
Article https://doi.org/10.1038/s41467-022-33729-4

Predicting the structure of large protein
complexes using AlphaFold andMonte Carlo
tree search

Patrick Bryant 1,2 , Gabriele Pozzati 1,2, Wensi Zhu1,2, Aditi Shenoy 1,2,
Petras Kundrotas1,3 & Arne Elofsson 1,2

AlphaFold can predict the structure of single- and multiple-chain proteins with
veryhigh accuracy.However, the accuracydecreaseswith thenumberof chains,
and the available GPU memory limits the size of protein complexes which can
be predicted. Here we show that one can predict the structure of large com-
plexes starting from predictions of subcomponents. We assemble 91 out of 175
complexes with 10–30 chains from predicted subcomponents using Monte
Carlo tree search, with a median TM-score of 0.51. There are 30 highly accurate
complexes (TM-score ≥0.8, 33% of complete assemblies). We create a scoring
function,mpDockQ, that can distinguish if assemblies are complete andpredict
their accuracy. We find that complexes containing symmetry are accurately
assembled, while asymmetrical complexes remain challenging. The method is
freely available and accesible as a Colab notebook https://colab.research.
google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb.

Large protein complexes govern many cellular processes, performing
complicated tasks such as mRNA splicing1, protein degradation2 or
assisting protein folding3. By incorporating protein-interaction infor-
mation from many co-purification experiments, the human protein
complex map, hu.MAP 2.04, provides a set of 4779 complexes with
more than two chains. However, only 83 of these complexes are pre-
sent in PDB. There are only 372 structurally resolved human protein
complexes with over two chains, and of the 3130 eukaryotic core
complexes in CORUM5 only 800have homologous structures covering
all chains in PDB, suggesting a gap in our structural knowledge of
protein complexes.

There are only 265 hetero and homomeric, non-redundant com-
plexes in the PDBwith 10–30 chains. Although it is unknownhowmany
large complexes may exist, following the relationship between the
known human complexes from hu.MAP and the structural coverage of
these, one can extrapolate that there may indeed be a low structural
coverage across different species.

There are at least three approaches6 for modelling the structure of
protein complexes, template-basedmodelling7, shape complementarity
docking8 and integrative modelling9,10. Template-based modelling and

docking methods have recently been shown to be outperformed by a
combined fold and dockingmethodology using AlphaFold11 for dimeric
complexes, even if the bound form of each monomer is known12. Fur-
ther, few docking programmes handle more than two protein chains,
i.e., thesemethods are not suitable for building large complexeswith no
close homology to known complexes. There is currently (to our
knowledge) no available docking benchmark for complexes with more
than two chains, and previous studies only report results on a few
examples13,14.

Assembling large protein complexes with integrative modelling
generally requires electron density maps or other experimental
information to guide the assembly process9,15. This type of guided
assembly is typically based on a Markov process9 or Gaussian mixture
models16, where many different potential configurations are explored
and scored. This processmakes it possible to assemble complexeswith
up to 1000protein chains17. However, obtaining electron densitymaps
can be very difficult, as some protein complexes are hard to express,
purify and crystallise. Still, many recent assemblies of large protein
complexes exist, such as the human nuclear pore complex18 and 26 S
proteasome19.
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The only deep learning method primarily designed to predict the
structure of more than two protein chains is AlphaFold-multimer20.
This method has been trained on proteins of up to nine chains or 1536
residues and can predict complexes of up to a few thousand residues,
where memory limitations come into play. However, the performance
declines rapidly for proteins with over two chains (Supplementary
Fig. 4). Predicting the structure of larger complexes is thereby cur-
rently not feasible. An alternative approach could be to predict the
structure of subcomponents of large complexes and then assemble
them. We have earlier shown that it is possible to manually assemble
large complexes from dimers in a few cases21.

In vivo, all components of large protein complexes do not
assemble simultaneously, but stepwise22, due to the presence of
homologous protein chains and potential interfaces that need to be
buried before subsequent chains can be added.

Here, we explore the limitations of AlphaFold for predicting
protein complexes with 10–30 chains and create a graph-traversal
algorithm that excludes overlapping interactions,making it possible to
assemble large protein complexes in a stepwise fashion.

Results
Here, we begin with an outline of the protein complex assembly using
Monte Carlo tree search (MCTS). We then explore the success rates
using either AlphaFold-multimer version 220 (AFM) or the FoldDock

protocol12 using AlphaFold11 (AF). First, we examine the use of pre-
dicted subcomponents of the native dimeric or trimeric sub-
components. We then continue without assuming knowledge of the
interactions, presenting the final protocol based on all possible tri-
meric subcomponents.

Complex assembly
To analyse the possibility of assembling large protein complexes, we
extracted all high-resolution non-redundant complexes from the PDB
withmore thannine chains not containing nucleic acids or interactions
from different organisms (175 in total). We start by analysing the
possibility of assembling these protein complexes assuming that exact
pairs of interactions between protein chains are known. Using either
AFM or FoldDock, we predict the structure of all unique pairs of
interacting protein chains as subcomponents and create assembly
paths from these.

As an example, the assembly of 6ESQ (acetoacetyl-CoA thiolase/
HMG-CoA synthase complex) is shown in Fig. 1, using subcomponents
predicted with AFM. The process starts from the two dimers, AC and
CH, creating the trimer ACH through superposition using the chain C
present in both dimers. Next, chain L is added through a connection
with H (superposition using chain H); after that, chain J through a
connectionwith L; this process then continues until the entire complex
is assembled according to the outlined path.

Protein 
sequences

Interaction 
network

Structure 
prediction+

PDB ID: 6ESQ
Hetero 12-mer - A4B4C4

Dihedral - D2
TM-score=0.93

90 dg.

Step 1 Step 4

Step 10

Assembly

+

H-C

C-A H-C-A

Fig. 1 | Assembly principle for the acetoacetyl-CoA thiolase/HMG-CoA synthase
complex (complex 6ESQ). The structure of all interacting chains is predicted by
protein sequences from each chain and the interaction network. From these pre-
dictions, an assembly path is constructed using the predictions as a guide. In each
step, one new chain is added through a network edge resulting in a sequential

construction of the complex. The taken path is outlined in red. The complete
assembly is shown in overlap with the native complex (grey). The resulting TM-
score is 0.93 using subcomponents from AFM (shown) and 0.92 using FoldDock
(not shown).
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During the first part of this paper, we assume that the interaction
graph is known, i.e., we limit the assembly paths only to include
interactions existing in the complex. Although this is a simplification,
the number of assembly paths is still huge, and it could at least be
theoretically possible to obtain this information from other types of
experiments23 or predictions4. Next, potential assembly paths are
created by starting at a randomly selected chain and adding all pos-
sible connections through superposition. Often overlaps occur among
thepredictions due to imperfect subcomponents, resulting in that, e.g.
atoms from chains B and C occupying the same spatial position in a
given complex ABCD. Therefore, an assembly path is discontinued
when over half of the alpha carbons from two different chains are
within 5 Å of each other. An assembly path is complete when all chains
in a complex can be linked together. For 6ESQ, the assembly results in
a model with a TM-score of 0.96.

Monte Carlo tree search
Due to the high number of possible paths to explore, searching all
paths is unfeasible. Therefore, we search for an optimal path using
MCTS24 (Fig. 2), which has been applied successfully to solve a
variety of game-related problems25,26. Starting from a randomly
selected chain (node) chains are added randomly to expand the
path, thereby creating new nodes. From these expansions, com-
plete assemblies are simulated. Simulations are stopped when no
additional subunits can be added, see Methods. The simulated
assemblies are scored by their cumulative mpDockQ (multiple-
interface predicted DockQ; average interface plDDT times the

logarithm of the number of interface contacts, Methods section)
score, and the scores are backpropagated to yield support for the
previous selections. The path with the most support is selected,
creating a complex that is the most likely to be correct. Due to the
statistical nature of the search procedure, no aspect of a specific
complex is being “learned” in the backpropagation, i.e., all 175
complexes can be used for evaluation.

AFM vs. AF using pairwise interactions
Only fifteen out of 175 complexes could be assembled to completion
using native pairwise interactions with both AFM and FoldDock (Sup-
plementary Fig. 1a). The assemblies based on FoldDock and AFM are
partly complementary, meaning that the subcomponents of either
AFMor FD canbeused to assemble a complex. The results suggest that
if a complete path can be found the models from AFM are slightly
better (median TM-score = 0.83) compared to the FoldDock models
(median = 0.77).

The AlphaFold-multimer version 1 (AFM-v1) modelling pipeline
often caused clashes (Supplementary Fig. 1b), resulting in atoms from
different chains occupying the same positions, which is why a new
version was developed (version 2). Defining clashes as atoms from
different protein chains being within 1 Ångström from each other,
26.7% (175/656) of the AFM dimers contain clashes and 6.3% (41/656)
for the FoldDock pipeline. Even though there are more clashes in the
AFM predictions, the final assemblies turn out to be of better quality,
suggesting that the subcomponents are accurately predicted, for
details see below.

Selection Expansion Simulation Backpropagation

Complex 
score

Complex

Select the highest 
scoring node

Expand to a new 
node selected 
randomly

Simulate a complete 
complex by adding new 
nodes randomly

Score the complex and 
backpropagate the 
score to yield support to 
previous selections

Fig. 2 | Monte Carlo tree search. Starting from a node (subcomplex) a new node is
selectedbasedon thepreviouslybackpropagated scores. From this node, a random
node is added (expansion). A complete assembly process is then simulated by
adding nodes randomly until an entire complex is assembled or a stop caused by

too much overlap is reached. The complex is scored, and the score is back-
propagated to all previous nodes, which yields support for the previous selections.
The final result is that the nodesmost likely to result in high-scoring complexes are
joined in a path containing all chains. The principle for the complex 6ESQ is shown.
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Limited conformational sampling in dimers
During assembly, the additive relative orientation of different protein
chains can result in overlaps, due to predictions not being entirely
correct. One cause of overlaps during the assembly process is due to
that not all conformations of chain interactions are correctly pre-
dicted, resulting in wrong or missing interfaces in some dimers. As an
example, we investigated 1A8R, a homo 10-mer. When predicting
unique pairwise interactions, only one type of dimeric conformations
can be found, but in the complex, each chain has at least two different
types of interactions with other chains. Thismeans that it is impossible
to assemble the entire complex from the predicted dimers. The
overlapping interfaces can, here, be circumvented by predicting tri-
meric interactions, thereby generating alternative interfaces (Supple-
mentary Fig. 1c). We, therefore, continue with predicting trimeric
subcomponents and use all three dimers from a trimer for assembly.

Complex assembly using trimeric interactions
Using the FoldDock protocol and AFM all native trimeric interactions
were predicted for all complexes. Using the unique native trimers, the
clashes are more frequent than using the dimers, 37.1% (829/2234) for
AFM, while for the FoldDock pipeline, the corresponding fraction is
23.2% (520/2242). All dimeric interactions were extracted from the
trimers and assembly paths were constructed as previously. Out of 175
complexes, 58 (33%) and 55 (31%) could be assembled to completion
with median TM-scores of 0.80 and 0.74 for FoldDock and AFM,
respectively (Fig. 3a, Supplementary Table 1). Compared with the
guided dimer TM-scores the guided trimer approach results in 46
additional complexes and a higher median TM-score for FoldDock,
while three could not be assembled. For AFM, 43 additional complexes
are producedwith the guided trimer approach, while three aremissed,
but the median TM-score is lower than for dimers.

In many cases, the exact interactions of all protein chains are not
known, only that a set of chains interact4. After applying MCTS to
protein complexeswherewe have assumed knowledge of interactions,
we now turn to the more challenging (and realistic) problem of pre-
dicting the complexes without knowing interactions (full approach). In
addition to the problem of possibly incorrectly identified interacting
pairs, this also increases the number of possible erroneous paths
dramatically. Anyhow, we find that 91/175 (52%) of structures can be
assembled with a median TM-score of 0.51 (Fig. 3a) using all possible
trimeric interactions with FoldDock, while for AFM, only 74 complexes
are complete with a median TM-score of 0.61.

When both trimer approaches have complete assemblies with
FoldDock (n = 53), themedian scores are 0.76 and 0.80 for the full and
native trimer approaches, respectively. For AFM, the corresponding
scores are 0.77 and 0.79 (45 complexes). Using native interactions
thereby results in slightly higher scores overall, but to a lower fraction
of complete assemblies. Models generated by FoldDock outperforms
AFM overall, mainly because of fewer complete assemblies from AFM
(Fig. 3a, Supplementary Table 2). We also included a comparison with
Multi-LZerD27 and Haddock28, providing the real chain structures as
input. For Haddock, 77 complexes were completed with a median TM-
score of 0.29 (Supplementary Fig. 2, notably no model has TM-score
≥0.5). Unfortunately, for Multi-LZerD, we were unable to complete the
docking for any complex in our dataset (Methods).

To analyse the possibility to distinguish when a complex is
assembled to completion and has a high TM-score (≥0.8, n = 30), we
analyse the ROC curve (Fig. 3b) as a function of; the average interface
plDDT (predicted lDDT from AF), the number interface residues,
contacts and interactions between chains normalised with the number
of chains in each complex, and the average interface plDDT times the
logarithm of the number of interface contacts. The plDDT⋅log(con-
tacts) results in the highest AUC value (0.77). We fit a sigmoidal curve
using the plDDT⋅log(contacts) and the TM-score, creating the
mpDockQ score (multiple-interface predicted DockQ, see Methods

section). When the mpDockQ tends to be high, so does the TM-score
and completeness of the complex (Fig. 3c). This suggests that
mpDockQ can be used to select when a complex is complete and how
accurate it is.

Figure 3d shows the TM-score distribution of assembled com-
plexes using all possible trimeric subcomponents from FoldDock and
examples at different TM-score thresholds. The type of symmetry of
the complexes and the accuracy of the subcomponents strongly
impact the outcome (see below).We find that complexeswith any type
of symmetry can be assembled with high accuracy, displaying the
applicability of MCTS for symmetrical complexes (Supplementary
Fig. 3).Obtaining complete complexeswith very high TM-scores (≥0.8)
is critical, as large complexes that are not entirely correct are not likely
to provide biologically meaningful insights. It is also possible that
some complexes with low TM-scores are accurate assemblies, but in a
different conformation (or biological unit) than found in the PDB (e.g.
5TRM has octahedral symmetry, but is assembled in a dihedral
configuration).

Aspects affecting the assembly
To answer why some complexes can be assembled with high accuracy
and others not, we analyse the kingdom, the number of total chains,
the oligomeric type (hetero or homomer), the number of effective
sequences (Neff), the subcomponent accuracy for each complex, the
type of symmetry and the interface accuracy between predicted and
assembled interfaces (Fig. 4). We performed this analysis for the
complexes assembled with predicted native trimers due to the high
redundancy of subcomponents in the blind approach. We use the
MSAs and resulting complexes from FoldDock, as it is impossible to
obtain the paired MSAs and features thereof in the AFM pipeline (the
feature representation is created and processed as structures are
predicted).

Bacteria is the most abundant kingdom and displays the highest
fraction of complete assemblies (29/85) with a median TM-score of
0.85 (Fig. 4a). Eukaryota, Viruses and Archaea have 17/63, 8/12 and 4/15
with median TM-scores of 0.75, 0.44 and 0.92, respectively. Most
complete assemblies have fewer chains and are of homomeric type
(Fig. 5b, c), although the spread in TM-score is large. TheTM-scores are
higher for the complexes with higher (over 500) average Neff values,
which corresponds well with findings for heterodimeric complexes12

(Fig. 4d). When analysing how far toward completion the assemblies
go, one finds that most complexes are 90–100% complete (Fig. 4e).
There appears to be a weak decreasing trend in TM-score with com-
pletion suggesting that smaller subcomplexes may be accurate,
although the complete complex cannot be assembled. The average
TM-score of the subcomponents (Fig. 4f) provides the most evident
explanation of when an assembled complex is accurate. When the
subcomponents display high accuracy, so does the assembled com-
plex. This is true for both complete and incomplete assemblies and
highly accurate complexes (TM-score ≥0.8) can be selected with AUCs
of 0.88 and 0.85, respectively (Supplementary Fig. 5).

The symmetry of the complexes is also found to be significant
(Fig. 4g). The dominating symmetry (Dihedral) is also the one with the
highest number of complete assemblies (27/70 complete, median TM-
score = 0.80), while very few asymmetric complexes (2/26) are
assembled to completion. These have low TM-scores (median =0.49),
suggesting that only symmetrical complexes can be assembled suc-
cessfully using subcomponents and MCTS (median TM-score for all
complexes with any symmetry = 0.80, n = 58). The asymmetric com-
plex displayed in Fig. 4g (1L0L, https://www.rcsb.org/structure/1l0l)
has a TM-score of 0.75, however, and most chains are in their correct
positions with the exception of one membrane helix and a small
cytosolic chain causing the decrease in TM-score.

The only Octahedral complete assembly has a TM-score of 0.99
and the Tetrahedral median is 0.92. The two complexes with helical
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symmetry display varying quality (TM-scores of 0.37 and 0.88,
respectively). All types of symmetry display successful examples
(Fig. 4g), suggesting that MCTS can assemble subcomponents suc-
cessfully as long as some type of symmetry exists in the complex. The
TM-scoredistribution divided by symmetry for the all-trimer approach
using FoldDock follows a similar relationship to the one found here
using the guided trimer approach (Supplementary Fig. 3).

As the assembly proceeds, new interfaces are generated. To pro-
vide an estimate of the quality of the assembled interfaces we compare
these to those predicted directly with FoldDock using the DockQ
score29. Only the complexes that could be assembled to completion
and that had interfaces resulting from the assembly were analysed

(n = 55). The predicted interfaces are found to be of higher quality on
average (DockQ=0.34 vs 0.24 for predicted and assembled interfaces,
respectively).

Assembling complexes with 4–9 chains
So far, we have only addressed the possibility to assemble complexes
with 10–30 chains, outside of current computational limitations.
However, it is possible that the assembly approach with MCTS can be
used for smaller complexes as well. To analyse the possibility to
improve the accuracy of AFM end-to-end (E2E) on smaller complexes
we created a set of 278 complexes with 4–9 chains that have less than
30% sequence identity to the proteins in the AFM training set (see

d

b c

2V5H

5TRM 7JQZ

5XPB

5T11
2GRE

a

Fig. 3 | Analysis of assembly success using different methods. a TM-scores for
the complexes that could be assembled to completion using FoldDock (FD) or AFM
and predicted native dimeric, native trimeric and all trimeric subcomponents,
respectively. The complete set of complexes from the three approaches (n = 108) is
shown, with scores of zero representingmissing complexes for each approach. The
points display theTM-scoreof the individual complexes and theblack “x”marks the
average scores. The average TM-scores is 0.09 vs 0.10, 0.36 vs 0.33 and 0.47 vs 0.41
using native dimers, trimers and all trimers for FoldDock vs AFM, respectively.
FoldDock thereby outperforms AFM overall. The median scores are low due to the
missing complexes between the approaches. Considering only the successful
assemblies using native dimers, trimers and all trimers, themedian scores are 0.77,
0.80 and0.51, respectively.bComplex scoring using all trimers as subcomponents.
ROC curve, where positives (n = 30) are complete assemblies of TM-score ≥0.8, as a
function of the average interface plDDT, the number of interface residues and
contacts normalised with the number of chains in each complex, the average

interface plDDT times the logarithm of the number of interface contacts and
mpDockQ (see c). Thebest separators are plDDT⋅log(contacts) andmpDockQ,both
with AUC 0.83. c TM-score vs the best separator in b), plDDT⋅log(contacts),
coloured by the fraction of completion for the assemblies (n = 175). The solid grey
line represents a sigmoidal fit creating the mpDockQ score (see Methods section).
When the mpDockQ tends to be high, so does the TM-score and % completion of
the complex. This suggests that mpDockQ can be used to select when a complex is
complete and how accurate it is. d TM-score distribution of the complete com-
plexes (n = 91) assembled using all FoldDock trimers and examples at different
thresholds. The assembled complexes (coloured by chain) are in structural
superposition with the native ones (grey). The PDB IDs for the complexes shown
and their corresponding symmetries and TM-scores are 5TRM (Octahedral, 0.22),
2V5H (Dihedral, 0.45), 7JQZ (Dihedral, 0.51), 5XPB (Helical, 0.82), 2GRE (Tetra-
hedral, 0.97) and 5T11 (Cyclic, 0.98). At TM-score 0.8, the assembled complex is
similar to the native one.
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Methods). We predicted all possible trimeric subcomponents using
FoldDock and assembled them using MCTS. We find that the perfor-
mance of AFM E2E is higher than the MCTS assembly across all oli-
gomers of 4–9 chains (Fig. 5). The performance is quite consistent for
4–7 chains, but drops for 8–9 chains (averages of 0.47 vs 0.58, 0.50 vs

0.54, 0.46 vs 0.56, 0.49 vs 0.67, 0.39 vs 0.41 and 0.35 vs 0.46 for AFM
E2E vs MCTS 4–9 chains, respectively). The performance is low on
average, suggesting there is much room for improvement and that
predicting the structure of even small protein complexes is a problem
that is not yet solved.
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Discussion
To predict the structure of large complexes directly from sequence
information is currently a difficult challenge. Here, we present a
method that suggests that one possible approach is to predict sub-
components and assemble them into a larger complex. Using sub-
components predicted from native dimers, native trimers and all
possible trimeric interactions, the median TM-scores are 0.77, 0.80
and 0.50, respectively (15, 58 and 91 complete out of 175 complexes).
The scoring function mpDockQ can distinguish if assemblies are
complete and predict their accuracy, making the blind approach with
all trimers feasible. FoldDock based on AF outperforms AFM in pre-
dicting trimeric subcomponents in combination with being much
faster (2–4 times, Methods), it can also be noted that AF was not
trained for assembly of proteins either, yielding support to the
robustness of this method.

We find that when the subcomponents are accurately predicted
using native trimers, so are the complete assemblies. This suggests it is
possible to assemble complexes as long as their subcomponents are
accurate. The symmetry of the complex affects the outcome and some
symmetries (Dihedral and Cyclic) are more abundant and easier to
predict than others (Helical, Asymmetric). Not all trimers can be folded
using two NVIDIA A100 Tensor Core GPUs with 40Gb of RAM each.
The limit of AF (and AFM) on this computational platform appears to
be roughly 3000 residues, and 73/175 (42%) of all complexes are larger
than that. We find that the assembly approach suggested here is out-
performed by the current state-of-the-art AFM for complexes with 4–9
chains whenever it is possible to run AFM.

In summary, we have shown that assembling large complexeswith
different symmetries is possible using only protein sequence infor-
mation and stoichiometry. Modelling large complexes in parts and
assembling them converts the problem of predicting large complexes
to the prediction of their subcomponents. This suggests an exciting

future where models of all protein complexes in entire cells may be
modelled.

One limitation of predicting protein complexes using the
approach proposed here is stoichiometry. It is often not known
how many copies of a protein are in a given complex, a require-
ment for the assembly. Once this limitation is overcome either by
computational or experimental studies of complexes, it will be
possible to assemble many different protein complexes, possibly
in novel configurations.

Methods
Non-redundant complexes with 10–30 chains from the PDB
Since AlphaFold-multimer has a limit of nine chains or 1536 residues20 in
its training and testing data, and there is no available method validated
for modelling larger complexes, we obtained all complexes with 10–30
chains from the PDB on 2022-01-10 to extend the current limit (Fig. 6a).
First, we selected all complexes not containing nucleic acids with ≤3Å
(Ångström) resolution and with the experimental method X-ray crys-
tallography or Electron Microscopy (1216). From these complexes, we
require all chains to originate from the sameorganism (1027).We cluster
all sequences from the complexes on 20% sequence identity using
MMseqs2 (version edb8223d1ea07385ffe63d4f103af0eb12b2058e)30

using this command:

MMseqs2 easy-cluster fastafile outname /tmp --min-seq-id
0.2 -c 0.8 --cov-mode 1

Using clustering, we ensure that no complex has all of its
clusters overlapping with any other. We keep the complexes with
the most clusters, resulting in the removal of subcomponents of
larger clusters (265). E.g. if the sequences from complex 1 map to
clusters A, B, and C and those of complex 2 map to clusters A, B, C,

Fig. 4 | Analysis of assembly characteristics using native trimers predictedwith
FoldDock. a TM-score per kingdom for the complete assemblies (n = 58). Bacteria
is the kingdom with the highest number of complete assemblies (n = 29) and
reports a median TM-score of 0.85. Eukaryota (n = 17), Viruses (n = 8) and Archaea
(n = 4) have median TM-scores of 0.75, 0.44 and 0.92, respectively. b TM-score vs.
the number of chains for the complete assemblies (n = 58). c TM-score vs oligomer
type, homomer (n = 38 out of 114) or heteromer (n = 20 out of 61), using complete
assemblies. The homomeric complexes have a median TM-score of 0.86 and the
heteromeric 0.73. d TM-score and Neff. Average TM-scores are higher for the
complexes with over 500 in average Neff value. e TM-score and completion for all

complexes (n = 175). The coloured points represent the scores within bins of 10%,
and the grey line shows the median for each bin. f Average TM-score of sub-
components vs TM-score of the whole complex for the complete assemblies
(n = 58). When the subcomponents display high accuracy, so does the assembled
complex (SpearmanR =0.80).gDistributionof TM-scores and examples of the best
assemblies for each symmetry type. The assemblies are coloured by chain, and the
true complexes are in structural superposition in grey. The structures shown for
each symmetry and the corresponding TM-scores are: 5OVS (Dihedral, 0.99), 2X2V
(Cyclic, 0.97), 1DPS (Tetrahedral, 0.98), 1L0L (Asymmetric, 0.75), 1MFR (Octahe-
dral, 0.99) and 5XPB (Helical, 0.88).

Fig. 5 | Comparison of assembly with MCTS vs. AlphaFold-multimer on com-
plexes with 4–9 chains. Swarm plots displaying the TM-scores (n = 278, n = 50 for
each oligomer except for the nonamers, which have n = 28) for assemblies using all
possible trimers predicted with FoldDock (MCTS) and AFM end-to-end (E2E). Each
point represents one complex with themean TM-scoresmarked by a black “x”. The

points at zero for MCTS are those complexes that could not be assembled to
completion (n = 62) and those for AFM E2E that were out of memory (n = 67). The
averages are 0.47 vs 0.58, 0.50 vs 0.54, 0.46 vs 0.56, 0.49 vs 0.67, 0.39 vs 0.41 and
0.35 vs 0.46 for AFM E2E vs MCTS 4–9 chains, respectively.
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and D, then complex 2 will be kept and complex 1 excluded. After
the clustering, we ensure that no complex contains any chain
shorter than 50 residues (193 complexes), to remove protein-
peptide interactions. We then download the first biological
assembly31 from each complex and check that the reported stoi-
chiometry is correct and that the PDB files do not contain dis-
continuous chains, resulting in a total of 175 complexes. The
distribution of the number of chains, the number of interactions
between chains and the number of contacts per interaction can be
seen in Fig. 6b–d, respectively. Most complexes have 10–12 chains,
an average of 22 interactions and 70 contacts between each pair of
interacting chains. The symmetry definitions were taken from the
PDB annotation (global symmetry), Fig. 6e.

Interaction network
To create interaction networks for the guided assembly of the
complexes, interactions between different chains with CBs (CA for
Glycine) within 8 Å from each other were extracted. Interactions
are defined when 10% of the beta carbons (alpha carbon for gly-
cine) of the shortest of two protein chains are within 8 Å from the
other. On average, each interaction pair consists of 70 residue
pairs, and within each complex, there are 22 interacting pairs of
chains (Fig. 6c, d).

Subcomponent and edge complexity
To assemble entire complexes, we predict all dimeric and trimeric
interactions in a set of n chains.

The number of possible dimers follows:

DðnÞ= n!
ðn� 2Þ!2! =

nðn� 1Þ
2

ð1Þ

The number of possible trimers follows:

TðnÞ= n!
ðn� 3Þ!3! =

nðn� 1Þðn� 2Þ
6

ð2Þ

From these dimers and trimers, we extract all edges (pairwise
interactions). The number of edges in D(n) dimers is D(n) and in T(n)
trimers:

EðnÞ = TðnÞðTðnÞ � 1Þ
2

ð3Þ

Structural predictions of dimeric and trimeric subcomponents
AlphaFold-multimer (v2.0)20 was run using all five models, with
one structure per model, resulting in a total of five structures per
prediction where the top-ranked one was selected for subsequent
analyses. Four different MSAs are created by searching various
databases with several genetic search programmes. Using
jackhmmer from HMMER332, three different MSAs are created
through searching the databases Uniref90 v.2020_0133, Uniprot
v.2021_0434 and MGnify v.2018_1235. The fourth MSA is created by
searching the Big Fantastic Database36 (BFD from https://bfd.
mmseqs.com/) and uniclust30_2018_0837 jointly with HHBlits38

(from hh-suite v.3.0-beta.3 version 14/07/2017). By using the
species and genetic positional information, the results from the
Uniprot search are paired. All results from the other searches are
instead block-diagonalized. All of the created MSAs (one paired
and three block-diagonalized) are used to predict the structure of
a protein complex.

The FoldDock protocol12, based on AlphaFold (v2.0)11, was run as
well. This protocol creates twoMSAs constructed from a single search

- Protein complexes 
with 10-30 chains

- Not containing 
nucleic acids

- ≤3Å resolution
- X-ray or EM

1216 Complexes

Select all having chains only 
from one species (no 
host-pathogen interactions)

Cluster all individual chains on 
20% identity with MMseqs2

1027 Complexes

- Check if each complex has all of its 
clusters overlapping with any other 
complex

- Keep the complexes with the most 
clusters  (remove subcomponents of 
larger complexes) 

265 Complexes

Remove any complex containing 
chains shorter than 50 residues 
(peptide interactions)

192 Complexes

Download the first 
biological assembly 
and check the 
coordinates and 
reported 
stoichiometry 

175 Complexes

a

c db e

Fig. 6 | Data selection process and statistics. a Outline of the data selection
process. b Distribution of the number of chains for the 175 complexes. Most
complexes have 10–12 chains. cDistribution of the number of interactions between
all chains in a complex (n = 175 complexes). On average, there are 22 interactions

per complex. d Distribution of the number of contacts per interaction (n = 175
complexes). On average, there are 70 contacts per pair of interacting chains.
e Distribution of the symmetry types of the complexes (n = 175 complexes). Dihe-
dral complexes are the most common, followed by cyclic and asymmetric.
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with HHblits38 version 3.1.0 against uniclust30_2018_0837 using the
options:

hhblits -E 0.001 -all -oa3m -n 2

The first of the two MSAs is constructed by extracting the
organism identifiers (OX) from the resulting a3m file and pairing
sequences using the top hit from each OX. The second is con-
structed by block diagonalizing the resulting a3m file. An exten-
sion to three chains wasmade here also, following the same pairing
and block diagonalizing procedure as has been done for two
chains. The folding was performed using AlphaFold model_1, 10
recycles and one ensemble structure. The recycles refer to how
many times the intermediate output is fed back into the network
and the MSAs are resampled. The ensemble structure entails how
many times the information within the network is processed
before it is averaged.

The structural prediction was performed on two NVIDIA A100
Tensor Core GPUs each with 40 Gb of RAM with a time limit of 24 h
per prediction. Three sets of different subcomponents for the
complexes with 10–30 chains were modelled, all native dimeric, all
native trimeric and all possible trimeric subcomponents. For the
complexes with 4–9 chains, all possible trimeric subcomponents
were modelled to compare with predicting these directly using
AFM E2E.

Structural prediction limitations
For the complexes with 10–30 chains, the unique dimer sub-
components of 656/656 could be predicted for AFM and FoldDock,
respectively. For FoldDock, 2242/2246 unique native trimers were
predicted, and 2234/2246 for AFM. The four that did not work
using FoldDock had the error message “Cannot create a tensor
proto whose content is larger than 2GB.” and the 13 that did not
work for AFM ran out of time on two NVIDIA A100 Tensor Core
GPUs each with 40 Gb of RAM with a time limit of 24 h per pre-
diction. For the approach using all trimers, 8049/8049 unique
subcomponents were successfully modelled using FoldDock. The
all-trimer approach using AFM resulted in 7999/8049 unique
subcomponents due to the 24 hour time limitation.

For the 278 selected complexes of 4–9 chains (see section
“Non-redundant complexes from the PDB with 4–9 chains without
homology to the AFM training set”), there were 2400 sub-
components for the all-trimer approach of which 2375 could be
predicted with FoldDock. Memory limitations resulted in that 25
could not be predicted. In total, 62 complexes could not be
assembled to completion using MCTS. For AFM E2E, 67 complexes
could not be predicted due tomemory limitations (8 Intel Xeon E5-
2690v4 CPUs with a total of 82 Gbmemory for the MSA generation
and the same GPU limitations as above).

For the analysis of the entire dataset (n = 1733, supplementary
Fig. 4) of non-redundant complexes with 2–9 chains predicted with
AFM E2E, 207 failed (188 failed due to MSAmemory limitations and 19
failed due to GPU memory limitations using the same hardware as
above), resulting in 1526 successful oligomers in total.

Path complexity
When considering all possible interactions in a complex, both
dimeric and trimeric, one quickly realises that there are many
possible paths that could connect all chains. Take the example of
the maximum number of chains modelled here, 30. In the most
extreme scenario, all of these are assumed to interact with each
other. This means that starting at chain 1, it is possible to attach
chains 2–30 (29 possibilities) and from these 28 possibilities for
each node and so on.

If there are no overlapping interfaces in a complex of n’ nodes and
E(n) edges, the number of unique paths that contain all nodes follow:

PðnÞ=n0ðn0�2Þ,n0 ≥ 2 ð4Þ

Note that n’ here is the number of nodes extracted from the
predicted subcomponents, which aremore than the number of unique
nodes sincee.g. the trimersABCandABDboth contain thenodesA and
B. Equation 4 is exponential and thereby grows very fast. However, the
overlaps will grow with the number of nodes as well, as it will be more
likely to have overlapping interfaces with more edges.

According to Eq. 2, there are 30ð30�1Þð30�2Þ
6 = 4060 possible trimers

for a complex of 30 chains. For each trimer, there are three possible
edges, resulting in 4060⋅3 = 12180 edges in total. This means that the
number of effective nodes is higher than the actual number of nodes.
This is because e.g. chainA occursmany times in different trimers. E.g.,
ABC, ABD, ABE all have the possibility to have different interactions
between A and B. Following Eq. 4 there will be 3028 ≈ 2.3⋅1041 possible
paths at the upper bound considering all dimers from 30 protein
chains (and many more considering all trimers). This is a very large
number that is not possible to search in a feasible amount of timewith
our available computational resources. However, it is very unlikely this
number of paths has to be explored due to overlaps in the
subassemblies.

When the subpaths that contain overlaps are excluded during
assembly, the number of possible paths reduces quickly. Let’s assume
there are only three possible interactions for each chain. Then the
number of possible paths becomesmuch fewer, depending onhow the
network is connected. If all branches in a network contain unique
chains (Fig. 7), there is in fact only one possible path that connects all
chains. Still, there may be many possible paths to traverse to find this
non-overlapping one that connects all chains. Therefore, we limit the
number of paths searched at a given time point.

Assembly procedure with Monte Carlo tree search
From the interactions in the predicted subcomponents, we add chains
sequentially following a path through the interaction network (graph)
constructed using MCTS24. MCTS applies a heuristic search method
through a graph to find an optimal path (Fig. 8). MCTS consists of four
different steps; selection, expansion, simulation, and back-
propagation. It has been shown that sampling random paths to com-
pletion from a certain node (simulation) informs the best action at a
certain position. To add new chains to a path, we use BioPython’s SVD
Superimposer39. As an example, if two pairwise interactions are A-B
and B-C, we assemble the complex A-B-C by superposing chain B from
A-B and B-C and rotating the missing chain C to its correct relative
position. The MCTS procedure is outlined accordingly (for pseudo-
code, see “Pseudocode for the Monte Carlo tree search algo-
rithm” below):
1. Selection: start at a randomly chosen node 1 (e.g., chain A).
2. Expansion: obtain all edges e1, .., eN, deemed “children” to node 1

and create N different paths. Expand the new nodes added
through the edges by randomly selecting new edges. If the new
nodesdonothave any edges, they are deemed “leaf nodes”. In this
case, the best scoring node according to Eq. 5 is selected and a
new expansion is started from there. We expand all possibilities,
ensuring convergence towards the best node selection at each
position.

3. Simulation: add chains randomly to the path until the overlap
criterium is obtained or the complex is complete. An overlap is
defined as when over 50% of the alpha carbons in the shortest of
two protein chains are within 5 Å from each other.

4. Backpropagation: score the simulated complex using Eq. 6.
Update all “parent nodes” with this score. The simulation and
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backpropagation together provide an estimate of how well the
parent node performs in terms of creating a successful
assembly path.

The best child nodes are selected using the upper confidence
bound (UCB) accordingly:

UCB=Vi +2

ffiffiffiffiffiffiffiffiffi
lnN
ni

r
ð5Þ

whereVi is the average complex score (Eq. 6) of all nodes belownode i,
N is the number of times the parent node has been visited and ni is the
number of times the node being scored has been visited. The MCTS
procedure is continued until all chains are complex or there are no
more non-overlapping chains to add to the current path, after which
the procedure is terminated.

The complex 6LNI could not be assembled using trimers due
to no interactions between the chains being present in the

Fig. 7 | Branch network of 30 chains all connected to two other chains. There is only one path that connects all 30 chains (the network itself).

A

Start at node A

A

Obtain a connecting 
node to A and add it 

according to the 
predicted orientation

B Is the new node a 
“leaf” node

Yes

No

Select the child 
node that 

maximizes UCB

Expand

- select a connecting 
node

A B C

Simulate

- add chains until an 
overlap is obtained 
or a complete 
assembly is reached

A B C

ED

Backpropagate 
to all “parent” 

nodes

Score the simulated 
complex

Fig. 8 | Monte Carlo tree search (MCTS) procedure. Starting at node A, a con-
necting node (chain) is selected and added according to its predicted orientation. If
this node is a “leaf” node (a node that has not been expanded before), an expansion
is performed. During the expansion, a new node is added and from this, an entire

complex is simulated. The score from the simulation (Eq. 6) is backpropagated to
all “parent” nodes of the expansion which is used to determine the UCB (Eq. 5) and
thus select the best possible path.
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predictions. This protein is an amyloid protein and should
thereby not occur naturally in the cell. For the assembly approach
using all possible trimers, there are very many paths to assemble
for some complexes. Six additional complexes (1MFR, 1S3Q, 3OJ5,
6J0B, 6NHT and 6PYT) could not be assembled due to time con-
straints (72 h on a 2.6 GHz processor).

Pseudocode for the Monte Carlo tree search algorithm

Input:
- Predicted edges and their structures

Output:
- Largest possible assembled complex
1 Select an edge connected to node (chain) A and make
this the current node n

while(edge_available(n)):
#Expand
while(not is_leaf(n))

n = best_child(n)
end
#Simulate and score using UCB
score = roll_out(n)
#Back propagate the score
back_propagate(score)

end
#Return the path taken to reach the current node n
return get_path(n)

Scoring
Wescore the interfaces of the complexes being assembled in theMCTS
using:

log10 number of interf ace contactsð Þ � average interf ace plDDT , ð6Þ

as done when calculating the pDockQ score12. This score for multiple
interfaces, we deem “multiple-interface predicted DockQ” or
mpDockQ. The interface contacts are taken as beta carbons (alpha
carbons forGlycine) from twodifferent protein chains beingwithin 8 Å
of each other. These metrics are calculated for the entire interface of
each chain, as in the DockQ29 score formultiple interfaces. E.g., if chain
A interacts with both chains B and C, the score is taken over both of
these interfaces simultaneously. This is done for all interfaces and
chains and summed over the entire complex. The complexes with the
highest sums are favoured. Favouring complexes with higher scores,
results in complexes with both larger interfaces and withmore reliably
predicted residues.

Sigmoidal fit for mpDockQ
To create a continuous score for the multiple-interface DockQ
(mpDockQ), we fit a simple sigmoidal function towards the TM-score
(Fig. 3c) using the complete complexes assembled from trimeric sub-
components and “curve_fit” from SciPy v.1.4.140 with the following
sigmoidal equation:

mpDockQ=
L

1 + e�kðx�x0Þ
+b ð7Þ

where x = average interface plDDT⋅log10(number of interface con-
tacts) (Eq. 6) across all interfaces andwe obtain L =0.728, x0 = 309.375,
k =0.098 and b =0.262.

Clashes
To analyse if the atoms from different chains in the same prediction
overlap, we calculate the distance between all atoms in all chains in a

given prediction. We count clashes as two-atom positions from dif-
ferent chains being within 1 Å of each other (the size of one
hydrogen atom).

MMalign
TheDockQ29 programme is too slow to be run on large complexes if all
interfaces are to be compared (minutes-hours for a single complex).
Therefore, the programme MMalign41 is used to score entire com-
plexes, as compared to the scoring of dimeric complexes with Fold-
Dock previously12. MMalign performs optimal structural alignment
between the model and native structures, computing a score (TM-
score) normalised to be between zero and one, where one indicates a
perfect match.

SinceMMalign performs optimal structural superposition, it is
also possible to evaluate models of different sizes. This is impor-
tant since the predictions are based on full-length protein
sequences (and to score incomplete assemblies), while the PDB
structures generally do not contain all residues from these,
meaning that loops and other disordered regions are not present
in the PDB structures. This also means that for most proteins, the
score can never be 1, depending on how similar the SEQRES
sequence is to the sequence present in the PDB structure. Since we
assess the real sequences here, our approach represents a more
realistic modelling scenario.

Number of effective sequences
The Neff is a measure of the information present in a multiple-
sequence alignment. To calculate the Neff, we clustered sequences
from each MSA independently (the paired versions) at 62% sequence
identity, following the rationale behind the BLOSUM62 matrix42. The
clustering was performed using MMseqs2 version
fcf52600801a73e95fd74068e1bb1afb437d719d30rs was used to indi-
cate the Neff. MMseqs2 was run with the following command:

MMseqs2 easy-cluster msa outname /tmp --min-seq-id 0.62 -c
0.8 --cov-mode 1

The clustering was done for all predicted subcomponents in each
complex. To obtain a Neff score for each complex, we averaged the
scores for all subcomponents.

ROC curve
We create receiver operating characteristic (ROC) curves using the
metrics average interface plDDT (predicted lDDT fromAF), the number
of interface residues, contacts, and interactions between chains nor-
malised with the number of chains in each complex and the mpDockQ
(multiple-interface predictedDockQ; average interface plDDT times the
logarithm of the number of interface contacts). The positive examples
are taken either as complete assemblies (when all native chains are
present in an assembly) or above the median TM-score (only for
mpDockQ). The metrics are used to distinguish between true and false
positives (TP and FP, respectively) by creating thresholds of all possible
metric values. From the thresholding we calculate the true- and false
positive rates:

TPR =
TP

TP + FN
ð8Þ

FPR =
FP

FP +TN
ð9Þ

Using the thresholds and corresponding TPR and FPR, the TPR is
plotted against the FPR. This creates a ROC curve. For eachmetric, the
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area under the ROC curve (AUC) is computed as:

AUC =
Z 1

x =0
TPR

1
FPRðxÞ

� �
dx ð10Þ

Non-redundant complexes from the PDB with 4–9 chains with-
out homology to the AFM training set
Theprocedure for selecting complexes between4–9 chains is different
from that of selecting 10–30 chains due to homology reduction
towards the AFM training set (trained on 2–9 chains in PDB before
2018-04-3020) and the resulting scarcity of complexes. The dataset was
obtained by querying PDB on 2022/06/02 for structures having
between 2 and 9 chains with release dates after 2018/04/30. For
completeness, we included structureswith 2–3 chains aswell, although
no assembly was performed for these as a minimum of 4 chains is
required to create trimeric subcomponents.

The proteins with less than 50 amino acids and structures con-
taining DNA or RNA were excluded. To perform homology reduction
between this dataset and the AlphaFold-Multimer20 training dataset,
we usedMMseqs2 (release 13-45111)30 within eacholigomeric statewith
a sequence identity threshold of 30%. If all the chains from a protein
structure in this datasetweremapped to a single protein in the training
dataset, it was removed. This generated a dataset with 931 dimers, 164
trimers, 269 tetramers, 103 pentamers, 91 hexamers, 74 heptamers, 73
octamers, and 28 nonamers. We then sampled up to 50 complexes
from each set randomly to reduce the computational cost (all 28 from
the nonamers), resulting in 278 complexes. All MSAs are generated on
8 Intel Xeon E5-2690v4 cores for a maximum 18 h (only a few cases
need this long time,most finishwithin 3~4 h). See above for the folding
GPU hardware limitations.

Human structures in the PDB
To analyse the number of available human PDB files (reported in the
introduction), we downloaded all human entries from the PDB on the
14th of October 2021 and counted the number of chains occurring in
each entry. In total, there are 2649 human PDB files, 1557 with one
chain, 720 with two, and 372 entries with over two chains.

Hu.MAP
To analyse the gap in complex structural knowledge for human pro-
teins (introduction), all complexes with at least three chains from
hu.MAP 2.04 were selected. hu.MAP is the result of a machine learning
framework that identifies protein complexes using data from over
15,000 mass spectrometry experiments. In total, there are 6956
complexes and 30,572 protein chains, from 9962 unique genes. There
are 4779 complexes with at least three chains, of which only 83 have all
chains together in the same PDB entry.

Computational time
The computational time required to predict a complex is mainly
limited by the number of subcomponents. For AFM, more MSAs
are generated, resulting in ~20× longer runtimes compared to
running only HHblits against Uniclust30 (7884 s vs 338 s on aver-
age using 16 CPU cores from an Intel Xeon E5-2690v443). The
folding takes 1–2 h on NVIDIA A100 Tensor Core GPUs, largely
depending on the size of the complexes and MSAs. The complete
prediction per subcomponent is thereby in the range of 1–2 h for
FoldDock and 3–4 h for AFM. The average number of sub-
components is 13 and 49 using all native and possible trimers for
the 175 complexes with 10–30 chains (8561/175 and 2246/175),
respectively. This results in a total prediction time of 13–26 or
50–100 and 39–52 or 150–200 h for the guided or all trimeric
constituents of each complex with FoldDock and AFM, respec-
tively. The assembly time is identical regardless of how the

subcomponents are predicted, on average 0.34 and 3.73 h per
complex using the native trimeric and all trimeric subcomponents,
respectively, predicted with AFM on a 2.35 GHz CPU (16 cores of
AMD Epyc 7742 CPUs), scaling exponentially as with the number of
possible paths. The assembly time is therefore negligible com-
pared to the time needed to predict the structure of the sub-
components and only relies on CPU.

For the complexes with 4–9 chains, the computational time per
subcomponent will follow that of the complexes with 10–30 chains.
The average assembly time is much less, however, on average 0.12 h
per complex. In both cases, the assembly using MCTS is negligible
compared to the computation required to predict the subcomponents
with FoldDock or AFM. The fast MSA generation using FoldDock,
makes this protocol approximately twice as efficient com-
pared to AFM.

Comparison with other methods
In order to obtain a performance comparison for the presented
method, we tested similar existing multi-chain assembly algorithms
over the same dataset. We selectedMulti-LZerD27 and Haddock28 given
their high-level performance, ability to deal with large complexes, and
availability of code for local installation. We obtained local versions of
both Multi-LZerD pipeline (version 2022-06, relying on LZerD version
5.0) and Haddock (version 2.4, relying on CNS version 1.344).

Concerning Haddock, we found that the usage of this tool is
oriented toward adopting all available knowledge in the form of
restraints.While this proceduremaybe beneficial to drive docking and
reduce computational time, it is impractical to adopt for a large
number of structures composing our dataset. To circumvent this
limitation, Haddock also allows the possibility to include random
surface restraints or centre of mass restraints to force contacts
between molecules. As suggested by the authors, we attempted these
strategies while increasing the sampling in it0 and it1 stages to 10,000
and 400 models, respectively. For Haddock, 77 complexes were
completed.

The Multi-LZerD pipeline required on average 5 h per chain on its
preparation stage running standard LZerD, plus several additional
hours for the Multi-LZerD stage. This running time was enough to
exceed our 72 h maximum allocation time limit, while trying to dock a
10-chain complex, one of the smallest in our dataset. Test runs have
been executed over an entire cluster node with 2 Intel Xeon Gold 6130
CPU having 16 cores each and 96GB RAM.

Data availability
All information needed to repeat the study presented here as well as
the pipeline itself is available at: https://gitlab.com/patrickbryant1/
molpc. The exact version used for this submission is available at:
https://doi.org/10.5281/zenodo.6367019. This repository also contains
all figures and the PDB files of the assemblies. All PDB files, MSAs, and
plDDT of the predicted subcomponents and the assemblies for the all-
trimer approach are available through this figshare repository: https://
doi.org/10.17044/scilifelab.19375172. We cannot provide all data and
MSAs for all analyses due to space limitations on all publically available
data hosting servers. In total, the data exceeds 10 Tb. The structures
corresponding to the PDB-codes mentioned in the main text are
available through these links: Figures 1 and 2: 6ESQ (acetoacetyl-CoA
thiolase/HMG-CoA synthase complex) Figure 3: 5TRM (Crystal struc-
ture of human GCN5 histone acetyltransferase domain), 2V5H (com-
plexof PII and acetylglutamate kinase fromSynechococcus elongatus),
7JQZ (Cfl2 wild-type). 5XPB (Selenomethionine labelled Drep4 CIDE
domain), 2GRE (Deblocking aminopeptidase), 5T11 (space group C2).
Figure 4: 5OVS (BPH), 2X2V (F1Fo-ATP synthase rotor ring), 1DPS (DPS),
1L0L (Mitochondrial cytochrome bc1 complex), 1MFR (M Ferretin),
5XPB (Drep4 CIDE domain). Source data are provided with this
paper.
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Code availability
The code and instructions for runningMoLPCusing the best optionwith
FoldDock are provided in its own github repository to keep the size
down: https://github.com/patrickbryant1/MoLPC. There is also a web
version provided through a Colab notebook: https://colab.research.
google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb.
The script analyse.sh (https://gitlab.com/patrickbryant1/molpc/-/blob/
main/src/analysis/analyse.sh) reads all data and makes all figures and
analyses reported here.
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