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SUMMARY

The fields of proteomics and machine learning are both large disci-
plines, each producing well over 5,000 publications per year. How-
ever, studies combining both fields are still relatively rare, with
only about 2% of recent proteomics papers including machine
learning. This review, which focuses on the intersection of the fields,
is intended to inspire proteomics researchers to develop skills and
knowledge in the application of machine learning. A brief tutorial
introduction tomachine learning is provided, and research advances
that rely on both fields, particularly as they relate to proteomics
tools development and biomarker discovery, are highlighted. Key
knowledge gaps and opportunities for scientific advancement are
also enumerated.
INTRODUCTION

The termmachine learning was introduced in 1959 by Arthur Samuel, who ‘‘taught’’ a

computer to learn the game of checkers; the machine could beat Samuel after 8–10 h

of learning the game through successive playing.1 Samuel’s seminal paper and ideas

sparked imagination and amazement among the masses. Today, machine learning

assists society daily, when people ask Siri to tell a joke or interact with chatbots

that set up medical appointments.

Within the scope of biomedical science, machine learning is driving discoveries in

fields that have found few successes based on human-derived knowledge. For

example, while effective medications for treating or preventing Alzheimer’s disease

have been sought for decades with little success, a recent study combining machine

learning and thousands of medical records suggests that the erectile dysfunction

drug, sildenafil, may provide substantial protection against memory decline.2

Capturing the power and potential of machine learning is not only exciting but

necessary. It can enable discoveries that affect the world on a timescale that maxi-

mizes the usefulness of the knowledge gained. This review focuses on the intersec-

tion of machine learning and proteomics, and the goal is to catalyze the application

of these mathematical tools by proteomics researchers so that new discoveries in

proteomics can be imagined by humans and enabled by the assistance of machines.

While we provide a brief introduction to proteomics, we assume familiarity with the

field and its methods on the part of the reader.
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PROTEOMICS IN BRIEF

Proteomics, in one sentence, is a large-scale comparison of the expression of the

proteins in a set of biologically derived samples, typically from a particular cell

type or biofluid. Since this review highlights examples of machine learning on clinical
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proteomics samples, a typical work flow for those types of experiments is briefly

described next. For complete newcomers to the proteomics field, a more in-depth

treatment of the topic will be necessary but is beyond the scope of this piece: two

well-known reviews are recommended.3,4 Existing practitioners may, instead, enjoy

reading a modern perspective on the field and its future, written by industrial

experts.5

Figure 1 describes a typical bottom-up proteomics experiment using isobaric mass

tagging. Quantitative information is obtained about each protein detected, and

this overall approach is commonly implemented for clinical proteomics experi-

ments that include a machine learning component. Samples from both a control

group and a test group are first subjected to a variety of processing steps, typi-

cally including depletion of the highly abundant proteins, proteolytic digestion,

and isotopic labeling. The digestion step usually involves first reducing the disul-

fide bonds and alkylating the resulting free cysteines, followed by treatment with

one or more proteases, where use of trypsin is most common. Isotopic labeling

can be done in a variety of ways, but the use of a tandem mass tag (TMT) reagent

is a common choice. The labeled peptide samples are then combined into

batches such that each sample can still be uniquely identified by its encoded la-

bel. These batches are then subjected to chromatographic separation, and the

eluent is directed into the mass spectrometer where high-resolution mass spec-

trometry (MS) data and tandem MS (MS/MS) data are acquired. Both these MS

data types are used, in combination with proteomics software, which leverages

human proteome databases and predicted fragmentation patterns of the resulting

peptides that would come from those databases to assign the acquired mass

spectra to known peptides and, by extension, the proteins from which they orig-

inate. The peptides are quantified for all the individual samples within each batch

in an isotope-encoded experiment based on the characteristic, mass-encoded

product ions that are generated during the MS/MS or MS3 experiments. Pep-

tide-level information is also frequently agglomerated and reported at the protein

level. After each batch has been characterized, the data from all the batches are

recombined so that the full dataset can be leveraged to identify the underlying

protein expression changes. The combination step can involve batch normalization

steps and/or filtering out proteins that were detected in only a small minority of

the samples.

While the work flow shown in Figure 1 is one common way to acquire quantitative

proteomics data for machine learning experiments, it is by no means the sole

approach used in the proteomics field. For example, the MS/MS data, needed for

assigning the peptides, can be collected in either a data-dependent or a data-inde-

pendent fashion. In the former approach, the most abundant peaks in any given

high-resolution MS scan can be targeted, one at a time, for MS/MS studies. This

data-dependent approach is often used with TMT tagging, as shown in Figure 1.

Alternatively, larger swaths of the mass range can be selected sequentially for colli-

sions-induced dissociation (CID) experiments, and all the precursors within the

range are fragmented simultaneously. This approach, known as data-independent

acquisition (DIA), produces fragmentation data for more peptides, particularly for

less-abundant species, but the caveat is that the data are harder to assign, since mul-

tiple precursors are fragmented together. Further information on DIA can be found

in a recent review.6 Another alternative work flow is to forego the proteolytic diges-

tion step and analyze intact proteins. This paradigm, top-down proteomics, enables

studies of protein modifications occurring in concert, and the field has its own hur-

dles and opportunities.7
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Figure 1. Example of a quantitative proteomics workflow

Samples undergo treatment prior to labeling and combining into batches. Each batch separately

undergoes liquid chromatography-tandem mass spectrometry (LC-MS/MS) and data analysis.

Individual datasets are then processed and recombined to a single dataset of samples and

features. Data from each person in the dataset occupy a unique row, while the abundances of each

of the proteins quantified are in columns.
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Two places where machine learning combines with proteomics are in the peptide

analysis step and at the end of the workflow, where the protein expression changes

can be used to predict a disease state on a set of patient samples. Significant
Cell Reports Physical Science 3, 101069, October 19, 2022 3
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developments in both subfields are described herein, after an introduction to ma-

chine learning.
MACHINE LEARNING DEMYSTIFIED

Just as proteomics is an umbrella term, encompassing a variety of workflows and

concepts, the phrase machine learning has a similarly broad meaning. This review

focuses on a subset of the machine learning field, supervised classification; its appli-

cation to proteomics could be described as leveraging generalized mathematical

tools that use data from a set of known sample types to make predictions about sam-

ples of unknown type. Examples of sample types include a disease state versus a

healthy one, or peptides with a particular sequence or characteristic (e.g., a reten-

tion time). One important distinction for newcomers to appreciate is how machine

learning is different from software development strategies that proteomics re-

searchers have historically used to assign their mass spectral data.

In the expert-writes-software-based approach, which dominated early peptide

assignment algorithms, researchers would use their knowledge to write rules that

guide the assignment of new data. Consider the task of determining whether ions

undergoing MS/MS are glycosylated peptides. Using an expert-based approach,

rule writers may specify which ions need to be present for an MS/MS spectrum to

be considered a glycopeptide; the abundances of the key ions are also likely

included as part of the algorithm that assigns the spectrum to either being glycosy-

lated or not. Those rules would be based on the development teams’ expectations

and knowledge of the diagnostic ions that appear in MS/MS data of glycopeptides.

By contrast, in a machine learning paradigm, no pre-set rules specific to the task of in-

terest (determining whether or not the precursor is a glycopeptide) are required; rather,

what are needed are existing data and a generalized math tool, the machine learning

algorithm, that could be used to match the known data to the given outcomes. In this

hypothetical case, the known data would be derived from theMS/MS data of precursors

that are known to be glycosylated or not. The outcome would be the answer to whether

or not each example in the dataset was from a glycosylated peptide. The rules for as-

signing new data to the appropriate class (glycosylated or not) would be generated

by the machine learning algorithm, based on the data provided in the training set.

Importantly, the same machine learning algorithm could also be used in a vast array

of other applications; for example, to determine the likelihood that an online shopper

would purchase a specific product or to identify the political candidate that an individual

is likely to vote for. In these alternate cases, different types of related examples of exist-

ing data are needed, but the math algorithm could stay the same.

The salient point is that machine learning algorithms used in proteomics have noMS-

specific components or expert-defined rules in them, and, as a result, they can be

applied to solve complex problems where the approach to optimally assigning

new data is not obvious. However, the heart of these algorithms is not some Franken-

steinian computers-learning-to-be-smarter-than-humans sci-fi magic, as it is some-

times depicted on the Internet. Rather, the algorithms are, in their essence, a set

of mathematical manipulations. Machine learning could in principle be done by pa-

per and pencil, if anyone had the patience and the exacting precision to accurately

perform millions of simple calculations by hand.

The most common type of machine learning associated with the applications of in-

terest herein, namely, proteomics tools development and biomarker discovery
4 Cell Reports Physical Science 3, 101069, October 19, 2022



Figure 2. Required components and example work flow for supervised classification

Data input requirements (left) include a data table of samples with known outcomes (health status, for example) and features that could be used to

determine the status in unknown cases. Several standard classifier options are shown on the right; once the classifier is selected, decisions about its

hyperparameters are also made. The work flow (bottom) shows one logical way in which supervised machine learning can be done: one first makes

decisions about the features to use, then tests a classifier, then adjusts hyperparameters, using cross-validation to make decisions (along the way) about

which options are optimal. Finally, after a satisfactory model is built, it must be tested on new data to determine the accuracy reliably.
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problems, is supervised classification; sometimes an up-front feature selection step

is also included. The key steps and options for these workflows are briefly described

here. An in-depth example of a feature selection study using proteomics data can be

found in Dakna et al.,8 and high-quality publications with more detail on supervised

classification can also be found.9,10

Figure 2 shows the two basic components needed for supervised classification

studies: existing datasets andmath algorithms. Let us first consider the requirements

for the datasets. In some types of studies, where proteomics and machine learning

are combined, developing the set of known data to train the algorithm is straightfor-

ward. For example, if the goal is to use a clinical proteomics dataset, such as the one

described in Figure 1, to build a model that could predict the disease state of new

patients, researchers could directly use the matrix containing the (normalized) pro-

tein abundances from each sample that was produced at the end of the work flow

in Figure 1. The basic requirements for any dataset are that the features (for example,

the protein abundances) are useful in predicting the class (whether or not the person

is healthy, for example). The final, normalized datasets from proteomics experiments

are, therefore, already ready for machine learning. In other applications, the ques-

tion of what goes into the dataset is more perplexing. When machine learning is

used as part of a work flow where the goal is to generate a proteomics tool, more

thought needs to go into considering the best data to use that will give an accurate
Cell Reports Physical Science 3, 101069, October 19, 2022 5
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answer to the question at hand. The machine learning algorithm will typically give

researchers a yes/no type answer (e.g., do I have cancer? Yes or no. Is this peptide

correctly assigned? Yes or no), although multiple-choice answers (e.g., choosing A,

B, C, D, etc.) are also possible. In cases where machine learning is incorporated to

build or improve a proteomics software tool, choosing both the question that ma-

chine learning can answer and the data that will provide that answer takes more skill.

Questions such as ‘‘Is the precursor ion a glycosylated peptide?,’’ for example,

would require careful planning to generate an optimal set of features to include

for each sample in the dataset. Thesemay simply be the product ions and their abun-

dances, but the features could bemore complex than that; they could be neutral los-

ses from the precursor, ratios of specific peaks, etc.

One way to improve the chances of supervised classification generating a highly

predictive model is to use math strategies that identify the most useful data in the

dataset to keep and to remove the non-useful information. For example, proteomics

researchers may want to down-select their protein set from an initial list of 12,000

proteins to a biomarker panel of the four proteins whose abundances are, together,

most predictive of the disease state. This down-selection process is known by the

general term feature selection. Three feature selection studies are cited as examples

of applying this technique.8,11,12 Feature selection methods can be an important

part of the workflow, when the ultimate goal of the experiment is to develop a

biomarker panel with just a few proteins that may be monitored in clinical labora-

tories without doing a proteomics experiment.

After one decides on the existing samples and features to use, the math tool(s)

for classification need to be selected and applied (Figure 2). Some classifiers

to consider, and examples where they have been used, include k-nearest

neighbors (kNNs),9,12 support vector machine (SVM),11,13 extreme gradient boost-

ing (XGBoost),14,15 naive Bayes (NB),12,16 or the Aristotle Classifier (AC.2021).13,17

While an in-depth mathematical discussion of each of these methods is beyond

the scope of this review, newcomers should understand that the methods have

different underlying principles used to optimize their models, and these different

principles result in some methods having strengths or weaknesses in certain do-

mains. For example, both XGBoost and AC.2021 can classify datasets with missing

values, a common problem in proteomics datasets. The other methods (kNN, SVM,

and NB) require researchers to provide only datasets with no missing values or to

find ways to provide reasonable approximations for those unreported values. (This

estimation process, called imputation, has its own subdomain of machine learning

research.)

Deep learning strategies are also heavily used in supervised classification;18 however, to

really benefit from the additional complexity that deep learning brings to bear on a clas-

sification problem, datasets with very large numbers of samples and few features are

optimal. In the referenced example, the dataset contained 1,000 samples and 34 fea-

tures.18 Comparisons with larger feature sets show that deep learning does not neces-

sarily give better results than those obtained by simpler classifiers.19 A recent review of

deep learning in proteomics covers this field in more depth.20

In addition to selecting a classifier, a machine learning expert would typically tune

the classifier to optimally perform with the specific type of data in hand. This tuning

process involves adjusting hyperparameters. One can think of this process as

‘‘bending the rules’’ for the given classifier until an optimal result is obtained. Tuning
6 Cell Reports Physical Science 3, 101069, October 19, 2022
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is typically done using cross-validation, and the concept is discussed in more depth

elsewhere.9,10

Depending on the problem to be solved, different test metrics can be used to assess

the final model. Sometimes overall accuracy is most important, but not always. For

example, if the goal is to identify patients at risk of a rare disease, a model that iden-

tifies everyone as not at risk might be highly accurate for the general population but

completely useless for diagnostic purposes. In a case like this, a metric other than

overall accuracy would need to be used.

Because there are so many ways to optimize the results that come out of a machine

learning work flow—by doing feature selection, classifier selection, and tuning hy-

perparameters—researchers should always strive to test their solution on new

data that have never been any part of the machine learning workflow. If this is not

possible, because the data simply do not exist, then obtaining an estimate of accu-

racy by cross-validation is typically used in lieu of a test set.

The use of cross-validation to estimate accuracy, instead of using a test set, is prob-

lematic in some cases, and feature selection is one clear-cut example where

completely new test data are needed to assess the accuracy of the method.21,22 In

one radical demonstration of this point, a dataset of simulated proteomics data,

which was generated using only random numbers, was used to develop a machine

learning-based model for classifying mock patient samples as healthy or diseased.

The authors used all the (randomly generated) data from all the samples for feature

selection, then built a classification model and tested it using cross-validation. This

approach resulted in a model that was, alarmingly, >90% accurate, even though da-

tasets of random numbers should generate a model with �50% accuracy.21 This

demonstration study emphasizes that unrealistically high accuracies are obtained

when no naive test data are available to assess the utility of the feature selection

steps. A similar, earlier study, geared toward genomics researchers, reaches the

same conclusion.22 In cases where the sample numbers are small, and no secondary

set of test samples are available, supervised classification can be applied without im-

plementing feature selection steps, and, in this case, cross-validation provides a

more accurate estimate of the model’s true performance.21 This approach has

been used in several published studies; two example are provided.13,23
MACHINE LEARNING INCORPORATED INTO PROTEOMICS TOOLS

Researchers have benefitted from the marriage of machine learning and proteomics for

decades, perhaps without realizing it; some of the proteomics field’s early essential

tools, PeptideProphet24 and Percolator,25 leverage these capabilities. PeptideProphet

was the first widely successful automatedmethod of determiningwhich software-gener-

ated peptide assignments, made by matching MS/MS data to database candidates,

were likely to be correct and which were likely to be incorrect.24 To build this tool, de-

velopers first generated a reliable ground-truth dataset containing thousands of well-

characterized CID spectra of known peptides from 18 proteins; they used these data

to determine which measurable parameters (i.e., mass error of the precursor) were

most important in distinguishing correct from incorrect assignments using Bayesian sta-

tistics.24 They then used this information to generate a single test metric that provided

a very reliable probability-of-correctness score for each peptide assignment. The

development of a robust, automated approach to determine which software-generated

assignments were likely correct provided the rigor and rapid analytics necessary to cata-

lyze growth in the burgeoning field of proteomics.
Cell Reports Physical Science 3, 101069, October 19, 2022 7
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Similar in ultimate objective, but different in method and approach, is Percolator.

This software script increases peptide identifications after analysis by peptide

assignment algorithms such as Sequest,25 but it does so without ever having gener-

ated an expert-curated ground-truth dataset. Instead, a decoy database is used to

generate the known incorrect assignments, and a fraction of the highest-scoring

spectra are used to generate a set of the ground-truth correct assignments. Also

different from PeptideProphet is the underlying machine learning approach. The al-

gorithm driving Percolator uses an SVM to build a model that separates good assign-

ments from poor ones. The developers demonstrated that applying their approach

can increase the number of assigned peptides by 50%.25,26 Both these early tools

demonstrate the immense value of using math algorithms and ground-truth data

to drive broad advancements in the development of the field of proteomics. They

also demonstrate that, while a set of known data and a classifier are the two essential

components needed for machine learning, the careful selection of each of these is

the art behind the science.

Twenty years after the development of PeptideProphet, the question of how to best

assign proteomics data in an automated fashion is still being answered. One of to-

day’s biggest challenges is assessing MS/MS data that combine multiple possible

precursors; this data type is ubiquitous in DIA datasets, where precursor ions are

not individually selected for collisional activation but rather activated in sets. DIA-

NN is an example of a widely known proteomics tool that attacks this challenge.27

DIA-NN relies on a spectral library as its known dataset and employs a neural

network to build its classification strategy.27 Neural networks are examples of

deep learning, which, in the broadest sense, is an approach that better captures

trends in the data when the features contribute to the overall outcome through com-

plex relationships.

The transition from shallow learning methods, such as SVM used in Percolator, to

deep learning methods, used 15 years later in DIA-NN, is not entirely unpredictable.

Computational power has come a long way in the last 15 years, enabling some deep

learning studies to be executable on laptops. Furthermore, while deep learning

methods require high sample numbers in their training datasets, these datasets

are relatively easy to generate for unmodified peptides. Consequently, the field is

now frequently turning to deep learning strategies to assist in the assignment of un-

modified and simply modified peptides. Additional examples of deep learning-

based tools include pDeep, which is a notable early tool from 2017 that assigns

CID data to peptide compositions.28 In another example, Prosit uses deep learning

and a dataset with over half a million spectra to predict fragmentation spectra for

peptides; the tool can be used to assign peptide compositions to experimental

data with high accuracy.29 In parallel with these publications, several more algo-

rithms leveraging machine learning, and specifically deep learning, are emerging

for assisting in the task of assigning MS/MS data to their correct peptide sequences.

These approaches typically show performance enhancements over the older

algorithms.

Proteomics analyses encompasses more complexity than simply identifying all

the unmodified peptides in the proteome; one key example is the need to

identify peptide modifications; where complexity can be found, machine learning

can contribute. A relatively old example in this field, from 2013, demonstrated

that proteins modified by ubiquitination could be identified more readily by

UbiProber, a tool that relies on supervised classification with SVM.30 A host of other

tools are now present to assist in identifying other modifications, including
8 Cell Reports Physical Science 3, 101069, October 19, 2022
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phosphorylation,31 nitration,32 glutarylation,33 malonylation,34 threonine iso-

forms,35 and O-GlcNAc modification.36 All of these rely on supervised classification

as at least one key step in the algorithm. These first-generation machine learning

methods analyzing post-translational modifications (PTMs) could likely be replaced

by even better products as both the machine learning field and the proteomics field

mature.

The above-mentioned peptide modifications have one shared element of simplicity:

the modification is a fixed mass. When researchers need to identify multitudes of

modifications on a peptide (or protein), as in top-down proteomics studies, or

when the modification can have a highly variable mass, such as for glycosylated pep-

tides, then the analysis problem, and the best tool to solve it, become more compli-

cated. An algorithm that leveraged machine learning to analyze N-linked glycosyla-

tion sites, called Sweetheart, was published in 2013,37 but the glycoproteomics field

still relies predominantly on tools built using rules inferred by human learning, with

Byonic, a commercial product, being the field leader currently.38 Newer automated

methods are emerging, both those with human-learning-inspired algorithms and

those that include machine learning; while the verdict is still out on which approach

will ultimately reign superior, the authors’ money is being bet on the machines.

Like glycoproteomics, the field of top-down proteomics can make a strong case that

its data analysis challenges are supremely complex. Best practices for analysis of

proteins using top-down strategies have recently been reviewed;7 machine learning

is beginning to make inroads,39 but it is not yet contributing heavily in this field, and

numerous analysis challenges remain. The Ge lab has recently shown progress on

one of the problems, data deconvolution, which is an (automated) process of

grouping the MS peaks into their isotopic envelopes. They demonstrate that a ma-

chine learning strategy, using data deconvolution results frommultiple algorithms as

input, does a better job than any single algorithm.40 Data deconvolution may be

‘‘low-hanging fruit’’ in the orchard of top-down proteomics data analysis, but start-

ing by incorporating machine learning into this component of the work flow makes

sense; it exemplifies a long-held computing principle that a complex problem can

be solved by finding creative ways to break the seemingly impossible task into

sets of smaller problems, each of which is solvable.

Moving forward, machine learning will certainly continue to improve proteomics

data analysis, and second-generation PTM analysis tools will likely emerge. We

expect, though, that machine learning may offer the most advantage to fields with

high-complexity analyses, such as glycoproteomics and top-down proteomics, as

shown in Figure 3, where the appropriate analysis rules cannot be easily inferred.

The biggest barriers to overcome are the creative development of the question

that machine learning can optimally answer and the generation of the datasets

that will allow a generalized math algorithm to untangle the complexity of the prob-

lem to find an optimal solution.
MACHINE LEARNING IN BIOMARKER STUDIES

The grandest challenge of combining machine learning and proteomics may be to

diagnose disease at its earliest stages and to identify the optimal treatment path

for complex diseases. About 20 years ago, several exciting studies demonstrated

the ability to diagnose various cancers with high accuracy, including stage I ovarian

cancer and prostate cancer, using SELDI-TOF of serum proteins and machine

learning.41 While such findings would truly revolutionize medicine, questions arose
Cell Reports Physical Science 3, 101069, October 19, 2022 9



Figure 3. Potential impact of machine learning on proteomics

Examples of proteomics analysis problems that have incorporated machine learning in the past and

the authors’ predictions about the potential for new impact in the future if these fields were to more

heavily leverage machine learning.
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about the reliability and reproducibility of the work,41 and, because of the inability of

these and other studies to deliver on their promises of improving patient outcomes,

some insurance providers currently deem the entire field of disease diagnosis by

proteomics to be considered investigational and not medically necessary for all in-

dications (see https://provider.healthybluenc.com/dam/medpolicies/healthybluenc/

active/policies/mp_pw_a049883). We note that several proteomics-derived bio-

marker panels have received US Food and Drug Administration (FDA) approval.42,43

The path to successful translation of discoveries that combine machine learning and

proteomics into routinely used diagnostics is still an uncertain one. Demonstrating

the potential to translate these research findings into routine tests that improve

human health should be a top priority for the field.

The two main challenges in translating a promising biomarker candidate into a

clinical assay are the need to validate the findings in independent tests and to

demonstrate clinical utility.44 Both these metrics depend on the panel’s accuracy

in assessing independent test data, and one weakness of many recent biomarker

studies is lack of a completely independent test set for initially establishing accu-

racy.21,22,45 Data in a true test set are those that are not used in any way to build

the feature set or model. Instead of including a completely independent test set,

many researchers have allowed their test data to leak into their feature selection

step, invalidating the final accuracies.21,22,45

One recent high-quality biomarker study is a project aimed at predicting the type of

ovarian cancer, so treatment could be optimized;46 the input was MS imaging data

of excised ovarian tissue. Notably, the authors carefully split samples into training,

validation, and test sets in a way that ensured all the spectra in the test set were

from patients who did not contribute any data to the training or validation sets.

This is an essential component for any study, where multiple spectra are acquired

from individual donors; ultimately, the model needs to distinguish samples based

only on the disease state for new individuals, and two samples from the same indi-

vidual will be similar for reasons other than the disease state, unfairly biasing the
10 Cell Reports Physical Science 3, 101069, October 19, 2022
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results toward higher accuracies. A respectable measure of accuracy, of 75%, was

obtained for distinguishing four closely related cancer types.46 Considering the

small size of the training sample set, these results are very promising. They could

perhaps be considered Biomarker Version 1.0,’’ and better accuracy may be ob-

tained by building a model with more samples, more representative samples, better

features, or perhaps better machine learning approaches. In essence, each aspect of

the biomarker work flow could be considered as a point for further improvement for

this or any existing biomarker study.
IMPROVING THEACCURACYOFBIOMARKER PANELSGENERATEDBY
MACHINE LEARNING METHODS

To get to the clinic, many Biomarker Version 1.0 panels need to increase their accu-

racy on test data. The best place to start optimization is with the earliest part of the

workflow, the collection of samples. The optimal number of samples to analyze is

debatable. In one study, researchers found that 16 samples were enough to get sta-

tistically meaningful data from a proteomics study with 1,000 proteins.47 Others

point out that, in fields with similar analysis challenges and dataset sizes, the target

sample size would be 10 times the number of features.48 (This would imply that

10,000 patient samples would be needed for that proteomics study with 1,000 pro-

teins.) While obtaining and analyzing 10,000 proteomics samples is typically not

feasible, machine learning practitioners who work with proteomics data know that

bigger sample sets are always better: more samples allow for more sophisticated

types of learning (i.e., deep learning, feature selection) and much better estimates

of accuracy by retaining more samples for a test set.

In some cases, the problem with the quality of the biomarker panel may not be that

not enough samples were studied initially but that not enough of the right samples

were studied; in other words, the sample set was not representative enough of the

population that the test was designed for. For example, in the field of Alzheimer’s dis-

ease, many of the sample sets studied to date overrepresent non-Hispanic white

adults and underrepresent other racial and ethnic populations within the US.17 Racial

bias is a well-studied problem in the field of machine learning, and, in general,

models trained on samples from people of predominantly one racial background

do not work as well on participants that were underrepresented in the training

set.49 This general principle applies to proteomics studies. In one example, we

demonstrated that the racial composition of proteomics datasets of brain samples

dramatically influenced the utility of heat-shock protein beta 1 (HSPB1) for indicating

Alzheimer’s disease.17While thismarkerwas considerably less effective than thewell-

knownmarker, amyloid precursor protein, for indicating the disease state in non-His-

panic white adults, HSPB1’s ability to discriminate the disease state in African Amer-

ican/black adults was significantly better across multiple datasets; see Figure 4.

In a different example, a biomarker panel for predicting Alzheimer’s disease, devel-

oped from the study of plasma samples from white patients either with or without

Alzheimer’s disease, was >90% effective when applied to a second dataset of sam-

ples from white participants, yet the same biomarker panel was no better than a coin

toss for predicting the Alzheimer’s disease status of African Americans in two sepa-

rate sample sets.50 These studies, and the large body of literature assessing racial

bias in machine learning, support the view that carefully considering the impacts

of racial diversity during study design and validation will be necessary for developing

a biomarker that will be highly accurate in a diverse population when relying on pro-

teomics and machine learning. (We note that this issue, of requiring appropriately
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Figure 4. Racial bias in datasets

Demographic data (right) and receiver operating characteristic (ROC) curves (middle) from two

brain proteomics datasets with differing representation of African American/black and non-

Hispanic white participants in two different Alzheimer’s disease studies. In the dataset containing

mostly white adults (top), amyloid precursor protein (APP) is a much better marker than heat-shock

protein beta 1 (HSPB1), as shown by its larger area under the ROC curve in the top panel. In a more

racially diverse dataset (bottom), the utility of HSPB1 as a potential biomarker for Alzheimer’s

disease becomes more obvious. Reprinted with permission from Desaire et al.17 Copyright 2022,

American Chemical Society.
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diverse samples, is not a caveat of machine learning in particular; it is broadly appli-

cable to any clinical study.) Limitations in the number and diversity of samples are

possibly the single biggest barrier to dramatically improved, validated biomarker

panels. Any advance that addresses better access to samples and/or better

throughput for proteomics studies would benefit the scientific community and, ulti-

mately, human health.

Once the samples are collected and proteomics experiments are performed,

biomarker panels can be improved by carefully choosing the data that are included

about each sample.51 The benefits and risks of restricting the list of proteins to

include in the machine learning work flow using feature selection methods were

described above. Beyond paring down the feature set, another strategy is increasing

it, selectively. A biomarker panel that contains only proteomics data can be

expanded to include non-protein features also known to influence the disease state.

As an example, in the field of Alzheimer’s disease, combining plasma protein con-

centrations with the ApoE genotype, age, sex, and years of education are useful

in generating a panel with higher predictive accuracy for disease status, compared

with the protein-only panel for non-Hispanic white participants, although the inclu-

sion of these features does not improve the panel for African Americans, whose dis-

ease status may be less strongly associated with these variables.50 Opportunities

exist in the machine learning field to identify optimal ways of including different

types of features (i.e., proteins and demographic data) into models to generate

the best possible predictions.

Other ways to improve upon an initial biomarker panel are also possible. In some

cases, the problem is getting the highest-quality ground-truth dataset. This need
12 Cell Reports Physical Science 3, 101069, October 19, 2022
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is particularly important in imaging applications where the tissue to be imaged is

heterogenous.52 Researchers have demonstrated that careful histological annota-

tions were essential for generating an accurate model for predicting certain types

of cancer from biopsy slides that had been subjected to MS imaging. In these cases,

accuracies of 75%–97% were reported on independent test data.52

Identifying better ways to account for signal variability in the MS data is another

means of improving the outcomes of machine learning. Researchers have developed

creative normalization methods that reduce instrumental variability, and applying

these methods leads to better differentiation of the disease state. One example of

a useful tool in this domain is EigenMS; it was first successfully applied to lipidomics

data53 and has also been used on proteomics data.54 Normalization for proteomics

data is an ongoing challenge, and testing multiple methods is usually necessary to

identify an approach that works best on the dataset at hand. The Elo group recently

tested different normalization methods on a few proteomics datasets,54 and their

strong study could be used as a model for evaluating different methods on new

datasets.

Beyond normalization, we showed that signal variability can be effectively ac-

counted for by using a learning strategy called a local-balanced model.23 A

local-balanced model combines three concepts: selecting a unique subset of

training samples for each test sample by choosing samples that have the most

similar instrument response (a local model), optimizing the size of both classes

of training set samples (balanced classes), and then finally applying a supervised

classification algorithm, such as SVM, to make the final assignments. This approach

shows enhanced accuracy on independent test data for various types of instru-

ment-derived data, including samples of different bacterial types undergoing

MALDI-MS.23

While the delivery of biomarkers into the clinic, based on workflows combining pro-

teomics and machine learning, is still far from fulfilling its promise, the potential for

medical revolutions has always underpinned the excitement in the field. A careful

analysis of past failures provides immense guidance for the future.44,48,55 By

following this guidance and taking every available opportunity to optimize the accu-

racy of a biomarker panel, researchers can be well positioned to cross the critical

threshold of delivering new medical diagnostics that become routine—not explor-

atory—and essential for improving patient outcomes.

Researchers are now pursing many diverse and interesting problems that can be ad-

dressed by machine learning and proteomics. This technology could be pivotal for un-

derstanding the impact of head collisions on National Football League (NFL) players,56

for assessing periodontal disease through proteomic analysis of saliva,57 for using am-

niotic fluid to assess preterm delivery,58 and in attempting to diagnose early-stage Par-

kinson’s disease.59 The combination of proteomics and MS imaging has particular

promise for typing cancers so that treatments can be optimized,46,60,61 and proteomic

analysis of liquid biopsies from prostate cancer patients may also direct optimal treat-

ment options.62 Finally, doctors may be able to better understand and predict disease

progression in diabetes63 and heart disease64 with panels that are developed by ma-

chine learning and proteomics. In the next 5 years, as more proteomics laboratories

include machine learning into their toolbox, the potential impact of combining these

technologies will increase even further. We implore researchers in this area to continu-

ally work towardmaking the treacherous transition from potentially impactful biomarker

candidates to clinically important, validated biomarkers.
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CONCLUSIONS AND OUTLOOK

Machine learning has much to offer proteomics researchers; both tools developers

and those interested in using proteomics data to understand biology can leverage

this capability to enhance their research and drive new developments. Looking for-

ward, machine learning will significantly enhance the field of proteomics tools devel-

opment in instances where researchers who understand the unique capabilities of

machine learning can design creative strategies to leverage this technology in soft-

ware designed to automate the analysis of complex MS data. By contrast, in the

biomarker field, the biggest barrier to advancement is not creativity on the data

analysis side but, rather, on the data collection end of the equation. Obtaining

optimal datasets that contain large and diverse sample numbers and are collected

on a biofluid that ultimately contains useful information for the diagnostic task at

hand is the biggest challenge at this point; once large, diverse, and useful sample

sets are present, the machine learning field has many tricks in its bag already to

pull out the meaningful markers. The barrier today, though, is that, when markers

are identified on small sample sets, or those that are not representative of the full

population for which the marker is intended, validation failure is high. Whether a re-

searcher’s primary expertise is in proteomics or machine learning, developing a

functional understanding of both fields will give researchers a competitive edge in

imagining and implementing innovations that drive science forward and improve

health and the human condition.
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