves higher accuracy and boosts the computational 
efficiency. Liu et al.(2021) studied an original algorithm named three-
dimension convolution attention neural network (3DCANN) for EEG 
emotion recognition, which is composed of spatio-temporal feature 
extraction module and EEG channel attention weight learning module. 
Figure 10 presents the details of the used 3DCANN scheme. Alhagry 
et al. (2017) proposed an end-to-end deep learning neural network to 
identify emotions from original EEG signals. It uses LSTM-RNN to 

learn features from EEG signals and uses full connection layer for 
classification. Li et al. (2022) proposed a C-RNN model using CNN and 
RNN, and used multichannel EEG signals to identify emotions. 
Although the method based on RNN has great advantages in processing 
time series data and has made great achievements, it still has 
shortcomings in the face of multichannel EEG data. GRU or LSTM can 
connect the relationship between different channels through 
multichannel fusion, but this processing ignores the spatial distribution 
of EEG channels and cannot reflect the dynamics of the relationship 
between different channels.

Among various network algorithms, CNNs have a good ability to 
extract features of convolution kernels. They can extract information 
features by transferring each part of the image with multiple kernels. 
They have been widely used in image processing tasks. For EEG signal, 
they can process raw EEG data well and can be  used for spectrum 

FIGURE 9

The used STRNN framework for EEG emotion recognition (Zhang T. et al., 2018). Reproduced with permission from IEEE. Licence Number: 5493591292973.

FIGURE 10

The flow of the 3DCANN algorithm (Liu et al.,2021). Reproduced with permission from IEEE. Licence Number: 5493600805113.
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diagram. Considering that the use of CNN to train EEG data can reduce 
the effect of noise, most studies use CNN for the emotional recognition 
of EEG signals to reduce the complexity of training. Thodoroff et al. 
(2016) combined CNN and RNN to train robust features for automatic 
detection of seizures. Shamwell et  al. (2016) explored a new CNN 
architecture with 4 convolutional layers and 3 fully connected layers to 
classify EEG signals. To reduce the over fitting of the model, Manor and 
Geva (2015) proposed a CNN model based on spatiotemporal 
regularization, which is used to classify single track EEG in RSVP (fast 
serial visual rendering). Sakhavi et  al. (2015) proposed a parallel 
convolutional linear network, which is an architecture that can represent 
EEG data as dynamic energy input, and used CNN for image 
classification. Ren and Wu (2014) applied convolutional DBN to classify 
EEG signals. Hajinoroozi et al. (2017) used covariance learning to train 
EEG data for driver fatigue prediction. Jiao et al. (2018) proposed an 
improved CNN method for mental workload classification tasks. Gao 
et al. (2020) proposed a gradient particle swarm optimization (GPSO) 
model to achieve the automatic optimization of the CNN model. The 
experimental results show that the proposed method based on the 
GPSO-optimized CNN model achieve a prominent classification 
accuracy. Figure 11 presents the details of the used GPSO scheme.

CNN can use EEG to identify many human diseases. Antoniades 
et al. (2016) used deep learning to automatically generate features of 
EEG data in time domain to diagnose epilepsy. Page et  al. (2016) 
conducted end-to-end learning through the maximum pool convolution 
neural network (MPCNN) and proved that transfer learning can be used 
to teach the generalized characteristics of MPCNN raw EEG data. 
Acharya et al. (2018b) proposed a five-layer deep CNN for detecting 
normal, pre seizure, and seizure categories.

The summary of recent state-of-the-art methods related to 
EEG-based emotion recognition system using machine learning and 
deep learning approaches is given in Table 2.

5. Open challenges

To date, although a number of literature related to EEG emotion 
recognition using deep learning technology is reported, showing its 
certain advance, a few challenges still exist in this area. In the following, 
we discuss these challenges and opportunities, and point out potential 
research directions in the future.

5.1. Research on the basic theory of affective 
computing

At present, the theoretical basis of emotion recognition mainly 
includes discrete model and continuous model, as shown in Figure 3. 
Although they are related to each other, they have not formed a unified 
theoretical framework. The relationship between explicit information 
(such as happy, sad, and other emotional categories) and implicit 
information (such as the signal characteristics of different frequency 
bands of EEG signals corresponding to happy, sad, and other emotional 
categories) in emotional computing is worthy of further study. Digging 
out the relationship between them is extremely important for 
understanding the different emotional states represented by 
EEG signals.

5.2. EEG emotion recognition data sets

For EEG-based emotion recognition, most publicly available 
datasets for affective computing use images, videos, audio, and other 
external methods to induce emotional changes. These emotional 
changes are passive, which are different from the emotional changes that 
individuals actively produce in real scenes and may lead to differences 

FIGURE 11

The schematic diagram of the GPSO algorithm (Gao et al., 2020). Reproduced with permission from Elsevier. Licence Number: 5493610089714.
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TABLE 2 Summary of EEG emotion recognition papers using Deep learning methods from 2017 to 2022.

Year References Stimulus Classification methods Emotion Acc.(%)

2017 Alhagry et al. (2017) DEAP LSTM-RNN Valence, Arousal, and Liking Arousal: 85.65, Valence: 85.45, Liking: 

87.99

2017 Li et al. (2017) DEAP CNN + RNN Arousal and Valence Arousal: 72.06, Valence: 74.12

2017 Liu et al. (2017) Mahnob-HCI LSTM-RNN Valence, Arousal, and F1-score Arousal: 73.1, Valence: 74.5;

F1-score:

Arousal: 72.3, Valence: 73.0

2018 Zhang T. et al. (2018) SEED and CK+ STRNN Positive, Negative, and Neutral SEED:

Overall Accuracy: 89.5

CK+:

Overall Accuracy: 95.4

2018 Jiao et al. (2018) The Sternberg 

memory task

Deep CNN Types of mental load Fused CNNs 1: 91.32

Fused CNNs 2: 92.37

2018 Song et al. (2018) SEED and 

DREAMER

DGCNN Positive, neutral and negative;

Arousal, Valence, and Dominance

SEED: 90.40, DREAMER:

Arousal: 84.54 Valence: 86.23

Dominance: 85.02

2018 Salama et al. (2018) DEAP 3D-CNN Arousal and Valence Arousal: 88.49 Valence: 87.44

2019 Chao et al. (2019) DEAP CapsNet Valence, Arousal and Dominance Valence: 66.73

Arousal: 68.28

Dominance: 67.25

2019 Gonzalez et al. (2019) DEAP, IAPS and 

DREAMER

CNN Valence and Arousal Single subject:

Valence: 70.26

Arousal: 72.42

2019 Garg et al. (2019) DEAP Merged LSTM Arousal, Valence, Liking and 

Dominance

Arousal: 83.85, Valence: 84.89

Liking: 80.72 Dominance: 84.37

2019 Wang et al. (2019) SEED DNNs Positive, Negative, and Neutral Overall Accuracy: 93.28

2019 Chen et al. (2019b) DEAP Bagging Tree (BT), SVM, LDA, 

Bayesian LDA, Deep CNN

Valence and Arousal Valence: 99.97 (using CVCNN), 

Arousal: 99.58

(using GSLTCNN)

2019 Ma et al. (2019) DEAP multimodal residual LSTM Arousal and Valence Valence: 92.30

Arousal: 92.87

2019 Pandey and Seeja 

(2019)

DEAP DNN Arousal and Valence Arousal: 61.25 Valance: 62.50

2020 Nakisa et al. (2020) Audio-video Clips ConvNet long short-term memory 

(LSTM; early and late fusion)

Low Arousal Positive, High Arousal 

Positive,

Low Arousal Negative, High 

Arousal Negative

Overall accuracy:

Early fusion:71.61

Late fusion: 70.17

2020 Nath et al. (2020) DEAP LSTM Arousal and Valence Valence: 94.69

Arousal: 93.13

2020 Gao et al. (2020) Film clips GPSO-optimized CNN Fear, happiness, and sadness Overall accuracy: 92.44 ± 3.60

2020 Joshi and Ghongade 

(2020)

Own dataset BiLSTM Positive, neutral and negative Overall Accuracy:72.83

2020 Wei et al. (2020) SEED SRU Positive, neutral and negative Overall Accuracy:80.02

2020 Sharma et al. (2020) DEAP and SEED LSTM Arousal and

Valence

Positive, neutral and negative

DEAP:

4 classes: 82.01

Arousal: 85.21 Valance: 84.16

SEED: 90.81

2020 Alhalaseh and 

Alasasfeh (2020)

DEAP CNN, k-NN, NB, DT Valence and

Arousal

Overall accuracy:

95.20 (using CNN)

2020 Cui et al. (2020) DEAP and 

DREAMR

Regional- Asymmetric 

Convolutional Neural Network

(RACNN)

Valence and Arousal Overall accuracy:

96.65 (Valence),

97.11 (Arousal)

(Continued)
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in their EEG signals. Therefore, how to solve the difference between the 
external-induced emotional change and the internal active emotional 
change is a subject worthy of study.

Different individuals may not induce the same emotion for the 
same emotion-inducing video due to the differences in the physiology 
and psychology between different subjects. Although the same emotion 
is generated, the EEG signals will have some differences due to the 
physiological differences between individuals. To effectively solve the 
problem of individual differences, we  can build a personalized 
emotional computing model from the perspective of individuals. 
However, building an emotion recognition model with better 
generalization ability is a relatively more economical solution because 

the collection and annotation of physiological signals will bring about 
a large cost. An effective method to improve the generalization ability 
of affective computing models is transfer learning (Pan et al., 2011). 
Therefore, how to combine the agent independent classifier model with 
the transfer learning technology may be a point worth being considered 
in the future.

The privacy protection of users’ personal information is an 
important ethical and moral issue in the Internet era. The EEG and other 
physiological signals collected in emotional computing belong to users’ 
private information, so privacy protection should be paid attention. At 
present, research in this area has only started (Cock et al., 2017; Agarwal 
et al., 2019).

TABLE 2 (Continued)

Year References Stimulus Classification methods Emotion Acc.(%)

2020 Hassouneh et al. 

(2020)

Own dataset LSTM Happy, fear, anger, sad, Surprise 

and disgust

Overall accuracy: 7.25

2020 Liu et al. (2020) SEED DECNN Positive and negative Overall accuracy: 97.56

2020 Li et al. (2020) AMIGOS Bidirectional LSTM-RNNs Valence and Arousal Arousal:

F1-Score: 61.3, ACC: 73.5;

Valence:

F1-Score: 58.3, ACC: 67.8

2021 Topic and Russo 

(2021)

DEAP,DREAMER, 

SEED and 

AMIGOS.

CNN + SVM Arousal and

Valence;

Positive and negative

DEAP:

Arousal:77.7 andValence: 76.6

DREAMER:

Arousal: 90.4 andValence: 88.2

AMIGOS:

Arousal: 90.5 andValence: 78.4

SEED: 88.5

2021 Liu and Fu (2021) DEAP multi-channel feature fusion SROCC and PLCC SROCC: 78.9,

PLCC: 84.3

2021 Sakalle et al. (2021) Own dataset, 

DEAP and SEED

LSTM Disgust, sadness, surprise, and 

anger

Positive, negative, and neutral

DEAP: 91.38 SEED: 89.34

Own dataset:

4 class: 94.12

3 class: 92.66

2021 Huang et al. (2021) DEAP BiDCNN Arousal and Valence Subject-dependent

Arousal:94.72 Valence: 94.38

Subject-independent

Arousal: 63.94 Valence: 68.14

2022 Chowdary et al. 

(2022)

Own dataset RNN, LSTM, and GRU positive, negative, and neutral average accuracy:

RNN: 95, LSTM: 97, GRU:96

2022 Algarni et al. (2022) DEAP Bi-LSTM arousal, valence and liking average accuracy:

valence: 99.45, arousal: 96.87, liking: 

99.68

2022 Tuncer et al. (2022) DREAMER LEDPatNet19 arousal, dominance, and valance valence: 94.58,

arousal: 92.86,

arousal: 94.44

2022 Li et al. (2022) DEAP and SEED ensemble learning arousal and valence DEAP average accuracy:

Arousal: 65.70, valence: 64.22

SEED average accuracy: 84.44

2022 He et al. (2022) DREAMER and 

DEAP

adversarial discriminative-

temporal convolutional networks 

(AD-TCNs)

arousal and valence DEAP average accuracy:

Arousal: 64.33, valence: 63.25

DREAMER average accuracy:

Arousal: 66.56, valence: 63.69

2022 Wang et al. (2022) DEAP 2D CNN arousal and valence Average accuracy:

Arousal: 99.99, valence: 99.98
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5.3. EEG signal preprocessing and feature 
extraction

In the EEG signal acquisition experiment, many equipment are 
needed, and the noise acquisition should be minimized. However, 
EEG signal acquisition is more complex, and the acquisition results 
are often vulnerable to external factors. Therefore, collecting EEG 
signals with high efficiency and quality is an important part of 
affective computing. Effective preprocessing can remove the noise 
in the original EEG signal, improve the signal quality, and help 
feature extraction, which is another important part for affective  
computing.

The common features of EEG signal include power spectral density, 
differential entropy, asymmetric difference of differential entropy, 
asymmetric quotient of differential entropy, discrete wavelet analysis, 
empirical mode decomposition, empirical mode decomposition sample 
entropy (EMD_SampEn), and statistical features (mean, variance, etc.). 
How to extract appropriate features or fuse different features will have 
an important effect on affective computing models.

6. Conclusion

Multiple recent studies using deep learning have been conducted for 
EEG emotion recognition associated with promising performance due 
to the strong feature learning and classing ability of deep learning. This 
paper attempts to provide a comprehensive survey of existing EEG 
emotion recognition methods. The common open data sets of 
EEG-based affective computing are introduced. The deep learning 
techniques are summarized with specific focus on the common methods 
of emotional calculation of EEG signals, related algorithms. The 
challenges faced by emotional computing based on EEG signals and the 
problems to be solved in the future are analyzed and summarized.
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