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Popular science summary of the thesis 
Humans are exposed to a plethora of synthetic chemicals, which potentially interact with 
normal human physiology. The focus of this thesis was on per- and polyfluoroalkyl 
substances (PFAS), a group of over 4,700 man-made chemicals. PFAS can be detected 
almost everywhere on our planet as well as in humans and received the nickname ‘forever 
chemicals’, as they are virtually impossible to break down. PFAS became notorious when 

high contaminations shook up society. Ever since, PFAS effects on human health have 

been a topic of investigation in toxicology and epidemiology.  

We performed several observational studies to investigate whether exposure to PFAS 
impacted obesity, type 2 diabetes, myocardial infarction and stroke, which are some of 

the major societal challenges of the twenty-first century. We furthermore investigated 
small molecules in the blood that correlated with PFAS exposure to gain more mechanistic 
insight in how PFAS may impact human physiology. Our studies indicated that exposure 
to PFAS correlates with several intermediate products of metabolic reactions in the 
human body, which indicates there may be PFAS-induced disturbances in metabolism. 

We furthermore found evidence for associations of PFAS exposure with cardiometabolic 
diseases and their risk factors: lower BMI in teenagers (although not for all PFAS), 
metabolic patterns linked to both lower and higher risk of type 2 diabetes in adults, higher 

cholesterol levels, lower triglyceride levels and lower risk of myocardial infarction.  

These studies showed no associations of PFAS with increased disease risk, at exposure 
levels typically found in the general population. Although this is a positive finding for 
human health, this does not mean that PFAS is harmless. We found indications for PFAS 
interactions with human physiology through metabolic regulation. Since all processes in 
the human body are interconnected, there may be risk for unforeseen and undesirable 

outcomes. In addition, our findings illustrate the complexity and multitude of exposures 
humans face. When we investigated small molecules in the blood that correlated with 
PFAS exposure, we also found other synthetic chemicals and food-related intermediates. 
All these different exposures can impact biological mechanisms, potentially in different 
manners, which makes it difficult to disentangle individual compound effects. For 

example, we included other persistent pollutants in our analyses and found that they had 
opposite associations with risk myocardial infarction and stroke as compared to PFAS. 
Even within the PFAS chemical group, we have shown that PFAS compounds can 
associate differently with health outcomes and that PFAS may affect multiple metabolic 

pathways which could have different effects on disease risk.  

This thesis underscores the complexity of the relationship between exposures and health. 
The results indicate that there is an effect of man-made, widespread, persistent organic 
pollutants on human physiology. This is important knowledge as we work towards 

improving planetary health and building a more sustainable future.    



Abstract 
Persistent chemicals emitted in the environment can have a considerable impact on 
ecosystems and human health, now and in the future. One notorious group of persistent 

organic pollutants (POPs) is the per- and polyfluoroalkyl substances (PFAS). Since their 
production in 1940s for household and consumer products, they have accumulated in the 
environment and in humans via consumption of contaminated drinking water and food. 
They are hypothesized to induce metabolic disturbances, due to shared chemical 
similarities with fatty acids. Consequently, PFAS may have high societal and economic 

impact by increasing risk of obesity, type 2 diabetes (T2D) and cardiovascular disease 
(CVD). However, reports on these associations are scarce, and the underlying molecular 
pathways are still unclear. Therefore, in this PhD project, we aimed to i) investigate 
associations between PFAS and risk of several cardiometabolic diseases and ii) explore 

potential underlying pathways.  

In Paper I, we investigated cross-sectional associations between PFAS mixtures and body 
mass index (BMI) in European teenagers using meta-regression. Results showed a 
tendency for inverse associations between PFAS and BMI and indicated a potential for 
diverging contributions between PFAS compounds. In Paper II, using a nested case-

control study on T2D including metabolomics data in Swedish adults, we found that PFAS 
correlated positively with glycerophospholipids and diacylglycerols. But whilst 
glycerophospholipids associated with lower T2D risk, diacylglycerols associated with 
higher T2D risk. This indicates a potential for diverging effects on disease risk. In Paper III, 
we investigated whether genetic polymorphisms in peroxisome proliferator-activated 

receptor gamma coactivator-1 alpha (PPARGC1A), which encodes a master regulator of 
pathways potentially disrupted by PFAS exposure, associated with secondary 
cardiovascular events in a large consortium study. However, we did not find clear 
evidence for such associations. In Paper IV, we assessed associations of PFAS with blood 
lipids and incident CVD using case-control studies nested in two Swedish adult cohorts. 
We observed overall null associations with stroke, but a tendency for inverse associations 

with myocardial infarction as well as associations with higher HDL-cholesterol and lower 
triglycerides, but also with higher LDL-cholesterol. In Paper V, we included OMICs data 
(metabolites, proteins and genes), which linked PFAS to lower myocardial infarction risk 
via lipid and inflammatory pathways. Likewise, a group of ‘old POPs’, the organochlorine 
compounds (OCs), were linked to higher myocardial infarction risk via the same pathways 

and to higher stroke risk via mitochondrial pathways. 

Thus, although we found no evidence for associations between PFAS and increased 
cardiometabolic disease risk, the overall findings indicate associations of PFAS with 
metabolic disturbances, particularly lipid metabolism. This is a potential adverse effect on 

human physiology and warrants further attention.  
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1 Introduction 
Planetary health is one of the great challenges for the 21st century. It refers to analyzing 
and addressing the impacts of human disruptions to Earth’s natural systems on human 
health and all life on Earth 1. The concept recognizes that the health of human civilization 
depends on the state of the natural systems. Within this field, the pollution of the Earth 

by human inventions plays a large part. Chemical persistent contaminants, created and 
emitted by humans, may disrupt ecosystems upon which we depend and/or directly 
affect human health as they end up in human food chains. One group of contaminants, 
called per- and polyfluoroalkyl substances (PFAS), are now broadly found in the 
environment, sometimes in extremely high amounts, where they may unsettle 
ecosystems and wildlife. Furthermore, they are found in drinking water and food, 

potentially also directly impacting human health.  

PFAS have structural resemblance to fatty acids and are suggested to disrupt lipid 
metabolism, with potential consequences for cardiometabolic health. As cardiometabolic 

diseases together by far outweigh all other causes of death globally, knowledge on 
preventable risk factors is imperative for population health. Therefore, the effect of PFAS 
on metabolic processes and its consequent impact on cardiometabolic diseases needs 
to be clarified. The field of epidemiology aims to study the distribution and determinants 
of health-related states and events in populations. Within this field, environmental 

exposures are investigated in relation to health and disease.  

The focus of this thesis is to provide stronger epidemiological evidence on potential 
metabolic perturbations as well as risk of CVD resulting from PFAS exposure and to use 
novel OMICs techniques to gain insight in the molecular pathways involved. The results 

are important for risk assessments and to, if necessary, take preventive actions to control 

PFAS manufacture and use to improve planetary health. 
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2 Background 

2.1 Cardiovascular and other cardiometabolic diseases 

2.1.1 Cardiovascular disease  

The term cardiovascular disease (CVD) includes disorders of the heart and blood vessels. 
This class of diseases is the leading cause of mortality globally, accounting for 

approximately 20.5 million deaths each year 2,3. In survivors, they may result in severe 
permanent disability. The highest number of CVD cases are found in low- and middle-
income countries 4. The most commonly occurring CVD deaths relate to ischemic heart 
disease, such as myocardial infarction, or to stroke 5. Myocardial infarction occurs due to 
reduced blood flow to a part of the heart, whereas for stroke the blood flow to the brain 

is cut off. Myocardial infarction has a relatively uniform etiology and is in most cases 
caused by atherosclerotic plaque rupture with superimposed in-situ arterial thrombosis 
6. In contrast, ischemic stroke has multiple possible causes ranging from plaque rupture 
with in-situ thrombosis and cardioembolic, arterioembolic, lacunar (small-vessel 
occlusion) or unknown causes 7. Ischemic stroke is the most common form of stroke, the 

remaining one-third is represented by hemorrhage 8.  

CVD is a multifactorial disease with risk factors that include sex, age, family history, 
ethnicity and socioeconomic status as well as other modifiable risk factors such as, 
smoking, unhealthy diet, low physical activity, high alcohol consumption and other 

environmental toxicants (e.g. air pollution) 9. In addition, dyslipidemia, abdominal obesity, 
hypertension and type 2 diabetes (T2D) increase CVD risk 10. CVD has an important 
genetic component as well as potential gene-environment interactions. CVD is 
considered polygenic, with many variants in different genes accounting for small 
increases in risk and some of them relate to blood lipid levels or blood vessel reactivity 11. 
CVD can be prevented by lifestyle changes such as healthy diet and physical activity as 

well as treatment with drugs, which often exert their effect through lowering the blood 
lipid levels or blood pressure 12. It is also increasingly described as a chronic disease with 
a dynamic nature and due to increased survival rates after a first-time event, many 
patients are living with CVD. Still only little is known about the risk factors influencing its 

progression after the first event. 

Symptoms of myocardial infarction include pressure or pain in the chest, shortness of 
breath, anxiety, nausea and vomiting. Stroke is characterized by sudden numbness in the 
face or limbs on one side of the body, confusion or speech impediment, loss of sight or 

coordination and headache. Fast treatment is imperative for survival.  
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2.1.2 Physiopathology of cardiovascular disease 

Lipids are surrounded by phospholipids, free cholesterol and apolipoproteins during their 
transport through the body. There are different classes of lipid particles, called 
lipoproteins, that differ in function, size, lipid composition and apolipoproteins. The 
apolipoproteins aid in formation of lipoproteins and act as ligands for receptors or as 
activators or inhibitors of enzymes involved in lipoprotein metabolism 13. Figure 1 
illustrates the transport of cholesterol from intestine to liver to peripheral tissues and its 

reverse transport back to the liver and intestine 13.  

 

 

1) Dietary cholesterol and triglycerides taken up in the intestine are packaged into 

chylomicrons and delivered to the liver via the lymphatic system and bloodstream. On 
the way, triglycerides from the chylomicrons are metabolized by lipoprotein lipase and 
the released free fatty acids are taken up by muscle or adipose tissue for energy or 

storage. Chylomicron-remnants are then taken up in the liver via Low-Density Lipoprotein 
(LDL)-receptors (LDL-R).  

2) In the liver, remnants of dietary and endogenous cholesterol (synthesized from fatty 

acids via several enzymatic reactions, the rate-limiting being catalyzed by HMG-CoA 
reductase; HMGCR) together with triglycerides are packaged in Very Low-Density 

Lipoproteins (VLDL). This carries triglycerides from the liver to tissues via the blood, which 
turns it into Intermediate-Density Lipoproteins (IDL).  

3) Intermediate-Density Lipoprotein is further converted to LDL, which is taken up by the 

LDL-receptor and delivers cholesterol to tissues (including liver) via the bloodstream. 

4) The reverse cholesterol transport chain starts with synthesis of apolipoproteins, which 

bind cholesterol and phospholipids in the liver and intestine to form High-Density 
Lipoproteins (HDL). HDL then acquires excess cholesterol from other tissues and 
lipoproteins in the bloodstream to transport it back to the liver via lymph. In the liver, 
cholesterol can be converted into bile acids (catalyzed by cholesterol 7-alpha 

hydroxylase; CYP7A1) for the intestine, where it may be re-absorbed or excreted. 

Figure 1. A schematic overview of lipid metabolism in humans. Lipid particles are indicated as  
1) Chylomicron 2) VLDL 3) LDL 4) HDL. (Source: Personal Collection) 
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Lipid metabolism and atherosclerosis are closely connected. Pro-atherogenic 

lipoproteins circulating in the blood (e.g. chylomicron-remnants, intermediate-density 
lipoprotein and especially LDL) can induce plaque formation 14, as illustrated in Figure 2. 
 
 

 
 

 

 

1) Endothelial dysfunction can be caused by hemodynamic (i.e. high blood pressure) or 

chemical stressors (e.g. smoking).  

2) When this happens, lipoproteins can pass into the intima and bind to proteoglycans 

leading to subendothelial accumulation of lipoproteins. They then can become glycated 
or oxidized by free radicals.  

3) This elicits an innate immune response, causing migration of leukocytes into the vessel 

wall. They become macrophages and engulf oxidized lipoproteins. In more advanced 

lesions, smooth muscle cells can also transmigrate to the intima.   

4) The engulfment of excessive oxidized lipoproteins transforms the macrophages into 

foam cells. The foam cells are unable to migrate out of the intima and eventually die, which 
creates the necrotic core of the plaque.  

5) The extracellular matrix plays a role in plaque integrity and stability. Acceleration of 

inflammation and apoptosis leads to thinning of the fibrous cap enclosing the necrotic 
core of the plaque, making rupture more likely. After rupture, platelets play a role in 
thrombus formation resulting in clinical events.  

Steps 1 and 2 present the early stage of atherosclerosis, the fatty streak, which is followed 
by plaque progression in steps 3, 4 and 5. The last stage, the clinical complication of 
atherosclerosis, presents itself if the plaque ruptures in step 5, which may induce e.g. 

myocardial infarction or ischemic stroke 14. 

Figure 2. A schematic overview of the five key steps in atherogenesis: 1) endothelial dysfunction, 
2) lipids in the intima, 3) migration of leukocytes and smooth muscle cells, 4) foam cell formation 
and 5) degradation of extracellular matrix and plaque formation. (Source: Personal Collection). 
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2.1.3 Type 2 diabetes  

T2D is a chronic disease where tissues become resistant to insulin, reducing the uptake 
of glucose into the cells and leading to high blood glucose levels. Over time, this can 
induce damage to the organs and tissues. Prevalence of T2D has increased over the last 
decades, particularly in low- to middle-income countries where it has great socio-

economical costs. Approximately 380 million people worldwide are living with T2D 15.  

T2D is also a multifactorial disease where genetic and environmental factors interact. Risk 
factors for T2D include age, obesity, family history, ethnicity and co-morbidities such as 
history of CVD, dyslipidemia and hypertension 15. Some risk factors can be used as 
intermediate markers such as high cholesterol or triglyceride levels. T2D also gives an 

increased risk for all-cause mortality and CVD 15. Besides genes, lifestyle-related factors 
play an important role in T2D development, particularly diet, exercise, smoking and alcohol 
consumption 15. Likewise, environmental toxicants, some of them acting as endocrine-

disrupting chemicals, have emerged as novel diabetes risk factors 16.  

The etiology and pathogenesis of T2D is a complex interplay between genes and 
environment which results in disturbed metabolic processes, although the specific 
mechanisms involved are not fully understood. However, in general, several steps can be 
recognized: First, insulin resistance develops in the tissues through disruption of the 
insulin signals potentially through genetic factors in insulin receptors or substrates, as well 

as via inflammatory mediators and free fatty acids or triglycerides 17. Then, pancreatic β 
cells try to compensate the insulin resistance in the tissues by producing more insulin, 
which eventually leads to apoptosis of the β cells and decreased insulin secretion 17. As 
the disease progresses the high blood glucose levels may then cause damage to the 

blood vessels and organs leading to clinical complications.  

2.1.4 Obesity  

T2D and CVD share several risk factors and obesity is an important one. Obesity is 
excessive fat accumulation posing risks to health. It is often measured as body mass index 

(BMI; weight/height2) where having a BMI over 25 and 30 is classified as overweight and 
obese, respectively, or as waist circumference. It is also on the rise in low- and middle-
income countries and currently there are more people obese than underweight 18. It is 
especially related to unhealthy diet and low physical activity, but there may be other risk 
factors such as endocrine disrupting chemicals (particularly during the early years of 

development) 19. Obesity impacts life quality as well as increases the risk of multiple 

chronic diseases and this starts already during childhood 20,21. 
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2.2 Per- and polyfluoroalkyl substances  

2.2.1 History and background  

One group of environmental pollutants that has been suggested to impact 
cardiometabolic diseases is the per- and polyfluoroalkyl substances (PFAS). PFAS have 

been produced since the 1940s by a variety of industries around the globe for a diverse 
array of household and consumer products. As a result of this widespread use and due to 
their high persistence, they are found almost ubiquitously in the environment, animals and 
humans 22,23. Ground and surface waters surrounding airports and military bases using fire-
fighting foam during training activities as well as industrial sites that produce PFAS or 

PFAS-products can contain very high PFAS concentrations 24,25, which has led to severe 
consequences for the environment, wildlife and human health in the past. Perhaps the 
most well-known is the contamination from a DuPont factory in Mid-Ohio (West Virginia, 
US), instigating a two-decade long lawsuit and a scientific panel 26. A similar situation 
occurred in Ronneby (Sweden) where drinking water had been contaminated via fire-

fighting foam from military training during 1980 to 2013 25,27. 

Currently, over 4700 different per- and polyfluorinated compounds have been identified 
28. PFAS commonly consist of a carbon backbone with at least one perfluorinated methyl 
or methylene group 29. There are different functional groups, e.g. carboxylic (R-COOH) and 

sulfonic (R-SO3H) (Figure 3), or chain lengths, e.g. short- and long-chain 30. Carboxylic 
PFAS with more than six or sulfonic PFAS with more than 5 perfluorinated carbons are 
defined as long-chain PFAS 30. PFAS production using electrochemical fluorination results 
in linear and branched isomers, whilst a relatively newer approach of telomerization 
results in pure linear product 31. Their chemical structure makes them both hydrophobic 

and lipophobic, thus they are stain- and water- repellent 30. Therefore, they are useful in 
products that need to be able to withstand water or grease such as coatings for furniture, 

cooking ware, clothes and shoes as well as food packaging or fire-fighting foam.  

2.2.2 Environment and human exposure 

PFAS can partition in both solid and aquatic materials and due to their high stability in 
solutions they accumulate in water and marine mammals 32. The long-chain or sulfonic 
PFAS seem to be more bio-accumulative than their short-chain or carboxylic 
counterparts 33, while on the other hand, short-chain PFAS have higher mobility 34. PFAS 

can end up in the environment via production or waste streams travelling through air or 
water, leading to contaminated ground and drinking water (Figure 3). It is estimated that 
drinking water can contribute up to 75% of human exposure in contaminated areas and 
up to 86% of dietary exposure relates to fish and seafoods 35,36. Furthermore, wastewater 
treatment plants do not effectively remove PFAS, leading to increased PFAS 
concentrations in the reclaimed wastewater or biosolids used for land application 32. In 

this manner, PFAS could pollute water, soil, crops, livestock and wildlife, which creates 
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other dietary human exposure sources such as meat, eggs, dairy and crops. Other routes 

of human exposure are from PFAS-containing food packages, inhalation of house dust (to 

a lesser extent) and dermal exposure from products (minor) 36.  

2.2.3 Accumulation in humans 

PFAS are detected in human blood samples from all over the world 23, they are furthermore 
found in bone, lung, liver and kidney tissues 35,37. PFAS are absorbed in the gastrointestinal 
tract, distribute through the body without being metabolized and accumulate in the liver 
35,37. Elimination routes are urine and bile and for women additionally breast milk and 

menstruation fluids, which may be the reason for lower PFAS levels in women compared 
to men 23. However, due to high reabsorption in the kidneys and gastrointestinal tract, 
PFAS have a long half-life ranging from weeks (for short-chain) to several years (for long-
chain) with estimations of 3.4 and 2.7 years for perfluorooctanesulfonic acid (PFOS) and 
perfluorooctanoic acid (PFOA), respectively 38,39. However, half-lives up to 5-8 years have 
also been reported 40. Furthermore, the intraclass correlations based on repeated 

measurements in individuals approximately 10 years apart were estimated to be quite 

high (0.52-0.85) 41.  

2.2.4 Risk assessment and regulations 

International organizations (such as the International Agency for Research on Cancer 
(IARC)) and regulatory agencies in several countries or regions (such as the European 
Food Safety Agency (EFSA), the Agency for Toxic Substances and Disease Registry 
(ATSDR) and the US Environmental Protection Agency (EPA)) have evaluated the scientific 
literature on PFAS exposure and toxicology to identify and assess the potential for human 

health effects. Potential health effects include: increase in serum total cholesterol in 
adults, decrease in antibody response at vaccination in children, reduced birth weight, 
increased prevalence of high serum levels of the liver enzyme alanine aminotransferase 
(liver damage), obesity, cancer (kidney and testicular), thyroid hormone disruption, 
ulcerative colitis (inflammatory bowel disease), increased asthma diagnosis, endocrine 

disruption, decreased fertility, pregnancy induced hypertension/pre-eclampsia, growth, 
learning and development in children 35,36,42-44. The current level of evidence is strongest 

for the first four (Figure 3), although the modes of action are still largely unknown 35,45.  

Regulatory actions based on this knowledge include the establishment of a tolerable 

weekly intake in Europe by EFSA of 13 and 6 ng/kg body weight per week for PFOS and 
PFOA, respectively, based on increased serum cholesterol 35, which was recently updated 
to 4.4 ng/kg body weight per week for a sum of four prevalent PFAS based on decreased 
vaccination response 45. The high level of global concern for PFAS uses and emissions is 
reflected by the dedication of a project and web-portal to PFAS by the Organisation for 

Economic Co-operation and Development (OECD) since 2015. Actions to phase out PFOS 
and PFOA were first taken by the Stockholm Convention in 2009 and 2015, respectively. 
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The complexity of regulating PFAS is illustrated by the decision to restrict some PFAS 

globally under the persistent organic pollutants (POPs) regulation (PFOS 2009, PFOA 
2020, perfluorohexane sulfonic acid; PFHxS 2023), whilst other PFAS are regulated in 
Europe under the Registration, Evaluation, Authorization and Restriction of Chemicals 
(REACH) regulation (covering around 200 C9-C14 perfluorinated carboxyl acids 2023) 
and some are listed as substances of very high concern 46. Recently, a new proposal to 

the European chemical agency aims to restrict around 10,000 PFAS under REACH 

legislation, which would be one of the largest chemical substances bans ever in Europe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A schematic overview of human exposure to PFAS and adverse health effects. 
Abbreviations: FFF, fire-fighting foam; PFOA, perfluorooctanoic acid; PFOS, perfluorooctanesulfonic 
acid; WWTP, wastewater treatment plant. (Source: Personal Collection) 
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2.2.5 Other persistent organic pollutants 

This thesis emphasizes PFAS and human health, but PFAS is by no means the only 
environmental pollutant that humans are exposed to. PFAS are classified as POPs together 
with several other groups of synthetic chemicals, such as the organochlorine compounds 
(OCs) from ‘old’ industrial and consumer products (e.g. polychlorinated biphenyls, PCBs) 
or pesticides (e.g. dichlorodiphenyltrichloroethane, DDT). Several of these POPs share 
exposure pathways (e.g. fatty fish intake), may affect similar molecular pathways and have 

also been linked to cardiometabolic diseases 47.  

2.3 Per- and polyfluoroalkyl substances and cardiometabolic disease 

2.3.1 Molecular pathways 

There are several hypotheses for pathways linking PFAS exposure to cardiometabolic 
perturbations. First, the liver is an important metabolic organ and mechanistic studies 

indicate disruptions in lipid metabolism and liver function upon PFAS exposure 48. This 
seems to be induced via activation of nuclear receptors (NRs). NRs are transcription 
factors that normally respond to intracellular signals, hormones or dietary lipids, including 
receptors for oxysterols (LXRs), bile acids (CAR, FXR, PXR) and fatty acids (PPARα/γ/δ, 
HNF4α) 49. They are important regulators of lipid metabolism including the absorption, 

synthesis and re-modelling in the liver, mobilization, reverse transport, bile acid synthesis 
and bile acid re-absorption 49-54. As PFAS’ chemical structure bears resemblance to fatty 
acids, they may induce metabolic changes via binding to these receptors 55-57. This may 
impact obesity, T2D and CVD via elevation of lipoproteins in the circulation 35,58. Two 
hypothesized pathways are illustrated in Figure 4 relating to peroxisome proliferator-
activated receptor α (PPARα) - triglycerides and hepatocyte nuclear factor 4α (HNF4α) – 

cholesterol 59,60.  

Second, the immune system and inflammation are relevant for cardiometabolic diseases 
and are, in part, also regulated by NRs 61. PFAS has been shown to associate with 

immunological and inflammatory processes 62,63. On one hand, PFAS may have antioxidant 
and anti-inflammatory effects via activation of PPARα 61  or via upregulation of 
phosphatidylcholine synthesis 48.  On the other hand, PFAS has been shown to associate 
with oxidative stress and mitochondrial dysfunction 64. Also, PFAS may cause endothelial 
dysfunction via reactive oxygen species induction 65,66, enhanced platelet aggregation via 

PFAS accumulation in platelet membranes which alters their configuration 67,68 and 
increasing the oxygen-carrying capacity of blood cells 69. Lastly, disruptions of the gut 
microbiome, induced by chemicals such as PFAS, may impact both metabolism and 

immunity 70,71.  
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2.3.2 PPAR gamma coactivator-1 alpha 

Many of these NRs are coactivated by PPAR gamma coactivator-1 alpha (PPARGC1A). 
PPARGC1A is therefore termed a key modulator of energy metabolism 72 and has also been 
suggested as one of the potential mechanisms for cross-talks between NRs 54. There are 
several pieces of evidence indicating that this regulator and its pathways are important 
for CVD. Genetic single nucleotide polymorphisms (SNPs) in the PPARGC1A gene are 

associated with 1) several processes important for atherosclerosis such as lipid 
homeostasis 72, endothelial function and inflammation 73  as well as 2) other risk factors 
such as adiposity, T2D 74, hypertension 75 and cholesterol levels 76 and additionally 3) first 
time CVD 77-79. This strengthens the hypothesis that pathways under regulation of 
PPARGC1A may be involved in CVD and thus, that PFAS may impact CVD risk if it indeed 

affects NRs involved in these pathways.  

2.3.3 Animal studies 

In contrast to humans, animal studies investigating PFAS exposure and blood lipid levels 
generally show more of an inverse association between PFAS and cholesterol as well as 
triglycerides 35,80. In addition, a more favorable effect of PFAS on T2D has also been shown 
81. However, one study indicated that animals fed on high-fat diets have increased 
cholesterol levels upon PFAS exposure and they hypothesized that diet or body 
composition may modify the effect of PFAS on the lipid metabolism 82. In contrast, a study 
using mice with a humanized lipid metabolism system (APOE*3 Leiden mice) was unable 

to show such an effect with either normal or high-fat diet 83. It is important to keep in mind 
the differences between laboratory animals and humans in lipid metabolism and CVD 
development 84 (i.e. cholesterol 7-alpha hydroxylase is responsible for 90% of bile acid 
production in humans, but only 60% in mice, cholesteryl ester transfer protein plays a 

Figure 4. Schematic view of PFAS activating peroxisome proliferator-activated receptor α 
(PPARα), which increases lipoprotein lipase (LPL) expression and triglyceride clearance by LPL 
(top) and PFAS reducing hepatocyte nuclear factor 4α (HNF4α) expression, which reduces 
cholesterol 7 α-hydroxylase (CYP7A1) expression and cholesterol conversion to bile by CYP7A1 
(bottom). (Source: Personal Collection) 
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large role in transferring triglycerides and cholesteryl esters between lipoproteins in 

humans but is absent in mice and mice carry most cholesterol in HDL instead of LDL). 
There are also differences in PFAS dose and metabolism (i.e. the half-life may be years in 
humans, while hours or days in most laboratory animal species) 23 and in expression and 
potency of NRs (i.e. humans have lower expression of PPARα in the liver and require higher 
doses of PPARα activators to trigger its transcriptional activity compared to most 

laboratory animal species) 85,86. Thus, caution is required to extrapolate results from 

animals to humans.  

2.3.4 Human studies 

As it is, the human evidence for associations between PFAS and increased cholesterol is 
considered quite strong 35,42 and several studies indicated direct associations 25,87-90, 
although one longitudinal study also showed null findings 91. In addition, causality is not 
fully established as reverse causality could occur due to shared excretion mechanisms of 
PFAS and cholesterol in the bile 35,92, although a longitudinal study with an intervention on 

PFAS contaminated drinking water 89 and a study using exposure based on PFAS intake 
dispute that 25. There are less reports on triglyceride levels and although animal studies 
seem to find mainly inverse associations, potentially due to accumulation of lipids in the 

liver, both direct 88 and inverse 91 associations are found in humans.  

Interestingly, one study also found interactions between PFAS and BMI with more 
apparent blood lipid associations in obese persons. The authors hypothesized that liver 
steatosis, for which obese persons are more susceptible, may play a role in modifying the 
associations between PFAS and lipids 93. This is supported by several animal studies 82,94,95 
that show effects of PFAS on hepatic pathways and steatosis. Similarly, a human lifestyle 

intervention study found that obesogenic effects of PFAS may be attenuated by exercise 
and diet 96. There is less evidence for lipid subfractions e.g. apolipoprotein B (apoB) on 
chylomicrons, VLDL and LDL or apolipoprotein A1 (apoA1) on HDL 42. Yet, these may 
provide a deeper understanding of underlying perturbations and may be better 
predictors for atherosclerosis (i.e. apoB is a direct measurement of the number of LDL 

particles and more, smaller LDL particles poses a greater risk than fewer, larger LDL 

particles) 97.  

The evidence for associations with hard endpoints of obesity, T2D and CVD is more 
limited and inconsistent. For obesity in adolescents, an association between prenatal 

PFAS and lower weight during the first 2 years of life, but higher weight during childhood 
and adolescence has been suggested 98. Postnatal PFAS and weight during childhood and 
adolescence show direct 99,100, null 100,101 and inverse 101-103 cross-sectional associations. For 
T2D, several prospective studies with direct 104,105, null 106,107 and borderline inverse 41 
associations can be found in the literature. For CVD, due to i) the strong and well 

evidenced link between CVD and blood lipid levels and ii) the association between PFAS 
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and blood lipids, an association between PFAS and higher CVD risk can hypothetically be 

expected 58. In fact, according to EFSA, a 5% increase in total cholesterol would result in, 
at least, a 5% increase in risk of CVD, which is clinically relevant 35. Correspondingly, there 
are studies showing that PFAS is associated with markers of intima-media thickness (a 
measure of atherosclerosis) 108,109 and three cross-sectional studies 110-112 and one 
ecological study found direct associations 113 of PFAS with CVD. However, as mentioned 

above, other pathways may mediate the PFAS-CVD relationship in the other direction as 
well 114 and there are also findings of null or inverse associations, including prospective 
studies on coronary artery disease 87 and on stroke 115 in the C8 cohort, one nested case-
control study 116 and one recent cross-sectional study on stroke 117. In addition to 
inconsistencies in results, there are also methodological limitations (i.e. lack of temporality 

criterion, small sample sizes and self-reported endpoints and pooling of etiologically 
different CVD). Therefore, high-quality epidemiological studies investigating PFAS and 
CVD associations are lacking yet they are extremely important for risk assessments and 

regulatory decisions.  

2.3.5 The ‘exposome’ concept and mixture studies 

Humans are exposed to a mixture of exposures throughout their life (one study estimated 
there are over 350,000 chemicals on the market 118). Yet, most research is based on single 
exposures, which neglects potential chemical interactions or confounding by highly 

correlated chemicals. The definition of the ‘exposome’, as proposed by Wild in 2005, is 
“encompassing all life-course environmental exposures (including lifestyle factors), from 
the prenatal period onwards” 119. Thus, aiming to study mixtures of chemicals or, rather 
ambitiously, all exposures at the same time, would provide a more complex, but perhaps 
also more truthful picture. Yet as of now, studies on mixtures are relatively scarce with 

statistical tools still evolving 112,120-123 and ‘exposome’ studies are even more novel 124-127.  

2.3.6 OMICs-based studies 

In order to establish causality, it is equally important to understand the molecular 
pathways underlying PFAS associations 128. The discrepancies between laboratory studies 
and human physiology make it difficult to investigate molecular pathways that link PFAS 
to adverse outcomes. Thus, we need insights from human studies using molecular 
markers. The use of OMICs data allows for comprehensive systemic approaches but 
brings along great challenges for complexity of analyses. OMICs data refers to big 

datasets including genomics, proteomics and metabolomics. These can be analyzed 
singularly or integrated into one pipeline (multi-OMICs). Genes are the hereditary units 
that are transcribed into RNA, which can be translated into protein. Proteins are large 
molecules with different functions such as enzymes catalyzing metabolic reactions. 
Metabolites are small molecules which can be endogenous (e.g. amino acids or lipids 
formed by metabolic reactions) or exogenous (e.g. diet, drugs or pollutants). Whilst genes, 
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RNA and proteins are still under regulatory processes, metabolites are the end-product, 

and they are therefore closely related to the phenotype. OMICs data can be used to 
connect exposures to molecular signatures and to adverse outcomes using the “meet-
in-the-middle” concept, where molecular signatures are selected based on their 
associations with both exposures and outcomes 129. Thereby we can explore potential 
underlying mechanisms as well as advance with exposome-based studies, as untargeted 

metabolomics can measure many exposures and biological response markers at the 

same time. 

Thus far, some metabolomics studies have been performed with PFAS exposure in 

occupationally exposed 130, adults 131-133, children 134 and pregnant and early postpartum 
women 135. A few also used latent variable analysis to relate PFAS exposure and 
metabolomics data to health outcomes in children such as glucose metabolism 
measurements among overweight children 136, severity of non-alcoholic fatty liver disease 
137 and liver injury 138. These studies mainly indicated perturbations with lipids, fatty acids 
and oxidative stress, some amino acids and dietary factors 139. Additionally, PFAS exposure 

associated with anti-inflammatory proteins in a proteomics study 63 and with altered gene 
expression in cholesterol-related genes 51. However, no studies have linked multiple POP 
exposures to multi-OMICs data and to cardiometabolic outcomes, which could increase 

the understanding of underlying molecular perturbations.  
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3 Research aims 
The overall research question in this PhD thesis was whether the prevalent exposure to 
the widespread and highly persistent PFAS contributes to the development of metabolic 
perturbations and increases the risk of CVD in the general population. To address this, we 

established five specific aims: 

Paper I To assess associations between PFAS exposure and metabolic perturbations 
(BMI) in European adolescents.  

Paper II To assess associations between PFAS exposure and metabolic perturbations 
(T2D) in adults – including untargeted metabolomics to improve mechanistic 

insight in PFAS affected pathways.  

Paper III To investigate associations between genetic variants in the PPARGC1A gene, 
a coactivator of nuclear receptors potentially activated by PFAS exposure, 

and subsequent coronary heart disease.  

Paper IV To assess associations between PFAS exposure and risk of incident 

myocardial infarction and stroke and its major intermediate risk markers.   

Paper V To explore the underlying pathways linking multiple POP exposure (PFAS and 
OCs) to cardiometabolic perturbations – including genetics, proteomics and 

untargeted metabolomics data.  
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4 Materials and methods 

4.1 Study participants and study design 

4.1.1 Human Biomonitoring for Europe (HBM4EU)  

The HBM4EU Aligned Studies are a survey aimed at collecting samples and data as 
harmonized as possible from European regional and national studies to derive current 

internal exposure data representative for the European population across a geographic 
spread 140,141. We included studies in Paper I if PFAS measurements were available leading 
to a final study population of n=1,957. Studies were cross-sectional and were from Norway 
(NEBII), Sweden (Riksmaten Adolescents 2016-17), Slovakia (PCB cohort follow-up), 
Slovenia (SLO CRP), Greece (CROME), Spain (BEA), France (ESTEBAN), Belgium (FLESH IV) 

and Germany (GerES V-sub). For the outcome of BMI, length and weight were measured 

by nurse/physician or self-reported.  

4.1.2 Västerbotten Intervention Program (VIP)  

The VIP is a sub-cohort in the Northern Sweden 
Health and Disease Study initiated in 1985 142. 
Inhabitants within Västerbotten County (Figure 5) 
were invited to a health examination when they 
became 40, 50 or 60 years old, including a 

questionnaire on diet and lifestyle. The 
participation rate exceeded 56%, often around 
70%. In Paper II, we used a nested case-control 
design and included VIP participants with diabetes 
(n=187) that had donated samples of blood to the 
biobank on at least two occasions (approximately 

10 years apart), of which at least one occurred prior 
to T2D diagnosis. Cases of T2D were matched (1:1) 
according to gender, age, sample date (±90 days) 
at baseline examination with VIP participants 
without T2D (controls) that were alive at the time 

of T2D diagnosis for the corresponding case and 
had donated blood on two occasions. T2D cases 
were identified in the DiabNorth register 143, which 
was diagnosed by a physician and validated by 
autoantibodies. PFAS and lipids were measured 

from stored fasting plasma samples at baseline 

and follow-up.  

Figure 5. Locations included in the 
Swedish studies (VIP, 60YO and 
SMC). (Source: Personal Collection) 
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4.1.3 Genetics of Subsequent Coronary Heart Disease (GENIUS-CHD)  

This consortium aimed to investigate the impact of genetics on secondary CHD events 
and included studies of different epidemiological designs (mostly cohort studies) 144,145. 
Studies included in our analyses for Paper III were from Austria, Canada, Finland, Italy, 
Germany, Netherlands, New Zealand, Scotland, United Kingdom and United States. 

Outcomes included secondary CHD events and all-cause mortality. 

4.1.4 The Cohort of 60-Year-Olds (60YO) 

The 60YO was established with the aim to study CVD etiology and randomly invited men 
and women aged 60 years from Stockholm County (Figure 5) for a baseline examination 

between 1997-99 (78% response rate, n=4,232). The study participants underwent a 
health examination, completed a questionnaire, and donated blood samples 146. For Paper 
IV, we used a nested case-control design and selected first incident cases of primary 
myocardial infarction (n=214) and ischemic stroke (n=183). Each case was randomly 
matched (1:1) to a control, if alive and free from the case diagnosis at the time the case 
experienced the event, based on sex and sample date (±90 days). CVD cases were 

diagnosed by physicians and identified via linkage to the National Patient Register among 
patients free of prevalent CVD from baseline through 2014 (International Classification of 
Diseases (ICD), 10th Revision: I21 and I63 for myocardial infarction and stroke, respectively). 
PFAS and lipids were measured in fasting blood samples at baseline. Lipids were 
measured via automated hospital routines. For lipid analyses, only the controls that were 

not using lipid-lowering medication were used (n=305).  

4.1.5 Swedish Mammography Cohort (SMC) 

The SMC (part of SIMPLER, Swedish Infrastructure for Medical Population-based Life-
course Environmental Research) was established between 1987 and 1990, when all 90,303 
women who were born 1914-1948 and residing in two counties, i.e. Västmanland and 
Uppsala (Figure 5), in Central Sweden received a questionnaire concerning diet and 
anthropometry (74% response rate, n=61,433) 147. A clinical sub-cohort (SMC-C) was 
established between 2003 and 2009 of women <85 years of age and living in Uppsala 

town and surrounding areas (61% response rate, n=5,022) and participants completed a 
questionnaire and donated blood samples. Additionally, data on genetics, cardiovascular 
proteins and untargeted metabolomics is available. For Papers IV and V, we used a nested 
case-control design and selected first incident cases of primary myocardial infarction 
(n=135) and ischemic stroke (n=173). Case-control pairs were randomly matched (1:2 for 

myocardial infarction and 1:1 for stroke), if alive and free from the case diagnosis at the 
time the case experienced the event, based on age (±1 year) and sample date (±90 days). 
CVD cases were diagnosed by physicians and identified via linkage to the National Patient 
Register among patients free of prevalent CVD from baseline through 2017 (International 
Classification of Diseases (ICD), 10th Revision: I21 and I63 for myocardial infarction and 
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stroke, respectively). PFAS and lipids were measured in fasting blood samples at baseline. 

Lipids were measured via automated hospital routines. For lipid analyses, only the 
controls that were not using lipid-lowering medication were used (n=326). For omics 

analyses in Paper V, only subjects with available omics data were used (n=657).  

4.2 Ethical considerations  

For the European study (HBM4EU) in Paper I, individual ethical approvals and informed 
consent were obtained in each cohort. Additionally, an ethical approval was obtained for 
data analysis in Sweden. For the consortium study (GENIUS-CHD) in Paper III, we have 
ethical approvals for the SHEEP study where we performed the analysis on individual data; 
the other studies participating in the consortium each had their own approval and we only 

obtained analysis results from each study. For the other population-based cohorts in 
Sweden (VIP, 60YO and SMC) used in Papers II, IV and V, we had ethical approval from 

the Regional Ethical Review Board at Karolinska Institutet (Stockholm, Sweden).  

The handling of sensitive personal data was done in accordance with Good Data 

Protection Rules (GDPR). Thus, to protect the privacy of the participants, the ID numbers 
were pseudonymized and data is stored on secure servers (SecureLAN at Karolinska 
Institutet and SNIC-SENS at Uppmax, Uppsala) to which only the authors of the studies 
had access (the authors had no access to the pseudonymization key). As such, we take 
responsibility for the integrity and accuracy of the data analyses. Furthermore, to employ 

good and open research practice, the research was approved by Ethical committees prior 
to the start of the research, informed consent (oral/written) was obtained from all 
participants and the plan of analyses as well as analyses scripts and findings are 

documented using electronical laboratory notebooks.  

4.3 Analytical methods and covariate assessment 

4.3.1 PFAS measurement 

PFAS were measured in blood samples at baseline (and at follow-up in Paper II) using 
targeted measurements. Quality control assessments were performed in each of the 

laboratories and most of them also participated in quality control assessment programs.  

In Paper I, plasma or serum PFAS were measured using liquid chromatography tandem 
mass spectrometry or ultraperformance liquid chromatography-tandem mass 
spectrometry. This resulted in detectable levels for PFPeA, PFHxA, PFHpA, PFOA, PFNA, 
PFDA, PFUnDA, PFHxS, PFHpS and PFOS in at least one of the studies. Limit of 
quantification (LOQ) ranged from 0.01 to 0.50 ng/mL and <LOQ was imputed using single 

random imputation from a truncated lognormal distribution in studies with at least 70% 
of values ≥LOQ. In Paper II, plasma PFAS was measured at the National Institute for Health 
and Welfare in Kuopio using targeted liquid chromatography-triple quadrupole mass 
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spectrometry 148. There were detectable concentrations for PFHxS, PFOS, PFOA, PFNA, 

PFDA and PFUnDA. Data <LOQ (0.15 ng/mL) was replaced with LOQ divided by two in 26% 
and 42% for PFDA and PFUnDA, respectively. In Papers IV and V, serum PFAS was 
measured at the Division of Occupational and Environmental Medicine at Lund University 
using liquid chromatography-triple quadrupole linear ion trap mass spectrometry (QTRAP 
5500, AB Sciex) using selected reaction monitoring in negative ion mode 149. Limit of 

detection (LOD) ranged from 0.01 ng/mL for PFHpA to 0.09 ng/mL for PFOA and <LOD 
was replaced with LOD divided by the square root of two for <3% of samples for PFHpA 
and PFUnDA. Finally, PFHxS, PFOS, PFHpA, PFOA, PFNA, PFDA and PFUnDA were 
measurable, but PFOA and PFHpA were not further analysed in the SMC-C subjects as 

concentrations were remarkably high likely due to contamination.  

4.3.2 OMICs measurement 

In Paper II, untargeted liquid chromatography-quadrupole time of flight mass 
spectrometry (Agilent Technologies) metabolic profiling was performed on baseline and 

follow-up plasma samples 150,151. Matched case-control pairs and repeated measurements 
were analysed in the same batch. Both reverse phase and hydrophilic interaction liquid 
chromatography columns in positive and negative ionization modes were used. 
Corrections and normalizations were performed (MassHunter Acquisition B.04.00 
software, XCMS R package, batchCorr R package) 152,153. Measurement drift per batch and 

quality control were monitored. Missing values were replaced with random values from a 
normal distribution between 0 and the lowest measured peak intensity for each feature 
and features with low retention time in hydrophilic interaction column were removed. 
Putatively annotated PFAS metabolite features were removed prior to final analytical 

modelling.  

In Paper V, metabolomics, proteomics and genomics data were measured in the same 
fasting blood samples as used for the POP measurements in the SMC-C cohort. 
Untargeted metabolomics was performed using liquid chromatography-quadrupole time 
of flight mass spectrometry (Agilent Technologies). Reverse phase chromatography using 

C18 columns in positive and negative ionization modes were used 154. Quality control 
samples were injected at the beginning, end and evenly throughout batch sequence. 
Corrections, normalizations, imputations and grouping of features derived from a single 
metabolite were performed (XCMS, IPO, MetNormalizer, StatTools and RAMClustR R 
packages). Features with a coefficient of variation >30% among quality control samples 

were removed. Putatively annotated PFAS features were removed prior to final modelling.  

Proteins were measured using high-throughput multiplex immunoassays (Olink Proseek 
Multiplex CVDII, CVDIII and Metabolism) and provided normalized protein expression 
values on a log2 scale standardized per analysis plate. Proteins >25% <LOD were removed 

prior to analysis and missing values were imputed (StatTools R package).  
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Genotyping was performed using the Illumina GSAMD-24v1-0_20011747_A1 BeadChip, 

USA and SNPs were imputed up to Haplotype Reference Consortium (HRC) v1.1 and 1000 
Genomes project phase 3. The results were then analysed using the software 
GenomeStudio 2.0.3 from Illumina, USA. The sample success rate was ≥98%. To prefilter 
the genetics data, we selected SNPs associated with POP exposures in a linear model with 

additive effects at an arbitrary cut-off of p<0.000005 using Plink 2.0 software. 

4.3.3 Covariates (DAG approach) 

We based our confounder selection on a priori assumptions of variables that theoretically 
impact both the exposure and the outcome and could thus confound associations 155. The 
confounders included in the different papers are listed in Table 1 and visualized in Figure 
6 156. The directed acyclic graph (DAG) indicates that the minimal sufficient adjustment 
set for testing associations between PFAS and outcomes (BMI, lipids, CVD and T2D) needs 
to contain age, sex, education and diet. Furthermore, analyses can be adjusted for 
physical activity and smoking status as they can strongly impact our outcomes as well as 

for sampling year, as ancestor of our exposure, and for dyslipidemia medication, diabetes, 
hypertension and family history of CVD, as ancestors of our outcome. Dyslipidemia 
medication may artificially impact lipid levels, thereby influencing associations between 
PFAS and lipids, whilst diabetes, hypertension and family history of CVD are strong risk 
factors for CVD. BMI and lipids could be mediators or confounders and we therefore 

investigate associations both with and without adjustment for them 157. Additionally, we 

performed stratified analyses if there were suggested effect modifiers (e.g. sex and BMI). 

Figure 6. Directed acyclic graph. Boxes represent the exposure and ancestors of the exposure 
(green), confounders (red for unadjusted, grey for adjusted), outcomes, ancestors of the 
outcomes and mediators (blue). Arrows indicate open (representing statistical associations 
between variables; green) or closed (representing absence of associations; black) paths between 
variables. (Source: Created with DAGitty). 
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4.4 Statistical analysis  

4.4.1 Classical approaches 

To investigate statistical associations between exposures and outcomes, we used 
conditional logistic regression (for categorical outcomes in matched case-control 

studies), linear regression (for continuous outcomes), generalized equation modelling 
(for longitudinal data) and cox proportional hazards regression (for survival analysis), 
while adjusting for confounders. Exposures were analyzed per distribution-based tertiles 
or as continuous with log-transformation and standardization. Furthermore, Papers I 
and IV, included data from multiple studies and we used mixed effects models and 

random effects meta-analysis to be able to pool different studies whilst accounting for 
the variance between the different studies. Both approaches gave very similar results 
and we opted for mixed effects models if the heterogeneity between studies was small, 
whilst we show the random effects meta-analysis approach if the heterogeneity 
between studies was larger. Also, the meta-analysis approach provides a clear visual 
summary of individual study results. In Paper III, we used an inverse variance weighted 

fixed-effect meta-analysis model. This gives more weight to larger studies (with smaller 
standard error) and the fixed-effects model assumes one true estimate across all 

studies (in contrast to random effects, allowing it to vary between studies) 158. 

4.4.2 Mixtures  

In Paper I we performed mixture analysis using a quantile G-computation approach to 
find an overall mixture effect estimate as well as individual contributions of each 
compound to the mixture effect. This is a relatively novel method to estimate effects of 
an exposure mixture without assuming directional homogeneity of individual 

compounds 159. First, exposures are transformed into quantized versions and a linear 
model is fitted which estimates the change in the outcome expected for a one-unit 
change in all exposures. Then, the weights of each exposure are calculated. Weights can 
be positive or negative in direction and the sum of weights in each direction equals to 
one.  There are several tools for estimating mixture effects that each have their own 

strengths and limitations. Advantages of quantile G-computation are the simplicity of 
inference and implementation (compared to e.g. Bayesian Kernel Machine Regression) 
as well as allowing for directional heterogeneity (compared to e.g. Weighted Quantile 
Sum regression), whilst it is limited in exploring interactions between individual 

compounds at different exposure levels (high vs low) 160.   

4.4.3 Machine learning  

Whilst classical approaches are considered the gold standard in inference and modelling 
of pre-defined hypotheses, machine learning is often considered more predictive and 

data driven. Machine learning makes less assumptions about the data and underlying 
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hypotheses in advance. It works well with datasets with more variables than subjects, 

allows for implicit interactions in the data and avoids the need for large multiple testing 
adjustments. In our more exploratory OMICs analyses in Papers II and V, we therefore 
used machine learning to select OMICs variables related to exposures. On the downside, 
machine learning can be vulnerable to overfitting, more complex to interpret and does 
not allow for adjustment for confounders. Thus, we use an in-house developed random 

forest algorithm for predictive multivariate modelling with minimally biased variable 
selection incorporated into a repeated double cross-validation framework to minimize 
the overfitting (‘MUVR’) 161. Subsequently, we followed up with classical approaches to 
adjust for confounders and filter out exposure-related OMICs variables that were likely 

selected due to confounding.  

Finally, to facilitate interpretation of exposure-OMICs-outcome associations, we used 
an in-house developed visualization tool (‘Triplot’) 162. This tool is based on principal 
component analysis (PCA), which is a data reduction technique reducing variables to a 
lower number of components while preserving as much of the data variance as possible. 

We also visualized networks of Spearman partial correlations between the selected 
OMICs features using a Gaussian Graphical Model of their respective Pairwise Markov 
Random Field (PMRF) models. This means that correlations between variables are 
adjusted for all other variables in the network. In this network, the nodes represent 
variables connected by undirected edges that can be interpreted as the partial 

correlation coefficients, shrunken by the Least Absolute Shrinkage and Selection 
Operator (LASSO) using the Extended Bayesian Information Criterion (EBIC) 163. 
Communities were detected using the Spinglass algorithm 164,165. The total pipeline for 
OMICs analyses is illustrated in Figure 7, whilst an overview of the different statistical 

methods used in the five studies included in this PhD project is presented in Table 1.  

Figure 7. Overview of the approach used in OMICs studies included in this thesis. 
(Source: Personal Collection) 
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Table 1. Overview of designs and methods used in each study.  

 Study I  Study II Study III Study IV Study V 

Population HBM4EU  

European 
teenagers 

n=1,957 

VIP  

Swedish 
adults 

n=374  

GENIUS-CHD  
 
Global CVD 
survivors 

n=80,900 

SMC-C & 60YO  

Swedish adults 

 
n=1,528 

SMC-C 

Swedish adult 
women 

n=657 

Design  Cross-
sectional  

 
Meta-
analysis  

Prospective  

Nested case-
control  

Prospective 
  

 
Meta-analysis 

Prospective (& 
cross-sectional) 
Nested case-
control  
Meta-analysis  

Prospective (& 
cross-sectional) 
Nested case-
control 

Outcome BMI  

Measured or 
self-
reported 

T2D/blood 
lipids 
Register-
linkage/measu
red  

Subsequent 
CVD 
Diagnosed 

CVD/MI/stroke 
/blood lipids 
Register-linkage 
Measured  

CVD/MI/stroke 
/blood lipids  
Register-linkage 
Measured  

Exposure PFAS  

Measured  

PFAS & OMICs 
 
Measured 

PPARGC1A 
SNPs 
Measured 

PFAS 

Measured 

POP & OMICs 
 
Measured 

Covariates 
of 
adjustment 

Age, sex, 
study, 
(education 
household, 
fish intake) 

Age, sex, 
sample year, 
marital status, 
education, 
smoking 
status, 
physical 
activity, (fish, 
meat and 
alcohol intake 
and BMI) 

Age and sex  Age, sex, sample 
year, (education, 
BMI, diabetes, 
hypertension, 
family history of 
CVD, smoking 
habits, physical 
activity and 
healthy diet 
score) 

Age, sample year 
education, family 
history of CVD, 
smoking habits, 
physical activity, 
healthy diet score 
(BMI, LDL, HDL, 
triglycerides and 
hypertension) 

Statistical 
analysis  

Linear 
regression 
 
Mixed 
effects 
models/ 
Meta-
analysis/  
Mixture     
G-comp. 

Conditional 
linear/logistic 
regression 

 

 
Random 
forest, partial 
Spearman 
correlation, 
triplot 

Cox 
proportional 
hazards 
regression 
Meta-analysis  

Additive 
genetic model 

Conditional 
logistic/linear 
regression  
Mixed effects 
models/Meta-
analysis  

 

Conditional 
logistic/linear 
regression 

 

Additive genetic 
model  
Random forest, 
partial Spearman 
correlation, triplot, 
network 
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5 Results 

5.1 PFAS and BMI in European teenagers (Paper I)  

The cross-sectional analysis included 1,957 teenagers (ages 12-18 years) from nine 
European countries. The most prevalent PFAS in blood were PFOA, PFNA, PFHxS and PFOS 
and we observed generally higher PFAS levels in North and West regions of Europe 
compared to East and South. Medians for PFOA ranged from 0.66 to 1.47 ng/mL within 
studies. Our main analysis indicated an overall inverse association between PFAS and BMI, 
which was stronger in boys. This was significant for PFOA where an increase from the 25th 

to the 75th percentile in PFOA associated with a decrease of 0.08 in age-and sex-adjusted 
BMI z-score. Stronger inverse associations were observed in boys than in girls and similar 
tendencies for inverse associations were found for PFAS with overweight/obese. 
Adjustment for socio-economic status, fish intake, breastfeeding and birthweight only 
marginally impacted models. Additional adjustment for dietary variables (eggs, milk, meat, 

fastfood), degree of urbanization, sampling season or removal of self-reported BMI 
subjects did not impact model estimates and were not included in final models. There 
was some heterogeneity between studies, which could be related to differences in ages 

(puberty) or PFAS levels between studies.  

Mixture analysis indicated that the mixture [PFOA, PFNA, PFHxS and PFOS] also associated 
inversely with BMI z-score with an estimate of -0.05 (-0.13, 0.03) per one quartile increase 
in PFAS mixture and that PFHxS contributed opposite to PFOA, PFNA and PFOS (Figure 8). 
Associations of PFHxS with BMI z-score adjusted for [PFOA, PFNA and PFOS] indicated 
stronger positive associations (estimate moved from 0.01 to 0.06 in linear mixed effects 

models). This indicates that different PFAS compounds may have diverging effects on 
BMI. In conclusion, the observed associations between PFAS and lower BMI in this study 

seem to be driven by PFOS and PFOA, whilst PFHxS may associate with higher BMI. 

Figure 8. Visualization of quantile G-computation results showing associations of PFAS mixture 
[PFHxS, PFOS, PFOA and PFNA] with BMI z-score in teenagers (left) and contributions of each 
individual PFAS to the mixture effect (right). The length of the bars corresponds to the effect size 
relative to the others in the same direction, whilst the darkness of the bar corresponds to the 
overall effect size. (Source: Schillemans et al. 2022, Environmental Pollution) 
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5.2 PFAS, metabolomics and T2D risk in Swedish adults (Paper II) 

A previous study, using the same nested case-control study on T2D in the VIP cohort, 
found a tendency for inverse associations of PFAS with T2D risk (OR 0.52, 95% CI: 0.20, 

1.36 comparing the third with the first tertile for the sum of PFAS [PFOS, PFOA, PFHxS, 
PFNA, PFDA and PFUnDA]) 41 as well as with triglycerides, but not with cholesterol or 
hypertension 91. In this follow-up study, we then included metabolomics data and aimed 

to shed light on molecular pathways underlying the observed inverse associations.  

We found 290 PFAS-related metabolite features in the random forest model, of which 171 
were significantly correlated with PFAS levels even after adjustment for confounders and 
multiple testing. Out of these, 35 also associated with T2D risk after adjustment for 
confounders. For an overview, we performed a PCA on the metabolite features and 
visualized the first two components in a Triplot. This shows the loadings of metabolite 

features in each component as well as the associations of components with exposures 
and outcomes (Figure 9). We found several glycerophospholipids that correlated 
positively with longer chain PFAS and associated inversely with risk for T2D. In addition, 
we found several diacylglycerols, which also correlated positively with longer chain PFAS, 
but they associated with increased risk for T2D. These results indicate that PFAS, 

particularly the longer chain (PFNA, PFDA and PFUnDA), associate with two groups of lipid 

species with opposite relations to T2D risk. 

Figure 9. Triplot visualizing PFAS- and T2D-related metabolite features and their associations with 
longer (LC) and shorter chain (SC) PFAS, fish, meat, alcohol, BMI, HOMA-IR and T2D risk. Features, 
exposures and outcomes pulling in the same direction are associated, whilst opposite directions 
indicate inverse associations. Thus, horizontal features (right) associate with LC_PFAS (right) and T2D 
risk (right), whilst vertical features (top) also associate with LC_PFAS (top), but inversely with T2D risk 
(bottom). (Source: Schillemans et al. 2021, Environment International) 
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In another study not included in this thesis 166, we investigated those 290 PFAS-related 

metabolite features for their associations with blood lipids using the control subjects of 
the T2D study. Similarly, glycerophospholipids correlated with longer chain PFAS and 
associated inversely with triglycerides, after adjustment for confounders. However, we 
found no significant associations between the PFAS-related features and cholesterol. 
Interesting to note is that the PFAS-and triglyceride-related metabolite pattern followed 

the longer chain PFAS pattern (PFNA, PFDA and PFUnDA) over time (Figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Triplot visualizing PFAS- and triglyceride-related metabolite features and their 
correlations with longer chain (LC) and shorter chain (SC) PFAS and BMI as well as their associations 
with triglycerides and cholesterol. (Source: Schillemans et al. 2022, Environmental Research) 

Figure 11. Temporal trends visualizing intake of PFAS (bars; median per calendar year in ng/day, 
adapted from Swedish Market Basket Survey 2015, National Food Agency rapport nr 26/2017) and 
sex- and birthyear-standardized medians of longer chain PFAS scores (LC-PFAS, green points and 
line), metabolite component scores (MC1, blue squares and dash) and triglyceride levels (TG, red 
triangles and dots) per year. (Source: Schillemans et al. 2022, Environmental Research) 
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5.3 Polymorphisms in PPARGC1A and secondary CVD events (Paper III)  

We investigated polymorphisms in the PPARGC1A gene to gain insight in potential 
pathways relevant for CVD, which might also be relevant targets for PFAS exposure. Three 

SNPs were included based on literature-suggested involvement in cardiometabolic 
phenotypes, particularly rs8192678 (G482S). Results from the meta-analysis including 23 
cohort studies within the GENIUS-CHD consortium indicated overall null associations 

between SNPs in the PPARGC1A gene and secondary events (Figure 12).  

However, there was a tendency for an inverse association between rs7672915 (intron 2) 
with the main outcome of secondary CHD death or myocardial infarction (Figure 2 in 
paper: HR=0.97, 95%CI=0.94,1.00), which was significant for certain stratified analyses in 
vulnerable subgroups (older age, kidney disease, anti-platelet users, less than five years 
of follow-up). Other stratified analyses (sex, hypertension, T2D, BMI, statin use and left-

ventricular impairment) were not significant. Sensitivity analyses (exclusion of cohorts 
deviating from Hardy-Weinberg Equilibrium, stratification by European ancestry) only 

marginally changed results. 

Figure 12. Forest plot visualizes overview of hazard ratios (HR) from meta-analysis for three SNPs in 
PPARGC1A with different CVD outcomes adjusted for age and sex. (Source: Schillemans et al. 2022, 
Frontiers of Physiology). 
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5.4 PFAS, blood lipids and CVD risk in Swedish adults (Paper IV) 

Our main analysis included n=1,528 subjects pooling two Swedish cohorts (SMC-C and 
60YO). PFAS levels were slightly higher in the SMC-C compared to the 60YO, except for 

PFOS, which was higher in the 60YO compared to SMC-C.  

The findings showed inverse associations between PFAS exposure and increased CVD 
risk (composite of myocardial infarction and stroke: OR=0.70, 95%CI=0.53-0.93 for the 
standardized sum Ʃ PFAS [PFHxS, PFOS, PFNA, PFDA and PFUnDA]) when pooling the SMC-

C and 60YO cohorts. Similar associations were found in individual cohorts. However, 
slightly more heterogeneity was observed between cohorts when separating analyses for 
stroke and myocardial infarction. Thus, results were obtained using a random-effects 
meta-analysis to pool cohorts. Associations for myocardial infarction risk remained 
inverse (OR=0.60, 95%CI=0.39-0.92 for Ʃ PFAS), whilst for stroke risk we observed a null 

association (OR=0.83, 95%CI=0.46-1.50 for Ʃ PFAS). It is worth noting that PFOS (and 
PFHxS in MI) showed the highest heterogeneity between studies. PFOS associated 
significantly with stroke, but inversely with MI in the SMC-C cohort and this same pattern 
was seen mirrored in the 60YO cohort. Associations were not materially different upon 

inclusion of fish intake as covariate.  

As subsidiary analyses, we also assessed PFAS associations with blood lipids in controls 
who were not using cholesterol-lowering medication. PFAS associated with higher levels 
of total-, LDL-cholesterol but not with apoB. They also associated with higher levels of 
HDL-cholesterol, apoA1 and with lower levels of triglycerides. Associations with LDL and 

apoB were stronger among overweight/obese. The inclusion of blood lipids as covariates 
in the PFAS and CVD analyses did not impact the estimates, indicating that blood lipids 

were not responsible for the PFAS-CVD associations. Estimates are presented in Table 2.  

 

 

Table 2. Multivariable-adjusted associations between baseline plasma PFAS and baseline blood 
lipids and CVD risk during follow-up in two Swedish pooled cohorts (SMC-C and 60YO cohort).  

Ʃ PFAS  
T3 vs T1  

β-coefficient  
(95% Confidence 
Interval) 

Ʃ PFAS  
T3 vs T1 

Odds Ratio  
(95% Confidence 
Interval) 

Total Cholesterol 0.34 (0.15,0.53) Myocardial infarction 0.60 (0.39,0.92) 
LDL 0.26 (0.09,0.43) Stroke 0.83 (0.46,1.50) 
HDL 0.14 (0.07,0.20) Composite  0.70 (0.53,0.93) 
Triglycerides -0.24 (-0.38,-0.10)   

Note: PFAS (PFHxS, PFOS, PFNA, PFDA and PFUnDA) were standardized (rescaled with mean=0 
and SD=1) and summed (ΣPFAS). Results are presented for Tertile 3 (using Tertile 1 as reference) 
and models were adjusted for age, sex, sampling date, education, BMI, diabetes, hypertension, 
family history of CVD, smoking habits, physical activity, and healthy diet score. (Source: Adapted 
from Schillemans et al. 2022, Environmental health Perspectives). 
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As additional information in this thesis, we performed a mixture analysis using quantile g-

computation for five PFAS and CVD (myocardial infarction and stroke) in SMC-C and 
60YO (not included in the paper). This indicated also an inverse association between the 
PFAS mixture and CVD (OR=0.81, 95%CI=0.68-0.97) and individual PFAS contributions to 
the results indicated that these inverse associations were mainly driven by PFUnDA and 
PFDA whilst PFOS and PFNA contributed in the opposite direction and with minimal 

contribution from PFHxS (Figure 13). These results were in line with the regression results 

for individual PFAS.  

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Contributions of individual PFAS to the PFAS mixture resulting from the quantile G-
computation. The PFAS mixture associated inversely with CVD risk (OR=0.81, 95%CI=0.68-0.97). The 
length of the bars only corresponds to the effect size relative to the others in the same direction, 
whilst the darkness of the bar corresponds to the overall effect size. (Source: Personal collection). 
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5.5 POPs, OMICs and CVD risk in Swedish adults (Paper V) 

The final study was based on the same nested case-control study on myocardial 
infarction and stroke in the SMC-C and aimed to investigate molecular pathways 

underlying the PFAS-CVD associations. We furthermore included OC exposures to be 
able to look at a broader group of POPs. We found 12 metabolite features that associated 
with both PFAS exposure and with one of the CVD outcomes (myocardial infarction, 
stroke or their composite endpoint). We also found 29 features (7 proteins and 22 
metabolites) that associated with both OC exposure and with one of the CVD outcomes. 

All features were unique for either PFAS or OC and we found no genetic polymorphisms 

to be associated with both POP exposures and CVD.  

PFAS-related features were glycerophospholipids, cortolone-3-glucuronide, exogenous 
synthetic chemicals and unknown metabolite features, whilst OC-related variables were 

proteins related to metabolism, mitochondrial and inflammatory pathways, carnitines, 
glycerophospholipids, mono-, di- and triglycerides, and hydroxy-DHA (Figure 14). A PCA 
on the 41 POP- and CVD-related OMICs features showed 1) one component associated 
with increased risk of myocardial infarction, which correlated positively with OC and BMI 
and negatively with PFAS and 2) the second component associated with increased risk of 

stroke, which correlated positively with age and OC although the latter was diluted after 

adjustment for age (Figure 15).  

 

 

Figure 14. Estimated network structure of Gaussian Graphical Model with partial Spearman 
correlation coefficients of OC- and CVD-related OMICs features (left) and PFAS- and CVD-
related OMICs features (right). Blue (positive) and red (negative) lines indicate partial correlations 
between features (adjusted for all other features in the model). Node colors represent clusters of 
features (obtained with Spinglass algorithm). (Source: Personal collection) 
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Figure 15. Triplot visualizing principal components of POP- and CVD-related OMICs features and 
their adjusted and unadjusted correlations with PFAS and OCs and unadjusted correlations with 
age and BMI as well as their adjusted associations with risk of myocardial infarction (MI) and 
stroke. Features, exposures and outcomes pulling in the same direction are associated, whilst 
opposite directions indicate inverse associations. Thus, features on the horizontal axis (right) 
associate with OC and BMI (right) and with MI risk (right), but negatively with PFAS (left). Features 
on the vertical axis (top) associate with OC (only weakly after adjustment), PFAS (only weakly) and 
age (top) and with stroke risk (top). (Source: Personal collection) 
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6 Discussion 

6.1 Summary of the findings  

This PhD thesis presents five epidemiological studies investigating persistent 
environmental contaminants in relation to cardiometabolic health to understand whether 
these pollutants increase the risk of CVD in the general population. The resulting findings 
indicate that low-level PFAS exposure is not associated with increased risk of 
cardiometabolic disease (BMI in adolescents, T2D, myocardial infarction and stroke in 
adults). However, results do indicate disturbances in lipid and inflammatory pathways, 

which may still affect human physiology as well as disease pathogenesis.    

Paper I) PFAS associated with lower BMI in teenagers. Results implied this was driven 

by PFOS and PFOA, whilst PFHxS contributed in the opposite way (higher BMI).  

Paper II) PFAS-related metabolite features aggregated in two patterns with opposite 
associations with T2D risk in adults. Longer-chain PFAS had stronger associations with 
metabolite features than shorter-chain PFAS. Associations between PFAS and T2D may 
be mediated by diacylglycerols and glycerophospholipids with opposite effects on T2D, 

i.e. diacylglycerol- and glycerophospholipid-related patterns associated with higher and 

lower T2D risk, respectively.   

Paper III) SNPs in the PPARGC1A gene are not associated with secondary CHD. 

PPARGC1A is a master regulator of many metabolic pathways and several of these have 
been suggested as targets for environmental pollutants. Our findings however did not 

provide evidence for important roles of these pathways in CHD progression.  

Paper IV) PFAS associated with lower risk of myocardial infarction but not with stroke. 

In line, we found associations with lower triglycerides and higher HDL-cholesterol, but on 
the other hand, we also found associations with higher total- and LDL-cholesterol. These 
results suggest that PFAS associations with HDL-cholesterol and triglycerides as well as 
a potential effect of PFAS on inflammation mediating the PFAS-CVD relationship should 

be considered more closely.  

Paper V) PFAS-related OMICs features associated with lower risk of myocardial 
infarction, but not with risk of stroke whilst OC-related OMICs features associated 
with higher risk of myocardial infarction and stroke. This indicates that POP-CVD 
associations may be mediated via lipid (especially related to triglycerides), mitochondrial 

and inflammatory pathways. These OMICs patterns also correlated with age and BMI and 
metabolic markers for PFAS & OC exposures included other synthetic pollutants and 

potential markers for food intakes (i.e. fish, red meat and dairy) and microbiome diversity.  
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6.2 Scientific context and biological plausibility  

6.2.1 Epidemiological evidence  

The current body of evidence for associations between PFAS and cardiometabolic 
diseases in humans is rather inconsistent, but elevated cholesterol has been proposed as 

one of the main adverse events and this is a risk factor for CVD 35,45. In one of our studies, 
we found associations of PFAS with elevated cholesterol in conjunction with lower 
myocardial infarction risk. This may indicate that pathways other than elevated 
cholesterol, like reduced triglycerides, may be more relevant for PFAS and CVD risk 167. Our 
findings are in line with several other epidemiological studies indicating inverse 

associations with BMI in adolescents 101-103, triglycerides 168, T2D 106,169,170 and CVD 87,116,117. 
However, there are also other findings of positive associations between PFAS and BMI in 
adolescents 99,100, triglycerides, T2D 104,105,171 and CVD 110,111,113. A meta-analysis on published 
studies for PFOA and CVD indicates overall null associations with a more inverse tendency 

(Figure 16).  

There are several potential explanations for these diverging results: First, it is possible that 
different PFAS concentrations may have different effects if there is a nonmonotonic 
dose-response relationship. The PFAS levels observed in Paper I-V correspond to low-
level exposure (approximating lower benchmark doses 172, but still comparable to other 
general populations worldwide 45) and associations may not be the same in populations 

highly exposed to PFAS. However, several studies from high contamination areas have 
similar findings of inverse associations 87,103,117. Second, mixture effects could be distinct 
from individual effects 173 as multiple exposures could affect different 131 or the same 126 
biochemical pathways in congruent or contrasting manner. This is also suggested by our 
results in Paper I where PFHxS counter-contributed to the PFAS mixture and in Paper V 
where PFAS correlated negatively also with OC-related OMICs features. Exposome-

Figure 16. Forest plot showing results of a meta-analysis on associations of PFOA (in ng/mL) with 
CVD outcomes. Findings are separated by prevalent and incident CVD and overall result is shown 
for incident findings alone. Schillemans, 2021 only contains results from 60YO as PFOA was not 
available in SMC-C. Abbreviations: CAD, coronary artery disease; CHD, coronary heart disease; 
CVD, cardiovascular disease; DW/L, drinking water per liter; ECO, ecological; CS, cross-sectional; 
MI, myocardial infarction; NCC, nested case control; PS, prospective; R, register-based; RS, 
retrospective; SR, self-reported. (Source: Personal collection). 
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related studies might shed light on effects within a broader spectrum of exposures and 

these have indicated similar findings of inverse associations of PFAS in relation to BMI and 
accrual of lean mass 123,124. Third, we presented in Paper II that there may be different 
molecular features with similar exposure correlations but with opposite disease risk 
associations (diacylglycerols-higher T2D risk vs glycerophospholipids-lower T2D risk). 
This may contribute to conflicting overall findings. Fourth, effect modification by third 

variables, such as sex 103, BMI and dietary habits 82,93 or prenatal exposures 173, has been 
suggested to induce variability in results. Similarly, we found different associations in 
stratified analyses by sex in Paper I and by BMI in Paper IV. Lastly, there are other 
alternative explanations related to study limitations, such as reverse causation and 

confounding, which are further discussed in the methodological considerations section.  

Our findings of OC-related OMICs features associating with increased risk of myocardial 
infarction and stroke are in line with most of the literature indicating associations of OC 
compounds with increased cardiovascular risk factors 174 and cardiovascular disease risk 
175-180. However, our studies show two important considerations: first, the strong impact of 

age on OC exposure and OMICs features even after adjustment for age in the models and 
second, the dilemma of BMI/lipids as a mediator or confounder (discussed further in the 

methodological considerations section).  

6.2.2 Potential molecular mechanisms 

Although most evidence for molecular mechanisms comes from animal or in vitro studies, 
there are also several human studies using OMICs data to investigate potential 
mechanistic pathways related to PFAS exposure and cardiometabolic diseases. Findings 
from OMICs studies included in this thesis (Paper II and V) indicated associations of POPs 

with several metabolite classes, i.e. diacylglycerols, trigycerides, glycerophospholipids, 
carnitines and other exogenous metabolites (pesticide and food metabolites) as well as 
with several proteins, i.e. LDL-receptor, fibroblast growth factor 21 (FGF-21), growth 
differentiation factor 15 (GDF-15), urokinase receptor (uPAR), tissue plasminogen activator 
(tPA) and interleukin 6 (IL-6). These results indicate potential perturbations in lipid (via 

diacylglycerols, trigycerides, glycerophospholipids, LDL-receptor, FGF-21), mitochondrial 
(via carnitines, GDF-15) and inflammatory (via GDF-15, uPAR, tPA, IL-6) pathways. This is 
in line with several other studies using OMICs 126, which indicated lipid metabolism 136,137, 
mitochondrial disruptions like fatty acid oxidation 131,132 and the carnitine shuttle 135 as well 

as anti-inflammation pathways 63 for PFAS and also lipids and fatty acids 181-183 for OCs.  

For PFAS, these molecular markers match with activation of PPARα, which could lead to 
lower triglyceride levels and lower T2D as well as myocardial infarction risk. Contrarily, we 
did not find evidence for involvement of PPARGC1A polymorphisms in secondary CHD 
and this is a master regulator of metabolism and inflammation via regulation of NRs such 

as PPARα 72. Nevertheless, this does not exclude a role for PPARGC1A-related pathways in 



 

34 

first event CVD development. Besides from glycerophospholipids and several carnitine-

related metabolites (i.e. gamma-butyrobetaine, carnitine 13:0 and carnitine 13:1) linking 
PFAS to lower triglyceride levels and lower T2D risk, we also found diacylglycerols linking 
PFAS to higher T2D risk. This may be due to adverse effects related to PPARα activation 
or due to involvement of other NRs or pathways. We found no associations between PFAS 
and stroke risk and the correlations of PFAS with other carnitines (i.e. palmitoylcarnitine 

and 11Z-icosenoylcarnitine) associated with increased risk of stroke were only weak, but 
PFAS was linked to lower myocardial infarction risk via glycerophospholipids, FGF-21, 
GDF-15, tPA, LDL-receptor and triglycerides. These proteins are interconnected via 
metabolism, inflammation and endothelial function 184-187. Moreover, triglycerides play an 
important role in atherosclerosis and this is a plausible connection between PFAS 

exposure and myocardial infarction 188. However, when we adjusted our PFAS-CVD 
analysis for triglyceride levels (Paper IV), the estimates were not strongly impacted, which 
suggested potential involvement of other pathways. Additionally, the proteins and 

triglycerides were initially selected for their associations with OC and not PFAS exposure.  

Molecular markers linking OC exposures to CVD correlated highly with age and BMI. Both 
of these have been suggested before as important factors that should not simply be 
looked at as solely confounders, but also as innate to the causal structure of the OC-CVD 
relationship 189. Therefore, simple adjustment could remove too much of the OC overall 
effect. The OC-myocardial infarction relationship may be mediated by triglycerides, 

whilst OC-stroke may be mediated by carnitines. This could potentially be linked to 
activation of the aryl hydrocarbon receptor, as this receptor has been implicated in 

relation to OCs 190,191 before.  

We found several exogenous compounds in Paper V that linked POPs to CVD risk, which 

could be related to shared sources (i.e. fish, red meat and dairy intake) 192 or be related to 
microbiome diversity 193,194. The gut microbiome has been found to influence PCB 
metabolite levels in mice 195 and has also been suggested to mediate PFAS-metabolic 
effects 70. On the one hand, we found evidence for associations between PFAS levels and 
lower triglyceride levels (potentially via PPARα activation). On the other hand, we did not 

find evidence for associations of PFAS with bile acids or molecular features underlying the 
association between PFAS and cholesterol, potentially because the inverse associations 
with triglycerides were stronger. We also found no evidence of associations for genetic 
polymorphisms linking POP exposures to CVD outcomes, despite literature findings 
having shown interactions between PFAS and genetic polymorphisms 51. It is possible that 

genetic polymorphisms were not selected in Paper V as metabolite features and proteins 
are closer to downstream phenotypes and were thus more relevant for associations with 
POP exposures or due to methodological limitations (e.g. limited sample size and selection 
of SNPs related to POP blood levels, which could miss SNPs that are not related to POP 

blood levels but are relevant for POP-CVD associations). 
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6.3 Methodological considerations  

6.3.1 Causal inference and study design  

The objective of this thesis was to investigate whether POPs, especially PFAS, increase 
the risk of cardiometabolic diseases. For causal inference there are three imperative 

conditions: covariance, temporal precedence and ruling out of plausible rival explanations. 
Experimental studies (e.g. randomized control trials) generally provide stronger causal 
evidence as there is tight control over study protocols and variables 196. However, 
experimental studies are not always applicable due to practical or ethical reasons and 
then observational studies are used. In this case, estimates reflect associations rather 

than causations and they have several potential limitations that need to be considered. 
The main issues are reverse causation, systematic error induced by bias or confounding, 
random error induced by small sample size or multiple testing and the generalizability of 

the findings 197.  

6.3.2 Reverse causation 

Reverse causation refers to the possibility that the outcome may have influenced the 
exposure. For Paper II, IV and V, we used case-control studies nested into a prospective 
cohort to assess the risk of T2D and CVD. This allowed us to assess the exposure prior to 

the outcome, which reduced the possibility of reverse causation 196. However, there is a 
possibility that potential pre-clinical forms of the disease may have influenced the 
exposure levels. Additionally, one study (PFAS associations with BMI in Paper I) and 
several analyses (PFAS associations with proteins, metabolites and blood lipids in Paper 
II, Paper IV and Paper V) were cross-sectional, i.e. both exposure and outcome were 
measured at the same time point. Thus, there is no temporal precedence, and the 

directionality of the associations cannot be guaranteed. It is not likely that BMI or blood 
lipids influenced PFAS levels as PFAS is not stored in fat tissue and is known to bind to 
albumin instead of lipids in the blood, but it is possible that certain blood proteins or 

metabolites influenced PFAS partitioning.  

6.3.3 Systematic error: Bias and confounding  

Systematic error refers to a systematic deviation of the observed values from the true 
values. These errors are not related to chance and can skew risk estimates towards, away 
and across the null, thereby affecting the internal validity of a study. Three major types of 

systematic error are selection bias, information bias and confounding 197. They are 

discussed below and illustrated with the use of directed acyclic graphs (DAGs).  

6.3.3.1 Selection bias  

Selection bias may arise when there are systematic differences between the sample 
population (selected individuals) and the population that the sample was selected from 
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(non-selected individuals) as illustrated in Figure 17 196. This bias can be introduced during 

recruitment of participants or during the tracing of participants for their outcome status. 
Bias during recruitment is more common in case-control studies, but not in cohort or 
nested case-control studies as the cases and controls are selected prior to the 
occurrence of the outcome 198. However, in this case, loss-of-follow-up and missing data 
could still introduce a selection bias 196. Loss-of-follow-up could be an issue in the VIP 

cohort, as we included only participants that provided blood at both baseline and follow-
up. However, a dropout analysis performed in the VIP cohort indicated only a small social 
selection (Paper II) 142. In contrast, it is unlikely that we have missed many myocardial 
infarction and stroke cases as the completeness of the Swedish National Patient Register 
(Paper IV-V) is extremely high and more than 99% of hospital discharges are registered 
199. Nevertheless, it is possible that we have missed some cases with minor MI or stroke 
that were not hospitalized or were outside hospital deaths without autopsy, but this is 

likely only minor with marginal impact on the results.   

Additionally, a particular type of selection bias, which may be of relevance in Paper III, is 

called index event bias (or collider stratification bias). This results from inclusion of 
subjects based on the occurrence of an index event (first time CHD) and can lead to 
counter-intuitive results or survival bias 200. As we studied risk factors for secondary CHD 
events, our study participants consisted of first event survivors, who could have been 
different from the non-survivors and conditioning on survival could open a biasing 

pathway between the exposure and the outcome (Figure 17).  

6.3.3.2 Information bias  

Information bias may arise due to misclassifications of exposures or outcomes and can 
be differential (frequency of misclassification is not the same in both exposure/outcome 
groups) or non-differential (frequency of misclassification is the same in both 
exposure/outcome groups). Differential misclassifications can cause spurious 
associations whilst non-differential misclassifications generally, but not always, bias the 

Figure 17. Directed acyclic graph illustration of selection/collider bias. Conditioning (rectangle box) 
on a collider opens the pathway between the exposure and the outcome directly (option 1) or via 
common causes of the collider and outcome (confounder, option 2). This creates an association 
between exposure and outcome, even though they are conditionally independent (unassociated). 
(Source: Personal collection). 
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estimates towards the null 196. Examples of differential misclassification are recall bias, i.e. 

cases remember their exposure differently from controls, and diagnostic suspicion bias, 
i.e. exposed subjects have a different likelihood to be diagnosed. In the studies presented 
in this thesis though, any exposure misclassification is expected to be non-differential as 
the outcome has not yet occurred at the time of measurement. Likewise, outcome 
misclassification is expected to be non-differential between exposure categories as 

subjects are unaware of their exposure levels. The measurement of contaminants in the 
blood using mass spectrometry decreases the risk of exposure misclassification, as 
internal levels are measured instead of estimated. Previous studies have indicated that 
the 10-year intra class correlations were high for both PFAS (0.52-0.85) 41 and OCs (0.5-
0.8) 201. Additionally, although measurement method and sampling tissues were the same 

within studies, this was not always the case between studies, which makes comparisons 
of exposure levels more complex (Paper I). The use of register data also decreases the 
risk of outcome misclassification. Validation studies indicated that diagnosis for type 2 
diabetes was correct for 95% of the patients (Paper II) 143, whilst diagnosis for CVD was 
correct in 98% for myocardial infarction, 98.6 % for stroke and 68,5% for nonfatal stroke 

in validation studies in subgroups (Papers IV-V) 199. For Paper I, most studies reported 
BMI measured by nurse/physician as outcome, but a few studies had self-reported BMI 
which is liable to misclassification. However, exclusion of these studies only marginally 

impacted the estimates.  

6.3.3.3 Confounding 

Confounding is a concern when there is a third variable which affects both the exposure 
and the outcome and is not a result of either, potentially creating or negating an 
association between the exposure and outcome (Figure 19) 196. In observational studies 

we can never assume the absence of confounding and instead aim to control for it. 
However, we are often forced to decide on confounders without full knowledge on the 

underlying causal structure and this requires some consideration.  

Age and sex are considered strong confounders as they have a large impact on both PFAS 

(accumulates with age and women have lower PFAS levels due to menstruation, 
breastfeeding and parity) and cardiometabolic disease outcomes (risk increases with age 
and risks are different for men and women). Therefore, we matched cases and controls 
based on age and sex (Paper II, IV-V) and standardized the BMI for age and sex (Paper I). 
Diet is one of the main sources of exposure for several POPs via consumption of 

contaminated foods – particularly fish or fast food, whilst diet also impacts risk of 
cardiometabolic diseases. Therefore, diet could create false associations between PFAS 
and cardiometabolic diseases and this has been proposed as a reason for the diverging 
results between different studies 41. We have adjusted for healthy diet score/fish 
consumption in our studies, which hardly impacted estimates, but there could be residual 
confounding. In addition, for the OMICs results, we found associations of PFAS with other 
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food-related markers and exogenous chemicals, which is likely related to similar sources 

of exposure or similar partitioning mechanisms.  

This potential confounding through excretion or partitioning mechanisms is extremely 
complex. On the one hand, PFAS excretion in bile is shared with cholesterol 92 and thus, 

lower bile excretion could potentially increase both PFAS levels and cholesterol. On the 
other hand, bile excretion could also be on the mediating pathway between PFAS and 
cholesterol associations (as illustrated in Figure 4). Both possibilities would explain PFAS 
associating with elevated cholesterol and it is very difficult to distinguish them without 
temporal precedence, which, in turn, is difficult to establish for exposures with long half-

lives. However, two findings from our studies suggest that the findings are not due to 
confounding by bile excretion. First, we might expect higher PFAS levels amongst subjects 
with specific genetic polymorphisms influencing bile excretion, but we did not find any 
genetic polymorphisms in the multi-OMICs analysis on the pathway of PFAS-CVD 
(although this could also be a power issue due to limited sample size; Paper V). Second, 
we might expect that subjects with perturbed bile excretion are already more likely to use 

cholesterol-lowering medication, as they would be more vulnerable to elevated 
cholesterol, and when we excluded these subjects, we still found associations between 
PFAS and cholesterol (Paper IV).  Another possible confounder is PFAS excretion in urine, 
as this could be related to kidney function, which is associated with BMI 202. However, this 
would not explain our inverse findings and we have no reason to believe that kidney 

disease should be an issue in our populations (particularly in Paper I, where we assessed 
associations between PFAS and BMI in teenagers). Lastly, for confounding by partitioning 
mechanisms, PFAS binds to albumin in blood and lower albumin levels could be the result 
of kidney or liver disease or inflammation and may also be associated with unfavorable 
metabolic profile 203. This mechanism could be an explanation for our inverse findings, 

although it would not explain the association between PFAS and elevated cholesterol.  

In Paper V, we found that adjustment for age and lipids impacted estimates for 
associations between OC exposures, OMICs components and cardiovascular outcomes. 
One limitation in our machine learning approach is that we were not able to adjust for 

confounders in the random forest modeling. Thus, the first selection step for OMICs 
features related to POPs may have been biased by confounders. To reduce this impact, 
we have followed up with confounder adjustment in a second selection step (Spearman 
correlation). Age may present an important confounder for OCs and the OMICs 
components, as OC levels increase with age due to accumulated exposures 204 and age is 

an important determinant of proteins and metabolites. However, age may also be 
important for the causal relationship by being an important determinant of the exposure 
and adjustment may take away too much of the variability 189. Furthermore, higher age 
groups may also be more vulnerable to pollution damage as they already have 
accumulated mitochondrial damage. Moreover, it is unclear whether BMI and lipids should 
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be considered as confounder or mediator in these analyses 157, as they have been found 

to influence partitioning of OCs between serum and adipose tissue 205, but have also been 
suggested to be causally linked to OC exposure 206. In line with this, we found positive 
associations between a POP-related OMICs component and triglycerides. Another reason 
to be careful when adjusting for or stratifying by mediators is that this could open another 
biasing pathway via uncontrolled common causes of PFAS, BMI/lipids and 

cardiometabolic disease outcomes (collider bias, illustrated in Figure 17) 157. Thus, our 
observation of stronger associations with lipids in obese subjects, could indicate effect 
modification by BMI, but could also be collider bias and should be interpreted with caution 
(Paper IV). A particular type of confounding in genetics studies is population stratification 
and refers to differences in allele frequencies between outcome groups caused by 

systematic differences in ancestry 207. It is not likely that this has biased estimates in 
Paper III as most studies had >90% of participants with European ancestry and stratifying 
studies with >95% of participants with European ancestry vs non-European did not 

change associations for the primary outcome. 

 

 

 

Figure 19. Directed acyclic graph of different types of associations. Confounding indicates a 
common cause between exposure and outcome and this should be adjusted for (rectangular 
box). Mediation is a causal pathway and should not be adjusted for. Effect modifiers should be 
conditioned on (rectangular box), as the effect between exposure and outcome may be different 
between effect modifier strata. The direct effect indicates conditional dependence (association) 
between exposure and outcome. Another type of association is collision, which is illustrated in 
Figure 17 (selection bias can be a form of collider bias) and this should not be adjusted for or 
conditioned on. (Source: Personal collection) 
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6.3.4 Random error: Sample size and multiple testing  

The random error of a study refers to the precision of the study estimates and is reflected 
by the confidence intervals 196. The random error increases with smaller sample sizes and 
therefore we aimed to increase the study sample sizes by pooling data from different 
cohorts or by using two controls per case. Multiple testing is another issue that can 
increase the random error 208. We have performed many tests but refrained from 
performing multiple testing adjustment (except for in Paper II) for two reasons. First, some 

exposures under investigation (pollutants or OMICs features) are correlated and therefore 
not entirely independent, thus multiple testing adjustment may be too stringent. Second, 
there is still no good way to perform multiple testing adjustment. Current practice often 
excludes the weaker findings (highest p-values), but it is impossible to know if these were 
indeed false findings. Instead of doing multiple testing adjustments, we have used other 

approaches to deal with potential false positives. For OMICs, we used machine learning 
analysis (random forest) to include all features at once and select the best predictors 
instead of testing one feature at the time (Paper II and V). Nevertheless, this approach 
together with our limited sample size may have been less suitable for the genetics data 
in Paper V, as we were unable to find polymorphisms linking POP exposures to CVD. For 

multiple PFAS, we used mixture analysis (quantile G-computation) including all measured 
PFAS exposures, which reduces the number of tests and deals with collinearity of the 

exposures (Paper I).  

6.3.5 External validity  

The external validity or generalizability of a study indicates the applicability of the study 
results to a broader population 196. The studies used in this thesis have looked at low PFAS 
exposures, which is valid for most populations 45. There are however also contaminated 
areas where people will be exposed to much higher levels, in which case effects could be 

different. We furthermore restricted some of our studies to specific age ranges (BMI in 
adolescents, T2D in adults, CVD in adults) and thus results may not be directly applicable 
to other ages. Additionally, as mentioned before, systematic differences between 
participants and non-participants (e.g. higher education status) may affect 
generalizability, but the response rates were relatively high for all cohorts (~70%). We have 
found that there might be effect modifications by sex (Paper I) and BMI (Paper IV) as well 

as high correlations with age (Paper V), which may indicate that there are vulnerable 

subgroups (i.e. adolescent males, overweight/obese and higher age).  

Last, I would like to highlight an important bottleneck in metabolomics studies, which is 

the large amount of unidentified metabolite features (Papers II and V). This makes insight 
in the underlying mechanisms and comparison between studies harder, which in turn 

limits generalizability and causal inference.
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7 Conclusions 
In conclusion, this thesis consistently indicated associations between PFAS and 
cardiometabolic pathways. PFAS associated with lower BMI in teenagers (Paper I), with 
glycerophospholipids and diacylglycerols that had opposite associations with T2D risk in 
Swedish adults (Paper II) as well as with elevated LDL- and HDL-cholesterol, lower 

triglycerides and lower risk of myocardial infarction, potentially mediated via lipid and 
inflammatory pathways (Paper IV-V). These results are in line with the current 
hypothesis of PPARα activation by PFAS, which could impact these pathways and lead 
to lower cardiometabolic disease risk. Nevertheless, we also found that genetic 
polymorphisms in the PPARGC1A gene, a pivotal player in similar pathways as PPARα, 
were not associated with secondary cardiovascular disease (Paper III), which did not 

highlight importance of these pathways in disease progression. Additionally, we found 
that different PFAS compounds do not always follow the same associations (Paper I), 
that PFAS could affect different molecular pathways which may have opposite effects 
on disease risk (Paper II), and that other pollutants from similar sources could have 

different effects (Paper IV).  

The findings imply associations of PFAS exposure with metabolism with potential 
impacts on cardiometabolic disease risks. Yet, as the findings indicate more of an 
association with lower risk, T2D and CVD may not be regarded as the most relevant 

outcomes for risk assessments. On the other hand, interference with glucose 
homeostasis, lipids and myocardial infarction at the exposure concentrations found in 
the general population, should be perceived as an uncontrolled and undesirable 
pharmacological intervention on the whole population. This also includes small children 
and pregnant women and as most processes in the body are connected, there may be 
other unforeseen adverse effects. Thus, the potential impact of the exposure to PFAS 

warrants further attention.  
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8 Points of perspective 
This thesis furthermore highlights the importance of mixture and exposome studies and 
the advantages as well as challenges with the inclusion of multi-OMICs data in 

epidemiological studies to gain insight in markers and molecular pathways.  

Thus, future research should focus on further developing methods and interpretations of 

exposome and multi-OMICs studies. Additionally, it is important to combine 
epidemiological study results with laboratory studies to take full advantage of strengths 
and limitations of both approaches and understand mode of actions underlying 
associations. Human data is needed to overcome the biological differences between in 
vitro/in vivo studies and humans. Simultaneously, laboratory studies with multiple 
timepoints and more controlled environments are necessary to understand whether 

reverse causation and confounding take precedent for the associations between 
exposures and health outcomes observed in epidemiological studies. These approaches 
will provide clearer insight in which exposures are most important and for which human 

health outcomes.  

Furthermore, I wish to highlight that chemical pollution of the earth should not only be 
viewed from the consequences it may have on human health. As not one single study 
should be seen as the basis for any risk assessment, so should also not a single research 
field be used as the basis for assessment of planetary health. Planetary health looks at 

the totality of the natural systems and therefore, studies relating to different animal 
species and ecosystems should also be considered when assessing chemical risks and 

solutions. 
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