
From Department of Medical Epidemiology and Biostatistics 

Karolinska Institutet, Stockholm, Sweden 

DEVELOPMENT AND APPLICATION OF 
COMPETING RISKS AND MULTI-STATE 
MODELS IN CANCER EPIDEMIOLOGY 

Nikolaos Skourlis 

 

Stockholm 2023 
 



 

All previously published papers were reproduced with permission from the publisher. 

Published by Karolinska Institutet. 

Printed by Universitetsservice US-AB, 2023 

© Nikolaos Skourlis, 2023 

ISBN 978-91-8016-934-9 

Cover illustration by Nikolaos Skourlis and the use of the self-developed RShiny application 

MSMplus described in Study II.  



Development and application of competing risks and 
multi-state models in cancer epidemiology 
THESIS FOR DOCTORAL DEGREE (Ph.D.)  

By 

Nikolaos Skourlis 

The thesis will be defended in public at Atrium, Karolinska Institutet, Nobels väg 12B, on 

Friday March 17th, kl 09.00 

Principal Supervisor: 

Professor Paul C. Lambert 

Karolinska Institutet 

Department of Medical Epidemiology and 

Biostatistics 

and 

University of Leicester, UK  

Department of Population Health Sciences 

 

Co-supervisor(s): 

Docent Therese M-L. Andersson 

Karolinska Institutet 

Department of Medical Epidemiology and 

Biostatistics 

 

Dr. Michael J. Crowther 

Red Door Analytics  

Opponent: 

Dr. Christopher Jackson 

University of Cambridge, U.K 

Medical Research Council Biostatistics Unit 

School of Clinical Medicine 

 

 

Examination Board: 

Docent Orsini Nicola 

Karolinska Institutet 

Department of Global Public Health 

 

Docent Anna Grimby Ekman 

University of Gothenburg 

School of Public Health and Community 

Medicine, Institute of Medicine 

 

Docent Mattias Rantalainen 

Karolinska Institutet 

Department of Medical Epidemiology and 

Biostatistics 

 

 





 

 

Dedicated to: 

My mother and my brother. Ευχαριστώ πολύ για την αγάπη και την υποστήριξη σας αυτά τα 

τέσσερα μεταβατικά χρόνια της ζωής μου. Δε ξέρω τι επιφυλάσσει το μέλλον, αλλά ξέρω ότι 

το ταξίδι θα αξίζει. 

My friends from KI. We have created plenty of fun memories together! You helped me power 

through stress and difficulties and enjoy life in Sweden. A deep thanks to all of you!   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

POPULAR SCIENCE SUMMARY OF THE THESIS 

 

The use of competing risks and multi-state models in survival analysis settings allows us to 

study complex disease settings and answer composite research questions, with useful 

applications in epidemiology. This thesis aims to explore these areas of survival analysis by a) 

quantifying the influence of the choice of timescale in a competing risks setting, b) exploring 

different research questions via  multi-state models using registry-based repeated prescriptions 

of antidepressants, discussing the interpretations, traits, limitations of each structure and 

alternative modelling choices, c) communicating the structures and results of multi-state 

models via a self-developed, online, interactive web tool and d) evaluating recurrent multi-state 

modelling approaches in a setting of recurrent events under the presence of a terminal event, 

when the underlying data mechanism is that of a joint frailty model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

Competing risks and multi-state models allow us to study complex disease settings and answer 

composite research questions and should be used more widely in epidemiology. This thesis 

aims to explore the competing risks and multi-state models areas using flexible parametric 

survival models (FPSMs), studying several aspects, such as the choice of timescale, choice of 

multi-state structure, sharing information across transitions by imposing restrictions in the 

estimation of the parameters, as well as communicating the results of such models to a wider 

audience and evaluating the use of recurrent multi-state structures in the area of recurrent events 

when a terminal event is present. 

In competing risks settings, a common timescale is normally used for all competing events. For 

example, in a setting where death due to colon cancer is the event of interest and death due to 

other causes serves as a competing event, time since diagnosis is frequently used as the 

timescale when modelling the hazard rates for both events. However, attained age has been 

proposed as a more natural timescale when modelling mortality rate that is not associated with 

the event of interest (colon cancer). In Study I, the aim was to assess how the choice of 

timescale for other cause mortality (time since diagnosis versus attained age) influence the 

estimated cumulative incidence functions (CIFs) and how several factors contribute to that 

influence (sample size, non-proportional hazards, shape of baseline other cause mortality rate, 

variance in age at diagnosis) via a simulation analysis, assuming that the mortality rate is a 

function of attained age. I found that the bias of the CIF estimates for colon cancer mortality is 

negligible under all the different approaches and all factor levels. The bias in the CIF estimates 

for other cause mortality is also low when using time since diagnosis as the timescale for both 

events, provided that we include age at diagnosis in the models with sufficient flexibility 

(splines). When a covariate has non-proportional hazards for other cause mortality on the 

attained age scale, using time since diagnosis as the timescale for other cause mortality may 

lead to a low but non-negligible bias, no matter how flexibly we model the hazard rate. 

The structural complexity of a multi-state structure and the variety of the predicted measures 

over time for individuals with different covariate patterns may render the communication of 

the results complicated and difficult. This issues motivated me to develop an interactive web-

tool in Study II that can be used from researchers to present their multi-state model results to 

audiences with a variety of interactive graphs that will render the results more communicable 

and intuitive. The name of the application is MSMplus and it was written using the package 

RShiny in R. Multi-state model results can easily be wrapped up and uploaded to the 

application using the multistate package in Stata and the MSMplus package in R.  

When studying a disease process, different research questions may require different multi-state 

structures in order to be addressed, each structure with different interpretations of the estimated 

measures, advantages compared to the other structures as well as limitations. There are also a 

number of modelling choices to consider such as the timescale used for each transition, and 

sharing information across transitions by imposing specific restrictions in the estimation 

process. In Study III, we explore different research questions via the use of a range of multi-



state models of increasing complexity when dealing with registry-based repeated prescriptions 

of antidepressants, using the Breast Cancer Data Base Sweden 2.0 research database. I derive 

probability estimates that address different research questions regarding antidepressant use 

patterns, beginning with a single-event survival model, moving to a competing risks and a 3-

state Illness-Death model, then a 4-state unidirectional and bidirectional model with a post-

medication state. Finally, I fit a multi-state structure with recurrent pairs of medication cycles/ 

discontinuation period states, first with separately estimated transition intensity rates and then 

allowing sharing of information across transitions by imposing specific restrictions between 

the baseline transition intensity rates.  

When we are interested in studying a recurrent event process in the presence of a terminal 

event, there is a variety of different frameworks and approaches, joint frailty models being a 

framework that is frequently used. A multi-state model with recurrent event states and an 

absorbing state representing the terminal event can also be used in this context. In Study IV, I 

am interested in evaluating via simulation the use of a multi-state model with recurrent states 

and a competing terminal absorbing state, with and without restrictions among the baseline 

transition intensity rates, when the underlying data generating mechanism follows a joint frailty 

model. I focus on the probabilities of death and of a new recurrent event across follow-up time 

given zero, one, two or three previous recurrences up to the first year of the follow-up, 

probability measures that can be targeted by both a joint frailty and a multi-state model. Then 

the bias and relative precision of the different modelling approaches are evaluated. Finally, I 

engage in a discussion of the similarities, the different assumptions and the focus of each 

framework.   
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1 INTRODUCTION 

Competing risks and multi-state models are survival models that allow the study of one or more 

events/ states of interest, accounting for competing events that may influence the observation 

of the main events of interest and allowing the study of complex disease pathways, addressing 

composite research questions. When using these models in epidemiology, there are different 

modelling assumptions and choices to be made, such as the choice of timescale for each 

transition, the shared or separate estimation of parameters and the choice of the multi-state 

structure. Even after fitting a competing risks or a multi-state model, the communication of the 

results is not always straightforward due to the time dimension of the predictions and the 

multitude of measures that can be derived. In addition, for some cases of time-to-event data, 

alternative modelling frameworks can be applied. For example, when studying recurrent events 

in the presence of a terminal event, joint frailty models are a commonly used approach, but 

multi-state models can also be used.  

In the present thesis, I focus on exploring and assessing the choice of timescale when 

implementing competing risks and multi-state models, the choice of multi-state structure and 

the choice of sharing information when applying multi-state models. These assessments are 

done either via simulation (Study I), or via development, implementation and discussion of 

different multi-state structures and sensitivity analyses of different modelling choices (Study 

III). I developed an R package and an online RShiny application called MSMplus, aimed to 

facilitate the communication of multi-state structures and estimated measures from the 

application of MSM, using interactive graphs (Study II). Finally, I implemented a recurrent 

multi-state structure to study recurrent events in the presence of a terminal event when the 

underlying data generating process is that of a joint frailty model and, deriving useful estimates 

and evaluating their bias while also discussing similarities and differences between the two 

frameworks (Study IV). 
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2 LITERATURE REVIEW- BACKGROUND 

2.1  COMPETING RISKS AND MULTI-STATE MODELS IN CANCER 
EPIDEMIOLOGY 

Cancer survival analysis is based on time from diagnosis of the cancer type under study until a 

pre-defined event, that event often being death due to that cancer. This standard analysis setting 

can be thought of as the transition from one state (alive) to another state (death due to cancer), 

and the hazard rate for the event as the transition intensity rate between the two states (see 

Figure 2.1a). 

 However, disease processes are often complex and many disease related events can occur on 

the path from diagnosis to death. In addition, not all cancer patients die from their cancer. For 

example, many patients diagnosed with cancer are of old age and are therefore at risk of dying 

from a number of causes other than their diagnosed cancer. Multi-state models is a framework 

that extends standard survival models by including more than one transition and more than two 

states (1) with competing risks models being essentially a special case of multi-state models 

where all states are absorbing (terminal) states (e.g deaths due to different causes). Multi-state 

models enable the detailed analysis and understanding not only of the overall hazard for the 

event of interest but also of the disease process’ history via the estimation of multiple, clinically 

significant measures.  

In the area of cancer epidemiology, competing risk models have been extensively applied in 

settings where the event that is relevant to the cancer of interest, for example, cancer incidence 

or mortality, may not be observed due to the presence of competing events (2–11). Multi-state 

models have also been applied, albeit much less compared to competing risk models, when 

studying several types of cancer such as breast cancer (10,12–18), lung cancer (19,20), colon 

cancer (21), pancreatic cancer (22) and prostate cancer (23). Most of their applications have 

been applied to epidemiological data but applications in clinical trials data are increasingly 

present in the literature (24–27). Applications of multi-state models on cancer screening also 

exist (28–31).    

2.2 COMPETING RISKS 

Competing risks occur when an individual can experience one or more terminal/ absorbing 

outcomes which ‘compete’ with the outcome of interest (32) and may prevent it from being 

observed. For example, an individual diagnosed with cancer can die from various other causes 

than the diagnosed cancer (see Figure 2.1b for example). When competing risks are present a 

typical survival analysis for a single terminal event does not give the probability that the 

individual will actually experience (or not experience/survive) the event of interest (33). The 

probability of experiencing the event of interest as well as the competing events is targeted by 

the cause-specific cumulative incidence function (CIF) measure. In a competing risks analysis 

setting, the cause-specific CIF for each event can be estimated a) non-parametrically (34), b) 

semi-parametrically, via cause-specific Cox hazard models (35) or sub-distribution hazard 

models (36) and parametrically via cause-specific hazard (CSH) models (37). The sub-

distribution hazard modelling approach directly models the CIFs while the cause-specific 

hazard modelling approaches do so indirectly.  
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2.2.1 Cause-specific hazard models 

If we denote 𝑘 as each competing event with 𝑘 ∈ (1, … 𝐾), and time 𝑇 as the time until that 

event, then, given covariates of interest 𝒁,  the cause-specific hazard function can be defined 

as:  

 
ℎ𝑘(𝑡|𝒁𝒊) = 𝑙𝑖𝑚

𝛥𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛥𝑡, 𝐸𝑣𝑒𝑛𝑡 = 𝑘|𝑇 ≥ 𝑡, 𝒁𝒊)

𝛥𝑡
 

(1) 

 

2.2.2 CIF definition 

The cause-specific survival functions for the 𝑖𝑡ℎ individual for the competing event 𝑘 can be 

expressed as a function of the cause-specific hazard: 

 
𝑆𝑘(𝑡|𝒁𝒊) = exp (− ∫ ℎ𝑘(𝑢|𝒁𝒊)

𝑡

0

 𝑑𝑢) (2) 

In a competing risk setting with 𝐾 competing events, the probability of having a particular 

event 𝑘 by time 𝑡, the cause-specific 𝐶𝐼𝐹 is a function of all 𝐾 cause-specific hazard rates. 

The definition of the cause-specific 𝐶𝐼𝐹𝑘 for the 𝑘𝑡ℎ event is given by: 

 
𝐶𝐼𝐹𝑘(𝑡|𝒁𝒊) = ∫ (∏ 𝑆𝑘(𝑢|𝒁𝒊)

𝐾

𝑘=1

)  ℎ𝑘(𝑢|𝒁𝒊) 𝑑𝑢
𝑡

0

 
(3) 

 

It is important to note that ∏ 𝑆𝑘(𝑢|𝒁𝒊)
𝐾
𝑘=1 , which is essentially the all-cause survival function, 

is a function of the cause-specific hazard functions for all the competing events and that 

𝐶𝐼𝐹𝑘(𝑡|𝒁𝒊) is a non-linear function of all cause-specific hazard functions.  

2.2.3 CIF estimation 

In the present thesis, I focus on the estimation of the cause-specific hazard rates via flexible 

parametric survival models (FPSMs), developed by Royston and Parmar (38), later extended 

by Lambert and Royston (39), that can flexibly model the effect of (ln)time for the log baseline 

cumulative hazard  ln[𝐻�̂�(𝑡|𝒁𝒊)]. More details about FPSM are provided in section 4.2.1. 

Estimates on the hazard scale can easily be obtained by calculating the derivative of the 

exponential of ln[𝐻�̂�(𝑡|𝒁𝒊)]:  

 
ℎ�̂�(𝑡|𝒁𝒊) =

𝑑exp{ln[𝐻�̂�(𝑡|𝒁𝒊)]}

𝑑𝑡
=

𝑑𝐻�̂�(𝑡|𝒁𝒊)

𝑑𝑡
 

(4) 
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Estimates of the survival probabilities 𝑆�̂�(𝑡|𝒁𝒊) can also be derived via calculating the 

exponential of the minus exponential of ln[𝐻�̂�(𝑡|𝒁𝒊)]: 

 𝑆�̂�(𝑡|𝒁𝒊) = exp{−exp(ln[𝐻�̂�(𝑡|𝒁𝒊)])} = exp{−𝐻�̂�(𝑡|𝒁𝒊)} (5) 

Finally, the ℎ�̂�(𝑡|𝒁𝒊) and 𝑆�̂�(𝑡|𝒁𝒊) estimates can be plugged in the CIF formula (equation 3) 

to derive the CIF estimates. Gaussian quadrature is used to numerically approximate the 

integral of equation 3 with the plugged-in survival and hazard estimates while the delta method 

is used in order to derive confidence intervals for the CIFs (40). 

2.3 MULTI-STATE MODELS 

Multi-state models are more general than competing risks models and can consider complex 

pathways between initial and absorbing states, frequently including intermediate/transient 

states. A typical multi-state setting is the so called “Illness-Death model” where an individual 

can go to the absorbing state (death) either directly or after passing through an intermediate 

state (e.g cancer recurrence for individuals previously treated for cancer). Such an example of 

multi-state setting is Figure 2.1c. Multi-state models are used in a variety of epidemiological 

settings, enabling the study of individuals through different disease states. Studying acute (41), 

chronic disease progression (24), or recurrent events such as repeated hospitalizations (42) are 

typical examples of multi-state model use. When studying such processes, multi-state models 

are used both in the epidemiological research as well as in health economics, in order to portray 

accurately, with sufficient complexity the real-world issue under study and provide useful and 

meaningful predictions. 

2.3.1 Examples of multi-state structures  

The estimates of primary interest during the statistical analysis of a multi-state process are the 

transition/state occupation probabilities and the transition-specific covariate hazard ratios, with 

transition intensity (hazard) rates also being very important in understanding the process under 

study. A variety of other measures that facilitate a more in-depth understanding of the multi-

state process can also be estimated depending on the models used and their assumptions such 

as restricted expected length of stay in a state, probability of ever visiting a state, expected 

number of visits in each state and more (43,44). Figure 2.1 shows four multi-state model 

examples from the perspective of a population diagnosed with cancer, with increasing 

complexity. Figure 2.1a shows a standard survival analysis, where it is only possible to move 

from the initial “alive” state to the “death” (from any cause) state. Figure 2.1b depicts a 

competing risks setting with death due to cancer being the event of interest but other competing 

events exist as well (cardiovascular disease, other causes). In this type of setting, an individual 

is at risk of death from a number of different causes, but it is only possible to experience one 

of them; the 3 death states are known as absorbing states as it is not possible to leave them. The 

final two settings (Figure 2.1c and Figure 2.1d) have transient-intermediate states. Figure 2.1c 

shows a 3-state Illness-Death model where an individual treated for cancer is at risk of 

recurrence and may experience death before or after recurrence. Figure 2.1d shows a more 

complex example of a multi-state setting where an individual is at risk of local recurrence (LR) 

or distant metastasis (DM), but also at risk of death. This is a complex setting, as there are 
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multiple potential transitions and different disease routes for the individual to take (different 

disease histories). In this case of Figure 2.1d, there are eight transition intensity rates (hazard 

functions) denoted by ℎ𝑘(𝑡), that need to be modelled. With population registry data, because 

of large sample sizes, it is possible to model the transition intensity rates (jointly or separately) 

and thus develop an improved understanding of how the risk factors under study are associated 

with the whole disease process. 

When using multi-state models there are various assumptions that need to be considered. Under 

the Markov assumption we assume that the transition intensity rates depend on the history of 

the process only through the current state. This assumption can be relaxed through a semi-

Markov assumption where transition intensity rates are a function of time since entering the 

current state (45). These assumptions can be further relaxed by incorporating more than one 

time-scale for certain transitions (46) and by using different time-scales for different transitions 

(Study III). 

Figure 2.1. Examples of multi-state models taken from the perspective of a population 

diagnosed with cancer. For (d) LR = Local Recurrence, DM = Distant metastasis.  

 

2.3.2 Transition intensity rates 
Consider a stochastic process 𝑌(𝑡) (𝑡 ≥ 0) with a finite space of states 𝛺= 1, . . . , 𝐿 and a 

history of the process defined at time 𝑠 as 𝑯𝒔−= 𝑌(𝑢); 0 ≤ 𝑢 ≤ 𝑠. Then, according to the 

multi-state structure that corresponds to that process, a transition rate matrix is defined, a matrix 

of all possible transition intensity rates between states (See Section 2.3.3). Let 𝑎, 𝑏 be states of 
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the state space 𝛺. For process 𝑌(𝑡), with 𝐾 potential transitions (𝑘 = 1, . , 𝐾), each transition 

uniquely links a state 𝑎 with another state 𝑏  (𝑎 → 𝑏). Under the assumption that the 

stochastic process for the next state depends only on the current state (Markov assumption), 

the definition of the transition intensity rate does not depend on the history of the process 

𝑯𝒔− before state 𝑎 and thus can be defined as: 

 
ℎ𝑎𝑏(𝑡) = 𝑙𝑖𝑚

𝛿𝑡→0

𝑃(𝑌(𝑡 + 𝛿𝑡) = 𝑏|𝑌(𝑡) = 𝑎)

𝛿𝑡
 

(6) 

We can relax the Markov assumption by assuming that the times to each next state 𝑏 depend 

only on the present state and the time since entry of that state (semi-Markov assumption) (43), 

treating the transition intensity rates as functions of time since entering state 𝑎 and/or assume 

a state arrival extended (semi-)Markov model where the transition intensity rates rely on the 

time that state 𝑎 was entered as a covariate in the model (1). 

2.3.3 Transition rate matrix 
Let’s also define the transition intensity/rate matrix 𝑸 as an array of the instantaneous rates 

ℎ𝑎𝑏 (for 𝑎 ≠ 𝑏) between states, with diagonal elements being equal to ℎ𝑎𝑎 = − ∑ ℎ𝑎𝑏𝑏≠𝑎 . 

Let’s take the 3-state Illness-Death model of Figure 2.1c as an example of a continuous multi-

state structure/ process, with state space 𝛺 = {1,2,3} (Alive=State 1, Recurrence= State 2, 

Death= State 3). The transition intensity matrix for this multi-state structure can be depicted 

as: 

 

𝑸(𝑡) = [
−(ℎ12(𝑡) + ℎ13(𝑡)) ℎ12(𝑡) ℎ13(𝑡)

0 −ℎ23(𝑡) ℎ23(𝑡)
0 0 0

] (7) 

with each row specifying the number of the starting state of a transition and each column 

specifying the ending state of a transition. Transitions that cannot happen have a transition 

intensity rate of zero over time (e.g ℎ21(𝑡) = 0). 

2.3.4 Transition probabilities 
Similarly to the competing risks setting and the definition of the cause-specific CIFs, the 

transition probabilities can be expressed as non-linear functions of transition intensity rates 

and survival functions. The probability of being in state 𝑏 at time 𝑡 given being in state 𝑎 at 

time 𝑠, can be defined as: 

 

 𝑃(𝑌(𝑡) = 𝑏|𝑌(𝑠) = 𝑎, 𝑯𝒔−) (8) 

where the term 𝑯𝒔− can be dropped under the Markov assumption. Staying in the example 

of the 3-state Illness-Death model of Figure 2.1c, we will define the conditional cause-specific 

survival functions between states, as these feed into the equations for deriving the transition 

probabilities. The conditional cause-specific survival from transitioning between State 1 and 

State 2, given being in State 1 at time 𝑠, 𝑆12(𝑡|𝑠), can be defined as:   
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𝑆12(𝑡|𝑠) =
𝑆12(𝑡)

𝑆12(𝑠)
=

exp (− ∫ ℎ12(𝑢)
𝑡

0
 𝑑𝑢)

exp(− ∫ ℎ12(𝑢)
𝑠

0
 𝑑𝑢)

= exp (− ∫ ℎ12(𝑢)

𝑡

𝑠

 𝑑𝑢) (9) 

where 𝑡 ≥ 𝑠, noting that 𝑡 is time since the origin. The cause-specific survival functions from 

State 1 to State 3, 𝑆13(𝑡|𝑠) and from State 2 to State 3,  𝑆23(𝑡|𝑠) are defined similarly.  

 

The probability of staying in a state can be thought of as the probability of surviving from 

experiencing any of the possible states an individual can potentially transition to, and thus 

can be expressed as a function of survival probabilities. The probabilities for the 3-state 

Illness-Death multi-state structure can be written as: 

 𝑃11(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 1|𝑌(𝑠) = 1) = 𝑆12(𝑡|𝑠) 𝑆13(𝑡|𝑠) = 

exp (− ∫ ℎ12(𝑢) + ℎ13(𝑢)

𝑡

𝑠

 𝑑𝑢) 

(10) 

 

𝑃22(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 2|𝑌(𝑠) = 2) = 𝑆23(𝑡|𝑠) = exp (− ∫ ℎ23(𝑢)

𝑡

𝑠

 𝑑𝑢)    (11) 

 𝑃33(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 3|𝑌(𝑠) = 3) = 1 

(12) 

 

In order to define the probability of being in state 𝑏 at time 𝑡 given being in state 𝑎 at time 𝑠, 

with 𝑎 ≠ 𝑏, we need to consider the probability of entering state 𝑏 at any intermediate time 

𝑠 < 𝑢 ≤ 𝑡 and then remain at state 𝑏 until time 𝑡. In our 3-state Illness-Death model setting, 

for 𝑎 = 1 and 𝑏 = 2, the transition probability can be defined as: 

 𝑃12(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 2|𝑌(𝑠) = 1) = 

∫ 𝑃11(𝑠, 𝑢)ℎ12(𝑢)𝑃22(𝑢, 𝑡)

𝑡

𝑠

𝑑𝑢 = 

 ∫ 𝑆12(𝑢|𝑠)𝑆13(𝑢|𝑠)ℎ12(𝑢)𝑆23(𝑢|𝑠)

𝑡

𝑠

𝑑𝑢 = 

∫ exp (− ∫ ℎ12(𝑤) + ℎ13(𝑤)

𝑢

𝑠

 𝑑𝑤) ℎ12(𝑢) exp (− ∫ ℎ23(𝑤)

𝑡

𝑢

 𝑑𝑤)

𝑡

𝑠

𝑑𝑢 

(13) 
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with three components, i) the probability of remaining in State 1 (surviving from transitioning 

to State 2 or State 3) until time 𝑢, ii) the instantaneous risk of transitioning to State 2 at time 𝑢 

and iii) the probability of remaining in State 2 until time 𝑡 or, put otherwise, the probability of 

“surviving” the transition to State 3, integrated over all possible times 𝑢. 

 

The probability of reaching the absorbing state, in this case State 3, by time 𝑡 given being in 

State 1 (Initial state) at time 𝑠, is equal to the probability of not managing to stay in State 1 

and not managing to stay in State 2, up until time 𝑡: 

 

 𝑃13(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 3|𝑌(𝑠) = 1) = 1 − 𝑃11(𝑠, 𝑡) − 𝑃12(𝑠, 𝑡) (14) 

Correspondingly, the probability of reaching the absorbing state, State 3, by time 𝑡 given being 

in the intermediate state, State 2, at time s, is the probability of not managing to stay in State 

2 up until time 𝑡: 

 𝑃23(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 3|𝑌(𝑠) = 2) = 1 − 𝑆23(𝑡|𝑠) = 1 − 𝑃22(𝑠, 𝑡) (15) 

The transition probabilities 𝑃22(𝑠, 𝑡) and 𝑃23(𝑠, 𝑡) can be derived similarly under a semi-

Markov assumption, with the hazard and survival functions being functions of time since 

entering State 2, ℎ23(𝑡 − 𝑟), 𝑆23(𝑡 − 𝑟), where 𝑟 the time of entering State 2.  

2.3.5 Expected length of stay 

Aside from the aforementioned measures (transition probabilities and transition intensity rates) 

there are other clinically significant measures such as restricted expected length of stay (or 

length of stay for simplicity) in state 𝑏 during the time period from 𝑠 to 𝑡, conditional on the 

patient being in state 𝑎 (non-absorbing) at time 𝑠, is defined as  

 
𝑒𝑎𝑏(𝑠, 𝑡) = ∫ 𝑃(𝑌(𝑢) = 𝑏|𝑌(𝑠) = 𝑎)

𝑡

𝑠

 𝑑𝑢 
(16) 

which defines the amount of time spent in state 𝑏, starting in state 𝑎 at time 𝑠, up until time 𝑡. 

If  𝑡 = ∞, and state 𝑎 = 𝑏 is a healthy state and all possible next states are deaths, then equation 

16 represents life expectancy. 

2.3.6 Probability of ever visiting a state 

Another measure of clinical importance is the probability of ever visiting a state 𝑏 by time 𝜏 

given being at state 𝑎 at time 𝑠, that is the cumulative probability of ever entering state 𝑏 over 

the time period [𝑠, 𝜏] and can be defined as:   

 𝑣𝑎𝑏(𝑠, 𝜏) = 𝑃(𝑌(∀𝑡 ∈ [𝑠, 𝜏]) = 𝑏| 𝑌(𝑠) = 𝑎) (17) 

where symbol ∀ signifies “for any”. 
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2.3.7 Rationale for using competing risks and multi-state models 

Firstly, it is important to clarify that fitting a standard survival model is not wrong. In the 

examples in Figure 2.1, a research question can be answered by modelling just one of the 

transitions between states. For example, in Figure 2.1d that depicts a complex multi-state 

setting, the researcher can study how an individual’s traits and the characteristics of the 

diagnosed tumor are associated with the rates of distant metastasis in breast cancer patients 

(47). However, the separate analysis of each transition fails to reveal the associations between 

the different types of events (48). Therefore, while studying a single transition via standard 

survival analysis allows comparison of rates, it fails to estimate real-world probabilities of 

being in a certain disease state. In order to estimate probabilities of being in each disease state, 

as well as the rest of the aforementioned measures, modeling of all relevant events is required. 

A well-known showcase example of the previous argument is the fact that a cause-specific 

survival curve does not estimate the probability of dying from the particular cause, as this 

probability (CIF) depends also on the mortality rate due to other causes as was shown in 

equation 3 and an appropriate analysis will take the competing risk into account (49). The same 

issue extends beyond the competing risk setting to the multi-state setting as well, when interest 

lies in understanding the impact of a risk factor over the whole process of the disease (1). 
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3 RESEARCH AIMS 

The current research focusses on a number of extensions in the areas of competing risks and 

multi-state models using flexible parametric survival models (FPSMs). These include 

consideration of different time scales for different transitions, sharing of information across 

transitions by imposing restrictions in the parameter estimation process, application and 

interpretation of a range of multi-state structures of increasing complexity and deriving 

complex (but useful) predictions from such models. The research projects also investigate the 

use of multi-state models in comparison with other modelling frameworks and explore ways to 

efficiently communicate structures and estimation results from multi-state models by 

developing an interactive RShiny application (MSMplus). The methods are applied to national 

cancer registration data (50) and a more detailed linked breast cancer data base, BCBaSe 2.0 

(51), which links to numerous other registers including the Prescribed Drug Register (52). 

The specific aims of the current research are: 

 To incorporate different time scales (attained age and time since diagnosis) when 

modelling competing risks using flexible parametric survival models and assess the 

influence of the choice of timescale on the estimation of the cause-specific CIFs for 

different levels of selected factors (Study I). 

 To present and compare the structures and estimation results of multi-state models in a 

novel, flexible and interactive way via developing an online interactive web tool (Study 

II).  

 To explore different research questions via multi-state models of varying complexity 

when using registry-based repeated prescriptions of antidepressants in women with 

breast cancer and a matched population comparison group and discuss different 

modelling choices (Study III). 

 To use and evaluate a multi-state model framework as an alternative to joint frailty 

models when studying reccurrent events with a presence of a terminal event (Study 

IV). 
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4 MATERIALS AND METHODS 

4.1 DATA SOURCES  

4.1.1 Swedish Cancer Registry 

In Study I, I use data on colon cancer diagnosis from the Swedish Cancer Register as a 

motivational example of applying competing risks using either a common timescale or different 

timescales for the different causes of death (colon cancer and other causes). The Swedish 

Cancer Register is a nationwide, population-based register, established in 1958 (50). All health 

care practitioners and laboratories are compelled by law to report any new cancer diagnosis so 

registration is close to complete. The register includes demographic information (age, gender, 

place of residence), tumour-specific information (site, stage and histological type), information 

about diagnosis (date, reporting hospital and more) as well as follow-up date (date and cause 

of death, or date of migration). In Study I, I limit the sample to all adults individuals that were 

diagnosed with colon cancer between 2005 and 2017 (n=53,630).  

4.1.2 Swedish Cause of Death Register 

Information on date and cause of death regarding the individuals with colon cancer diagnosis 

of Study I was retrieved from the Cause of Death Register (53). Statistics on cause of death 

started being reported in 1749 by decision of the Swedish parliament. Different governmental 

organizations bore the responsibility of the register between 1831 and 1911, including as causes 

of death maternal death or plague. From 1911 to 1993, Statistics Sweden was responsible for 

the register, including all causes of death. From 1994 to present, the register is maintained by 

the Swedish National Board of Health and Welfare and is updated on an annual basis. It 

includes demographic information, underlying cause of death (ICD-6 to ICD-10), date and 

place of death, autopsy, surgery within a month before death and more. In Study I, I use the 

underlying cause of death information to classify an individual as having died from colon 

cancer, from other causes or still being alive at the end of the follow-up period. I use the register 

version with data up to the end of 2017. I excluded individuals for which the underlying colon 

cancer was found during an autopsy.  

Record linkage between the Swedish Cancer Register and the Swedish Cause of Death Register 

for Study I is straightforward via using the unique civic registration number assigned to all 

Swedish citizens. The linkage between the two registers has been conducted in a pre-analysis 

stage, and the data has been pseudonymized.    

4.1.3 Breast Cancer Data Base Sweden 2.0 

Breast Cancer Data Base Sweden 2.0 (BCBaSe 2.0) is a register-based research resource with 

data on an unselected cohort of women and men diagnosed with breast cancer (BC) in Sweden 

(51). It consists of individuals diagnosed with BC between 1992 and 2012 (n = 68,450) that are 

age and gender matched with breast cancer free controls with a ratio of approximately 1:5 (n 

=343,200), in three Swedish Health Care regions. The mean age at inclusion was 61.8 years 

(range 19-102) and the cohort has been followed up until 31 December 2013. BCBaSe 2.0 
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includes information from regional and national BC quality registers which is then linked to 

national demographic and health care population-based registers (Swedish Cancer Register 

(50), Cause of Death Register (53), National Patient Register (54), Register of total population 

(55), Prescribed Drug Register (52), Multi-Generation Register (56),  Longitudinal Integration 

Database for Health Insurance and Labour Market Studies or LISA (57) and MIcro Data for 

Analysis of Social Insurance or MiDAS (58)). Thus, there is information on tumor 

characteristics and cancer treatment, but also information on socioeconomic variables, 

comorbidity and use of prescribed drugs. In Study III, I use mainly data from the Prescribed 

Drug Register in order to explore different research questions regarding antidepressant 

medication use patterns among a sub-sample of women diagnosed with invasive breast cancer 

and healthy-matched women via the use of multi-state models. 

4.1.4 Prescribed Drug Register 

The Prescribed Drug Register (52) was initiated in 2005 and contains full data about medication 

dispensed at pharmacies in Sweden since 01/07/2005, with unique patient identifiers for all 

dispensed prescriptions in Sweden. The data is collected by the National Corporation of 

Swedish Pharmacies. The register includes, among other information, demographic 

information, product-specific information (Anatomical Therapeutic Chemical (ATC) code, 

name, pack size, recommended daily dose), prescription-specific information (quantity and 

number of packages, date of prescription, date of purchase, prescribed dosage), as well as cost-

specific and prescriber-specific information. Each row of the register database corresponds to 

one dispensation at a pharmacy. In Study III, I am interested in exploring different research 

questions via multi-state models using registry-based repeated prescriptions of antidepressants, 

so I selected the rows/ prescribed medication based on the Anatomical Therapeutic Chemical 

(ATC) classification system, using the code N06A.  

4.1.5 European Blood and Marrow Transplant registry example 

The European Blood and Marrow Transplant (EBMT) registry (59) is the backbone of the 

EBMT’s research activities. An example dataset consisting of 2.204 individuals who have 

received bone marrow transplantation is freely available via library msm in R (ebmt3). It is a 

typical example dataset used for the application of an Illness-Death multi-state model as the 

individual, may experience platelet recovery or relapse/death. The relapse/death event may take 

place with or without previous platelet recovery. This dataset is used in Study II, as an example 

for the Rshiny application I develop called MSMplus, an online interactive tool for 

communication of multi-state model results to scientific audiences. 

4.1.6 Readmission data 

This is a freely available dataset that is used as an example dataset within the frailtypack 

package in R (60) and is used in Study IV to compare the predictions from the application of 

the joint frailty models with the predictions from the various multi-state modelling approaches. 

It includes information about repeated hospitalizations among 403 colorectal cancer patients 

with death as a terminal event and the origin of this data is a study conducted by Gonzalez et 

al (61).  
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4.1.7 Ethical Considerations 

Any research that involves human participants should follow strict ethical principles so that it 

does not endanger their physical or mental health or integrity. The Declaration of Helsinki 

(DoH) is the World Medical Association’s (WMA) best-known policy statement (62). It 

contains a set of principles that set a boundary between the potential profit for society and the 

interests/well-being of the individual patients who are part of clinical trials, recognizes the 

existence of vulnerable groups (children, inmates, soldiers and more) and promotes the right of 

the individual to make informed decisions. The first version was adopted in 1964 and has been 

amended seven times since, most recently at the General Assembly in October 2013. Even 

though the declaration itself is not legally binding, many countries have passed its principles 

as national laws. Specifically in Sweden, the Ethical Review Act (2003:460), the Public Access 

and Secrecy Act (2009:300) and the personal Data Act (1998:204) incorporated the DoH 

principles in national legislation. Then, under the EU directive in order to harmonize relevant 

personal Data Act legislation across Europe, the General Data Protection Regulation (GDPR) 

was implemented in 2018 (63). The ethical review act provides details about the information 

that should be communicated to the participant, the requirement of consent, the right of 

withdrawal, cases of research where consent is not required, due to a mental disorder or an 

weakened state of being, as well as the distribution of responsibility for checking and granting 

research among ethical review boards and departments across the country. In cases when no 

active participation is required from the participants, the Ethical review authority can waive the 

requirement of informed consent. 

In the present thesis, two types of datasets are used: a) toy example datasets that are freely 

available on web and can be used as motivational examples for the application of a technique 

(52,59) and b) datasets originating from the Swedish Cancer Register (50) and BCBaSe 2.0 

(51) that are based on the population-based registers mentioned in Section 4.1.3. The first class 

of datasets do not require any kind of ethical approval in order to be used, while the second-

class datasets require permission from the ethical review authority in order to be dispatched 

from the register holders to the institution that will serve as a host for the researcher to analyze 

them. The Regional Ethics Review board in Stockholm granted ethical approval for the use of 

the Swedish cancer registry data for the aims included in Study I of this thesis (2006/914-31/3, 

2008/1469-32, 2009/634-32, 2010/1928-32). It also granted ethical approval for the use of the 

BCBaSe 2.0 register-based data source for the aims included in Study III of this thesis 

(2013/1272-31/4). The data has been pseudonymised, encrypted and properly stored at servers 

of the Department of Epidemiology and Biostatistics (MEB). Access is given only to 

researchers involved in the data management and analysis of the data regarding a project with 

aim that is included in the granted ethical approvals. 

4.2 FLEXIBLE PARAMETRIC MODELS  

Royston & Parmar (38) developed a class of flexible parametric models which were later 

extended by Lambert & Royston (39). This type of models allow both for right censoring and 

left truncation and use restricted cubic spline functions 𝑠() to flexibly model the effect of the 

logarithm of time 𝑠(ln(𝑡) |𝜸, 𝒎𝟎) for the log baseline cumulative hazard, with 𝑀0 knots, 𝒎𝟎 =

(𝑚01
, 𝑚02

, … , 𝑚0𝑀0
) is the knots vector with associated parameter vector 𝜸 =

(𝛾0, 𝛾1, … , 𝛾𝑀0−1).  
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The restriction of the restricted cubic spline function is that it is linear before the first knot and 

after the last knot. In order to fit a restricted cubic spline function with 𝑀0 knots, 𝑀0 − 1 

variables must be created so that the cubic spline function can be defined as: 

 𝑠(ln(𝑡) |𝜸, 𝒎𝟎)  = 𝛾0 + 𝛾1𝑧1 + ⋯ + 𝛾𝑀0−1𝑧𝑀0−1   (18) 

Where variables 𝑧𝑗 , 𝑗 ∈ {1, … , 𝑀0 − 1} are known as the basis functions and can be derived as: 

 𝑧1 = ln(𝑡),  

𝑧𝑗 = (ln(𝑡) − 𝑚0𝑗
)

+

3

−
𝑚0𝑀0

− 𝑚0𝑗

𝑚0𝑀0
− 𝑚01

(ln(𝑡) − 𝑚01
)

+

3

− (1 −
𝑚0𝑀0

− 𝑚0𝑗

𝑚0𝑀0
− 𝑚01

) (ln(𝑡) − 𝑚0𝑀0
)

+

3

, 

  𝑗 = 2, … , 𝑀0 − 1    

(19) 

This class of models enable proportional hazards, but can easily be extended to time-varying 

effects (non-proportional hazards) by including interaction terms between the covariates and 

the timescale. A flexible parametric proportional hazards model on the log cumulative hazard 

scale ln 𝐻(𝑡), with time since diagnosis as the timescale 𝑡, and covariate vector 𝒁 will be: 

 ln(𝐻(𝑡|𝜸, 𝒎𝟎, 𝒁𝒊)) =  ln(𝐻0(𝑡)) + 𝜷𝒁𝒁𝒊 =  𝑠(ln(𝑡) |𝜸, 𝒎𝟎) + 𝜷𝒁𝒁𝒊 (20) 

while a flexible parametric non-proportional hazards model with time-dependent effects for 

the covariate vector 𝒁 will be: 

 
ln[𝐻(𝑡|𝜸, 𝒎𝟎, 𝜹𝒎, 𝒎𝒋, 𝒁𝒊)] = 𝑠(ln(𝑡) |𝜸, 𝒎𝟎) + 𝜷𝒁𝒁𝒊 + ∑ 𝑠(ln(𝑡) |𝜹𝒎, 𝒎𝒋)

𝐷

𝑗=1

𝒁𝒊 
(21) 

with 𝐷 the number of time dependent effects, 𝒎𝒋, the knots for the 𝑗𝑡ℎ time-dependent effect 

with parameters 𝜹𝒎. 

The survival and the hazard functions can then be derived as: 

    

 𝑆(𝑡|𝒁𝒊) = exp {−exp (ln[𝐻(𝑡|𝜸, 𝒎𝟎, 𝒁𝒊)])} (22) 

 

 
ℎ(𝑡|𝒁𝒊) =

𝑑exp(ln[𝐻(𝑡|𝜸, 𝒎𝟎, 𝒁𝒊)])

𝑑𝑡
=

𝑑(𝑠(ln(𝑡)|𝜸, 𝒎𝟎))

𝑑𝑡
exp(𝜷𝒁𝒁𝒊) 

(23) 
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The parameter estimates are derived via maximum likelihood estimation. The contribution of 

the 𝑖𝑡ℎ individual to the log-likelihood of a right censored FPSM is 

 ln𝐿𝑖 = 𝑑𝑖ln[ℎ(𝑡𝑖|𝜸, 𝒎𝟎, 𝜷𝒁)] − 𝐻(𝑡𝑖|𝜸, 𝒎𝟎, 𝜷𝒁) (24) 

See Royston and Parmar (38) for more details. 

4.3 PARAMETRIC APPROACHES IN MULTI-STATE MODELS 

4.3.1 Earlier parametric approaches 

Omar et al (64) developed an Illness–Death model assuming all transition intensity rates to be 

Weibull hazard functions. In 2011, Jackson (44) presented, via package msm in R, a (piecewise-

) exponential multi-state model under a Markov assumption, with piecewise constant transition 

intensity rates, that can capture complex hazard functions. In 2015, Titman (65) developed a 

multi-state model using B-splines when modelling the baseline transition intensity rates (non-

homogeneous) under the Markov assumption and derived the transition probabilities via the 

development of an equation solver. Krol and Saint Pierre (66) developed a multi-state model 

under a semi-Markov assumption allowing for transition-specific intensity rates but only offer 

the options of exponential, Weibull and exponential-Weibull. Blaser et al (67) developed a 

more flexible parametric multi-state model, with transition-specific intensity rates, each of 

which can be an arbitrarily specified hazard function, using piecewise approximation when 

simulating survival times to derive predictions under a semi-Markov approach.  

4.3.2 Flexible parametric survival models 

Flexible parametric multi-state models, either under the Markov or the semi-Markov 

assumption, with transition-specific definition of the hazard distribution can be fit via packages 

flexrsurv (68) and rstpm2(69) in R and via the multistate package in Stata (43). In 

addition, the parameter estimates can be shared or separate across transitions while some or all 

transitions can incorporate time-dependent effects. Adopting a flexible parametric approach 

offers a number of advantages, the most important being the flexible modelling of time 

dependent effects or in other words, non-proportional hazards, in a much easier and more 

straightforward way, thus providing greater model flexibility and thus the potential for more 

accurate predictions. These advantages have already been demonstrated in a competing risk 

setting (37,40,70,71) and practical applications of these methods can be found in the relevant 

literature (72–74). A natural extension to the above is the use of flexible parametric approaches 

to a more complex multi-state framework that focuses on studying the entire disease history 

(43). A parametric approach makes the extensions feasible, leading to more complex, but at the 

same time more realistic models, thus improving our understanding of disease process under 

study.  

4.3.3 Estimation of transition/state occupancy probabilities 

Cause-specific parametric models can be used to estimate the cause-specific log cumulative 

hazard and the cause-specific survival and hazard functions. These can then be plugged-in to 

the relevant equations to estimate the cause-specific CIFs in the competing risk setting 
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(equation 3 of Section 2.2) and the transition probabilities in the multi-state setting (equations 

8-13 of Section 2.3). There are alternative approaches for estimating the transition probabilities. 

Consider for example a multi-state process 𝑌(𝑡) (𝑡 ≥ 0) with a finite space of states 𝛺=

1, . . . , 𝐿. The transition probabilities can be derived via a parametric adaption of the Aalen-

Johansen estimator (equation 25), which is the solution to the Kolmogorov equation (equation 

27) under the Markov assumption, by plugging in the cumulative hazard estimates derived 

from a parametric hazard model:   

 �̂�(𝑠, 𝑡) = ∏ (𝑰 + 𝑑�̂�(𝑢))

𝑠<𝑢≤𝑡

 
(25) 

With 𝑰 being the 𝐿 × 𝐿 identity matrix, and d�̂� being the 𝐿 × 𝐿 matrix of increments in the 

cumulative hazards �̂� over all transition combinations. The transition probability for a specific 

𝑎 → 𝑏 transition is (�̂�(𝑌(𝑡) = 𝑏|𝑌(𝑠) = 𝑎)) is equal to the (𝑎, 𝑏) element of the �̂�(𝑠, 𝑡) matrix. 

The Aalen-Johansen estimator is usually used for non-parametric estimation. However, if the 

cumulative hazards are predicted at small time intervals then the parametric approach can be 

used.  

The overall probability of being in each state 𝑙 over time 𝑃𝑙(𝑡) = 𝑃(𝑌(𝑡) = 𝑙) can be derived 

by multiplying the transition probability towards that state since time zero 𝑃(𝑌(𝑡) = 𝑙|𝑌(0) =

1) with the vector of probabilities of being in each state at time 0, with the 𝑙𝑡ℎ element being  

𝜋𝑙(0) = 𝑃(𝑌(0) = 𝑙). The estimated state occupation probability matrix can therefore be 

derived as: 

 �̂�(𝑡) = �̂�(0) ∏ (𝑰 + 𝑑�̂�(𝑢))

𝑠<𝑢≤𝑡

 (26) 

From equation 26 it follows that, if all individuals start from the same, initial state at time 0, 

then 𝜋1(0) = 𝑃(𝑌(0) = 1) = 1, in which case the state occupancy probability matrix 𝑷(𝑡) 

coincides with the transition probability matrix 𝑷(𝑠, 𝑡). In the current work, in all multi-state 

model examples, all individuals start from the same, initial state, that is why the terms transition 

probability and state occupancy probability are often used interchangeably.  

Transition probabilities can also be derived by numerically solving the Kolmogorov forward 

equation (75): 

 𝑑𝑷(𝑠, 𝑡)

𝑑𝑡
= 𝑷(𝑠, 𝑡) ∗ 𝑸(𝑡) (27) 

as done by Titman (65), with 𝑷(𝑠, 𝑠) = 𝑰 identity matrix being the initial condition. 

As it will be discussed in detail in the Section 4.4, transition probabilities as well as other 

measures can also be derived under simulation-based approaches that essentially simulate a 

high number of individuals and potential trajectories across the states based on the transition 
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matrix and the hazard rate estimates from the implementation of the cause-specific hazard 

models. 

4.4 SIMULATION FOR DERIVING PREDICTIONS 

Some of the clinically useful measures in the multi-state setting require complex numerical 

integration to be estimated. In order to bypass the integration issue, a simulation approach can 

be used. Also, under a semi-Markov assumption, these measures can more easily be obtained 

via simulation. However, simulating disease histories in multi-state models is a complex 

procedure and it has been argued that this is one reason why many previous modelling 

approaches were quite simplistic (46). With increases in the computing power, following the 

evolution of computer technology, it is now possible to use simulation-based methods to 

calculate a variety of useful predictions. Parametric models render this procedure even easier 

as they provide all the parameters needed to construct the data generating mechanism used for 

the simulation, rather than Cox models where the baseline hazard for each transition is not 

directly estimated (42). During the simulation approach, the parametric models are fitted and 

then, using the estimated model parameters, a large number 𝑛 of individuals are simulated 

through the model, thus making the predictions a simple process of counting and averaging 

rather than complex nested numerical integration. The simulation can be repeated 𝑚 times, 

using random draws from a multivariate normal distribution of the estimated parameters, with 

mean �̂� and the associated variance-covariance matrix 𝑽 in order to also derive confidence 

intervals. A general survival simulation framework can be used (76) that is highly flexible to 

obtain clinically useful measures such as the probability of being in each disease state as a 

function of time and the total length of stay in each state (77). In addition, restricted life 

expectancy can easily be derived as a function of the predicted length of stay in each state. 

Contrasts of a measure within each state and between individuals with different covariate 

patterns can also be estimated, such as differences or ratios, also accompanied by confidence 

intervals. Another metric for contrast is the probability that an exposed individual has a shorter 

time spent in a certain state when compared to an unexposed individual. This is an example of 

a measure that is very difficult to be analytically calculated, but has a very simple and 

straightforward derivation under the simulation approach. 

In Study III, I use predictms command in Stata (43), a simulation-based approach for 

deriving measure estimates for multi-state models making Markov and semi-Markov 

assumptions. In Study IV, I derive the true values of the probabilities for death under each 

scenario by simulating a large population sample based on the parameters set for each scenario. 

I also explore deriving predictions of the same probabilities from a joint frailty model via 

simulation apart from the analytical approach.  

There are different simulation-based approaches that can be used for multi-state models, such 

as the latent failure times approach (78) and the simulation design by Beyersmann et al (79). 

The latent failure times approach is essentially a series of subsequent competing risks 

simulations, simulating an event time for each competing event via its cause-specific hazard 

function, then keeping the minimum of the simulated times, and treating the event with that 

time as the observed event. In Beyersmann et al, the cause-specific hazard functions for all 

competing events at each step of the multi-state process are summed. Then, based on the total 
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hazard function, times to event are simulated. For each simulated time, the type of event is 

given as a result of a binomial (for two competing events) or a multinomial (for more than two 

competing events) experiment, with a probability for each competing event equal to the cause-

specific hazard rate value at the simulated time over the summed hazard function value at the 

same time.  

Below we describe a latent failure times simulation approach in order to transition probability 

estimates as well as probability estimates of ever visiting a state and estimated restricted 

expected length of stay in different states, after applying a multi-state model assuming a semi-

Markov process.  

4.4.1 Step 1: Fitting the model 

The first step in this process is to fit the selected multi-state model in order to derive the 

transition intensity rate estimates. Let’s assume the 3-state Illness- Death model of Figure 2.1c, 

with transition intensity rates ℎ12, ℎ13, and ℎ23 and covariate vector 𝒁 for all transitions. Under 

the semi-Markov assumption, the transition intensity rates are assumed to be functions of time 

since entering the current state. This means that the intensities ℎ12 and ℎ13 are still functions 

of the total time, with ℎ12(𝑡|𝒁) and ℎ13(𝑡|𝒁), while ℎ23 is a function of time 𝑡′ = 𝑡 − 𝑡1, 

with 𝑡1 being the time of entering State 2, resulting in ℎ23(𝑡 − 𝑡1|𝑡 ≥ 𝑡1, 𝒁). Fitting a multi-

state model with separate parametric estimation of each transition intensity rate, for example 

via FPSMs, will derive the estimated transition intensity rate functions. It is also possible to 

fit multiple transition intensity rate models simultaneously via a stacked multi-state model, 

permitting joint parameter estimation and enabling information sharing across transitions 

(See Section 6).   

4.4.2 Step 2: Simulating individual trajectories 

Based on the multi-state structure, survival times can be simulated for all competing states 

an individual is at risk for while being in the current state, simulating their individual 

trajectory across states and time. For an individual who is at the starting state (State 1) of the 

3-state Illness-Death model, the competing states are the intermediate event (State 2) and the 

terminal event (State 3). A survival time is simulated for this individual along with an event 

indicator for both competing states, (𝑡1, 𝛿1) for State 2 and (𝑡2, 𝛿2) for State 3, while also 

setting a maximum follow-up time 𝑇𝑐 after which the observations are censored.  

Table 4.1. Simulated survival times and indicators from the initial state (State 1) to the 

intermediate event (State 2) and the terminal/ absorbing event (State 3) 

 Starting state to 

Intermediate event 

Starting state to 

Terminal event 

Survival time 𝑡1 ≤ 𝑇𝑐 𝑡2 ≤ 𝑇𝑐 

Indicator 𝛿1 =0/1 𝛿1 =0/1 
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If 𝑡1, 𝑡2 = 𝑇𝑐, then the individual stays at State 1 across the follow-up time till the censoring. 

If 𝑡2 < 𝑡1, 𝑇𝑐,  then the individual transitions to the absorbing State 3 at time 𝑡2. If 𝑡1 < 𝑡2, 𝑇𝑐, 

then the individual transitions to the intermediate state (State 2). There, a survival time 𝑡3  in 

the intermediate state is simulated with a maximum of  𝑇𝑐 − 𝑡1 based on the estimated 

transition intensity rate for the current transition ℎ23̂(𝑡 − 𝑡1|𝑡 ≥ 𝑡1, 𝒁). If 𝑡3 = 𝑇𝑐 − 𝑡1 then 

𝛿3 = 0, the individual remains at State 2 is until the censoring at time 𝑇𝑐 − 𝑡1. If 𝑡3 < 𝑇𝑐 −

𝑡1 then 𝛿3 = 1, and the individual transitions to the terminal state at time 𝑡3.  

Step 2 is repeated for a large number of pseudo-individuals. We have to note here, that the 

process is done for individuals with a specific covariate pattern 𝑍 = 𝑧1 but then the process 

can enter a loop over many different covariate patterns. 

4.4.3 Step 3: Deriving predictions 

After simulating trajectories over a population of a specific covariate pattern, with every 

simulated individual starting from State 1 at time 0, the transition probabilities can easily be 

estimated by counting how many individuals populate each state for each time point of 

prediction, where time refers to the time since entering the starting state of the simulated 

individual, in this case, State 1.  

Let us assume a table of 10 simulated individuals, all starting in State 1 at time 0, with their 

corresponding simulated times of reaching State 2 and State 3 and a maximum follow-up 

time of 5 years.   

Table 4.2. Example of simulated individuals and times of entering each state of the 3-State 

Illness- Death model. A missing value (.) signifies that the specific state was not entered by 

the individual during the maximum follow-up time. The computed variables of length of stay 

of each individual in each state by time equal to 2 years after the start of follow-up are also 

given. 

Id Time until 

State 2 

Time until 

State 3 

Maximum 

follow-up time 

Length of stay in 

State 1 by t=2 

Length of stay in 

State 2 by t=2 

Length of stay in 

State 3 by t=2 

1 1.5 3 5 1.5 0.5 0 

2 . 2.5 5 2 0 0 

3 4 . 5 2 0 0 

4 . . 5 2 0 0 

5 1.5 4 5 1.5 0.5 0 

6 3 5 5 2 0 0 

7 0.5 1.5 5 0.5 1 0.5 

8 . 0.5 5 0.5 0 1.5 

9 . . 5 2 0 0 

10 1 3 5 1 1 0 

For a certain time point of prediction 𝑡𝑝𝑟𝑒𝑑, and for the 𝑗𝑡ℎstate of the multi-state structure,  

the estimated transition probabilities from State 1 to all states of the 3-state Illness-Death 
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structure will be equal to the number of individuals populating each state at 𝑡𝑝𝑟𝑒𝑑, 𝑁𝑗(𝑡𝑝𝑟𝑒𝑑), 

divided by the total population starting at the initial state (State 1) at time 0, 𝑁1(0): 

 
�̂�1𝑗(0, 𝑡𝑝𝑟𝑒𝑑) = �̂�(𝑌(𝑡𝑝𝑟𝑒𝑑) = 𝑗|𝑌(0) = 1) =

𝑁𝑗(𝑡𝑝𝑟𝑒𝑑)
𝑁1(0)

⁄   (28) 

 

For 𝑡𝑝𝑟𝑒𝑑 = 2, the �̂�11(0,2) transition probability (probability of still being in State 1 at time 

2 years after the start of the follow-up, is 0.5 as, out of the 𝑁1(0) =10 simulated individuals, 

𝑁1(2) = 5 of them (id= 2, 3, 4, 6, 9) are still in State 1 for 𝑡𝑝𝑟𝑒𝑑 = 2. Similarly, the �̂�12(0,2) 

transition probability (probability of being in State 2 at time 2 years after the start of the 

follow-up, is 0.3 as, out of the 𝑁1(0) =10 simulated individuals, 𝑁2(2) = 3  of them (id=1, 

5, 10) have entered State 2 and are still in that state by time 𝑡𝑝𝑟𝑒𝑑 = 2. Finally, the �̂�13(0,2) 

transition probability (probability having entered the absorbing State 3 by time 2 years after 

the start of the follow-up, is 0.2 as, out of the 𝑁1(0) =10 simulated individuals, 𝑁3(2) = 2  

of them (id=7, 8) has entered State 3 by time 𝑡𝑝𝑟𝑒𝑑 = 2.  

The probability of ever visiting the 𝑗𝑡ℎstate by the prediction time 𝑡𝑝𝑟𝑒𝑑, given being in State 

1 at time 0, can be easily estimated by dividing the number of simulated individuals who have 

ever experienced state 𝑗 by time 𝑡𝑝𝑟𝑒𝑑, 𝑀𝑗(𝑡𝑝𝑟𝑒𝑑),  divided by the total population starting at 

the initial state at time 0, 𝑁1(0): 

 𝑣1𝑗(0, 𝑡𝑝𝑟𝑒𝑑) = �̂�(𝑌(∀𝑡 ∈ [0, 𝑡𝑝𝑟𝑒𝑑]) = 𝑗| 𝑌(0) = 1) =
𝑀𝑗(𝑡𝑝𝑟𝑒𝑑)

𝑁1(0)
 (29) 

The 𝑣12(0,2) estimated probability of ever visiting State 2 by time 𝑡𝑝𝑟𝑒𝑑 = 2, is 0.4 as, out of 

the 𝑁1(0) =10 simulated individuals, 𝑀2(2) = 4 of them (id=1, 5, 7, 10) have ever 

experienced entering State 2 by 𝑡𝑝𝑟𝑒𝑑 = 2. Similarly, the 𝑣13(0,2) estimated probability of 

ever visiting State 3 by time 𝑡𝑝𝑟𝑒𝑑 = 2, is 0.2 as, out of the 𝑁1(0) =10 simulated individuals, 

𝑀3(2) = 2 of them (id=7, 8) has experienced State 3 by 𝑡𝑝𝑟𝑒𝑑 = 2. We should note that, given 

being in a specific state (State 1), the probability of ever visiting a terminal state, in our case 

State 3, is equal to the transition probability to that state, 𝑃13(0, 𝑡𝑝𝑟𝑒𝑑) = 𝑣13(0, 𝑡𝑝𝑟𝑒𝑑). Also, 

even if it is self-evident, the probability of ever visiting the State 1, given that all individuals 

start from there, is always 1, 𝑣11 = 1. 

The restricted expected length of stay at state 𝑗 up to a specific time point of prediction 𝑡𝑝𝑟𝑒𝑑 

given being in State 1 at time 0, 𝑒1𝑗(0, 𝑡𝑝𝑟𝑒𝑑) can also be easily estimated, by summing the 

length stay of each individual  in State 𝑗 up to time 𝑡𝑝𝑟𝑒𝑑, over individuals and then divide it 

by the total population starting at the initial state at time 0, 𝑁1(0): 
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𝑒1�̂�(0, 𝑡𝑝𝑟𝑒𝑑) =

∑ 𝑒1𝑗,𝑖(0, 𝑡𝑝𝑟𝑒𝑑)
𝑁1(0)
𝑖=1

𝑁1(0)
 

(30) 

The estimated restricted expected length of stay in State 1, 𝑒11̂, can be derived by calculating 

the sum of times that the 𝑁1(0) stayed in State 1, up to time 𝑡𝑝𝑟𝑒𝑑 = 2, and then divide it by 

𝑁1(0). The length of time that each individual spends in each state can be easily computed, 

with the individual length of stay in State 1, State 2 and State 3 until time 𝑡𝑝𝑟𝑒𝑑 = 2, namely 

𝑒11,𝑖(0,2), 𝑒12,𝑖(0,2) and 𝑒13,𝑖(0,2) given in Table 4.2. Then: 

 
𝑒11̂(0,2) =  

∑ 𝑒11,𝑖(0,2)10
𝑖=1

𝑁1(0)
=

1.5 + 2 + 2 + 2 + 1.5 + 2 + 0.5 + 0.5 + 2 + 1

10
=

15

10
= 1.5 (31) 

For State 2 and State 3, we can derive both the restricted expected length of stay up until time 

𝑡𝑝𝑟𝑒𝑑 among all individuals (equations 32, 33) or among the individuals that have ever 

experienced State 2 during the 5 years of the follow-up period 𝑀2(5) = 6 (id=1, 3, 5, 6, 7, 10) 

(equations 34, 35). 

 𝑒12̂(0,2) =  
∑ 𝑒12,𝑖(0,2)10

𝑖=1

𝑁1(0)
=

0.5 + 0 + 0 + 0 + 0.5 + 0 + 1.5 + 0 + 0 + 1

10
= 0.35 (32) 

 
𝑒13̂(0,2) =  

∑ 𝑒13,𝑖(0,2)
𝑁1(0)
𝑖=1

𝑁1(0)
=

0 + 0 + 0 + 0 + 0 + 0 + 0.5 + 1.5 + 0 + 0

6
=

2

6
= 0.33 (33) 

 
𝐶𝑜𝑛𝑑. 𝑒12̂(0,2) =  

∑ 𝑒12,𝑖(0,2)
𝑀2(5)
𝑖=1

𝑀2(5)
=

0.5 + 0 + 0.5 + 0 + 1 + 1

6
= 0.5 (34) 

 𝐶𝑜𝑛𝑑. 𝑒13̂(0,2) =  
∑ 𝑒13,𝑖(0,2)

𝑀2(5)
𝑖=1

𝑀2(5)
=

0 + 0 + 0 + 0 + 0.5 + 0

6
= 0.083 (35) 

If we are interested in estimates regarding transitions that have a starting state other than the 

initial state of the structure (State 1), for example the transition probability from State 2 to State 

3, �̂�23(𝑠, 𝑡𝑝𝑟𝑒𝑑), we can simulate a population (survival times) via transition intensity rate 

models with left truncation at time 𝑠, with every individual starting at State 2. Then, we just 

have to count how many individuals have transitioned from State 2 to State 3 from time 𝑠 until 

time 𝑡𝑝𝑟𝑒𝑑.  

4.5 SIMULATION FOR EVALUATION OF STATISTICAL METHODS 

Simulation techniques are used in Study I and Study IV of this thesis. In Study I, different 

modelling approaches are used to estimate the cause-specific CIF for colon cancer and other 

cause mortality when the hazard for other cause mortality is a function of attained age. In Study 
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IV, multi-state models are used in order to estimate probabilities of event recurrences and death 

given that the underlying recurrent events and death processes are based on a joint frailty model 

underlying mechanism and are related via a common frailty term 𝑢𝑖. In both cases, I try to 

assess the performance of the proposed approaches based on certain performance measures. I 

briefly describe the process followed during a simulation study and the performance measures 

that can be derived in order to assess the use of each approach.  

4.5.1 Aim of simulation- Estimands 

Firstly, it is important to set the aim of the simulation. In the current work, there are 

measures/quantities that need to be estimated with low bias, appropriate coverage and high 

precision. In Study I, the estimands are the cause-specific CIF for death due to colon cancer 

(𝐶𝐼𝐹1) and CIF for other cause mortality (𝐶𝐼𝐹2) across time t in years after the colon cancer 

diagnosis. In Study IV, the estimands of interest are the probabilities of a new recurrent event 

or death given one, two, or three past recurrent events within 1 year after the start of the follow-

up.  

4.5.2 Data generating mechanism- True values 

For each scenario created, we have to select values for a series of parameters. These values are 

treated as the true values of the parameters for the hypothetical population of each scenario. In 

case of composite estimands, these true values of the parameters are used to derive the “true 

values” of the estimands to be studied. In the case of Study I, I derive the true values of the 

cause-specific CIFs based on the parameters set for the scenario-specific population (variance 

of simulated age at diagnosis variable) and the hazard functions of each competing event 

(parameters for baseline hazard, covariate effects). Through integration of a composite function 

of “true” hazard functions, I derive the “true” cause-specific CIF values across time. In Study 

IV, it is not possible to analytically derive the true values of the measures of interest, the 

probabilities of a new recurrence or death up to time 𝑡. Thus, for Study IV, I simulate a large 

population (7 million individuals) under different scenarios of the variance of the gamma 

distribution of the frailties and the alpha parameter the signifies the association between the 

recurrent event and the death process. The size of the population should be big enough so that 

the Monte-Carlo error across different simulated populations is very small. Treating the 

generated population under each scenario as the underlying population of interest, the 

probabilities of a new recurrence or death up to time 𝑡 can be derived via simple frequencies 

over time. 

4.5.3 Data simulation- Estimates 

We can then simulate multiple random datasets based on the parameters of the DGM under 

each scenario. A seed number is used in order to be able to replicate the same set of simulated 

datasets no matter how many times the simulation is rerun. The number and the size of the 

simulated datasets differ in different simulation studies and depend on the aims of the 

simulation, the performance measures, and the desired level of the Monte-Carlo error. In this 

step, each modelling approach is applied to all simulated datasets, deriving estimates of the 
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target estimand for each scenario. For Study I, those are the 𝐶𝐼𝐹1 and 𝐶𝐼𝐹2 estimates across 

time that are derived under approaches that use different timescales when modelling the other 

cause mortality rate or different level of complexity in how they include the effect of age at 

diagnosis in the other cause mortality rate model. 

4.5.4 Performance measures 

Depending on the aim of the simulation study, different performance measures may be derived. 

In the case of Study I, bias, relative precision and coverage were the performance measures of 

interest while the Monte-Carlo standard error of the bias estimate was also presented as an 

estimate of the simulation uncertainty. After deriving the estimates 𝜃𝑖 (i is the simulated sample 

index), 𝑖 = 1, … , 𝑛𝑠𝑖𝑚, we can combine them with the true values of our estimands 𝜃 and 

estimate the performance measures of interest. 

Bias estimate  

 

𝐵𝑖𝑎𝑠 =
1

𝑛𝑠𝑖𝑚
∑ (𝜃𝑖 − 𝜃)

𝑛𝑠𝑖𝑚

𝑖=1

 

(36) 

Monte-Carlo standard error of bias estimate 

 

𝑀𝑜𝑛𝑡𝑒 − 𝐶𝑎𝑟𝑙𝑜 𝑆. 𝐸𝑏𝑖𝑎𝑠 = √
1

𝑛𝑠𝑖𝑚(𝑛𝑠𝑖𝑚 − 1)
∑ (𝜃𝑖 − �̅�)2

𝑛𝑠𝑖𝑚

𝑖=1

 

(37) 

Empirical Standard error of estimates       

 

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑆. 𝐸 = √
1

𝑛𝑠𝑖𝑚 − 1
∑ (𝜃𝑖 − �̅�)2

𝑛𝑠𝑖𝑚

𝑖=1

 

(38) 

Relative increase in precision when comparing approach B with approach A estimate

  

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100 [(

𝐸𝑚𝑝𝑆𝐸𝐴
̂

𝐸𝑚𝑝𝑆𝐸𝐵
̂

)

2

− 1] (39) 

Coverage    

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑛𝑠𝑖𝑚
∑ 1(𝜃𝑙𝑜𝑤𝑒𝑟,𝑖 < 𝜃 < 𝜃𝑢𝑝𝑝𝑒𝑟,𝑖)

𝑛𝑠𝑖𝑚

𝑖=1

 

(40) 

There are more performance measures that can be derived such as mean square error (MSE), 

power, average model standard errors and others. More details about the definitions of the 
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performance measures but also regarding the overall simulation procedure are given by Morris, 

White and Crowther (80).  

4.6 TIMESCALES IN SINGLE-EVENT SURVIVAL ANALYSIS 

4.6.1 Choice of timescale and truncation 

The random variable of most interest in a survival analysis setting is the time-to-event. 

However, depending on the type of event, the suggested time of origin may vary and thus, so 

does the timescale. For example, suppose we study time to death due to cancer. In that case, 

we know that the cancer mortality rate is mainly a function of time since diagnosis, so that 

should be the timescale of choice when modelling that rate. Instead, if we study other outcomes, 

such as mortality, coronary heart disease and stroke, it feels more natural to consider attained 

age (time since birth) as the timescale rather than time-on-study as the hazard rate for the event 

tends to change more as a function of age than as a function of time-on-study (81).  

This choice of timescale, depending on the event of interest and the time of origin, may require 

accounting for left-truncation, meaning the fact that we observe only those individuals that live 

long enough to be diagnosed, and thus, observed (82). Therefore, as most studies have data on 

the patients only after a point in time, for example, after the start of the study, we should take 

into account the left truncation if we use attained age as the timescale of the hazard rate model.  

In this case, the hazard rates and the survival functions should take account of the left-

truncation. A hazard function with left truncation on the attained age timescale 𝑎 can be defined 

as: 

 
ℎ(𝑎|𝒁𝒊, 𝑎0𝑖

) = lim
𝛥𝑎→0

𝑃(𝑎 ≤ 𝐴 < 𝑎 + 𝛥𝑎|𝐴 ≥ 𝑎, 𝐴 ≥ 𝑎0𝑖
, 𝒁𝒊)

𝛥𝑎
 

(41) 

with 𝑎0 the age at diagnosis variable and 𝒁𝒊 the vector of covariates. Then the survival function 

conditional on the 𝑖𝑡ℎ individual surviving at least until the age at diagnosis 𝑎0𝑖
 is 

 

𝑆(𝑎|𝒁𝒊, 𝑎0𝑖
) =

𝑆(𝑎|𝒁𝒊)

𝑆(𝑎0𝑖
|𝒁𝒊)

= exp (− ∫ ℎ(𝑢|𝒁𝒊, 𝑎0𝑖
)𝑑𝑢

𝑎

𝑎0𝑖

)   

(42) 

Equations 41 and 42 are also used in Study I, where the primary event is death due to colon 

cancer and attained age is used as the timescale for modelling other cause mortality (competing 

event) accounting for left truncation on age at diagnosis. 

4.6.2 Multiple timescales 

In this thesis, I only consider one timescale when applying hazard rate models.  As shown in 

the results of Study I (See Section 5.1, Figures 5.1 and 5.2b), when the hazard rate is a function 

of attained age, modelling the hazard rate separately for the two components of attained age, 

time since diagnosis (as main timescale) and age at diagnosis (covariate in the model), can 



 

 27 

introduce some degree of bias. In reality, the hazard rate for an event may be simultaneously a 

function of multiple timescales. In the case of colon cancer, even though colon cancer mortality 

among cancer patients is mainly driven by time since diagnosis, we expect it to change as a 

function of attained age as well. In such cases, the most common approach is to use as the main 

timescale the timescale across which the hazard rate presents the most variability – for example 

time since diagnosis- while any other timescale can be taken into account indirectly by 

including it as a time-fixed covariate in the model, with the additional option of including 

interactions between the covariate and the main timescale.  

Two or more timescales can be simultaneously modelled if hazard models can be fit with the 

data split into short intervals of time across the relevant timescales. Then, a Cox or a Poisson 

generalised linear model with the time-intervals included as categories (83) or a continuous 

function through the intervals (e.g splines). Fitting a Cox model means that the timescale 

chosen as the baseline hazard timescale will not be parametrically estimated which hinders the 

process of modelling multiple timescales (84). In addition, whether Cox or Poisson model is 

used, the time-split of the data is essentially imposing the assumption of piecewise constant 

hazard rates within each time-interval, plus it can make the estimation computationally 

intensive. Instead, a FPSM can be fit modelling the log baseline hazard rate as a function of 

multiple timescales, with each timescale being included in the model as a continuous function 

of a reference timescale, with its effect modelled with spline functions (85). This way, an 

arbitrary number of timescales can be incorporated, as well as interactions between the 

timescales and time varying effects of other covariates with each timescale. A proportional 

hazards model with two timescales (𝑡1, 𝑡2) can be expressed on the log hazard scale as: 

 ln [ℎ(𝑡1, 𝑡2| 𝜸𝒑, 𝒎𝒑, 𝜸𝒔, 𝒎𝒔, 𝜷, 𝒁𝒊)]

= 𝑝0(𝑡1|𝜸𝒑, 𝒎𝒑) +  𝑠0(𝑡2|𝜸𝒔, 𝒎𝒔) + 𝜷𝑻𝒁𝒊 

(43) 

with 𝒎𝒑 and 𝜸𝒑 the knots vector and associated parameter vector for the spline function 𝑝0 of 

the first timescale 𝑡1 and 𝒎𝒔 and 𝜸𝒔 the knots vector and associated parameter vector for the 

spline function 𝑠0 of the second timescale 𝑡2. By rewriting one of the timescales as a function 

of the other, for example 𝑡2 = 𝑡1 + 𝑐,  we can use FPSMs. For more detail, see Batyrbekova et 

al (85).  

4.7 TIMESCALES IN COMPETING RISKS SETTINGS 

In Study I, there is a competing risk setting with two competing events, death due to colon 

cancer and death due to other causes, where we consider time since diagnosis to be the natural 

choice of timescale for death due to colon cancer and attained age to be the natural choice for 

other cause mortality. Under that assumption, the colon cancer mortality rate can be expressed 

as ℎ1
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) as it is the rate for the first competing event (𝑘 = 1) and is a function of 

time since diagnosis (𝑡𝑖𝑚𝑒), while the other cause mortality rate can be expressed as 

ℎ2
𝑎𝑔𝑒

(𝑎|𝒁𝒊, 𝑎0𝑖
) as it is the rate for the second competing event (𝑘 = 2) and is a function of 

attained age (𝑎𝑔𝑒). On the other hand, if we adopt time since diagnosis as the timescale for 
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both colon cancer and other cause mortality, then the mortality rate for other cause mortality 

can be expressed as ℎ2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) as it is the rate for the second competing event (𝑘 = 2) 

but is now assumed to be a function of time since diagnosis (𝑡𝑖𝑚𝑒). The survival functions 

corresponding to the aforementioned hazard functions are:  

 𝑆1
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) = exp (− ∫ ℎ1
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

) 𝑑𝑢
𝑡

0
), 

(44) 

 𝑆2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) = exp (− ∫ ℎ2
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

) 𝑑𝑢
𝑡

0
) and 

(45) 

 

𝑆2
𝑎𝑔𝑒

(𝑎|𝒁𝒊, 𝑎0𝑖
) =

𝑆2
𝑎𝑔𝑒(𝑎|𝒁𝒊)

𝑆2
𝑎𝑔𝑒

(𝑎0𝑖
|𝒁𝒊)

= exp (− ∫ ℎ2
𝑎𝑔𝑒

(𝑢|𝒁𝒊, 𝑎0𝑖
)𝑑𝑢

𝑎

𝑎0𝑖

) 
(46) 

The other cause mortality rate as a function of attained age can also be expressed in terms of 

time since diagnosis 𝑡 following equations 2 and 4 of the Study I manuscript we have: 

 ℎ2
𝑎𝑔𝑒

(𝑎|𝒁𝒊, 𝑎0𝑖
) = ℎ2

𝑎𝑔𝑒
(𝑎0𝑖

+ 𝑡|𝒁𝒊, 𝑎0𝑖
) and (47) 

 
𝑆2

𝑎𝑔𝑒
(𝑎|𝒁𝒊, 𝑎0𝑖

) = exp (− ∫ ℎ2
𝑎𝑔𝑒

(𝑢|𝒁𝒊, 𝑎0𝑖
)𝑑𝑢

𝑎

𝑎0𝑖

)

= exp (− ∫ ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑤|𝒁𝒊, 𝑎0𝑖

)𝑑𝑤

𝑡

0

) = 𝑆2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑡|𝒁𝒊, 𝑎0𝑖

) 

(48) 

Therefore, both the cumulative incidence function for colon cancer (𝐶𝐼𝐹1) and other cause 

mortality (𝐶𝐼𝐹2) can be derived by assuming either time since diagnosis or attained age as the 

timescale for other cause mortality.  

For example, if we assume time since diagnosis 𝑡 as the timescale for both colon cancer and 

other cause mortality, the CIF for the 𝑘𝑡ℎ competing event with 𝑘 ∈ {1,2} can be expressed as: 

 
𝐶𝐼𝐹𝑘(𝑡|𝒁𝒊, 𝑎0𝑖

) = ∫ 𝑆1
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

) 𝑆2
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

)

𝑡

0

 ℎ𝑘
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

) 𝑑𝑢 

(49) 

If we assume attained age 𝑎 as the timescale for other cause mortality, the CIF for colon cancer 

mortality 𝑘 = 1 can be expressed as a function of time since diagnosis as: 

 
𝐶𝐼𝐹1(𝑡|𝒁𝒊, 𝑎0𝑖

) = ∫ 𝑆1
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

) 

𝑡

0

𝑆2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑢|𝒁𝒊, 𝑎0𝑖

) ℎ1
𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖

) 𝑑𝑢 (50) 

while the CIF for other cause mortality (𝑘 = 2) can be expressed as a function of time since 

diagnosis: 

 
𝐶𝐼𝐹2(𝑎0𝑖

+ 𝑡|𝒁𝒊, 𝑎0𝑖
) = ∫ 𝑆1

𝑡𝑖𝑚𝑒(𝑢|𝒁𝒊, 𝑎0𝑖
)𝑆2

𝑎𝑔𝑒
(𝑎0𝑖

+ 𝑢|𝒁𝒊, 𝑎0𝑖
)

𝑡

0

ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑢|𝒁𝒊, 𝑎0𝑖

)𝑑𝑢 (51) 
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In Study III, in a multi-state setting, the hazard rates (transition intensity rates) of the 

transitions are modelled either as functions of one, common timescale (time since start of the 

study, time since entering a state) or each transition can be modelled on a different timescale 

(See more detail in Section 4.8.3). 

4.8 TIMESCALES IN INTENSITY-BASED MULTI-STATE MODELS 

4.8.1 Markov assumption- Total time- Clock forward 

The Markov assumption is the assumption that the future state of the multi-state process 

depends only on the current state, and not on past states, or times that past states were reached. 

Under this assumption, the intensity rates of all transitions are functions of time 𝑡, the total time 

or time since the start of the multi-state process. Under this assumption, the transition 

probabilities can be derived analytically, using the approaches presented in Section 4.3.3. Most 

measures that are a function of transition probabilities can be derived by calculating that 

function (43,86). For example, in order to derive the restricted expected length of stay measure, 

we need to calculate the integral of the transition probabilities (or alternatively via simulation).  

4.8.2 Semi-Markov - Time spent in current state - Clock reset 

While the Markov assumption may be convenient, it is not always realistic to assume the 

transition intensity rates as being functions of the total time 𝑡 of the process. Upon entering a 

certain state, the transition intensity rate towards the next state may depend much more on the 

time spent in the current state rather than the total time of the process. For example, a transition 

intensity rate from a medication discontinuation period towards a new antidepressant 

medication cycle is more likely to be a function of time since entering the discontinuation 

period rather than the time since the start of the follow-up. Under the semi-Markov assumption, 

the transition intensity rates are a function of time 𝑡𝑗 since entering the current state 𝑗 which is 

equal to the total time 𝑡 of the process minus the time 𝑇𝑗  of entering the 𝑗𝑡ℎ state of the multi-

state structure, therefore 𝑡𝑗 = 𝑡 − 𝑇𝑗. Under this assumption, all the measures of interested can 

easily be predicted via the use of simulation-based approaches (43,68,87). 

4.8.3 Different timescales for different transitions - Clock mix 

Depending on the setting, one may assume it is more natural for specific transition intensity 

rates to be functions of total time, while for other transition intensity rates to be functions of 

time since entering the current state. For example, a transition intensity rate towards a death 

state is more likely to be a function of time since the start of the follow-up (e.g time since 

diagnosis) rather than time since entering the current antidepressant medication cycle. 

Similarly, as mentioned in Section 4.8.2, a transition intensity rate from the entering a 

medication discontinuation period towards a new medication cycle is more likely to be a 

function of time since entering the discontinuation period rather than the time since the start of 

the follow-up. In this case, we can model different transition intensity rates as functions of 

different timescales. Then, as in the case of the semi-Markov process, estimates of the transition 

probabilities and other measures of interest can be derived via simulating disease pathways for 
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a population-size number of individuals and then using the frequencies of individuals across 

states and time. In a sensitivity analysis of Study III, I tried to evaluate whether measures of 

interest are sensitive to different modelling assumptions regarding the timescales (clock 

forward, clock reset, clock mix). Under the clock mix approach, the transition probabilities and 

restricted expected length of stay measures are estimated based on transition intensity rates that 

are functions of total time for transitions towards the terminal state of death and functions of 

time since entering the current state for transitions towards intermediate states (medication 

cycles, discontinuation periods).  

4.8.4 Presenting conditional predictions 

When all individuals start from the same initial state, predictions that are conditional on a state 

other than the starting state of the process, should be derived given a left truncation time 𝑠 

greater than 0. For example, in the 3-state Illness-Death example of Figure 2.1c, it would be 

meaningful to present the probability of transitioning to the absorbing death state (State 3) by 

time 𝑡𝑝𝑟𝑒𝑑 given that you are at the intermediate state (State 2) at time 𝑠, 𝑃23̂(𝑠, 𝑡𝑝𝑟𝑒𝑑) =

�̂�(𝑌(𝑡𝑝𝑟𝑒𝑑) = 3|𝑌(𝑠) = 2) only if  𝑠 > 0. A prediction for 𝑠 = 0 would not be sensible as it 

is not possible to be in State 2 at the start of the follow-up. 

Under a semi-Markov multi-state model with time of left truncation 𝑠 equal to time 𝑟 of 

entering the state we want to condition on, for example State 2, the probability of transitioning 

to State 3 by time 𝑡𝑝𝑟𝑒𝑑 is 𝑃23,�̂�(𝑠, 𝑡𝑝𝑟𝑒𝑑) = 𝑃23̂(𝑟, 𝑡𝑝𝑟𝑒𝑑). As all transition intensity rates 

starting from State 2 are, due to the semi-Markov assumption, functions of time since entering 

that state, 𝑡𝑝𝑟𝑒𝑑 − 𝑟, the predictions are not dependent on 𝑟 itself, thus, 𝑃23̂(𝑟, 𝑡𝑝𝑟𝑒𝑑)= 

𝑃23̂(𝑟 + 𝑥, 𝑡𝑝𝑟𝑒𝑑 + 𝑥). For 𝑥 = −𝑟, we will have 𝑃23̂(𝑟, 𝑡𝑝𝑟𝑒𝑑)= 𝑃23̂(𝑟 − 𝑟, 𝑡𝑝𝑟𝑒𝑑 − 𝑟), 

meaning that the predicted probability 𝑃23̂ can also be reported on time since entering State 2.  

4.8.5 Multiple timescales 

Allowing each transition intensity rate to be a function of a different timescale is a more realistic 

approach compared to using strictly the Markov or semi-Markov assumptions. However, one 

can argue that the more realistic and flexible approach would be to allow each transition 

intensity rate to be a function of multiple timescales. Iacobelli et al (46) have suggested the use 

of multiple timescales via a parametric Poisson model with flexible baseline transition intensity 

rates for two timescales based on data split across the timescales, after the intermediate state is 

entered in a 3-state Illness-Death structure. This approach bypasses identifiability problems in 

simultaneously modelling the effect of time since start of the study 𝑡, time since entering the 

intermediate state 𝑡𝑗 and time of entering intermediate state 𝑇𝑗, because of the linear relation of  

𝑇𝑗 = 𝑡 − 𝑡𝑗, because 𝑇𝑗 and 𝑡𝑗 are not defined prior reaching the intermediate state. Transition 

probabilities can be then presented from the initial and the intermediate states for different entry 

times in the intermediate state, having flexibly modelled both time since start of follow-up and 

time since entering the intermediate state in the predictions. In this thesis, I am not using 

multiple timescales per transition, but I refer to this modelling choice for completeness.  
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4.9 RECURRENT EVENTS IN THE PRESENCE OF A TERMINAL EVENT 

4.9.1 Joint frailty models  

In most cases of survival analysis, we study the time to a specific event of interest and estimate 

measures such as survival probabilities and hazard ratios. In some clinical settings, an 

individual may experience the event of interest more than once (e.g repeated hospitalisations) 

and hence the focus of the research shifts towards the study of the number and the rate of 

recurrences. Recurrent event processes have been studied extensively using frailty models (88–

91). As each individual may have his/her own unique underlying risk or frailty for a recurrence, 

there is heterogeneity between individuals in the model that cannot be captured by taking into 

account only the measured covariates, with frailty models attempting to quantify this 

heterogeneity.   

When interest lies in studying recurrent events in the presence of a terminal event, different 

modelling frameworks and approaches have been considered (52–55). In such settings, it is 

common to assume that different individuals have different level of susceptibility/frailty, both 

for the recurrent and for the terminal event process that is left unexplained conditional on the 

observed covariates. It is also likely that these two processes present some level of association, 

either positive, or negative, inducing a degree of correlation between the frailty for the recurrent 

process and the frailty for the terminal process. In such settings, joint frailty models are a 

commonly used modelling approach as they directly model the variance of the frailties and the 

association between the processes. 

As a function of the time since the start of the study, the joint frailty model for the recurrent 

event and the terminal process can be defined as: 

 
{

𝜆𝑖𝑗
𝑅 (𝑡|𝑢𝑖) = 𝑢𝑖𝜆𝑖𝑗

𝑅 (𝑡)  = 𝑢𝑖𝜆0
𝑅(𝑡)exp(𝜷𝟏𝒁𝒊𝒋

𝑹)

𝜆𝑖
𝐷(𝑡|𝑢𝑖) = 𝑢𝑖

𝛼  𝜆𝑖
𝐷(𝑡) = 𝑢𝑖

𝛼𝜆0
𝐷(𝑡)exp (𝜷𝟐𝒁𝒊

𝑫)
 

(52) 

With 𝑢𝑖 the individual frailty term that is assumed to follow gamma distribution of mean equal 

to 1 and a variance equal to 𝜃, 𝛼 the term that allows different type of dependence between the 

two processes, 𝜆𝑖𝑗
𝑅 (𝑡|𝑢𝑖), the recurrence rate conditional on the frailty of individual 𝑖 for 

recurrence 𝑗, and 𝜆𝑖
𝐷(𝑡|𝑢𝑖) the terminal event rate conditional on the frailty of individual 𝑖. The 

conditional hazard rates are derived by multiplying the frailty term with a hazard rate for 

recurrence 𝜆𝑖𝑗
𝑅 (𝑡) and a hazard rate for the terminal event 𝜆𝑖

𝐷(𝑡) for an individual with an 

average frailty (𝑢𝑖 = 1). The frailty term links the two processes and allows us to study both 

processes jointly/simultaneously. The 𝛼 term in the terminal event process allows the frailty of 

each individual to be different between the recurrent event and the terminal event process and 

it allows us to draw conclusions about the dependence of the two processes. In Study IV, a 

more detailed description of Liu’s joint frailty model and its predictions about recurrence and 

terminal event probabilities is given.  
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4.9.2 Multi-state models 

4.9.2.1 Correspondence with other methods in a recurrent events setting 

In recurrent event settings without considering a competing terminal event, various modelling 

approaches have been applied, including the Andersen- Gill (AG) model (96), the Prentice- 

William- Peterson (PWP) model (97), the Wei-Lin-Weissfeld (WLW) model (98), frailty 

models (88–91), and multi-state models (1,45,99). Amorim and Cai (100), and Rodrigo 

Villegas et al (101) offer useful reviews of these methods. The AG, PWP and WLW semi-

parametric methods can be considered as specific cases of a multi-state model with recurrent 

event states and specific assumptions about the hazard rates/ transition intensity rates. The AG 

model can be thought of as a recurrent multi-state structure that imposes common baseline 

hazards for all recurrent events and common, proportional hazards for the covariate effects 

included in the model. The effects of past recurrent events on the hazard rate for recurrence can 

be modelled as a time-varying covariate in the transition rate models. The PWP model can be 

thought of as a recurrent multi-state model allowing baseline transition intensity rates to differ 

across transitions, with the PWP-total time approach corresponding to a multi-state model 

under a Markov assumption and the PWP-gap time approach corresponding to a multi-state 

model under a semi-Markov assumption, using time since last recurrent event as the timescale. 

In a WLW model anyone who has not yet experienced the 𝑗𝑡ℎ recurrent event up to time 𝑡 is at 

the risk set for this event, even individuals that have not experienced the 𝑗 − 1𝑡ℎrecurrent event 

up to time 𝑡, corresponding to a recurrent multi-state model allowing different baseline 

transition intensity rates but not taking into account left truncation.  

Applying a multi-state model is, therefore, a more general non-frailty approach compared to 

the aforementioned models. The baseline transition intensity rates can be modelled 

parametrically (102) (instead of semi-parametrically), with more choices of timescales (see 

Section 6.1), flexible modelling of the covariate effects and capability of deriving estimates of 

probability and probability-based measures. Multi-state models can also easily account for 

competing, terminal events. 

4.9.2.2 Allowing for gaps at risk-time 

In a setting of recurring events, there can be gaps between periods during which subjects are at 

risk for new events. For example, if hospitalization is the recurrent event of interest, an 

individual cannot be at risk for a re-hospitalization if they are still hospitalized. In a recurrent 

events setting both in the presence or absence of a terminal event, frailty models accommodate 

for these gaps at risk-time by simply measuring time since the end of the previous recurrent 

event (end of previous hospitalization). Multi-state models can also allow for such gaps at risk-

time as each state can have duration. Figure 4.1 below depicts a recurrent event process with 

the presence of a terminal event, with time-gap periods (States 2 and 4) that the individual is 

not at risk. We can think of these periods as a hospitalization, where the individual cannot be 

at risk for next hospitalization. Only after discharge does the individual become at risk again 

for hospitalization (States 3 and 5). Multi-state models with recurrent couples of At risk/ Not 



 

 33 

at risk periods are used in the recurrent structures of Study III, allowing for taking into account 

of the not at risk periods when estimating the measures of interest. 

Figure 4.1. Recurrent event process with the presence of a terminal event, with gaps at risk-

time periods under a multi-state structure.  

 

4.9.2.3 Summing measures over recurring states 

In some multi-state settings, it may be of interest to obtain an estimate on the total probability  

of being in a set of specific states or the total length of time, such as (i) summing all terminal 

event states in a competing risks model to get all-cause probability of death; (ii) summing all 

non-terminal events to get probability of being alive and restricted mean survival time, or (iii) 

summing over all recurrent events states to get the total probability of being in a recurrent event 

state. In Study III, apart from studying the probability of being separately in each medication 

cycle across the follow-up via the use of recurrent multi-state models, one can also study the 

total probability of being in a medication cycle, when there can be multiple medication cycles 

and discontinuation periods across the follow-up time by summing up the transition 

probabilities for each medication cycle. This summation can be done for time since the start of 

the follow-up but also for time since entering the 𝑗𝑡ℎ medication cycle onwards. In the appendix 

of Study III, following the same rationale, I also sum the expected length of stay in medication 

cycles to derive estimates of total expected length of stay in a set of states, in this case, 

medication cycles. 

Let us use as example the recurrent multi-state structure of Study III (check Figure 5.3b or 

5.5f), for which a semi-Markov model was used. Consider a stochastic process 𝑌(𝑡) with space 

of states  = 1, . . . , 𝐿 . Let State 1 be the starting state (start of follow-up) and 𝐿 be the terminal 

state. The even numbered states, 𝐴 =  {2, 4, … , 𝐿 − 1} can be the set of states of interest (for 
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example medication cycle states) with 𝑎𝑗 the 𝑗𝑡ℎ element of set 𝐴, and 𝑗 ∈ 𝐽𝐴 = {1,2, … , 𝑁𝐴}, 

𝑁𝐴 being the number of medication cycle states/ elements of set 𝐴. Similarly, the uneven states, 

𝐵 = {3, 5, . . . ,𝐿 − 2} can be the set of non-absorbing states that we are not interested in (for 

example discontinuation period states) with 𝑏𝑘 the 𝑘𝑡ℎ element of set 𝐵. Let 𝑡 be the time of 

prediction, 𝑠 the time of left truncation, and 𝑟𝑗 the time of entering the 𝑗𝑡ℎ medication cycle. 

We are interested only in estimates either since the start of the follow-up (𝑠 = 0) or 

immediately upon entering the 𝑗𝑡ℎ medication cycle (𝑠 = 𝑟𝑗). 

The total probability of being in any medication cycle (set of states 𝐴) up to time 𝑡 since since 

the start of follow-up (𝑠 = 0) in the initial state can be defined as: 

 𝑃(𝑌(𝑡) ∈ 𝐴│𝑌(0) = 1) = ∑ 𝑃(𝑌(𝑡) = 𝑎𝑗|𝑌(0) = 1)𝑗∈𝐽𝐴
 (53) 

The probability of being in the 𝑗𝑡ℎ medication cycle up to time 𝑡 given entering it at 𝑠 = 𝑟𝑗, can 

be defined as:  

 𝑃(𝑌(𝑡) = 𝑎𝑗|𝑌(𝑟𝑗) = 𝑎𝑗) (54) 

Let us now split the set of states of interest in two subsets based on the 𝑗𝑡ℎ medication cycle, 

with 𝐴𝑗− = {𝑎𝑗− , 𝑗− ∈ 𝐽−} being the subset of all medication cycles before the 𝑗𝑡ℎ one and 

𝐴𝑗+ = {𝑎𝑗+ , 𝑗+ ∈ 𝐽+} being the subset of all medication cycles from the 𝑗𝑡ℎ one and after, with 

𝐽− = {1, … , 𝑗 − 1} and 𝐽+ = {𝑗, … , 𝑁𝐴}.   

Then, the total probability of being in the 𝑗𝑡ℎ medication cycle or any subsequent medication 

cycle across time 𝑡 since start of follow-up given entering the 𝑗𝑡ℎ cycle at time 𝑠 = 𝑟𝑗 is: 

 𝑃(𝑌(𝑡) ∈ 𝐴|𝑌(𝑟𝑗) = 𝑎𝑗) = 𝑃(𝑌(𝑡) ∈ 𝐴𝑗+|𝑌(𝑟𝑗) = 𝑎𝑗) = ∑  𝑃(𝑌(𝑡) = 𝑎𝑗+|𝑌(𝑟𝑗) = 𝑎𝑗)

𝑗+∈𝐽+

 (55) 

The total restricted expected length of stay in all medication cycle states (set 𝐴) until time 𝑡 

since the start of the follow-up (State 1), can be defined as the integral from 0 to 𝑡 of the 

transition probability of equation 53:  

 
∫ ∑ 𝑃(𝑌(𝑢) = 𝑎𝑗|𝑌(0) = 1)

𝑗∈𝐽𝐴

𝑡

0

𝑑𝑢 
(56) 

The total restricted expected length of stay in the 𝑗𝑡ℎ medication cycle and all subsequent 

medication cycles across time 𝑡 given entering the 𝑗𝑡ℎ cycle at time 𝑟𝑗, can be defined as the 

integral from 𝑟𝑗,  to 𝑡 of the transition probability of equation 55: 

 
∫ ∑  𝑃(𝑌(𝑢) = 𝑎𝑗+|𝑌(𝑟𝑗) = 𝑎𝑗)

𝑗+∈𝐽+

𝑡

0

𝑑𝑢   
(57) 

According to Section 4.8.4, the predictions made under a semi-Markov model given entering 

a state at time 𝑟 can be reported either on the time since the start of follow-up or on the time 

since entering each state. 
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5 RESULTS 

 

5.1 STUDY I 

In Study I, I assessed how, in a competing risk setting, the choice of timescale for a competing 

event can influence  the estimates of the cause-specific CIFs, for a range of different scenarios 

(shape of baseline other cause mortality rate, standard deviation of age at diagnosis, sample 

size and non-proportional hazards). Specifically, for the competing events of death due to colon 

cancer and death due to other causes, I wanted to evaluate the performance while estimating 

the cause-specific CIFs for both events, if  the other cause mortality rate is a function of attained 

age but time since diagnosis is used as a timescale instead, while also modelling the effect age 

at diagnosis in the model with different levels of complexity. I also presented standardized 

cause-specific CIFs which can be a useful tool when interest lies in assessing the overall effect 

of a covariate of interest on the cause-specific CIFs, as they allow comparability of different 

groups as well as addressing causal questions (103). 

The choice of timescale for one competing event is likely to have less of an impact on the CIF 

of another event compared to the CIF of the event itself. This can be easily understood if we 

consider the components of the CIF function in a competing risk setting with two competing 

events, which have three components, the survival functions from the first and the second 

competing event (𝑘 = 1,2) and the hazard rate for the event under study (𝑘 = 1  or 2). In Study 

I, under all modelling approaches, colon cancer mortality (first competing event, 𝑘 = 1) is 

assumed to be a function of time since diagnosis. 

As discussed in Section 4.7 regarding the definition of the CIF for colon cancer mortality 

(𝐶𝐼𝐹1), under the assumption that other cause mortality is a function of time since diagnosis 

(equation 49 for 𝑘 = 1) versus the assumption that it is a function of attained age (equation 

50), we can observe that these alternative modelling approaches have only one out of the three 

functions modelled differently for 𝐶𝐼𝐹1 (colon cancer mortality). The other cause mortality rate 

is modelled as a function of time since diagnosis ℎ2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) instead of ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+

𝑡|𝒁𝒊, 𝑎0𝑖
), resulting in using the term 𝑆2

𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖
) for the cause-specific survival function 

for event 𝑘 = 2 instead of 𝑆2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑡|𝒁𝒊, 𝑎0𝑖

). 

When modelling other cause mortality rate, function ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑡|𝒁𝒊, 𝑎0𝑖

) is not equivalent 

with ℎ2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) so 𝐶𝐼𝐹1 from equation 49 will not be equal to the 𝐶𝐼𝐹1from equation 50, 

but we can expect those two modelling approaches to yield similar estimations of the CIFs for 

death due to colon cancer if the effect of age at diagnosis 𝑎0 as a covariate is flexibly modelled. 

Similarly, regarding the definition of the CIF for other cause mortality (𝐶𝐼𝐹2), under the 

assumption that other cause mortality is a function of time since diagnosis (equation 49 for 𝑘 =

2) versus the assumption that it is a function of attained age (equation 51), we can observe that 

these alternative modelling approaches have two out of the three components of the CIF are 
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modelled differently for 𝐶𝐼𝐹2 (other cause mortality), that is ℎ2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) and 

𝑆2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊𝑖

, 𝑎0𝑖
) = exp (− ∫ ℎ2

𝑡𝑖𝑚𝑒(𝑤|𝒁𝒊, 𝑎0𝑖
) 𝑑𝑤

𝑡

0
) instead of ℎ2

𝑎𝑔𝑒
(𝑎0𝑖

+ 𝑡|𝒁𝒊, 𝑎0𝑖
) and 

𝑆2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑡|𝒁𝒊, 𝑎0𝑖

) = exp (− ∫ ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑤|𝒁𝒊, 𝑎0𝑖

) 𝑑𝑤
𝑡

0
). 

In this case, depending on the choice of the timescale, two out of the three components of the 

cumulative incidence functions of equations 49 and 51 will differ, so any difference between 

the terms ℎ2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) and ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑡|𝒁𝒊, 𝑎0𝑖

) will have a bigger impact in the 

estimation of CIF of other cause mortality. 

Factors such as the shape of baseline other cause mortality rate, standard deviation of age at 

diagnosis, sample size and non-proportional hazards can influence the structure of the risk set 

and thus differentially influence the mortality rates estimation on the attained age and the time 

since diagnosis timescale, causing ℎ2
𝑡𝑖𝑚𝑒(𝑡|𝒁𝒊, 𝑎0𝑖

) and ℎ2
𝑎𝑔𝑒

(𝑎0𝑖
+ 𝑡|𝒁𝒊, 𝑎0𝑖

) to diverge. Still, 

if the other cause mortality rate is modelled with time since diagnosis timescale and the effect 

of age at diagnosis is modelled flexibly then these terms should be quite similar. In that case, 

even if the other cause mortality rate is a function of attained age and we model it as a function 

of time since diagnosis, the impact on the CIFs may be quite small. 

Based on scenarios with varying values of the aforementioned factors and modelling 

approaches using time since diagnosis as the timescale for other cause mortality and including 

age at diagnosis as a covariate with an effect of increasing complexity, I explored the bias and 

other performance measures in the estimation of the CIFs for colon cancer and other cause 

mortality. For standard deviation of age, values of 10 and 15 years were explored. For sample 

size, values of 500 and 2000 individuals were explored. For hazard proportionality, a 

proportional hazards assumption and a non-proportional hazards assumption of a covariate of 

interest (gender) was explored and for baseline other cause mortality rate three different shape 

mortality rates as a function of age were considered (details of DGM in manuscript of Study 

I). For gender, the non-proportional hazard assumption on the attained age timescale assumed 

a protective effect of gender against other cause mortality that diminishes as attained age 

progresses.  

There were four modelling approaches (Approach a- Attained age, Approach b- Linear, 

Approach c- Splines and Approach d- Splines/Int), all of which modelled the colon cancer 

mortality rate with the same FPSM, that is, using time since diagnosis as the timescale, with 5 

𝑑𝑓 for the baseline hazard, with age at diagnosis included in the model using restricted cubic 

splines with 5 knots (4 𝑑𝑓) and proportional hazards assumed for gender (same as the 

underlying DGM). The approaches differ in the way they model other cause mortality (Table 

5.1). 
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Table 5.1. Description of the four different modelling approaches used in Study I while 

modelling other cause mortality, with Approach a- Attained age being the approach of 

reference. 

 Timescale for 

other cause 

mortality 

Age at diagnosis Gender  

Approach a- 

Attained age 

Attained age Not included as a covariate Main effect plus restricted 

cubic splines with 3 𝑑𝑓 for the 

time dependent effect on the 

timescale of use. 
Approach b- 

Linear 

Time since 

diagnosis 

Linear effect of age 

Approach c- 

Splines 

Age modelled using restricted cubic 

splines with 4 𝑑𝑓 

Approach d- 

Splines/Int 

Age modelled using restricted cubic 

splines with 4 𝑑𝑓 + interaction with 

timescale via restricted cubic spline 

function of 3  𝑑𝑓 

Regarding the cause-specific CIF for colon cancer, the bias of all three approaches that use 

time since diagnosis as the timescale for both events that we can refer to as common timescale 

approaches (Approach b- Linear, Approach c- Splines, Approach d- Splines/Int), with different 

complexity of the effects of age at diagnosis in the other cause mortality model was low 

(<0.0035). The coverage was close to the nominal 95% and the precision level was very close 

with the Approach a-Attained age (relative precision close to 0), under all the different 

scenarios.  

Regarding the bias in the cause-specific CIF for other causes  (Figure 5.1), Approach b- Linear, 

which models age at diagnosis in the other cause mortality rate with a simple linear effect is 

highly sensitive to the shape of the baseline other cause mortality for most ages at diagnosis 

and times since diagnosis for most scenarios, presenting large bias. This modelling approach 

presents a large overall degree of bias, with very low coverages under some scenarios (Adapted 

Weibull, standard deviation of age at diagnosis equal to 15, Non-proportional hazards of gender 

for age at diagnosis 70) and higher precision compared to Approach a-Attained age (reference 

approach). Regarding the approaches that use time since diagnosis as the timescale for other 

cause mortality rate and which include age at diagnosis in the model with sufficient complexity 

(Approach c-Splines, Approach d- Splines/Int), scenarios under non-proportional hazards of a 

covariate in the model for other cause mortality (here gender) on the attained age scale, tends 

to lead to an increase in bias, showing that the time-varying effects of a covariate on the other 

cause mortality rate that is a function of attained age (as assumed in the DGM) cannot be fully 

captured by cause-specific hazard models that assume the hazard rate to be a function of time 

since diagnosis. This can lead to bias greater than 0.01 in the cause-specific CIF, especially for 

𝑡 = 5, 10. Variance in age at diagnosis and shape of the baseline other cause mortality rate may 
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influence the bias for high ages at diagnosis (e.g 80) via influencing the risk sets population, 

which tend to be small for old ages. Sample size (500 versus 2000) does not seem to influence 

the degree of bias of any of the approaches. 

Figure 5.1. Nested loop line plot of bias in 𝐶𝐼𝐹2(𝑡) from each approach over the scenarios. 

Note: The bias of the different approaches is given for ages at diagnosis (60, 70, 80) and times 

since diagnosis (1, 5, 10). 

 

Source: Article published based on Study I (104) 
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There is also a trade-off between the modelling complexity of the effect of age at diagnosis in 

the model and the model precision, with the common timescale approaches showing lower 

precision compared to the reference Approach a- Attained age, with a maximum relative 

precision of -27% for Approach c- Splines and -53% for approach d- Splines/Int, at scenario 1 

and age at diagnosis 70 years old. 

Figure 5.2. a) 𝐶𝐼𝐹2 coverage over the different approaches, b) Relative precision of 𝐶𝐼𝐹2 

estimation (Approaches b- Linear, c- Splines and d- Splines/Int versus reference Approach a- 

Attained age) c) Monte-Carlo standard error during the 𝐶𝐼𝐹2 estimation over the approaches 

and d) mean estimated hazard ratio over the approaches. All these performance measures and 

estimations are given over time since diagnosis for a female diagnosed at 𝑎0 = 70 years of age 
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In Figure 5.2, I present the coverage, Monte-Carlo standard error, relative precision and the 

estimated hazard ratio of females versus males across time since diagnosis under scenario 9 

(Standard deviation of age at diagnosis=10, Gompertz-Makeham other cause baseline mortality 

rate, Non-proportional hazards of the female gender for other cause mortality rate on the 

attained age timescale, and sample size of 2000) for individuals diagnosed at 70 years of age. 

In Figure 5.2a and 5.2b we can observe that for Approach b- Linear, relative precision 

(compared to the reference approach) in estimating 𝐶𝐼𝐹2 is positive but %coverage is quite 

low. This is expected, as Approach b- Linear is biased under most scenarios, so will lead to 

low coverage of the true value of 𝐶𝐼𝐹2. In Figure 5.2b we can observe the trade-off of the 

common timescale approaches that model age at diagnosis flexibly using splines but at the 

same time this greater complexity leads to negative relative precision in estimating 𝐶𝐼𝐹2, 

especially in the first years after diagnosis. We can also observe in Figure 5.2d, that, no matter 

the complexity that the common timescale approaches include age at diagnosis in the other 

cause mortality hazard model, they produce biased estimates of the hazard ratio of females 

versus males (projected on the attained age scale), when that variable has a time varying effect 

on the other cause mortality rate (non-proportional hazard) on the attained age timescale. This 

bias in the hazard ratio estimates for other cause mortality rate is reflected in the bias of 𝐶𝐼𝐹2 

for females in scenarios of non-proportionality (Scenarios 7-12). 

In Study I, I also used standardized CIFs to evaluate the CIFs over a common covariate 

distribution and compare groups keeping the rest of the covariate distribution common. No 

matter the complexity when modelling the effect of age at diagnosis for other cause mortality 

rate, the estimates derived from the implementation of the technique on the Swedish Cancer 

Registry colon cancer data, are almost identical between the common timescale approaches. 

The estimates of the different timescales approach and the common timescale approaches are 

similar but not identical. 

In summary, in Study I, I explored how the choice of timescale when modelling the other cause 

mortality rate (choosing time since diagnosis as the timescale instead of attained age when the 

underlying other cause mortality is a function of attained age) can influence the estimation of 

the CIFs, exploring different levels of various factors that may effect the estimations as well as 

different levels of complexity when modelling the effects of age at diagnosis. Given that the 

other cause mortality rate is a function of attained age, modelling it as a function of time since 

diagnosis results in negligible bias in CIF for death due to colon cancer and small bias in CIF 

for other cause mortality when the effect of age at diagnosis is modelled with sufficient 

complexity. However, if a covariate has time-varying effects on the attained age scale, those 

effects are not fully captured when the other cause mortality is modelled as a function of time 

since diagnosis, no matter the modelling complexity of the effect of age at diagnosis, resulting 

in small but not negligible bias in the CIF for other cause mortality. 
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5.2 STUDY II 

In survival settings, the disease pathway of interest may consist of more than two states, such 

as a competing risks setting with multiple competing events or multi-state setting with multiple 

initial, intermediate and absorbing states. In addition, most of the measures of interest are 

functions of time, changing over the evolution of the process, such as the transition intensity 

rates under non time-homogeneous models (models not assuming constant intensity rates over 

time), the transition probabilities, the restricted expected length of stay in a state or a set of 

states, the probability of ever visiting a state and more. These factors render the evaluation of 

the effect of different covariate patterns on the disease process challenging. For example, while 

the effect of a covariate on each separate transition intensity rate is well defined and can be 

estimated, the overall effect of that covariate on the whole process is not, due to having to 

account for competing states at each step of the process. Thus, I argue that graphical displays 

can lead to better understanding and communication of the overall process evolution over time 

for different measures of interest. Different types of graphs can also be of great help in getting 

an intuition of the overall effect of a covariate pattern on the measure of interest (e.g length of 

stay in an illness-free state), as well as the comparison of different covariate patterns (e.g 

different in length of stay in an illness-free state between individuals of two different profiles). 

The aforementioned attributes of a multi-state setting plus the need to be able to communicate 

multi-state structures and analysis results in an easy and meaningful way to wider research 

audiences, provided the motivation for the development, in Study II, of an interactive 

application in RShiny, called MSMplus, that is able to read in results from multi-state model 

structures and analyses and portray them in a plethora of novel interactive plots, across time 

and covariate patterns.  

Measures supported by MSMplus 

The measures currently supported by MSMplus are: 

 Transition probabilities/ State occupancy probabilities 

 Transition intensity rates  

 Total restricted expected length of stay in each state 

 Probability of ever visiting a state  

 Differences and ratios for the aforementioned measures among different covariate patterns 

Under homogeneous (or piecewise homogeneous) Markov processes, extra measures are 

supported:  

 Expected single period of occupancy 

 Probability that each state is next 

 Expected first passage time from a given state 

 Expected number of visits to a state 

Feeding the results in MSMplus 



 

42 

In order to portray the structure, descriptives and statistical analysis results of the application 

of a multi-state model, MSMplus requires two files as input. The first file contains information 

about the multi-state structure (number of states, number of transitions and transition matrix) 

as well as optional descriptive statistics (frequency of individuals in each state across time). 

This information is used by the application to build the multi-state structure. Instead of a file, 

the user can specify the multi-state structure directly on MSMplus platform. The second file 

contains the estimation results of the multi-state model analysis for the different measures over 

time and over the different covariate patterns. The reason I developed MSMplus to read in 

estimation results and not raw data to be analyzed internally, is that, due to potential ethical 

reasons and restrictions of data usage, the raw research data cannot or should not be uploaded 

online. 

The input files can be created manually or automatically. In Stata and R the input files can be 

created automatically via Stata command options and R packages developed for this purpose. 

In Stata, if msboxes command is used and option interactive is specified, the first input 

file for MSMplus will be created. Then, if command predictms is used and, once again, the 

option interactive is specified, the second input file will be created. In R, I have created 

the MSMplus package, which contains a function called msboxes_R that creates the first 

input file for MSMplus and three wrapper functions, msmjson, mstatejson and 

flexsurvjson, that call internally the msm, mstate and flexsurv packages, perform 

the analyses, restructure the analyses results and create the second input file. In case that the 

MSMplus user performs a multi-state analysis in another programming language (e.g. SAS, 

Python) or in R but not using the msm, mstate or flexsurv libraries, a manually created 

csv file with the estimation results can be provided to the application, under certain naming and 

structure rules, specified both on the platform of MSMplus and the Appendix of the relevant 

publication in BMC Research Methodology. 

How to access MSMplus 

MSMplus was originally built to be an online tool so it is directly accessible at 

https://nskbiostatistics.shinyapps.io/MSMplus. However, I also created a version that can be 

locally launched via the MSMplus package I developed in R. Below is the code needed to 

locally launch MSMplus: 

library("devtools") 
remotes::install_github("nskourlis/MSMplus", build_vignettes = TRUE, dependencies= TRUE, force = TRUE) 
library(MSMplus) 
MSMplus::runMSMplus() 
 

Creating multi-state graphs 

By specifying the number of states and the transition matrix, either directly on the platform of 

MSMplus or via creating an input file, the user can create graphs of multi-state structures. These 

structures can vary from simple ones Figure 5.3a (3 state Illness-death model) to complex ones 

such as Figure 5.3b which portrays a multi-state structure with recurrent couples of medication 

https://nskbiostatistics.shinyapps.io/MSMplus
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cycle- discontinuation period states with death as absorbing state (this structure is discussed in 

more detail in Study III). Via a slidebar, the number of individuals found in each state, and the 

number of individuals that have experienced each transition can get depicted across time.  

Figure 5.3. a) Multi-state structure for the 3-state Illness-Death model based on the EBMT toy 

dataset with frequencies of people being in each state and experienced each transition by the 

first year since the start of follow-up. b) Multi-state structure with recurrent couples of 

medication cycle/discontinuation states used in Study III. 

a) 

 

b) 
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Communicating results 

Via a plethora of interactive graphs, the estimation results can be communicated in alternative 

ways that can serve a high-quality communication of how the multi-state process evolves over 

time for the different estimated measures across the covariate patterns of interest. Moreover, it 

is unlikely that one measure can provide an overall summary of the process. Greater 

understanding can be obtained through visualization of different measures with the interactivity 

element of the application leading to a better understanding of how multiple measures change 

across covariate patterns and over time. I show here few of the graphs generated when 

providing MSMplus estimation results based on analyzing the EBMT data (toy dataset by the 

application), using an Illness-Death multi-state model (Figure 5.4) regarding Transition/State 

occupancy probabilities and other measures. 

Figures 5.4A to 5.4F depict the same information, that is the estimated transition probabilities 

across states for different covariate patterns over time, with alternative ways  such as line plots, 

stacked line plots, bar plots and stacked bar plots with slide bars for exploring the process 

evolution over dimension of time. The last two subfigures (5.4G and 5.4H), depict the 

difference and the ratio of the state occupancy probabilities between each covariate pattern for 

which predictions were derived and a reference covariate pattern that is set as reference. In this 

case, the three covariate patterns are “<20 years old”, “20-40 years old”, “>40 years old” with 

“<20 years old” selected as the covariate pattern of reference for measures comparison. 

In summary, MSMplus is an interactive tool built to communicate results of multi-state model 

analyses in a flexible way, enhancing the understanding of the evolution of the multi-state 

process. It  includes graphs and plots that change over time across different covariate patterns, 

for different measures. The creation of the input files is also flexible as it allows alternative 

ways of their creation, both automatic (for certain statistical software and commands/ 

packages) and manual. The primary aim of the application is to facilitate the communication 

of relevant research findings to both scientific and general audiences. I argue that more focus 

should be given by the research community to develop such applications in other fields of 

statistics, contributing to a more efficient way of communicating results of statistical analyses 

and evolution of composite processes.  
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Figure 5.4. A-F) Different displays of transition probabilities for each covariate pattern over 

states across time, G) Difference and H) Ratios of transition probabilities between covariates 

over states across time. 
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5.3 STUDY III 

In Study III, I developed a series of multi-state models of increasing complexity in order to 

explore and address a series of research questions regarding the probability of antidepressant 

medication use among women diagnosed with breast cancer and age-matched cancer-free 

women from the Swedish population based on Breast Cancer Data Base Sweden 2.0 (BCBaSe 

2.0), a register-based research resource (51). I started from simpler research questions such as 

“What is the probability of medication use initiation?”. For such simple research questions, a 

single event survival analysis or a competing risks analysis suffices. However, more composite 

research questions such as “What is the total probability of being in a medication cycle since 

the start of follow-up or upon entering a given medication cycle?” or “What is probability of 

being in the current medication  given entering the 1st , 2nd , 3rd  medication cycle or the 1st , 

2nd, 3rd discontinuation period?”, require more complex multi-state structures to be properly  

addressed such as bidirectional and recurrent multi-state models. Using appropriate  multi-state 

structures of sufficient complexity allows us to use the full richness of the prescription data of 

the Swedish Prescribed Drug Register in order to address more realistic and composite research 

questions of clinical interest.  

Figure 5.5 below shows the different multi-state structures used in this study, from the simplest 

to the most complex one. Table 5.2 shows the correspondence between the research questions, 

the multi-state structures, the model assumptions and the amount of information found in the 

data that is used in each model. 

 

Table 5.2. Correspondence between each multi-state structure used in Study III, the research 

question addressed in terms of probabilities of antidepressants use corresponding to the 

structure and the information used. 

Multi-state structure Research questions answered in 

terms of probabilities 

Information used 

Single-event survival 

analysis of time to 

antidepressant 

medication initiation 

(Fig.5.5A) 

What is the probability of ever 

been prescribed medication in 

the hypothetical situation that 

the individual cannot die due to 

any causes? 

Information until first 

prescription date with censoring 

due to death, emigration or end 

of follow-up period 

Competing risks for 

time to medication 

initiation with death 

as a competing event 

(Fig. 5.5B) 

What is the probability of ever 

been prescribed medication up 

to time 𝑡 after the start of the 

follow-up, accounting for the 

fact that individuals may die? 

Information until first 

prescription date or death, 

censoring due to emigration or 

end of follow-up period 
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3-state Illness-Death 

model adding a 

transition from 

medication initiation 

to death (Fig. 5.5C) 

What is the probability of ever 

been prescribed medication and 

still be alive up to time 𝑡 after 

the start of the follow-up?  

Information until first 

prescription date and death. 

Information on subsequent 

prescription dates not used. 

Censoring due to emigration or 

end of follow-up period.  

4-state unidirectional 

multi-state model 

with a medication 

discontinuation state 

(Fig. 5.5D) 

What is the probability of being 

in the 1st medication cycle since 

start of follow up/ since entering 

the 1st medication cycle?  

Information on medication use 

via prescription dates and 

defined daily dose (DDD) until 

the end of the first medication 

cycle and then only information 

about death status. Information 

on prescription dates about 

subsequent medication cycles 

not used. 

4-state Bidirectional 

multi-state structure 

with medication 

discontinuation state 

(Fig. 5.5E) 

What is the probability of being 

in a medication cycle (or in a 

medication discontinuation 

period) since the start of follow-

up or given entering one?  

Use of the entirety of 

information on medication use 

(prescription dates and DDD) 

by an individual until death or 

censoring due to migration, end 

of follow-up.  

Recurrent events 

multi-state structure 

(with or w/o 

restrictions) 

(Fig. 5.5F and 5.5G) 

 What is the total 

probability of being in a 

medication cycle since 

the start of follow-up or 

given entering the 1st, 

2nd, 3rd one? 

 What is probability of 

being in the current 

medication  given 

entering the 1st, 2nd, 3rd 

medication cycle or the 

1st, 2nd, 3rd 

discontinuation period? 

Information on medication use 

(prescription dates and DDD) 

until the start of the 6th 

medication cycle and then only 

information about death status. 

Information on prescription 

dates about subsequent 

medication cycles not used. 
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Figure 5.5. Multi-state structures used in Study III overview. 
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Interpretations and limitations of the different multi-state structures used in the study 

The first three multi-state structures used address research questions regarding the 1st 

medication use or medication initiation among the individuals of the study sample. Their 

interpretation has to do with the probability of ever receiving antidepressant medication after 

the start of the follow-up. This is the kind of research question that can be addressed under 

these simple multi-state structures, posing a limit to how complex research questions can be 

asked.  

By building up the multi-state structure complexity by adding a post-medication period state, 

the previous state transforms from 1st medication use to 1st medication cycle, having a duration 

in time (beginning and end), it is not an instantaneous event, thus allowing the study of the 

probability of being under the first medication cycle (or other measures). The 4-state 

bidirectional structure, uses the entirety of the information from each individual about going 

back and forth between a medication cycle and discontinuation period, allowing for an infinite 

amount of such transitions. However, when deriving transition probabilities or other 

probability-based measures such as restricted expected length of stay, time-varying covariates 

cannot be incorporated to the transition intensity rate models, thus imposing same transition 

intensity rates from a discontinuation period to a medication cycle (and vice-versa), no matter 

the number of past medication cycles.  

I tackled this issue by using a multi-state structure with recurrent pairs of medication cycles- 

discontinuation period states, allowing the transition intensity rates to be estimated separately 

for each new medication cycle and discontinuation period by fitting separate model to each 

transition. However, this structure can allow only for a finite number of such transitions due to 

issues of sparse data in high order transitions, while individuals have to be pooled under a semi- 

absorbing state (6th medication cycle) from which onwards they are considered chronic 

antidepressant users and can only move towards the state of death. I tried to tackle the data 

sparsity issue in high order transitions, which can also cause lower precision and convergence 

issues, by imposing certain restrictions among the transition intensity rates of the structure 

(Figure 5.5G). However, even in the case of this restricted model, due to extensive memory 

usage, there are limitations as to how flexibly the baseline transition intensity rates or the 

covariate effects for each transition can be modelled. It should be noted that the profound 

limitation of all the structures with medication cycle states are the assumptions used when 

defining what consists a medication cycle. 

An important advantage when using the more complex multi-state structures is that one can 

derive estimates about the total probability (or total length of stay) of being in a medication 

cycle across the follow-up or upon entering a medication cycle. In the case of the recurrent 

multi-state structure, we can do it by summing up the probabilities across the different 

medication states given a common conditional starting state (Section 4.9.2.3). Figure 5.6a 

depicts the total probability of an individual, being in a medication cycle (both the current one 

and all the subsequent ones) as a function of time since entering the 1st , 2nd and 3rd  medication 

cycle, with blue lines for the population comparison group of women and red lines for the 
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women diagnosed with breast cancer. Upon entering each new medication cycle, the total 

probability of being in a medication cycle for the rest of the individuals follow-up period tends 

to increase. Similarly, in Figure 5.6b, the total expected length of stay in medication cycles 

tends to increase upon entering each new medication cycle both for the comparison group and 

the BC-diagnosed women.  

Figure 5.6. Estimates for the total probability of being in a medication cycle and the total length 

of stay under medication cycles across time since entering each cycle. 

 

I performed sensitivity analyses to explore how different choices when defining the medication 

cycles (3,4 and 5 months rule) and when choosing a timescale for the transition intensity rates 

(Markov assumption, semi-Markov assumption or a mix of the two) can influence the 

estimations of the different multi-state models applied (Figure 5.7). The so-called 3 months 

rule in Sweden is the fact that in routine psychiatric practice, oral medications are not likely to 

be dispensed for more than 3 months at a time (105,106). Based on that rule, I defined whether 

a dispended medication should be considered as part of the same medication cycle or the 

beginning of a new cycle, based on the chronological distance with the previous date of 

dispensed medication of antidepressants. As this decision rule is not necessarily an accurate 

depiction of what happens in reality, I also used a 4-months and 5-months decision rule in a 

sensitivity analysis (Figure 5.7).  
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Figure 5.7. Comparison of the estimate of populational total probability of being in a 

medication cycle for different definitions of the medication cycles (3 months versus 4 months 

versus 5 months) under the different clock approaches for the multi-state structures D, E, F and 

G. 

  

In summary, each multi-state structure used in Study III, properly addressed specific research 

questions, with simpler structures such as single-event survival analysis or competing risks 

addressing simpler research questions and bidirectional and recurrent multi-state structures 

addressing multiple, composite research questions about the use of antidepressant medication, 

taking into account the intermittent nature of prescription register data, fully utilizing the 

available information. For the complex multiple structures, the different definitions of the 

medication cycles and the different modeling choices (timescales of transitions and sharing 

information across restrictions) did not have a great in influence in the predicted probabilities 

of being in a medication cycle as it can be observed in Figure 5.7. However, I argue, that in the 

presence of several modelling choices, it is always advisable to explore and evaluate different 

options.  
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5.4 STUDY IV 

In Study IV, I evaluated the use of multi-state models in a setting of recurrent events in the 

presence of a terminal event, when different individuals have different frailties, both for the 

recurrent and the terminal event process, and there may be an association between the two 

processes. Under such settings, approaches such as joint frailty models that directly model the 

variance in the frailty distribution and the association between the two processes is the more 

common choice. However, when interest lies in studying the marginal probabilities of the 

terminal and the recurrent event, multi-state models with recurrent event states and an 

absorbing terminal event state can also be used, indirectly accounting for the frailties via the 

risk set structure. I performed a simulation using Liu’s joint frailty model (Section 4.9.1) as the 

model for the data generating mechanism (DGM), under different scenarios of variance 𝜃 in 

the gamma frailty distribution, association 𝛼 between the recurrent and the terminal event 

process and sample size 𝑛 during the data generation, with no covariates in the model, allowing 

for maximum time of observation equal to five years and a maximum number of observed 

recurrent events equal to ten. My aim was to assess the bias in the predicted probabilities for 

the terminal and recurrent events when using a recurrent multi-state structure for time 𝑡 =

3, 4, 5 given 0, 1, 2, 3 past recurrences up to time 𝑡 = 1 year since the start of the follow-up. 

Two recurrent multistate modelling approaches were used, both of them using FPSMs for the 

baseline transition intensity rates. The first one, named MSM1, had separately estimated 

transition intensity rates. The second multi-state approach, named MSM2, had restrictions 

applied in the estimation of the transition intensity rates, so that all transition intensity rates 

towards the terminal state are proportional among themselves and all transition intensity rates 

towards the recurrent states are proportional among themselves.  

Regarding the probability of the terminal event, under all scenarios of association between the 

recurrent and the terminal event processes, frailty variance and sample size, both the restricted 

and the unrestricted scenarios presented small bias of less than 0.01 event given 0, 1 and 2 past 

recurrences across the time points of prediction. Under scenarios of positive association 

between the two processes the bias in the predicted probability of the terminal event given 3 

past recurrences was slightly higher than 0.01 for the restricted multi-state model (MSM2). 

Under adequate sample size (n=2000) and no association between the two processes the bias 

of the multi-state approaches was negligible, while under positive association and smaller 

sample sizes (n=500) the bias was still small but not negligible across time after start of follow-

up and across number of past recurrences. Sharing information across transitions leads to better 

overall precision of the estimated probabilities of death but restrictions may lead to bias if they 

are unrealistic and should therefore be used in moderation, especially for countering data 

sparsity issues. 

Regarding the probability of a new recurrent event, under all scenarios of association between 

the recurrent and the terminal event processes, frailty variance and sample size, both the 

restricted and the unrestricted MSM scenarios presented small bias of less than 0.01 event given 

0, 1, 2 and 3 past recurrences across the time points of prediction. These results are not shown 
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in the main manuscript of Study IV because the predicted probabilities for the recurrent event 

from the joint frailty modelling approach had to be derived with a simulation-based approach 

and not with the analytical approach used for the probability of the terminal event based on 

Mauguen et al (107). 

Figure 5.8. Dot plot of bias in the predicted probabilities for death up to years 2, 3, and 4, given 0, 1, 2, or 3 

past recurrences over the three different modeling approaches under the different scenarios of  

𝑛, 𝛼 and 𝜃. 
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Figure 5.9. Dot plot of bias in the predicted probabilities for a new recurrence to years 2, 3, and 4, given 0, 1, 

2, or 3 past recurrences over the three different modeling approaches under the different scenarios of  

𝑛, 𝛼 and 𝜃. 

 

We should note that the joint frailty model, as implemented by package frailtypack in 

R, has difficulty in estimating low or high values of variance in the frailty distribution as well 

as presenting converging issues. This bias in the estimation of the 𝜃 parameter in conjuction 

with small to moderate bias in the estimation of the association parameter 𝑎 and the baseline 

hazard rate of recurrence, was reflected as substantial bias in the predicted probabilities of death 

under no association scenarios with high frailty variance, as the number of past recurrences 
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increases. The same was observed for the bias in the probability of new recurrence for all 

scenarios under high variance in frailties, especially given no prior recurrences.   

The restricted multi-state modelling approach (MSM2) seemed to have a higher relative 

precision than the unrestricted multi-state model when both of them have their precisions 

compared with that of the joint frailty approach, with both multi-state approaches being less 

precise compared to the joint frailty approach. The unrestricted approach (MSM1) presented a 

lower precision than the joint frailty model that varies from -48% to almost -75% while the 

restricted approach MSM2 from -27% to -54% in the estimation of the probabilities for death 

up to year 𝑡= 3, given 1 and 2 past recurrences. This is not surprising, as the joint estimation of 

parameters leads to a smaller number of parameters to be estimated, which in turn leads to 

lower variance in the estimated parameters and thus predicted probabilities.  

The multi-state approaches presented low bias for the prediction of probabilities of new 

recurrences and death given 0 or a number of previous recurrences, across time since the start 

of follow-up, when the data generating mechanism is based on an underlying joint frailty 

model. However, there are a series of issues to be considered when using multi-state models in 

this setting. The first issue, is a data sparsity issue in higher order states. As state order 

progresses fewer individuals tend to experience each new transition, resulting in sparsely 

populated transitions, leading to potential convergence and/or low precision issues. This data 

sparsity issue can be partly addressed via sharing information across transitions by imposing 

restrictions, as done in approach MSM2, tackling convergence issues and leading to better 

precision. However, if the assumptions that are reflected by the imposed restrictions are not 

realistic, for example, assuming baseline transition intensity rates that are proportional for the 

different recurrent events while this is not the case, this may result in introducing bias in the 

predicted probabilities. Another issue is that, when applying a recurrent multi-state structure in 

a setting of recurrent events in the presence of a terminal event, all the individuals with more 

than a certain number of recurrences will be pooled together in the last, semi-absorbing, 

recurrent state from which they can transition only towards the teminal state. These individuals 

are assumed by the multi-state model to have a common transition intensity rate towards the 

terminal state, no matter how many previous events each individual has. If the recurrent and 

the terminal processes are not associated, or the maximum number of observed recurrent events 

do not greatly surpass the the recurrent states of the multi-state structures, then the common 

transition intensity rate can be considered as a realistic assumption. However, if the two 

processes are associated then the predicted probabilities of the terminal events may be prone to 

bias. 

In summary, multi-state models can be used in settings of recurrent events in the presence of a 

terminal event and the existence of individual frailties, for the prediction of probabilities of a 

new recurrent event or the terminal event, given no or previous recurrent events, as they 

indirectly account for these frailties via the risk set structure for each transition. However, 

careful consideration should be given during their application due to the aforemetioned issues. 
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6 DISCUSSION 

When applying multi-state models, there is a series of modelling and structural choices to 

consider. In this section, I reflect on these choices and their implications. Non-parametric, semi-

parametric or parametric multi-state models can be used in order to study transition 

probabilities/ state occupation probabilities as well as other measures of interest such as 

restricted expected length of stay (43,108). However, in the current study I focus on fully 

parametric multi-state models, with full estimation of the baseline transition intensity rates. 

6.1 CONSIDERATION OF DIFFERENT MODELLING CHOICES 

6.1.1 Baseline transition intensity rates 

6.1.1.1 Transition intensity rate shapes 

Baseline transition intensity rates of a multi-state model can be modeled either separately or 

jointly. When the parameters of the baseline transition intensity rate for a specific transition are 

estimated solely based on the observed times and events for that transition, then we have 

transition specific-estimation. In the case of separately estimated transition intensity rates, 

different transition intensity rates functions can be assumed for different transitions. A model 

selection process based on the AIC and BIC criteria can be followed separately for each 

transition in order to choose a baseline transition intensity rate function, ranging from simpler 

shapes such as exponential or Weibull up to gamma or spline functions. Model selection based 

on prior knowledge and the amount of information in data is also observed. For example, for 

transitions for which little a priori knowledge of the shape of the transition intensity rate exists 

or richer information is available in the form of high number of individuals at risk and number 

of events, flexible parametric models using spline functions can be used, which are generally 

not sensitive to knot number and location as long as there are sufficient knots (109–111).  

6.1.1.2 Sharing information across transitions/ Joint estimation 

Information can be shared across different transitions, by assuming a common shape of the 

transition rate function or a common transition rate function altogether. This can be achieved 

by imposing specific restrictions in the parameter estimation of the different baseline transition 

rate. A way to do that is to use a stacked multi-state model where the transition rate of the first 

transition is allowed to have a specific hazard shape, for example a spline function of the 

logarithm of time with four degrees of freedom. Transition indicator variables can then be 

included in the stacked model with main effects, restricting baseline transition rates for the rest 

of the transitions to be proportional to the first baseline transition rate. Then, restrictions on 

these main effects can be imposed, forcing some of them to be equal, resulting in identical 

baseline transition rates among the selected transitions. On the other hand, under this stacked 

model we can allow baseline transition rates to differ both in shape and scale from the baseline 

transition rate of reference (in our case the first one) by including spline interactions between 

time and the effects of each transition indicator variable of the model (non-proportional 
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hazards). Such a stacked multi-state model was fit in Study III for the “Emulated 

Bidirectional” structure. 

6.1.1.3 Choice of timescales 

Another choice when modelling the baseline transition intensity rates of a multi-state model is 

the timescale used. As mentioned in Section 4.8, there are different approaches to select from, 

a) the Markov assumption, using time since start of the process as the timescale for all 

transitions, b) the semi-Markov assumption, using time since entering the current state as the 

timescale for each transition, c) a mix of the two, where the timescale is selected based on 

subject –based knowledge, assuming that it is more natural for certain transitions to be 

functions of the total time since the start of the process and for other transitions to be functions 

of time since entering the current state, d) multiple timescales, where each baseline transition 

intensity rate is assumed to be a function of multiple timescales. In the Appendix of Study III, 

I present results from a sensitivity analysis comparing the estimation results regarding 

transition probabilities based on a Markov assumption, a semi-Markov assumption and a mix 

of the two (See Section 4.8). In Study I, I compared the use of two different timescales (time 

since diagnosis versus attained age) when modelling the other cause baseline mortality rate in 

a competing risk setting.  

6.1.2 Covariates 

6.1.2.1 Modelling the covariate effects 

Including covariates in a multi-state model is accompanied with a series of modelling choices. 

In transition intensity-based multi-state models, each transition intensity rate can be thought of 

as a separate hazard model. Different sets of covariates may be used for different transition 

rates, and different assumptions can be made about those effects (proportional versus non-

proportional hazards). The first step is to decide the criteria upon which a variable will be 

included as a covariate in each intensity rate model. In case we are interested in getting 

probability-based measures, we need to include the same variables as covariates in all transition 

rate models. A model selection process evaluating both the baseline transition intensity rate 

function selection (Section 6.1.1) and the existence of non-linear covariate effects and non- 

proportional hazards across the timescale for each covariate in the transition-specific hazard 

model can be made. I should note that, via the application of FPSM, one can flexibly model 

the interactions of covariate effects across the timescale of the transition. There are certain 

choices as to how one can model the covariate effects across transitions.  

6.1.2.2 Joint estimation of covariate effects 

One choice is to evaluate the covariate effects by modelling each effect separately for each 

transition. Another choice is to share information about the covariate effects across transitions 

by imposing restrictions, in a way similar to Section 6.1.1.2. For example, when fitting a 

stacked multi-state model, if we include a binary variable as a covariate in the model with a 

main effect (and optionally an interaction term with time to allow for non-proportional 
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hazards), then a common covariate effect across all transitions is assumed. If we allow an 

interaction between the covariate effect and the transition indicator variables, then a transition-

specific covariate effect is incorporated. Through this process, we can choose to have specific 

transitions that share the same covariate effects, which may be desirable, in case we want to 

share information among transitions with more information (more events) and transitions with 

less information (sparsely populated) for which we are confident to assume that the covariate 

effect should be the same. In case of abundance of information (high number of events across 

all transitions), the most liberal choice would be to have unrestricted, transition-specific, time-

varying effects (non- proportional hazards) of a covariate for all transition rates which can be 

induced by allowing triple interactions between transition indicator variable, the covariate and 

the timescale. However, we should consider that, even with large datasets, such as in Study III 

(more than 110.000 individuals), given multi-state structures with a high number of states, an 

issue of sparely populated transitions is likely to arise, leading to convergence issues.  

6.1.2.3 Time dependent covariates 

The multi-state process which we aim to study is a time-dependent process where the state 

value changes over time. It may be of interest to study how other time-varying factors relate 

with its evolution over time. A way to study that is to incorporate the time-varying factor as 

part of the multi-state structure. For example, we can consider the 3-state Illness-Death model 

(Section Figure 5.3a), where the intermediate state between the initial state of transplantation 

and the absorbing state of Relapse/Death is the Platelet Recovery state. Instead of having this 

multi-state structure, we can also choose to use a two state-model with only the initial and the 

absorbing state (also known as a typical single event survival model), and treat the platelet 

recovery as a time varying covariate, splitting the time of each individual before and after the 

platelet recovery and estimate the probability of dying with and without platelet recovery. The 

benefit of the multi-state structure is that within the multi-state framework, we can also study 

the probability of the intermediate state of platelet recovery itself, as well as deriving extra 

measures of interest such as length of stay in a post-transplantation state without a platelet 

recovery. For time-varying factors that are more complex functions of time, such as continuous 

or categorical biomarkers that regularly change over time, or even recurrent event processes, 

joint modelling of longitudinal and multi-state processes can be applied (112). 

Given all these modelling choices for the baseline transition intensity rates, the covariate effects 

and when sharing information across different transitions, it is important to consider which 

covariates are to be included in the model or perform a sensitivity analysis to evaluate how 

sensitive the predicted measures of interest are, for different modelling choices. 

6.2 STRUCTURAL CHOICES  

6.2.1 Correspondence between structure and research question 

The choice of multi-state structure usually ensues the data collection, thus provoking the 

question “Which is the optimal multi-state structure to use given the available data?”. However, 

each multi-state structure can be used to study multiple endpoints simultaneously and different 
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multi-state structures may target different underlying quantities, resulting in different 

interpretation of the estimated measures. In Study III, the interpretation of a subset of the 

estimated transition probabilities depends on the multi-state structure used. For example, under 

the 4-state Unidirectional model, I estimate the probability of being in the first medication cycle 

over the follow-up time while under the 4-state Bidirectional model I estimate the probability 

of being in a medication cycle over the follow-up time. Therefore, the correct question would 

be to ask “Which is the optimal multi-state structure to use given the research question of 

interest?”  

Based on the disease pathway and the research questions of interest, specific events may be put 

as intermediate states, competing events may be considered as intermediate or absorbing states, 

backward transitions to previous states can be considered, recurrent events may be included in 

the form of recurrent states, gaps between at-risk periods can be incorporated as states, thus 

shaping the multi-state structure to be used. In Study III, I showed that, if someone is interested 

in the probability of medication initiation and still being alive up to time 𝑡 after the start of the 

follow-up, a 3-state Illness-death model suffices. However, for a more composite underlying 

quantity such as the total probability of being in a medication cycle over the rest of the follow-

up upon entering the first medication cycle, the use of a multi-state structure of recurrent 

couples of medication cycle/ discontinuation period states was needed. 

Limitations to the range of potential multi-state structures can be posed by the type and amount 

of information within the data. If, as aforementioned, the multi-state model analysis is designed 

after the data collection, then information regarding an event that could serve as an intermediate 

state or a competing absorbing state may be missing. In that case, only a subset of all the 

potential structures can be used. This is an important factor to take into consideration during 

the selection of a multi-state structure.  

6.2.2 Limitations 

When applying a multi-state model, it is important to consider several factors that may limit 

either the structural or the modelling choices or both. 

Complex multi-state structures typically indicate a high number of states and transitions. 

Depending on the structure, the addition of even one extra state may lead to the addition of 

several extra transitions towards that state. It follows that the number of transitions can become 

unmanageable even with a moderate number of states, leading to an issue of sparsely populated 

transitions. This data sparsity issue can pose a natural limit to the potential transitions that can 

be modelled, as it can lead to convergence issues of the transition-specific intensity rate models 

and low precision in the estimated parameters of the intensity rates and, by extension, low 

precision in the estimation of the transition probability and probability-based measures. A way 

to tackle this issue is to share information between transitions using restrictions when 

estimating the baseline transition rates as described in Section 6.1.1.2, assuming for example 

proportional baseline transition intensity rates among a cluster of transitions. Applying simpler 

parametric survival models such as exponential or Weibull can also lead to higher degree of 
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convergence and higher precision, as fewer parameters are estimated, leading to smaller 

variance in the estimations. However, these parametric assumptions are quite strong and may 

not reflect the real underlying hazard rates, potentially inserting bias in the predictions of the 

multi-state model. Another way to tackle the data-sparsity issue, especially in the case of multi-

state structures with recurrent states is to have a semi-absorbing, non-terminal state where all 

individuals that have already experienced the previous states of the path stay into, until their 

censoring, the end of the multi-state process or until they transition to the terminal state (See 

recurrent multi-state structures of Study III and Study IV). The same issues can arise when 

modelling the covariate effects. Ideally, we would like to allow for transition-specific, time-

varying effects of a covariate of interest for all transitions. However, there may be very few, or 

even zero individuals of a specific covariate pattern that experience certain transitions. This 

issue may lead to convergence and precision issues during the estimation of the covariate 

effects. A way to tackle this issue can be the sharing of information across certain transitions 

in respect of the covariate effects by imposing restrictions (same effects), as described in 

6.1.2.2. 

Other restrictions may have to do with the software implementation of multi-state models. For 

example, stacked multi-state models which can be used for imposing restrictions between 

baseline transition intensity rates and between covariate effects, can be computationally 

demanding under a composite transition matrix with high number of transitions, surpassing the 

maximum memory usage that a system can offer or presenting long execution times (Execution 

time of restricted recurrent multi-state model of Study III: ∽ 12 hours ). These issues may lead 

to a necessary compromise as to how flexibly the transition intensity rates and covariate effects 

can be modelled (Study III, Restricted recurrent/Emulated bidirectional multi-state structure). 

Therefore, based on the discussion of Sections 6.1 and 6.2, the realistic question a researcher 

can afford to ask during multi-state model selection can more accurately be phrased as “Which 

is the optimal multi-state structure to use given the research question of interest, the information 

available in the data, and the traits and limitations of the alternative structures?” 

6.3 ETHICAL CONSIDERATIONS WHEN APPLYING MULTI-STATE MODELS 

In Sections 6.1 and 6.2 we discussed about the different multi-state structures and modelling 

choices, the different interpretations of measures depending on the structure, the issues and 

limitations during the selection and application of a multi-state model. As mentioned in Atici 

et al (113), “it is very important to use biostatistics principles and methods properly in all steps 

in order to impartially present information obtained through research”. Therefore, it is of ethical 

importance to try to make the best possible structural and modelling choices when applying 

multi-state models. The research questions of interest should be carefully formulated and 

appropriate multi-state structures that can address them should be defined. Then, considering 

limitations in the data information, such as the population of transitions or information 

availability for the intermediate events, and the potential sharing of information across 

transitions as described in Section 6.1, a specific multi-state structure should be chosen. The 

flexibility when modelling the baseline transition intensity rates and the covariate effects 
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should be explored, via model selection procedures while also considering the precision of the 

estimates and the convergence of the models. Different restrictions/ assumptions about the 

relation between baseline intensity rates and covariates among transitions can be explored as 

well as different timescale approaches via sensitivity analyses. Sensitivity analysis is quite 

important as it can help in assessing the impact different modelling choices have on estimated 

measures of interest such as transition probabilities and expected length of stay in a stay (Study 

III). MSMplus, the interactive application I developed in StudyII, allows for the visual 

comparison of results from different multi-state model analyses so it can be a useful tool for 

sensitivity analyses.  
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7 CONCLUSIONS 

Throughout this work, I aimed to present, evaluate and discuss various related topics regarding 

competing risks and multi-state models. I focused on the definition and estimation of different 

measures of interest that can be derived under these models, as well as structural (different 

multi-state structures) and modelling choices (choice of timescales, sharing information across 

transitions via restrictions in the estimation process) when applying multi-state models. The 

notion of structural and modelling choices is also dealt within the manuscripts. The choice of 

timescale for the other cause mortality rate in Study I is essentially a modelling choice when 

applying competing risks. In Study III the use of different multi-state structures and different 

modelling approaches in regards with the timescales of the transitions are also different 

structural and modelling choices while trying to explore different research questions when 

using registry-based repeated prescriptions of antidepressants from the Swedish prescription 

registry. In Study IV, I explored the use of a recurrent multi-state modelling approach (a choice 

of modelling approach) in a setting of recurrent events under the presence of a terminal event, 

given a joint frailty model data generating mechanism.    

Throughout the different sections, I referred to the plethora of measures that can be estimated 

via multi-state models across time and among covariate patterns and I stressed the importance 

of structure and model selection. The effective communication of the structure and estimation 

results of a multi-state model is therefore of paramount importance in order to deeply 

understand the multi-state process and conduct sensitivity analyses to assess the impact of the 

modelling choices (e.g timescales, sharing information across transitions).The RShiny 

application MSMplus developed in Study II was built with those principles at its core. While 

the first choice is to present the structure and estimation results of one multi-state model, the 

second choice it provides under its “Aims” label is to actively compare the results from two 

multi-state models. That is ideal for a quick sensitivity analysis of two multi-state models of 

the same structure but of different modelling choices.  

The use of multi-state models in the epidemiological literature is still limited. However, this is 

gradually changing, with the number of MSM applications rising both in epidemiological 

studies and clinical trials focusing on cancer (Figure 7.1). Therefore, the responsible application 

and communication of multi-state models to the wider community of biomedical and 

epidemiological research is relevant now more than ever before.  

Figure 7.1. Proportion of publications out of a total of 366 in Pubmed when setting as key 

words “multi-state” and “cancer”, filtering from year 2000 up to year 2022.  
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8 POINTS OF PERSPECTIVE 

This work addressed, among others topics, the issue of using different timescales in a 

competing risk and a multi-state setting. The choice of timescale for each cause-specific hazard 

model (competing risks setting) or transition-specific intensity rate model (multi-state models) 

may differ depending on the nature of the event/transition and subject specific knowledge and 

can influence the estimated cumulative incidence functions and transition probabilities. The 

magnitude of this influence depends on many aforementioned factors such as indirectly 

modelling the effect of other timescales as main effects in the model in a linear or non-linear 

way and with or without interactions with the main timescale the complexity. It may also 

depend on the number of competing events, the multi-state structure, the risk-set sizes and 

more. It is therefore of importance for future research to focus on the simultaneous flexible 

parametric modelling of multiple timescales in a competing risk and a multi-state setting, so 

that the baseline hazard rate for a competing event or a transition intensity rates of a multi-state 

model are functions of multiple timescales, also allowing for flexible effects interaction 

between the different timescales. This way, the estimated measures, such as the cause-specific 

CIFs, the transition probabilities and other multi-state related measures will be able to be 

derived as non-linear functions of multiple time-scales and presented not only across one but 

multiple timescales, serving the better understanding of the disease pathway. 

There is a rising interest in the use of multi-state models in cancer clinical trials of phase II and 

phase III (25,114–116), where the interest lies in evaluating multiple endpoints instead of one, 

for example evaluating both overall survival and progression-free survival as well as the 

association between progression and overall survival. Therefore, interest should be given in 

future research of optimal designs in clinical trials for the use of multi-state structures, securing 

the desirable type I error and power, and allowing for interim analyses and other clinical trial 

design traits. 

The big datasets available in the last decade, especially in Sweden via data linkage from 

multiple registers, allow for the use of more complex, high-parametrized models that can 

address composite research questions and cope with data of complex nature. Joint longitudinal 

and survival models with one or more biomarkers/longitudinal outcomes can be fit in the form 

of competing risks and multi-state structures, allowing the study of the relation between these 

outcomes and the multi-state process.  

 

 

 

 

 

 



 

66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 67 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to the following: 

Paul C. Lambert, my main supervisor, for believing in me, giving me the time and the space 

to grow as a researcher. Every time I was leaping two steps ahead, he was there to remind me 

to be thorough, to focus on getting the simple stuff working first before moving on to more 

complicated analyses. I definitely feel I am a much more experienced researcher now, being 

more methodological and careful when approaching a new problem, with much better solving 

skills than before. He also put a lot of trust in me which in turn helped me become more 

responsible at my work and feel more confident. Thank you Paul for your trust and for giving 

me the opportunity to work at MEB these last four years and meet so many special people. 

Therese M-L. Andersson, my co-supervisor, for her advice and feedback which was always 

precise and accurate, enhancing the quality of my manuscripts, letting me develop my thoughts 

and ideas even if they were mistaken sometimes. I would also like to thank her for her help 

when dealing with paperwork in Swedish and always having her office door open so that I 

could easily drop by and ask for a hint of how to tackle issues that I needed to resolve. Thanks 

for your kindness and support Therese! 

Michael J. Crowther, my co-supervisor, for his vital feedback on coding issues but also during 

the conceptualization of the aim of the manuscripts. Michael, you have the charisma of 

conveying difficult concepts in a few sentences in such a cohesive way, making them sound 

simple for me. Your skills and hard work have been an example for me and would like to wish 

you good luck in your future endeavors whether you stay outside or return to the academia. 

Donghao Lu, my co-author in Study III, whose feedback was detrimental in the development 

of the manuscript. Donghao, thanks a lot for your prompt feedback, always on spot and in time 

even though I know your time was very limited. 

Mats Lambe, my co-author, thanks to whom I was able to work with the Prescribed Drug 

Register data of BCBaSe 2.0 database and apply interesting multi-state structures. Mats, thanks 

a lot for your feedback during the development of the manuscript. 

Keith Humphreys, chair of my defense. I deeply enjoyed our conversations about life. You 

are one of the few people that remain forever young, never making me feel a senior to junior 

distance during our discussions, always felt more like two friends chatting. 

Paul Dickman, head of the survival analysis research group. Paul, thanks a lot for having me 

as a member in your group. I enjoyed the trips of our group in London, Treviso and Oslo and 

having nice chats especially during breakfast. Also, thanks a lot for supporting the biostatistics 

group all these years and for keep pushing for the realization of a master program of 

biostatistics in KI, a program which is so much needed and will contribute to the growth of the 

community of biostatisticians!  



 

68 

Marie Jansson, secretary of the biostatistics corridor for her help whenever I needed it and her 

warm energy even during the Swedish winter. Marie, as with Keith, I really enjoyed that you 

never made me feel any distance, that we had the chance across the years to chat about politics, 

religion, our life experiences. You were very tolerant and patient no matter how many times I 

kept asking for the same project numbers again and again. Above all, a person to say kalimera 

to every morning. Thanks for everything! 

Alessandra Nanni, study coordinator. Alessandra, thanks a lot for your support, not only for 

the paperwork needed throughout the studies, but also for your advice whenever I needed it. 

My corridor colleagues, both seniors and PhD students: Balram Rai, Letizia Orsini, Birzhan 

Akynkozhayev, Enoch Yi-Tung Chen, Elisavet Syriopoulou, Frida Lundberg, Nurgul 

Bertykova, Rickard Strandberg, Alessandro Gasparini, Yuliya Leontyeva, Lu Pan, Adam 

Brand, Iuliana Ciocanea-Teodorescu,Wenjiang Deng, Zheng Ning, Valentin Vancak, 

Xiaoyang Du, Shuang Hao, Ana Johansson, Rino Bellocco, Cecilia Lundholm, Sven Sandin, 

Marie Reilly, Yudi Pawitan, Mark Clements, Erin Gabriel, Alex Ploner, and Arvid Sjölander 

for creating a friendly work atmosphere. This is rare to find nowadays and I really appreciate 

it. Thanks for having me (and tolerating me)! 

My office mates past and present: Elizabeth, Frida, Pablo, Yuliya, Shuang, Rickard, each one 

with his/her unique style and vibe. Thanks guys for making me comfortable, I hope I made you 

feel the same! 

My friends from MEB Ale, Abi, Pablo, Marco, Ailema, Erwei, Enoch, Mao, Jet, Nita, Laura, 

Marta, Arvid, Zhung, Betty, Maya, Philippe. 

 

 

 

 

 

 

 

 

 

 

 



 

 69 

9  REFERENCES 

1. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state 

models. Stat Med. 2007 Dec 20;26(11):2389–430.  

2. Newland RC, Chan C, Chapuis PH, Keshava A, Rickard MJFX, Young CJ, et al. 

Competing risks analysis of the effect of local residual tumour on recurrence and cancer-

specific death after resection of colorectal cancer: implications for staging. Pathology. 

2018 Oct;50(6):600–6.  

3. Onozuka D, Nakamura Y, Tsuji G, Furue M. Cancer- and noncancer-specific cumulative 

incidence of death after exposure to polychlorinated biphenyls and dioxins: A competing 

risk analysis among Yusho patients. Environ Int. 2021 Feb;147:106320.  

4. Pathak M, S Deo SNV, Dwivedi SN, Vishnubhatla S, Thakur B. Comparison of hazard 

models with and without consideration of competing risks to assess the effect of 

neoadjuvant chemotherapy on locoregional recurrence among breast cancer patients. J 

Cancer Res Ther. 2021;17(4):982–7.  

5. Rosenberg MA. Competing risks to breast cancer mortality. J Natl Cancer Inst Monogr. 

2006;(36):15–9.  

6. Shim SH, Lim MC, Lee D, Won YJ, Ha HI, Chang HK, et al. Cause-specific mortality 

rate of ovarian cancer in the presence of competing risks of death: a nationwide 

population-based cohort study. J Gynecol Oncol. 2022 Jan;33(1):e5.  

7. Tan KS, Eguchi T, Adusumilli PS. Competing risks and cancer-specific mortality: why it 

matters. Oncotarget. 2018 Jan 26;9(7):7272–3.  

8. van Kruijsdijk RCM, Eijkemans MJC, Visseren FLJ. [Competing risks in clinical 

research]. Ned Tijdschr Geneeskd. 2012;156(46):A5176.  

9. Vilaprinyo E, Gispert R, Martínez-Alonso M, Carles M, Pla R, Espinàs JA, et al. 

Competing risks to breast cancer mortality in Catalonia. BMC Cancer. 2008 Nov 

12;8:331.  

10. Xu YB, Liu H, Cao QH, Ji JL, Dong RR, Xu D. Evaluating overall survival and 

competing risks of survival in patients with early-stage breast cancer using a 

comprehensive nomogram. Cancer Med. 2020 Jun;9(12):4095–106.  

11. Zhang S, Ivy JS, Wilson JR, Diehl KM, Yankaskas BC. Competing risks analysis in 

mortality estimation for breast cancer patients from independent risk groups. Health Care 

Manag Sci. 2014 Sep;17(3):259–69.  

12. de Bock GH, Putter H, Bonnema J, van der Hage JA, Bartelink H, van de Velde CJ. The 

impact of loco-regional recurrences on metastatic progression in early-stage breast 

cancer: a multistate model. Breast Cancer Res Treat. 2009 Sep;117(2):401–8.  

13. de Boer AZ, Bastiaannet E, Schetelig J, de Glas NA, Manevksi D, Putter H, et al. Breast 

cancer mortality of older patients with and without recurrence analysed by novel multi-

state models. Eur J Cancer. 2022 Oct;174:212–20.  



 

70 

14. Plym A, Johansson ALV, Bower H, Voss M, Holmberg L, Fredriksson I, et al. Causes of 

sick leave, disability pension, and death following a breast cancer diagnosis in women of 

working age. Breast. 2019 Jun;45:48–55.  

15. Putter H, van der Hage J, de Bock GH, Elgalta R, van de Velde CJH. Estimation and 

prediction in a multi-state model for breast cancer. Biom J. 2006 Jun;48(3):366–80.  

16. Rosner B, Glynn RJ, Eliassen AH, Hankinson SE, Tamimi RM, Chen WY, et al. A 

Multi-State Survival Model for Time to Breast Cancer Mortality among a Cohort of 

Initially Disease-Free Women. Cancer Epidemiol Biomarkers Prev. 2022 Aug 

2;31(8):1582–92.  

17. Vasheghani Farahani M, Ataee Dizaji P, Rashidi H, Mokarian F, Biglarian A. 

Application of Multi-State Model in Analyzing of Breast Cancer Data. J Res Health Sci. 

2020 Jan 5;19(4):e00465.  

18. Xu C, Ravva P, Dang JS, Laurent J, Adessi C, McIntyre C, et al. A continuous-time 

multistate Markov model to describe the occurrence and severity of diarrhea events in 

metastatic breast cancer patients treated with lumretuzumab in combination with 

pertuzumab and paclitaxel. Cancer Chemother Pharmacol. 2018 Sep;82(3):395–406.  

19. Rotolo F, Dunant A, Chevalier TL, Pignon JP, Arriagada R. Adjuvant cisplatin-based 

chemotherapy in nonsmall-cell lung cancer: new insights into the effect on failure type 

via a multistate approach. Annals of Oncology. 2014 Nov 1;25(11):2162–6.  

20. Jeong WG, Choi H, Chae KJ, Kim J. Prognosis and recurrence patterns in patients with 

early stage lung cancer: a multi-state model approach. Transl Lung Cancer Res. 2022 

Jul;11(7):1279–91.  

21. Conlon ASC, Taylor JMG, Sargent DJ. Multi-state models for colon cancer recurrence 

and death with a cured fraction. Stat Med. 2014 May 10;33(10):1750–66.  

22. Álvaro-Meca A, Akerkar R, Alvarez-Bartolome M, Gil-Prieto R, Rue H, de Miguel ÁG. 

Factors involved in health-related transitions after curative resection for pancreatic 

cancer. 10-years experience: a multi state model. Cancer Epidemiol. 2013 Feb;37(1):91–

6.  

23. Plym A, Clements M, Voss M, Holmberg L, Stattin P, Lambe M. Duration of sick leave 

after active surveillance, surgery or radiotherapy for localised prostate cancer: a 

nationwide cohort study. BMJ Open. 2020 Mar 9;10(3):e032914.  

24. Conlon ASC, Taylor JMG, Sargent DJ. Multi-state models for colon cancer recurrence 

and death with a cured fraction. Stat Med. 2014 May 10;33(10):1750–66.  

25. Danzer MF, Terzer T, Berthold F, Faldum A, Schmidt R. Confirmatory adaptive group 

sequential designs for single-arm phase II studies with multiple time-to-event endpoints. 

Biom J. 2022 Feb;64(2):312–42.  

26. Le-Rademacher JG, Peterson RA, Therneau TM, Sanford BL, Stone RM, Mandrekar SJ. 

Application of multi-state models in cancer clinical trials. Clin Trials. 2018 

Oct;15(5):489–98.  



 

 71 

27. Xia F, George SL, Wang X. A Multi-state Model for Designing Clinical Trials for 

Testing Overall Survival Allowing for Crossover after Progression. Stat Biopharm Res. 

2016;8(1):12–21.  

28. Wu WYY, Nyström L, Jonsson H. Estimation of overdiagnosis in breast cancer screening 

using a non-homogeneous multi-state model: A simulation study. J Med Screen. 2018 

Dec;25(4):183–90.  

29. Uhry Z, Hédelin G, Colonna M, Asselain B, Arveux P, Rogel A, et al. Multi-state 

Markov models in cancer screening evaluation: a brief review and case study. Stat 

Methods Med Res. 2010 Oct;19(5):463–86.  

30. Sutradhar R, Gu S, Paszat LF. Multistate transitional models for measuring adherence to 

breast cancer screening: A population-based longitudinal cohort study with over two 

million women. J Med Screen. 2017 Jun;24(2):75–82.  

31. Kumar V, Cohen JT, van Klaveren D, Soeteman DI, Wong JB, Neumann PJ, et al. Risk-

targeted lung cancer screening: A cost effectiveness analysis. Ann Intern Med. 2018 Feb 

6;168(3):161–9.  

32. Noordzij M, Leffondré K, van Stralen KJ, Zoccali C, Dekker FW, Jager KJ. When do we 

need competing risks methods for survival analysis in nephrology? Nephrol Dial 

Transplant. 2013 Nov;28(11):2670–7.  

33. Satagopan JM, Ben-Porat L, Berwick M, Robson M, Kutler D, Auerbach AD. A note on 

competing risks in survival data analysis. Br J Cancer. 2004 Oct 4;91(7):1229–35.  

34. Johansen R. An Empirical Transition Matrix for Non-homogeneous Markov Chains 

Based on Censored Observations. In 1978 [cited 2023 Jan 2]. Available from: 

https://www.semanticscholar.org/paper/An-Empirical-Transition-Matrix-for-Non-

homogeneous-Johansen/86db6591763c2a7d7285068eb2186d945645e670 

35. The statistical analysis of failure time data. By J.D. Kalbfleisch and R.L. Prentice. John 

Wiley & Sons, Inc., New York, 1980. xi + 321 pp. U.S. $31.50, C $40.35. ISBN 0-471-

05519-0. Canadian Journal of Statistics. 1982;10(1):64–6.  

36. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing 

Risk. Journal of the American Statistical Association. 1999;94(446):496–509.  

37. Lambert PC, Wilkes SR, Crowther MJ. Flexible parametric modelling of the cause-

specific cumulative incidence function. Stat Med. 2017 Apr 30;36(9):1429–46.  

38. Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-

odds models for censored survival data, with application to prognostic modelling and 

estimation of treatment effects. Stat Med. 2002 Aug 15;21(15):2175–97.  

39. Lambert PC, Royston P. Further Development of Flexible Parametric Models for 

Survival Analysis. The Stata Journal. 2009 Aug 1;9(2):265–90.  

40. Hinchliffe SR, Lambert PC. Flexible parametric modelling of cause-specific hazards to 

estimate cumulative incidence functions. BMC Med Res Methodol. 2013 Feb 6;13:13.  



 

72 

41. van Houwelingen J (Hans), Putter H. Dynamic predicting by landmarking as an 

alternative for multi-state modeling: An application to acute lymphoid leukemia data. 

Lifetime data analysis. 2008 Nov 1;14:447–63.  

42. Ieva F, Jackson CH, Sharples LD. Multi-State modelling of repeated hospitalisation and 

death in patients with Heart Failure: the use of large administrative databases in clinical 

epidemiology. Stat Methods Med Res. 2017 Jun;26(3):1350–72.  

43. Crowther MJ, Lambert PC. Parametric multistate survival models: Flexible modelling 

allowing transition-specific distributions with application to estimating clinically useful 

measures of effect differences. Statistics in Medicine. 2017;36(29):4719–42.  

44. Jackson C. Multi-State Models for Panel Data: The msm Package for R. Journal of 

Statistical Software. 2011 Jan 4;38:1–28.  

45. Cook RJ, Lawless JF. Statistical Issues in Modeling Chronic Disease in Cohort Studies. 

Stat Biosci. 2014 May;6(1):127–61.  

46. Iacobelli S, Carstensen B. Multiple time scales in multi-state models. Statist Med. 2013 

Dec 30;32(30):5315–27.  

47. Colzani E, Johansson ALV, Liljegren A, Foukakis T, Clements M, Adolfsson J, et al. 

Time-dependent risk of developing distant metastasis in breast cancer patients according 

to treatment, age and tumour characteristics. Br J Cancer. 2014 Mar 4;110(5):1378–84.  

48. Putter H, van der Hage J, de Bock GH, Elgalta R, van de Velde CJH. Estimation and 

Prediction in a Multi-State Model for Breast Cancer. Biometrical Journal. 

2006;48(3):366–80.  

49. Latouche A, Allignol A, Beyersmann J, Labopin M, Fine JP. A competing risks analysis 

should report results on all cause-specific hazards and cumulative incidence functions. J 

Clin Epidemiol. 2013 Jun;66(6):648–53.  

50. National Cancer Register [Internet]. Socialstyrelsen. [cited 2023 Jan 3]. Available from: 

https://www.socialstyrelsen.se/en/statistics-and-data/registers/national-cancer-register/ 

51. Wadsten C, Wennstig AK, Garmo H, Lambe M, Blomqvist C, Holmberg L, et al. Data 

Resource Profile: Breast Cancer Data Base Sweden 2.0 (BCBaSe 2.0). Int J Epidemiol. 

2022 Jan 6;50(6):1770–1771f.  

52. Wennman-Larsen A, Nilsson MI, Saboonchi F, Olsson M, Alexanderson K, Fornander T, 

et al. Can breast cancer register data on recommended adjuvant treatment be used as a 

proxy for actually given treatment? Eur J Oncol Nurs. 2016 Jun;22:1–7.  

53. Brooke HL, Talbäck M, Hörnblad J, Johansson LA, Ludvigsson JF, Druid H, et al. The 

Swedish cause of death register. Eur J Epidemiol. 2017;32(9):765–73.  

54. Patientregistret [Internet]. Socialstyrelsen. [cited 2023 Jan 3]. Available from: 

https://www.socialstyrelsen.se/statistik-och-data/register/patientregistret/ 

55. Wadsten C, Heyman H, Holmqvist M, Ahlgren J, Lambe M, Sund M, et al. A validation 

of DCIS registration in a population-based breast cancer quality register and a study of 

treatment and prognosis for DCIS during 20 years. Acta Oncol. 2016 Nov;55(11):1338–

43.  



 

 73 

56. Löfgren L, Eloranta S, Krawiec K, Asterkvist A, Lönnqvist C, Sandelin K, et al. 

Validation of data quality in the Swedish National Register for Breast Cancer. BMC 

Public Health. 2019 May 2;19(1):495.  

57. Mattsson B, Wallgren A. Completeness of the Swedish Cancer Register. Non-notified 

cancer cases recorded on death certificates in 1978. Acta Radiol Oncol. 1984;23(5):305–

13.  

58. Barlow L, Westergren K, Holmberg L, Talbäck M. The completeness of the Swedish 

Cancer Register: a sample survey for year 1998. Acta Oncol. 2009;48(1):27–33.  

59. The EBMT Patient Registry [Internet]. EBMT. [cited 2023 Jan 3]. Available from: 

https://www.ebmt.org/ebmt-patient-registry 

60. Rondeau V, Gonzalez JR. frailtypack: A computer program for the analysis of correlated 

failure time data using penalized likelihood estimation. Computer Methods and Programs 

in Biomedicine. 2005 Nov 1;80(2):154–64.  

61. Gonzalez JR, Fernandez E, Moreno V, Ribes J, Peris M, Navarro M, et al. Sex 

differences in hospital readmission among colorectal cancer patients. J Epidemiol 

Community Health. 2005 Jun;59(6):506–11.  

62. WMA - The World Medical Association-WMA Declaration of Helsinki – Ethical 

Principles for Medical Research Involving Human Subjects [Internet]. [cited 2023 Jan 3]. 

Available from: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-

principles-for-medical-research-involving-human-subjects/ 

63. General Data Protection Regulation (GDPR) – Official Legal Text [Internet]. General 

Data Protection Regulation (GDPR). [cited 2023 Jan 3]. Available from: https://gdpr-

info.eu/ 

64. Omar RZ, Stallard N, Whitehead J. A parametric multistate model for the analysis of 

carcinogenicity experiments. Lifetime Data Anal. 1995;1(4):327–46.  

65. Titman AC. Flexible Nonhomogeneous Markov Models for Panel Observed Data. 

Biometrics. 2011;67(3):780–7.  

66. Król A, Saint-Pierre P. SemiMarkov: An R Package for Parametric Estimation in Multi-

State Semi-Markov Models. Journal of Statistical Software. 2015 Aug 27;66:1–16.  

67. Blaser N, Vizcaya LS, Estill J, Zahnd C, Kalesan B, Egger M, et al. gems: An R Package 

for Simulating from Disease Progression Models. J Stat Softw. 2015 Mar;64(10):1–22.  

68. Jackson C, Unit MB. Flexible parametric multi-state modelling with flexsurv.  

69. Clements M, Liu XR, Christoffersen B, Lambert P, Jakobsen LH, Gasparini A, et al. 

rstpm2: Smooth Survival Models, Including Generalized Survival Models [Internet]. 

2023 [cited 2023 Feb 6]. Available from: https://CRAN.R-project.org/package=rstpm2 

70. Mozumder SI, Rutherford MJ, Lambert PC. Direct likelihood inference on the cause-

specific cumulative incidence function: a flexible parametric regression modelling 

approach. Stat Med. 2018 Jan 15;37(1):82–97.  



 

74 

71. Eloranta S, Lambert PC, Andersson TML, Björkholm M, Dickman PW. The application 

of cure models in the presence of competing risks: a tool for improved risk 

communication in population-based cancer patient survival. Epidemiology. 2014 

Sep;25(5):742–8.  

72. Edgren G, Hjalgrim H, Rostgaard K, Lambert P, Wikman A, Norda R, et al. 

Transmission of Neurodegenerative Disorders Through Blood Transfusion: A Cohort 

Study. Ann Intern Med. 2016 Sep 6;165(5):316–24.  

73. Hinchliffe SR, Seaton SE, Lambert PC, Draper ES, Field DJ, Manktelow BN. Modelling 

time to death or discharge in neonatal care: an application of competing risks. Paediatr 

Perinat Epidemiol. 2013 Jul;27(4):426–33.  

74. Hultcrantz M, Wilkes SR, Kristinsson SY, Andersson TML, Derolf ÅR, Eloranta S, et al. 

Risk and Cause of Death in Patients Diagnosed With Myeloproliferative Neoplasms in 

Sweden Between 1973 and 2005: A Population-Based Study. J Clin Oncol. 2015 Jul 

10;33(20):2288–95.  

75. The Theory of Stochastic Processes | D.R. Cox | Taylor & Francis eBook [Internet]. 

[cited 2023 Jan 17]. Available from: 

https://www.taylorfrancis.com/books/mono/10.1201/9780203719152/theory-stochastic-

processes-cox 

76. Crowther MJ, Lambert PC. Simulating biologically plausible complex survival data. 

Statistics in Medicine. 2013;32(23):4118–34.  

77. Grand MK, Putter H. Regression models for expected length of stay. Stat Med. 2016 Mar 

30;35(7):1178–92.  

78. David HA, Moeschberger ML. The theory of competing risks. London: Griffin; 1978. 

103 p. (Griffin’s statistical monographs & courses).  

79. Beyersmann J, Latouche A, Buchholz A, Schumacher M. Simulating competing risks 

data in survival analysis. Statistics in Medicine. 2009;28(6):956–71.  

80. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate statistical 

methods. Statistics in Medicine. 2019;38(11):2074–102.  

81. Korn EL, Graubard BI, Midthune D. Time-to-event analysis of longitudinal follow-up of 

a survey: choice of the time-scale. Am J Epidemiol. 1997 Jan 1;145(1):72–80.  

82. Canchola A, Stewart S, Center NCC, Bernstein L. Cox Regression Using Different Time 

Scales.  

83. Efron B. Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve. Journal of 

the American Statistical Association. 1988 Jun 1;83(402):414–25.  

84. Cox DR. Regression Models and Life-Tables. Journal of the Royal Statistical Society: 

Series B (Methodological). 1972;34(2):187–202.  

85. Batyrbekova N, Bower H, Dickman PW, Ravn Landtblom A, Hultcrantz M, Szulkin R, et 

al. Modelling multiple time-scales with flexible parametric survival models. BMC 

Medical Research Methodology. 2022 Nov 9;22(1):290.  



 

 75 

86. Jackson C. Multi-state modelling with R: the msm package.  

87. Wreede LC de, Fiocco M, Putter H. mstate: An R Package for the Analysis of Competing 

Risks and Multi-State Models. Journal of Statistical Software. 2011 Jan 4;38:1–30.  

88. Therneau, T.M. and Grambsch, P.M. (2000) Modeling Survival Data Extending the Cox 

Model. Springer, Berlin. - References - Scientific Research Publishing [Internet]. [cited 

2023 Jan 3]. Available from: 

https://www.scirp.org/%28S%28351jmbntvnsjt1aadkposzje%29%29/reference/reference

spapers.aspx?referenceid=1984629 

89. Kelly PJ, Lim LL. Survival analysis for recurrent event data: an application to childhood 

infectious diseases. Stat Med. 2000 Jan 15;19(1):13–33.  

90. Kessing LV, Andersen PK, Mortensen PB, Bolwig TG. Recurrence in affective disorder. 

I. Case register study. Br J Psychiatry. 1998 Jan;172:23–8.  

91. Hougaard P. Frailty models for survival data. Lifetime Data Anal. 1995 Sep 1;1(3):255–

73.  

92. Mazroui Y, Mathoulin-Pelissier S, Soubeyran P, Rondeau V. General joint frailty model 

for recurrent event data with a dependent terminal event: Application to follicular 

lymphoma data. Stat Med. 2012 Dec 20;31(11–12):1162–76.  

93. Liu L, Wolfe RA, Huang X. Shared Frailty Models for Recurrent Events and a Terminal 

Event. Biometrics. 2004;60(3):747–56.  

94. Andersen PK, Angst J, Ravn H. Modeling marginal features in studies of recurrent events 

in the presence of a terminal event. Lifetime Data Anal. 2019 Oct;25(4):681–95.  

95. Furberg JK, Andersen PK, Korn S, Overgaard M, Ravn H. Bivariate pseudo-observations 

for recurrent event analysis with terminal events. Lifetime Data Anal [Internet]. 2021 

Nov 5 [cited 2023 Jan 3]; Available from: https://link.springer.com/10.1007/s10985-021-

09533-5 

96. Andersen PK, Gill RD. Cox’s Regression Model for Counting Processes: A Large 

Sample Study. The Annals of Statistics. 1982;10(4):1100–20.  

97. Prentice RL, Williams BJ, Peterson AV. On the Regression Analysis of Multivariate 

Failure Time Data. Biometrika. 1981;68(2):373–9.  

98. Wei LJ, Lin DY, Weissfeld L. Regression Analysis of Multivariate Incomplete Failure 

Time Data by Modeling Marginal Distributions. Journal of the American Statistical 

Association. 1989 Dec 1;84(408):1065–73.  

99. Andersen PK, Keiding N. Multi-state models for event history analysis. Stat Methods 

Med Res. 2002 Apr;11(2):91–115.  

100. Amorim LD, Cai J. Modelling recurrent events: a tutorial for analysis in 

epidemiology. Int J Epidemiol. 2015 Feb;44(1):324–33.  

101. Villegas R, Julià O, Ocaña J. Empirical study of correlated survival times for 

recurrent events with proportional hazards margins and the effect of correlation and 

censoring. BMC Med Res Methodol. 2013 Jul 24;13:95.  



 

76 

102. Stata Bookstore: Flexible Parametric Survival Analysis Using Stata: Beyond 

the Cox Model [Internet]. [cited 2023 Jan 25]. Available from: 

https://www.stata.com/bookstore/flexible-parametric-survival-analysis-stata/ 

103. Syriopoulou E, Mozumder SI, Rutherford MJ, Lambert PC. Estimating causal 

effects in the presence of competing events using regression standardisation with the 

Stata command standsurv. BMC Medical Research Methodology. 2022 Aug 

13;22(1):226.  

104. Skourlis N, Crowther MJ, Andersson TML, Lambert PC. On the choice of 

timescale for other cause mortality in a competing risk setting using flexible parametric 

survival models. Biometrical Journal. 2022;64(7):1161–77.  

105. Chang Z, Lichtenstein P, Långström N, Larsson H, Fazel S. Association 

Between Prescription of Major Psychotropic Medications and Violent Reoffending After 

Prison Release. JAMA. 2016 Nov 1;316(17):1798–807.  

106. Fazel S, Zetterqvist J, Larsson H, Långström N, Lichtenstein P. Antipsychotics, 

mood stabilisers, and risk of violent crime. The Lancet. 2014 Sep;384(9949):1206–14.  

107. Mauguen A, Rachet B, Mathoulin-Pélissier S, MacGrogan G, Laurent A, 

Rondeau V. Dynamic prediction of risk of death using history of cancer recurrences in 

joint frailty models. Stat Med. 2013 Dec 30;32(30):5366–80.  

108. Hill M, Lambert PC, Crowther M. Non-parametric estimation in multi-state 

survival models: An update to msaj. London Stata Conference 2020 [Internet]. 2020 Sep 

11 [cited 2023 Jan 3]; Available from: https://ideas.repec.org//p/boc/usug20/02.html 

109. Syriopoulou E, Mozumder SI, Rutherford MJ, Lambert PC. Robustness of 

individual and marginal model-based estimates: A sensitivity analysis of flexible 

parametric models. Cancer Epidemiology. 2019 Feb 1;58:17–24.  

110. Rutherford MJ, Crowther MJ, Lambert PC. The use of restricted cubic splines 

to approximate complex hazard functions in the analysis of time-to-event data: a 

simulation study. Journal of Statistical Computation and Simulation. 2015 Mar 

4;85(4):777–93.  

111. Bower H, Crowther MJ, Rutherford MJ, Andersson TML, Clements M, Liu 

XR, et al. Capturing simple and complex time-dependent effects using flexible 

parametric survival models: A simulation study. Communications in Statistics - 

Simulation and Computation. 2021 Nov 2;50(11):3777–93.  

112. Ferrer L, Rondeau V, Dignam JJ, Pickles T, Jacqmin-Gadda H, Proust-Lima C. 

Joint modelling of longitudinal and multi-state processes: application to clinical 

progressions in prostate cancer. Stat Med. 2016 Sep 30;35(22):3933–48.  

113. Atici E, Erdemir AD. Ethics in a scientific approach: the importance of the 

biostatistician in research ethics committees. J Med Ethics. 2008 Apr;34(4):297–300.  

114. Beyer U, Dejardin D, Meller M, Rufibach K, Burger HU. A multistate model 

for early decision-making in oncology. Biom J. 2020 Dec;62(3):550–67.  

115. Tancredi A. Approximate Bayesian inference for discretely observed 

continuous-time multi-state models. Biometrics. 2019;75(3):966–77.  



 

 77 

116. Meller M, Beyersmann J, Rufibach K. Joint modeling of progression-free and 

overall survival and computation of correlation measures. Statistics in Medicine. 

2019;38(22):4270–89.  

 


