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a b s t r a c t 

This dataset expresses the experimental data on the batch 

adsorption of ciprofloxacin and lamivudine from synthetic 

solution using jamun seed (JS) ( Syzygium cumini ) biochar. 

Independent variables including concentration of pollutants 

(10-500 ppm), contact time (30–300 min), adsorbent dosage 

(1-10 0 0 mg), pH (1-14) and adsorbent calcination temper- 

ature (250,30 0, 60 0 and 750 °C) were studied and opti- 

mized using Response Surface Methodology (RSM). Empiri- 

cal models were developed to predict the maximum removal 

efficiency of ciprofloxacin and lamivudine, and the results 

were compared with the experimental data. The removal of 
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removal reached 90%. 
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pecifications Table 

Subject Environmental sciences. 

Specific subject area Environmental chemistry. 

Type of data Figures, Tables, and surface plots. 

How the data were acquired Batch adsorption of ciprofloxacin and lamivudine on JS biochar, initial 

characterization by FTIR, BET and CHNS analysis. Analysis of residual pollutants 

from synthetic solution by UV-VIS. 

Data format Raw, Analyzed, Filtered. 

Description of data collection Jamun seeds were randomly collected from the environment, dried in the shade, 

ground, sieved and carbonized at the Nelson Mandela Institution of Science and 

Technology (NM-AIST), Tanzania. Initial characterization was done at The 

University of Dar es Salaam (UDOM), Tanzania, and adsorption experiments were 

done at The University of Dodoma, College of Natural and Mathematical sciences. 

The experiments were designed using RSM to build empirical models that could 

predict the removal efficiency of ciprofloxacin and lamivudine with high precision. 

Data source location N.A. 

Data accessibility Repository name: Mendeley data 

Data identification number: doi: 10.17632/pphv3ygkfk.1 . 

Direct URL to data: https://data.mendeley.com/datasets/pphv3ygkfk 

Related research article 

alue of the Data 

• This dataset describes the potential of JS biochar for the removal of organic pollutants. 

• This data can be used as a benchmark to compare the improvement of the adsorption of

organics on JS biochar when the surface is activated using various additives. 

• Researchers need to enhance ciprofloxacin and lamivudine removal further using analyti-

cal and soft computing tools. 

• The process parameters, including pollutant concentration, adsorbent dose, contact time,

pH, and calcination temperature, were optimized using the RSM tool. This approach sig-

nificantly reduces the overall cost and time of doing experiments. 

• The data in this study help in prediction of ciprofloxacin and lamivudine pollution removal

as a result of excessive reagent use to investigate the removal of organic contaminants. 

. Objective 

Antimicrobial drugs are linked with pollution and the development of resistant pathogens

hat may lead to treatment complications, rise hospitalization and death as well as threaten

cosystem and human health [1] . Reports indicate the presence of contaminants such as antibi-

tics in surface water, groundwater, effluents, and the entire ecosystem [1–7] . To ensure that the

atural ecosystems are protected, it is necessary to generate data for policy reforms and search

or potential adsorbents for removing contaminants such as antimicrobials from the environ-

ent. In this data set, the removal efficiency of ciprofloxacin and lamivudine from synthetic

olution using JS biochar was investigated and reported. 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17632/pphv3ygkfk.1
https://data.mendeley.com/datasets/pphv3ygkfk
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2. Data Description 

Data sets generated are shared on Mendeley data [8] . The shared data on the removal of

organics using JS biochar provides information on the preparation, initial characterization, ex-

perimental design and adsorption of ciprofloxacin and lamivudine from synthetic solution [8] .

The results of the CHNS analysis are presented in Table 1 . The results of FTIR ( Fig. 1 ) show

available functional groups that have potential interactions during the adsorption process. The

broad band at around 3450 cm 

−1 to 3518 cm 

−1, correspond to (OH 

−) hydroxyl groups. The

peaks at 1422 cm 

−1 , 1574 cm 

−1 and 1654 cm 

−1 may be due to C-H stretching (symmetrical for

aliphatic and asymmetrical). The adsorption isotherms of the samples are presented in Fig. 2 .

Fig. 3 presents the pore size distribution of JS biochar material. 

Tables 2 and 3 present the ANOVA results for a reduced quadratic model for the removal

efficiency of ciprofloxacin and lamivudine, respectively. The R-squared of the model was close

to one (R 

2 = 0.9968), implying that the data fitted well into the selected model. The predicted

R ² values were in reasonable agreement with the adjusted R ² for both ciprofloxacin and lamivu- 

dine; the differences between predicted and adjusted R 

2 were less than 0. 2. Adequate precision

measures the signal-to-noise ratio and a value greater than 4 is desirable. The ratio of 28.377 for

ciprofloxacin and 36.910 for lamivudine indicated an adequate signal; therefore, this model can

be used to navigate the design space. The suggested model gave a significant lack-of-fit (p-value

less than 0.05), but other statistical parameters of the model were significant, and adequate pre-

cision is generally acceptable, thus allowing the model to be used for optimization purposes.

Figs. 4–14 present the contour plots for the removal efficiency of ciprofloxacin and lamivudine
Table 1 

Variation of carbon, nitrogen, and hydrogen in JS biochar samples. 

Sample ID Nitrogen % Carbon % Hydrogen % 

1 1.69 58.39 4.56 

2 1.87 64.24 3.86 

3 2.01 77.25 3.43 

4 2.08 79.38 2.71 

5 2.29 87.93 2.54 

6 1.4 76.61 1.07 

Fig. 1. Functional groups present in JS biochar, Sample 1-6. 
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Fig. 2. Presents adsorption isotherm of JS biochar Samples 1-6. 
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rom synthetic solution using JS biochar. The optimum removal efficiency of lamivudine (99.4%)

as slightly higher compared to that of ciprofloxacin (99.1%) at different optimum conditions.

hese results indicate that the JS biochar may be used to remove organic contaminants from

ontaminated water and wastewater effluents. 

.1. Description of JS Biochar Samples 

The samples were marked as Sample 1 (uncalcined, control), Sample 2 (calcined at 300 °C),

ample 3 (calcined at 400 °C), Sample 4 (calcined at 500 °C), Sample 5 (calcined at 600 °C), and

ample 6 (calcined at 750 °C). 
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2.2. Initial Characterization of JS Biochar 

The percentage variation of carbon, nitrogen, and hydrogen in the prepared biochar are pre-

sented in Table 1 . 

The output of FTIR presenting available potential functional groups in JS biochar is presented

in Fig. 1 . 

The adsorption isotherms of JS biochar samples (1-6) are presented in Fig. 2 . 

The pore size distribution of JS biochar Samples 1-6 is presented in Fig. 3 . 
Fig. 3. Pore size distribution of JS biochar. 
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Table 2 

ANOVA values for a reduced quadratic model for ciprofloxacin. 

Source SS a df MS b F-value p-value 

Model 33911.95 38 892.42 130.43 < 0.0 0 01 significant 

A-pH 8.14 1 8.14 1.19 0.2916 

B-Concentration 22140.86 1 22140.86 3236.04 < 0.0 0 01 

C-Adsorbent dosage 31.79 1 31.79 4.65 0.0467 

D-Contact time 35.16 1 35.16 5.14 0.0376 

E-Treatment temp 235.00 6 39.17 5.72 0.0024 

AB 97.83 1 97.83 14.30 0.0016 

AD 47.81 1 47.81 6.99 0.0177 

AE 174.94 6 29.16 4.26 0.0094 

BE 777.13 6 129.52 18.93 < 0.0 0 01 

CD 165.44 1 165.44 24.18 0.0 0 02 

CE 195.67 6 32.61 4.77 0.0057 

DE 128.82 6 21.47 3.14 0.0314 

C ² 189.20 1 189.20 27.65 < 0.0 0 01 

Residual 109.47 16 6.84 

Lack of Fit 108.89 11 9.90 85.17 < 0.0 0 01 significant 

Pure Error 0.5811 5 0.1162 

Cor Total 34021.42 54 

a SS is the Sum of Squares and b MS is Mean Square. 

Table 3 

ANOVA values for a reduced quadratic model for lamivudine. 

Source SS a df MS b F-value p-value 

Model 17685.99 35 505.31 81.34 < 0.0 0 01 significant 

A-pH 553.75 1 553.75 89.13 < 0.0 0 01 

B-Concentration 12335.31 1 12335.31 1985.56 < 0.0 0 01 

C-Adsorbent dosage 1.43 1 1.43 0.2301 0.6369 

D-Contact time 14.02 1 14.02 2.26 0.1495 

E-Treatment temp 356.23 6 59.37 9.56 < 0.0 0 01 

AB 23.42 1 23.42 3.77 0.0672 

AD 25.26 1 25.26 4.07 0.0581 

AE 872.00 6 145.33 23.39 < 0.0 0 01 

BC 170.66 1 170.66 27.47 < 0.0 0 01 

BE 368.46 6 61.41 9.88 < 0.0 0 01 

DE 1033.85 6 172.31 27.74 < 0.0 0 01 

A ² 115.61 1 115.61 18.61 0.0 0 04 

B ² 703.90 1 703.90 113.30 < 0.0 0 01 

C ² 113.87 1 113.87 18.33 0.0 0 04 

D ² 25.95 1 25.95 4.18 0.0551 

Residual 118.04 19 6.21 

Lack of Fit 116.77 14 8.34 33.00 0.0 0 06 significant 

Pure Error 1.26 5 0.2527 

Cor Total 17804.02 54 

a SS is the Sum of Squares and b MS is Mean Square. 

 

fi  
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Batch adsorption experiments using JS biochar were used to generate data on the removal ef-

ciency of ciprofloxacin and lamivudine. Tables 2 and 3 present the ANOVA results for a reduced

uadratic model for the removal efficiency of ciprofloxacin and lamivudine. 

.3. The Removal Efficiency of Ciprofloxacin 

The removal efficiency of ciprofloxacin is presented in Figs. 4–9 . 
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Fig. 4. Variation of removal efficiency of ciprofloxacin by raw jamun seed biomass (a) effect of ciprofloxacin concentra- 

tion and pH, (b) effect of adsorbent dosage and pH, (c)effect of contact time and pH, and (d) effect of contact time and 

ciprofloxacin concentration. 
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Fig. 5. Variation of removal efficiency of ciprofloxacin by JS biochar calcined at 250 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 6. Variation of removal efficiency of ciprofloxacin by JS biochar calcined at 400 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c)effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 7. Variation of removal efficiency of ciprofloxacin by JS biochar calcined at 500 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 8. Variation of removal efficiency of ciprofloxacin by JS biochar calcined at 600 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c)effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 9. Variation of removal efficiency of ciprofloxacin by JS biochar calcined at 750 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c)effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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2.4. Removal of Lamivudine 

The removal efficiency of lamivudine is presented in Figs. 10 –14 

Fig. 10. Variation of removal efficiency of lamivudine by raw JS biomass (a) effect of ciprofloxacin concentration and pH,

(b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time and ciprofloxacin

concentration. 
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Fig. 11. Variation of removal efficiency of lamivudine by JS biochar calcined at 250 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
. 
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Fig. 12. Variation of removal efficiency of lamivudine by JS biochar calcined at 400 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 13. Variation of removal efficiency of lamivudine by JS biochar calcined at 500 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c)effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 14. Variation of removal efficiency of lamivudine by JS biochar calcined at 600 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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Fig. 15. Variation of removal efficiency of lamivudine by JS biochar calcined at 750 °C (a) effect of ciprofloxacin concen- 

tration and pH, (b) effect of adsorbent dosage and pH, (c) effect of contact time and pH, and (d) effect of contact time 

and ciprofloxacin concentration. 
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.5. Optimization and Model Confirmation 

The adsorption conditions were numerically optimized using a desirability function of

esign-Expert software to maximize removal efficiency. Using the models created during analy-

is, the best-operating conditions that meet the defined goals were searched within the design

pace. Finally, one solution among the recommended solutions was selected for the model val-

dation, whereby three replicates of experimental runs were conducted, and the results were

ompared with the predicted values. Figs. 16 and 17 shows the ramps for the optimum con-

itions of removal efficiency of ciprofloxacin and lamivudine. The optimum removal efficiency

f lamivudine (99.4%) was slightly higher compared to that of ciprofloxacin (99.1%) at different

ptimum conditions. Although the produced adsorbent removed almost same amount of pol-

utant concentrations, ciprofloxacin 13 mg/l while lamivudine 14 mg/l, it is worth noting the

iversity of other factors. The adsorbent is very active in removing ciprofloxacin at 0 pH com-
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Fig. 16. Ramps showing optimum conditions for ciprofloxacin removal efficiency. 

Fig. 17. Ramps showing optimum conditions for lamivudine removal efficiency. 

 

 

 

 

 

 

 

 

 

 

 

pared to 13 for lamivudine. In contrast, parameters such as adsorbent dose, contact time, and

temperature were two times higher when comparing the adsorption capabilities of lamivudine

and ciprofloxacin. 

The validity of the predicted models was assessed by running three replicates of confirmation

experiments at the selected conditions of ciprofloxacin (pH 1, concentration 17, adsorbent dosage

288, contact time 38 min, and treatment temperature 750 °C) and lamivudine (pH 14, concentra-

tion 13, adsorbent dosage 999, contact time 249 min, and treatment temperature 400 °C.). The

predicted removal efficiency value at these conditions was 99.1% ciprofloxacin and 99.6% lamivu-

dine. The Residual Standard Error (RSE) obtained using Eq. (1 ) was 4.4% ciprofloxacin and 9.2%

for lamivudine. The RSE below 10 imply an excellent agreement of experimental values with

the model predicted results. This finding indicated that the prediction error for lamivudine was

slightly larger; consequently, our future research will focus more on improving the lamivudine
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r

 

emoval efficiency model. 

RSE ( % ) = 100 X 

| ( Exp . value − pred . value ) | 
pred . value 

(1)
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3. Experimental Design, Materials and Methods 

3.1. Design of Experiments and Statistical Analysis 

Response surface methodology is an empirical modelling method for determining the interac-

tion of multiple operating and response variables. It provides a systematic experimentation strat-

egy for building and optimizing an empirical model. In essence, RSM is a combination of math-

ematical and statistical approaches suitable for modelling and analyzing problems in which the

output is affected by input variables and their interactions [9–11] . Furthermore, the RSM reduces

the number of experiments, costs, and time spent on physical experiments while providing ad-

equate data for statistically acceptable conclusions [12] . In the current study, an RSM based on

the optimality design was used to optimize five independent and one response variables. In-

dependent variables studied are adsorbent dosage (50-10 0 0 mg), calcination temperature (250,

40 0, 50 0, 60 0 and 750 °C), residence time (30-300 min), pH (1-14), and pollutant concentration

(10-500 ppm), while the observed response was the removal efficiency (%) of ciprofloxacin and

lamivudine. These variables were selected based on the data available in the literature [13–15] .

D-optimality RSM comprises 55 experimental runs, out of which 45 are model points, five are

replicate points, and five are lack-of-fit points. The RSM involves five steps: these are develop-

ment of statistically designed experiments, followed by generating an empirical model, statisti-

cal analysis of the model, numerical optimization by using the desirability function and finally,

model confirmation. The experimental run was randomized to minimize the error and effect

of uncontrolled factors [16] . The observed responses were used to generate an empirical model

conforming to the experimental variables. Experimental results from the 55 runs were used to

determine the regression coefficient of the quadratic model using Design-Expert Version 13.0.5

software (Stat-Ease, Inc., Minneapolis, USA). The coefficient of R-squared established the accuracy

of the fitted model, and the significant model terms were evaluated by the probability value (P-

value) at a 95% confidence level. The contour plots were developed to show the interaction of

two independent variables while holding the third variable at the central value. The geometry

of the surface plots provides valuable information about the system’s behaviour on the variation

of the processing parameter within the design space. 

All necessary equipment for the adsorption experiment, such as shakers, analytical balance,

and glassware used at a research laboratory of the College of Natural and Mathematical Sciences,

The University of Dodoma. Expendable materials and reagents were of analytical grade includ-

ing methanol, distilled water, hydrochloric acid, sodium hydroxide, ciprofloxacin, and lamivu-

dine standards. Jamun Seeds ( Syzygium cumini ) were collected, dried under shade, pulverized

and sieved. The powder was then calcined at temperatures (250, 40 0, 50 0, 60 0 and 750 °C) in

the presence of nitrogen gas using a carbolite tube furnace at the Nelson Mandela Institution

of Science and Technology. Initial characterization of the material was conducted using flash

20 0 0 elemental analyser for CHNS ratio, FTIR for functional group and quantacrome 10 0 0 LSe

series for porosity. A batch adsorption experiment was conducted to evaluate the removal of

ciprofloxacin and lamivudine from a synthetic solution. The amount of ciprofloxacin and lamivu-

dine that remained in the solution was evaluated using a UV-Vis instrument. The adsorption ex-

periments, characterization, and RSM optimization were conducted according to previous studies

[9 , 13 , 14 , 17–20] . 

Ethics Statements 

This work did not involve any animal or human subject in its experimentation process. 
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