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Lake volume variation in the 
endorheic basin of the Tibetan 
Plateau from 1989 to 2019
Junxiao Wang   1, Liuming Wang   2, Mengyao Li2, Liping Zhu3 & Xingong Li4 ✉

Lake storage change serves as a unique indicator of natural climate change on the Tibetan Plateau (TP). 
However, comprehensive lake storage data, especially for lakes smaller than 10 km2, are still lacking in 
the region. In this dataset, we completed a census of annual relative lake volume (RLV) for 976 lakes, 
which are larger than 1 km2, on the endorheic basin of the Tibetan Plateau (EBTP) during 1989–2019 
using Landsat imagery and digital terrain models. Our method first identifies individual lakes, 
determines their analysis extents and calculates annual lake area from Landsat imagery. It then derives 
lake area-elevation relationship, estimates lake surface elevation, and calculates RLV. Validation and 
comparison with several existing datasets indicate our data are more reliable and comprehensive. Our 
study complements existing lake datasets by providing a complete and long-term lake water volume 
change data for the region.

Background & Summary
Alpine lakes in arid and semi-arid endorheic watersheds are susceptible to climate change1,2. One of the world’s 
largest alpine lake groups are found on the Tibetan Plateau (TP)3, which is often referred to as “the Third Pole of 
the Earth”4 or the “roof and the world”, provides vital water resources for more than a billion population in Asia, 
and is undergoing rapid climate change5.

In the past 50 years, the TP has undergone a much faster warming trend (~0.447 °C per decade) than the 
global average (0.15–0.20 °C per decade)6,7, which posed inevitable impacts on its alpine lakes8,9. With little 
human disturbance in the region, lake water volume change serves as an important indicator that reflects the 
regional hydrologic system’s responses to climate change10,11. Lake area on the TP has been increasing, which is 
the opposite of the changes in other regions of China12, Asia’s plateaus13, and other regions or drainage basins 
across the globe14. Furthermore, alpine lakes on the endorheic basins of the Tibetan Plateau (EBTP) have a 
unique role as they serve as nodes linking the atmospheric, cryospheric, and biospheric components of the 
hydrological cycle. To understand climate change impacts on the hydrological cycle in the region, it is essential 
to monitor the volume change of these alpine lakes15.

Due to the harsh environment and few in situ observation, satellite remote sensing has become an indispen-
sable tool for studying the dynamics of alpine lakes on the TP16–18. Satellite imagery has been used for long-term 
and large-scale monitoring of alpine lakes1,3,8,16,19–21 and lake water volume changes on the TP have been exam-
ined using Landsat data12,13,15. Table 1 summarizes recent studies on lake water volume changes in the region. 
In the two most recent studies, Li, et al.19 examined water level and storage changes of 52 lakes with an area 
larger than 150 km2 on the TP using altimetry and optical remote sensing images during 2000–2017. Yao, et al.1 
estimated the relative lake water volume of 871 lakes from 2002–2015 on the Changtang Plateau (CP) in the 
north-western TP using optical imagery and digital elevation models. Those existing studies, however, are lim-
ited to a few large lakes (e.g. lakes larger than 10 km2 in Zhang, et al.20 and lakes larger than 100 km2 in Li, et al.19, 
specific years (every 5 or 10 years), or a short time span of less than 15 years. There are about 1200 lakes with an 
area larger than 1 km2 in the region13,22 and the Landsat earth observation satellite has data archive of more than 
40 years23. It is necessary to have a long-term census of lake water volume change to study the impacts of climate 
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change on the hydrological cycle in the region. Nevertheless, existing lake studies have neither made full use of 
available earth observation data, nor have they covered more than 75% of the lakes in the region.

In this research, using the Google Earth Engine (GEE) geospatial analysis platform, we analysed 30 years 
(1989–2019) of Landsat imagery to obtain annual lake area time series for 976 lakes with a maximum area larger 
than 1 km2 on the EBTP. We further estimated annual volume change for the lakes based on the relationship 
between lake area and surface elevation using digital terrain model data. This study provides a lake water volume 
dataset which covers so far the largest number of lakes and the longest time span on the EBTP.

Methods
Study area and data.  The EBTP (78.646E–99.379E, 29.829N–39.419 N), which has a total area of 
1.42 × 106 km2, can be generally divided into two sub-basins: the Inner and Qaidam Basins (IB and QB) (Fig. 1). 
976 lakes with a maximum area larger than 1 km2 in 1989–2019 are selected in this study, which have a total area 
of 30912.03 km2 in 2019.

The data used in this research include Landsat imagery24–26, Joint Research Centre Global Surface Water 
(JRC-GSW) data27, Shuttle Radar Topography Mission (SRTM) digital elevation model28 (DEM), Advanced 
Land Observing Satellite (ALOS) digital surface model29 (DSM), and several public lake storage data. Both 
ALOS and SRTM have a spatial resolution of 30 m and cover the study area.

The JRC-GSW dataset contains the distribution of surface water from 1984 to 2020 and provides statistics on 
the extent and change of those water surfaces27. These data were generated using 4,453,989 scenes from Landsat 
5, 7, and 8 acquired between 16 March 1984 and 31 December 2020. Each pixel was individually classified into 
water/non-water using an expert system and the results were collated into a monthly history for the entire time 
period and two epochs (1984–1999, 2000–2020) for change detection. The product consists of one image con-
taining 7 bands. Areas where water has never been detected are masked. Detailed information for each band is 
shown in Table 2.

Imagery from Landsat-5 TM (1984–2012), Landsat-7 ETM + (1999−), and Landsat-8 OLI (2013−) were 
used to extract lake and calculate annual lake area. The JRC-GSW data provide monthly surface water extent 
from 1984 to 2019 and statistics on the extent and surface water change, which were generated using over 3 
million scenes from Landsat 5, 7, and 827. The dataset is used to identify individual lakes and to determine their 
analysis extents in this study. SRTM and ALOS digital terrain models (DTM) (referring to either DEM or DSM) 
are used to remove rivers from the water extents derived from JRC-GSW data and to establish the relationship 
between lake area and water surface elevation.

Study No. of lakes Temporal resolution Timespan

Zhang, et al.20 60–70 One record in the 1970s and annual for 1989–2015 1972–2015

Yang, et al.11 114 1976, 1990, 2000, 2005 and 2013 1976–2013

Yang, et al.3 874 Monthly 2009–2014

Yao, et al.1 871 Annual 2002–2015

Li, et al.19 52 Monthly 2000–2017

Ke, et al.52 823 2000 and 2014~14 years 2000 and 2014

Luo, et al.53 256 Annual 2003–2020

This study 976 Annual 1989–2019

Table 1.  Recent lake studies and datasets on the TP.

Fig. 1  Study area and two sub-regions (the Inner and Qaidam Basins). Background remote sensing image is 
from http://t0.tianditu.gov.cn/img_c/wmts.
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For validation purpose, we compared our results with a widely used lake surface elevation/storage data from 
the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) Hydroweb30 and two most recent 
lake water volume data from Li, et al.19 and Yao, et al.1. Only the overlapping lakes from these datasets are used 
in the comparison.

Calculating procedure.  In this research, relative lake volume (RLV) is calculated in two steps. The first 
step is to identify individual lakes, determine their analysis extents, and calculate annual lake area from Landsat 
imagery. The second step is to derive lake area-elevation relationship, estimate lake surface elevation, and calcu-
late lake water volume change. Details in the first step are shown in Fig. 2, which include three sub-steps: lake 
identification, lake analysis extent and seed determination, water classification and segmentation, and annual lake 
area calculation. For the second step, it can be divided into the derivation of the lake area-elevation relationship 
and calculating lake RLV.

Lake analysis extent and seed determination.  We used the JRC-GSW data27 to identify and select the 
lakes on the EBTP. Specifically, we used the max extent band to determine the maximum water extent between 
1984 and 2020. From those maximum water extent pixels, spatially connected pixels were identified as individ-
ual waterbodies and those with an area larger than 1 km2 were kept. Those waterbodies include both lakes and 
the rivers connected with them, especially for large lakes (Fig. 3). The border between lakes and rivers is hard to 
define. The main body of a lake should have a slope close to zero when its slope is derived from SRTM DEM as 
the lake elevation is usually hydro-flattened in the DEM. We calculated the slope of each waterbody pixel using 
SRTM DEM and removed those pixels with a slope greater than 0°, which are considered as rivers. In this step, 
several patches of waterbody pixels may occur. We visually inspected those patches and only kept the patch that 
represents the main body of the lake associated with the waterbody as the approximate extent of the lake. This 
approach worked effectively for waterbodies larger than 50 km2 and 490 lakes and their extents were identified 
this way. In the process, we found there is one river linking two lakes from high resolution remote sensing images 
(see Fig. 4). The river and the lakes were kept as one lake in this study though the lakes were treated as separate 
lakes in former studies1,19. The above procedure, however, tends to remove many small waterbodies entirely. So 
for waterbodies less than 50 km2, we inspected each waterbody visually, identified 486 more lakes, and manually 
drew their lake approximate extents. Altogether, we identified a total of 976 lakes and their approximate extents 
on the EBTP. A 5-km buffer was generated for each lake and was used as the analysis extents for the lake to reduce 
computing resources and improve efficiency.

In addition to lake analysis extents, a point is also created for each lake (hereafter lake seed) to distinguish the 
target lake from other waterbodies within its analysis extent. The centroid point of each lake’s approximate extent 
was calculated as initial lake seed location but they were manually checked and edited, if necessary, to make sure 
they are inside their lake approximate extents.

Water segmentation.  Although the JRC-GSW data provide global monthly surface water map, it is not 
designed for mapping alpine lakes specifically. As such, we developed our own method for mapping lakes on the 
EBTP from Landsat imagery.

Since there are more than 30,000 Landsat images in this study area within the study period, Google Earth 
Engine (GEE)31 was used for image processing and data analysis. We first selected Landsat images between June 
and November in each year to exclude images with snow and ice. Landsat quality assessment band (hereafter 
BQA band) was used to remove cloud, shadow, saturation (for Landsat 5, 7 and 8) and terrain occlusion (for 
Landsat 8 only) pixels on each image. A composite image was then generated with these selected images for 
each year. In GEE, the composite images were generated using the SimpleComposite function. The function 
computes a Landsat top of atmosphere (TOA) composite from a collection of Landsat scenes. It calculates a 
cloud score (between 0 and 100) at each pixel for each image, selects the pixels with a cloud score less than a 
certain threshold, and calculates a percentile pixel value for the composite image. More details on the function 
can be found at https://developers.google.com/earth-engine/guides/landsat#simple-composite. In this research, 
we used a cloud score threshold of 10 and a percentile value of 0 (i.e. use the lowest pixel values with a cloud 
score of 10 or less). Because the water usually has lower pixel value than land, the composite images represent 
the maximum water extents in each year.

With the annual composite images, lake water pixels are classified using normalized difference water index 
(NDWI)32:

Name Description Min Max Units

occurrence The frequency with which water was present. 0 100 %

change_abs Absolute change in occurrence between two epochs: 1984–1999 vs 2000–2019. −100 100 %

change_norm Normalized change in occurrence. (epoch1-epoch2)/(epoch1 + epoch2) * 100 −100 100 %

seasonality Number of months water is present. 0 12

recurrence The frequency with which water returns from year to year. 0 100 %

transition Categorical classification of change between first and last year. / / /

max_extent Binary image containing 1 anywhere water has ever been detected. / / /

Table 2.  Bands in Joint Research Centre Global Surface Water data.

https://doi.org/10.1038/s41597-022-01711-w
https://developers.google.com/earth-engine/guides/landsat#simple-composite


4Scientific Data |           (2022) 9:611  | https://doi.org/10.1038/s41597-022-01711-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

B B
B B

NDWI
(1)

G NIR

G NIR
=

−
+

where BG and BNIR are the green and near infrared bands, which are band 2 and 4 for Landsat 5/7 and bands 3 and 
5 for Landsat 8 OLI images, respectively. Several other indexes have been used for lake mapping, such as modi-
fied NDWI (MNDWI)33, normalized difference moisture index (NDMI)34, and water ratio index (WRI)34,35. We 

Fig. 2  Workflow for calculating annual lake area from Landsat imagery. Background remote sensing image is 
from http://t0.tianditu.gov.cn/img_c/wmts.
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chose NDWI in this study as existing research indicated that NDWI appears to be simple but more robust than 
the other index-based methods in detecting lake extent under various water conditions36,37.

Thresholding (or segmentation) is a key step in extracting water pixels from NDWI images. Usually, pixels 
with a NDWI value greater than 0 are considered as water. However, because of disparate geographical environ-
ment and dynamic water conditions, it is impossible to use the same NDWI threshold for all the lakes in all the 
years. In this research, we used local Otsu method38,39 to dynamically segment NDWI images. The Otsu method 
searches for the threshold that minimizes the intra-class variance of water pixels and non-water pixels, defined 
as a weighted sum of variances of the two classes:

σ ω σ ω σ= +ω t t t t t( ) ( ) ( ) ( ) ( ) (2)2
0 0

2
1 1

2

where weights ω0 and ω1 are the probabilities of the two classes separated by a threshold t, and 0
2σ  and σ1

2 are the 
variances of these two classes38. There are actually two options to find the threshold38. The first is to minimize the 
within-class variance defined in Eq. 2, and the second approach is to maximize the between-class variance using 
the equation below:

σ ω ω μ μ= −t t t t t( ) ( ) ( )[ ( ) ( )] (3)b
2

1 2 1 2
2

where μi is a mean of class i.
In this study, a Canny edge detection algorithm40 was first used to extract lake shorelines from NDWI images 

(see the yellow box in Fig. 2). A 120-m buffer was then generated around the shorelines. After that Otsu method 
was applied to the NDWI value within the buffer to obtain the optimal threshold that separates water from 
no-water pixels.

Annual lake area.  As water level changes, some lakes may have several separate waterbodies in some years 
due to reduced water volume. To handle this situation, we unioned all the annual water pixels within a lake’s 
analysis extent and, from which, we then identified the spatially connected water region which contains the lake’s 
seed as the lake’s maximum water extent during the study period for each lake. The maximum lake water extent 
is then used to identify annual lake water pixels and to calculate annual lake area (see red box in Fig. 2). In this 
way, even if a lake has separate waterbodies in some of the years, all the constituent waterbodies are counted as 
parts of the same lake.

We used the imagery from Landsat-5 TM (1984–2012), Landsat-7 ETM + (1999-), and Landsat-841. When 
imagery from multiple sensors (Landsat 5 & 7 and 7 & 8) are available, lake area was calculated separately from 
each sensor and then combined. If the relative difference between the two sensors is within 2%, the average area 
is used for the year. Otherwise, annual Landsat composite images and lake boundaries were manually examined 
to decide which area is more accurate. In addition, annual lake area was manually checked if there is a significant 
change (>10%) from previous and following years. In rare cases, the composite images may have lakes frozen, 
covered by shadow (cloud or terrain) or dammed, which result in a large error in lake area. When this happened, 
we treated the composite image as contaminated and unreliable, and the lake area for the year was linearly inter-
polated using prior and later year’s lake area. Through those steps, we obtained the annual maximum lake area 
for each lake.

Lake surface elevation.  Lake surface elevation is essential to calculate water volume change. Both satellite 
altimetry and DTM have been used to estimate lake surface elevation15,19,36. While satellite altimetry is more 
accurate, it is limited to less than 170 large lakes on the TP42–44 and even fewer on the study area of this research20. 
Because of this, we used DTM data to estimate lake surface elevation.

Fig. 3  Lakes extents with and without river parts. Background remote sensing image is from http://t0.tianditu.
gov.cn/img_c/wmts.
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Without lake bathymetry data, we can only estimate lake surface elevation based on the elevation-area rela-
tionship derived from DTM assuming that the slopes below and above the lake water surface when the DTM 
was collected are similar11. Some commonly used methods include linear equation11, second order parabolic 
equation19 and monotonic cubic spline fitting1. These methods have their own advantages and disadvantages. 
Because the linear regression is the simplest, it is usually suitable when fitting data is not enough for second 
order parabolic equation or mor complex methods. The second order parabolic equation is suitable for sim-
ulating the elevation-area relationship with small changes in slope. The monotonic cubic spline fitting, which 
constructs polynomial functions, can fit data more smoothly45 and model the elevation-area relationship with 
large slope changes45.

Methods for deriving lake elevation-area relationship.  Lake surface elevation can be estimated by 
calculating the average elevation of lake boundary1,3,19,40. This approach assumes that the DTMs are obtained 
before lake water volume started increase. The DTMs (SRTM and ALOS) we used were acquired in and after 
200046,47 and the surface area of some of the lakes is below the surface area when the DTMs were acquired. As 
such, lake surface elevation in this study is estimated based on the area-elevation relationship derived from the 
DTMs for each lake. Existing studies mainly used just one of a few methods, including linear equation11, para-
bolic equation19 or monotonic cubic spline fitting1, to derive the relationship. In this research, we used different 
methods under different situations.

Although existing research indicates that monotonic cubic interpolation (MCI) has the best performance 
in fitting elevation-area relationship1, we found that MCI may overfit. In this research, a combination of lin-
ear regression (LR), second order polynomial regression (SOPR), and MCI methods was used to derive the 
elevation-area relationship which was then used to estimate surface elevation with lake area obtained from 
Landsat imagery. The elevation-area pairs, where the elevation starts from the lowest elevation, increases at an 
interval of 1 m and stops at the highest elevation within a lake’s analysis extent, were obtained from SRTM and 
ALOS separately. At each elevation, pixels that are less than the elevation were extracted from DTM and con-
verted into polygons. The maximum lake water extent is then used to select the polygons representing lake water 
surface areas and the sum of all the polygon area is the lake surface area for the elevation. The minimum (MinA) 
and maximum (MaxA) annual lake area from Landsat are then used to select the elevation-area pairs whose area 
is in the range of [MinA/1.5, MaxA*1.5] from both SRTM and ALOS, and the list with more elevation-area pairs 

Fig. 4  Four examples of estimating lake surface elevation based on the relationship between elevation and 
lake image area derived using the LR, SOPR and MCI data fitting methods. The elevation-lake area data pairs 
obtained from the SRTM DEM are shown as red points. The MCI method performs the best in (A) and (C) but 
may overfit in (B) and (D). See text for the performance of the LR and SOPR methods.

https://doi.org/10.1038/s41597-022-01711-w
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is kept. If the two lists have the same length, the SRTM list is kept. The choice of the data fitting methods depends 
on the number of selected elevation-area pairs, which is discussed below and summarized in Table 3:

	(1)	 If the number of data pairs is zero or one, a new list of elevation-area pairs is generated from the selected 
DTM with three pairs whose area starts with MaxA*1.5. The LR method was then used to derive the eleva-
tion-area relationship. This approach is labelled as LRN;

	(2)	 If the number of data pairs is two, we used the LR to derive the elevation-area relationship and label this 
approach as LRC;

	(3)	 If the number of data pairs is equal to or greater than five and lake area range from the selected DTM fully 
covers the area range ([MinA, MaxA]) from Landsat imagery, the MCI method was used;

	(4)	 In other cases, the SOPR method was used. When the symmetric axis of the SOPR model falls within 
[MinA, MaxA], the derived elevation-area relationship will be non-monotonic. To avoid this, when the 
symmetric axis fell within [MinA, MaxA], the LR method was used instead and this is labeled as LRS.

Four lakes, with the area ranging from 0.97 km2 to 149.3 km2, were selected to explain the typical situations 
when different methods were used. Figure 4 shows the elevation-area pairs (red points) from the DTMs and the 
elevations estimated based on Landsat image lake area using different data fitting methods. MCI has the best 
performance for the lakes in Fig. 4A,B and there is no obvious difference between SOPR and MCI in Fig. 4C,D. 
The LR has the worst performance in Fig. 4A–C. However, when the elevation-area pairs from the DTMs do not 
cover the lake area range from Landsat images, estimated elevation can have serious error, especially for MCI. 
Take the lake in Fig. 4B as an example, its area range from Landsat imagery is [0.23, 16.71] km2 from 1989 to 
2019, yet the smallest area obtained from SRTM is 4.69 km2. This is because the SRTM was collected in 2000 but 
most lakes had been expending since 1995 in the region. While MCI fits generally well with the elevation-area 
pairs from the DTMs, elevations outside the DTM area range are estimated unreal in Fig. 4B,D, especially in 
Fig. 4D where the elevation of the lake area smaller than the smallest DTM area are estimated unreasonably 
high. Those examples indicate that MCI may overfit and should only be used when image lake area is within the 
DTM area range. SOPR also has the same issue when image lake area is outside DTM area range. As such, SOPR 
is only used when the minimum image lake area is smaller than the minimum DTM area. When using SOPR 
method, the fitted curve is not monotonic when its symmetric axis falls into [MinA, MaxA] (Fig. 4A). When this 
happens, LR method was used instead. In addition to the above situations, the number of elevation-area pairs 
from the DTMs which are within the image area range of [MinA/1.5, MaxA*1.5] also play a role as discussed in 
RLV calculation.

Lake water volume.  Relative lake volume (RLV) in year y is the lake water volume change between the year 
and the base year, which is 1989 in this study, and can be calculated by the integral of an elevation-area function:

∫ ∫= =AdE f dERLV (E)
(4)y

E

E

E

Ey y

1989 1989

f A or d eE(E) a bE cE (5)2= = + + +

where E denotes lake surface elevation, and A is the lake area at the elevation. f(E) is the fitted elevation-area 
function using the LR or SOPR methods, and a, b, c, d, and e are the coefficients of the SOPR and LR models.

Since the MCI function is not integrable analytically, we cut the lake water volume between two dates into 
frustums with 1 m of elevation intervals (Fig. 5). With an elevation list [ …+ + −E E E E E, , , , ,t t t t t1 1 1 1 2 2 1 2], the 
corresponding lake area was obtained using the fitted MCI. The RLV is the sum of all the frustums (i.e., ∑ Vn

Fn1 ), 
which can be calculated by the following equation:

= 

 + + + × 


V A A A A h( ) 1

3 (6)F U D u D

where AU and AD denote the base and top surface area of a frustum and h denotes the height of the frustum, 
which is 1 m here. In this study, All RLVs were calculated relative to their lake water volumes in 1989. In another 
word, the RLVs of all the lakes are 0 in 1989.

Conditions Method Abbreviation

The number of data pairs is 0 or 1 Generate 3 new data pairs and then use LR LRN

Number of data pairs = two LR LRC

Number of data pairs >=≥ five and MinA is 
larger than the minimum area from DTM MCI MCI

None of the above SOPR but use LR when the symmetric axis of SOPR falls within 
[MinA, MaxA] SOPR/LRS

Table 3.  Selection of data fitting methods for deriving elevation-area relationship for each lake.
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Data Records
A total of 976 annual lakes’ area and RLV data are provided for the entire EBTP for the period of 1989–2019. The 
dataset is available at the Zenodo repository as ESRI’s shapefiles and a summary table (https://doi.org/10.5281/
zenodo.7042325)48. The shapefiles are in the geographic coordinate system (ESPG: 4326). There are three shape-
files: relative lake volume, lake area, and lake seeds. Relative_Lake_Volume.shp is the shapefile containing the 
relative lake volume (RLV) of 976 lakes from 1989 to 2019 on the EBTP. The data fitting methods and the DEM 
data sources are also included as attributes. Lake_Area.shp is the shapefile which contains annual lake area of 
the 976 lakes from 1989 to 2019. Lake_Seeds.shp is the point shapefile containing the longitude and latitude of 
the lake seeds. Besides, the Equation_Index.xlsx has the elevation-area relationship equations used for each lake.

Technical Validation
We compared the results in this study with a widely used lake surface elevation and storage dataset from the 
LEGOS Hydroweb30 as well as two most recent lake water volume data on the TP from Li, et al.19 (referred to 
as Li’s data hereafter) and Yao, et al.1 (referred to as Yao’s data hereafter). Because the volume data in this study 
are relative volume change to 1989, we recalculated both Li’s and Yao’s data to make sure their volume data are 
also relative to 1989. Pearson’s correlation coefficient (PCC) and symmetric mean absolute percentage error 
(sMAPE), which is defined in Eq. 7, were used to evaluate the accuracy.

∑=
−

+=n

x y

x y
sMAPE 1 2*

(7)
i
n i i

i i
1

where n is the sample size. xi and yi are the ith data value from this study and existing datasets, respectively. The 
range of sMAPE is [0, 2] and the smaller the sMAPE, the smaller the relative error. sMAPE is a scale-independent 
accuracy index based on percentage errors49. Compared with commonly used Root Mean Square Error (RMSE), 
sMAPE can be used to compare lakes with different magnitude of RLV. In addition, sMAPE allows 0 in the data, 
which is very common in RLV. In contrast, mean relative error (MRE) has issues when data values are 0. Because 
those reasons we used sMAPE instead of MRE here.

The Supplementary Table 1 shows the PCC and sMAPE when comparing our RLVs with Hydroweb (21 
lakes) and Li’s data (40 lakes) for the overlapping lakes. All the PCCs are significant with p-values less than 
0.01. Compared with Hydroweb data, 13 lakes (66.7%) have a PCC larger than 0.8 and a sMAPE less than 1. 
Compared with Li’s data, 31 lakes (77.5%) have a PCC larger than 0.8 and a sMAPE less than 1. Those results 
suggest that our RLVs match generally well with both Hydroweb and Li’s lake data.

There are discrepancies among the datasets. For example, lake Ngangla-Ringco has a PCC of −0.140 and 
sMAPE of 1.263 when compared with Hydroweb data but a PCC of 0.811 and sMAPE of 1.140 when compared 
with Li’s data. Three lakes (Ngangla-Ringco, Gozha-Co and Taro-Co), which have either the least PCC or the 
largest sMAPE with Hydroweb or Li’ data (bold and italic in Supplementary Table 1), were further examined. 
For Ngangla-Ringco, Fig. 6 shows the differences in lake area and surface elevation between our data and the two 
existing datasets. From 2016 to 2019, while our and Li’s lake surface elevation both show a significant increase, 
Hydroweb elevation has a slight decrease. From 2002 to 2019, our lake area is around 500 km2 but Hydroweb 
lake area is about 240 km2, only about the half of our lake surface area.

The boundaries of lake Ngangla-Ringco in 2008 (before significant increase in 2016) and 2018 (after signif-
icant increase in 2016) are shown in Fig. 7 with SRTM DEM added to help examine lake boundary elevation. 
The mean lake boundary elevations are 4716.68 and 4717.88 meters in 2008 and 2018 respectively and Fig. 7c–e 
show a clear increase in surface elevation (as shown by the lake shoreline location) between the years. In addi-
tion, our lake boundaries (Fig. 7a and b) fit well visually with the lake on the composite images, indicating our 
lake areas are more reliable than Hydroweb data for the lake.

Fig. 5  Schematic diagram showing how relative lake water volume can be calculated using a series of frustums. 
The volume between time t1 to t2 can be divided into a series of frustums (F1 to Fn) with a height of 1 m. For 
each frustum, its volume can be calculated with its top and bottom area using Eq. 6.
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In Li’s data, lake Gozha-Co’s surface elevation rose from 2001 to 2009 reaching the highest elevation of 
5084.43 m in 2009, and then it started a decreasing trend (Fig. 8). In our data, lake surface elevation fluctuated 
but generally had been decreasing from 2001 to 2018. While our lake surface elevation ranges between 5079 and 
5081 m, Li’s lake elevation is between 5083 m and 5085 m, which leads to extremely larger lake water volume 
compared with our data.

For further assessment, lake Gozha-Co’s extents (Fig. 9a–c) in 2002, 2009, and 2018 and SRTM DEM are 
shown in Fig. 9. The mean lake boundary elevations are 5080.74 m, 5079.28 m and 5079.04 m in 2002, 2009 and 
2018 respectively and Fig. 9d,e show no significant change in surface elevation in those years and the highest ele-
vation occurred in 2002 rather than in 2009 and the elevation in 2009 and 2018 does not differ much. All those 
confirm that our data are more reliable than Li’s data. The large difference between our and Li’s volume data is 
probably caused by the difference in elevation. Unfortunately, Li’s data doesn’t provide lake area.

Figure 10 shows the differences in lake area and surface elevation among the datasets for lake Taro-Co. Our 
data and the two existing datasets generally have a similar increase trend in surface elevation in 2004–2008. 
Our surface elevation have been increasing from 2015 to 2018 but Hydroweb and Li’s elevation experienced a 
decrease from 2015 to 2016 and Li’s elevation also decreased from 2017 to 2018. In addition, both our area and 
elevation data fluctuated more than the other two datasets.

The extents (Fig. 11a–c) for lake Taro-Co in 2015, 2016, and 2018 and SRTM DEM are shown in Fig. 11. The 
mean elevation of the lake boundaries from this study are 4569.59 m, 4569.77 m, and 4571.25 m, respectively. A 
significant increase in lake surface elevation in 2018 can be clearly observed in Fig. 11d,e.

Yao, et al.1 also published a lake storage data on the IB. Their datasets include the annual RLV for 871 lakes 
with an area larger than 1 km2 from 2009 to 2015, and the annual RLV for 126 lakes with an area larger than 
50 km2 from 2002 to 2015. Among these lakes, we found 816 overlapping lakes compared with their lakes larger 
than 1 km2, and all lakes larger than 50 km2. Our data have less lakes than Yao’s data on the IB primarily because 
that connected waterbodies were counted as separate lakes in Yao’s data as shown in the example in Fig. 12.

For lakes larger than 1 km2, 447 out of 816 (54.78%) lakes have PCCs with p-value less than 0.05. The average 
PCC and sMAPE for these 447 lakes are 0.882 and 0.722, respectively. In addition, 301 lakes have PCC ≥ 0.8 and 
sMAPE < 1. For lakes larger than 50 km2, 110 out of 126 (87.30%) lakes have PCCs with p-value less than 0.05. 
The average PCC and sMAPE for these 110 lakes are 0.883 and 0.609, respectively. In addition, 73 lakes have 
PCC ≥ 0.8 and sMAPE < 1. Overall, the data in this study match better with Yao’s 50km2 data than 1 km2 data. 
Because Yao et al.1 did not provide lake area and surface elevation data, it is difficult for us to further examine 
the discrepancy.

Usage Notes
We identified a total of 976 lakes on the EBTP, and their maximum extents during the study period are shown in 
Fig. 13. 930 of those lakes (95.29%) are located on the Inner Basin, and only 46 (4.71%) are on the Qaidam Basin. 
Large lakes are primarily located on the southern and eastern periphery of the inner basin.

Hydrologically open and closed lakes may change differently. While individual lake changes may present 
conflicting signals (i.e., open lakes have limited changes and downstream closed lakes have large changes), com-
bining hydrologically connected lakes as one lake may alleviate this issue when studying the changes in lake 
water storage50.

In this study, we combined the lakes that are connected by short rivers as one lake (see Fig. 12 for an exam-
ple). Most of our connected lakes, however, are “hydrologically connected” through low terrain. These lakes are 
formed when small separate waterbodies of a large lake in dry periods become connected with inc km2ease in 
water level during wet periods (e.g., several small lakes near the Lake Selin Co). In this case, it is impractical to 
separate these lakes during wet periods.

Our water volume dataset is aimed for studying the lake water changes in the hydrological system instead of 
individual lakes. From the water balance perspective, such studies are best done using hydrologically connected 
lakes, ideally closed basins, as study units. Combining hydrologically connected lakes in the same basin could 

Fig. 6  Comparison of lake area and lake surface elevation between the results in this study and two existing 
data (Hydroweb and Li’s data) for lake Ngangla-Ringco from 2002 to 2019. The y-axis on the left, representing 
lake area, is for the vertical bars. The y-axis on the right, representing lake surface elevation, is for the horizontal 
lines.
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Fig. 7  Lake extents in 2018 (a) and 2008 (b) and in three close-up areas (c), (d) and (e) (corresponding to boxes 
(1), (2), (3) in (a) and (b), respectively) from the results in this study for lake Ngangla-Ringco. Images in (a) and 
(b) are composite image (R: Near-infrared band, G: Red band, B: Green band) from Landsat 5 and Landsat 8 
respectively. DEM shown in (c)-(e) are SRTM DEM.

Fig. 8  Comparison of relative lake water volume and lake surface elevation between the results in this study 
and two existing data (Hydroweb and Li’s data) for lake Gozha-Co from 2001 to 2018. The y-axis on the left, 
representing lake surface elevation, is for the lines. The y-axis on the right, representing relative lake water 
volume, is for the vertical bars.
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Fig. 9  Lake extents in 2002 (a), 2009 (b), and 2018 (c) and two close-up areas (d), and (e) (corresponding to 
boxes (1) and (2) in image (a), (b) and (c), respectively) from the results in this study for lake Gozha-Co. DEM 
shown in (d) and (e) are SRTM DEM. Composite images in (a–c) (R: Near-infrared band, G: Red band, B:Green 
band) are from Landsat 7.

Fig. 10  Comparison of lake area and lake surface elevation between the results in this study and two existing 
data (Hydroweb and Li’s data) for lake Taro-Co from 2000 to 2018. The y-axis on the left, representing lake area, 
is for the vertical bars. The y-axis on the right, representing lake surface elevation, is for the lines.

https://doi.org/10.1038/s41597-022-01711-w


1 2Scientific Data |           (2022) 9:611  | https://doi.org/10.1038/s41597-022-01711-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 11  Lake extents from this study for lake Taro-Co in 2015 (a), 2016 (b), and 2018 (c) and two close-up areas 
(d), and (e) (corresponding to boxes (1) and (2) in image (a,b) and (c), respectively). DEM shown in (d) and 
(e) are SRTM DEM. Composite images in (a–c) (R: Near-infrared band, G: Red band, B:Green band) are from 
Landsat 7.

Fig. 12  An example that connected waterbodies were counted as one lake (lake ID of L016) in our study but 
separate lakes (Qiagui Co (west) and Wuru Co (east)) in Yao’s data. Remote sensing image is from http://
t0.tianditu.gov.cn/img_c/wmts. Background remote sensing image is from http://t0.tianditu.gov.cn/img_c/
wmts.
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help us understand lake water storage condition at basin scale and how lake water storage responds to external 
environmental forcing (e.g., variation in precipitation and glacier)51.

This research provides a census on water volume change for the lakes greater than or equal to 1 km2 on the 
EBTP from 1989–2019 using Landsat imagery and DTM data. The dataset in this study, compared with other 
existing data, covers more lakes, especially small lakes in 1–10 km2, and longer time period. Comparison with 
three major existing data products in the region indicates that our dataset is reliable and might be more accu-
rate. To the best of our knowledge, the dataset in this study provides the longest and most comprehensive lake 
water volume change data in the region, especially for small lakes (1–10 km2). The dataset is valuable in studying 
the impacts of climate change and water balance in the region. The workflow used in this study can be further 
improved to process individual Landsat image (instead of annual composite image) and create a lake water vol-
ume dataset with a higher temporal resolution in the future.

Code availability
The annual area and RLV of lakes larger than 1 km2 from 1989 to 2019 were produced using GEE API and Python. 
The code developed for this work are openly shared with the scientific community at Zenodo repository48. GEE 
should be used to access and edit the code.
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