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Abstract: Litsea is a group of evergreen trees or shrubs in the laurel family, Lauraceae. Species of the
genus are widely used for a wide range of medicinal and industrial aspects. At present, most studies
related to the gene resources of Litsea are restricted to morphological analyses or features of individual
genomes, and currently available studies of select molecular markers are insufficient. In this study,
we assembled and annotated the complete chloroplast genomes of nine species in Litsea, carried out a
series of comparative analyses, and reconstructed phylogenetic relationships within the genus. The
genome length ranged from 152,051 to 152,747 bp and a total of 128 genes were identified. High
consistency patterns of codon bias, repeats, divergent analysis, single nucleotide polymorphisms
(SNP) and insertions and deletions (InDels) were discovered across the genus. Variations in gene
length and the presence of the pseudogene ycf1Ψ, resulting from IR contraction and expansion, are
reported. The hyper-variable gene rpl16 was identified for its exceptionally high Ka/Ks and Pi
values, implying that those frequent mutations occurred as a result of positive selection. Phylogenetic
relationships were recovered for the genus based on analyses of full chloroplast genomes and protein-
coding genes. Overall, both genome sequences and potential molecular markers provided in this
study enrich the available genomic resources for species of Litsea. Valuable genomic resources and
divergent analysis are also provided for further research of the evolutionary patterns, molecular
markers, and deeper phylogenetic relationships of Litsea.

Keywords: Litsea; chloroplast genome; structural variations; genetic relationship

1. Introduction

Litsea is an evergreen tree or shrub and is one of the most diverse genera (about
400 species) in the family Lauraceae (Mesangiospermae: Magnoliids: Laurales). It is widely
distributed in tropical and subtropical Asia, North and South America [1,2], and 74 species
are located in China, at a maximum elevation of 2700 m above sea level [3] Species of
Litsea are utilized in a wide range of applications, covering medical, agricultural, industrial,
and many other fields. Litsea can be used to treat a variety of conditions such as diarrhea,
stomach pain, indigestion, the common cold, gastroenteritis, diabetes, edema, arthritis,
asthma, pain, and trauma [1]. In addition, Litsea is also known for the highly effective
properties of its essential oil against food-borne pathogens [4]. Its essential oils can also
be resistant to several types of bacteria, have antioxidant, anti-parasitic, acute toxicity,
genotoxic, and cytotoxic properties, and can even prevent several types of cancer [5–7].
Despite the pharmaceutical applications of Litsea, it is also widely used as feed for silkworm
pupae, especially for muga silkworms (Antheraea assama) [5]. In comparison with ordinary
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silk produced from other food sources, muga silk produced from Litsea possesses a higher
value and is considered to be of better quality, as reflected in its creamy and lustrous
appearance and texture. Some representative species of Litsea are industrially important
and have been utilized extensively [6]. For instance, Litsea cubebais is a spice shrub of
considerable economic importance. The essential oil prepared from the citric acid extracted
from the plant’s body is a natural spice, with a wide number of potential applications.
Moreover, it is also an important raw material for the synthesis of vital compounds, such
as vitamin A [7].

Chloroplasts are organelles that occur in green plants and algae, taking the responsi-
bility for photosynthesis and other housekeeping functions. Additionally, they are essential
for nitrate and sulfate assimilation as well as the synthesis of amino acids, fatty acids,
chlorophyll, and carotenoids [8]. In general, chloroplast (cp) genomes have a conservative
genome structure, gene content, and gene order in most monocotyledon plants [8,9]. The
complete cp genome of angiosperms is usually composed of four parts: a large single-copy
(LSC) region, a small single-copy (SSC) region, and two similar inverted repeat (IR) regions,
with a highly conservative structure [10]. The cp genome consists of 110 to 130 genes
primarily involved in photosynthesis, transcription, and translation. The contraction and
expansion of IR regions and gene and intron loss events have also occurred commonly
during evolution [11]. The sequences of cp genomes can provide information for genetic
relationships, gene transfer, cloning, and species domestication. The cp genome of ad-
vanced plants is inherited from a single parent [12], which can be used as an effective
barcode for species identification as well as the development of other potential identifica-
tion markers [13]. Identification of cp genomes promotes the sustainable development of
plant species, their utilization in a more rigorous scientific manner, as well as for species
conservation [14–16].

As the rapid development and iteration of methods for obtaining and analyzing whole
cp genome sequences, studies on the cp genome have shown an explosive growth [17,18].
However, in the genus Litsea, reports were mostly focus on chemical compositions or
species-specific genomic traits [19]. Genetic resources for Litsea still need to be supple-
mented. Moreover, studies of the selection pressure and high diversity sequences within
the genus Litsea are greatly in demand. Therefore, a detailed assembly and annotation of
the complete cp genomes of various species within Litsea will greatly enrich the existing
database, deepen the genetic recognition of the genus, and contribute to phylogenetic,
evolutionary, developmental, conservation, and taxonomic investigations. Advancing
our taxonomic knowledge for Litsea will enable us to refine conservation efforts and the
utilization of natural resources, providing sufficient genetic resources for artificial breeding
and drug development. In this study, we first sequenced and assembled the complete
cp genomes of nine species of Litsea. A comparative analysis was performed, including
gene features, GC content, codon usage, IR junction, repeats, Ka/Ks value, as well as nu-
cleotide diversity (Pi). Results of analysis provide informative and valid data regarding the
genotype and suitable DNA markers. Moreover, using 21 species from Litsea, evolutionary
relationships within the genus were analyzed using the complete cp genome as well as
protein-coding sequences. Ultimately, this study provides a reliable resource for further
utilization and conservation of genetic resources for Litsea.

2. Materials and Methods
2.1. Sample Collection, DNA Extraction, and Sequencing

In this study, samples of nine species of Litsea were collected from the Plant Germplasm
and Genomics Center, Kunming Institute of Botany, the Chinese Academy of Sciences.
The process of sample collection was approved by the Kunming Institute of Botany and
local policy and deposited in the Evolutionary Biology Laboratory of Qingdao University
of Science and Technology. Fresh leaf tissues were collected without apparent disease
symptoms and preserved in silica gel. Total genomic DNA was extracted from 150 mg
of silica-dried leaf tissues using modified CTAB [20]. The quantity and quality of the
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extracted DNA was assessed by spectrophotometry while the integrity was evaluated using
a 1% (w/v) agarose gel electrophoresis [19] The Illumina TruSeq Library Preparation Kit
(Illumina, San Diego, CA, USA) was used to prepare approximately 500 bp of paired-end
libraries for DNA inserts, according to the manufacturer’s protocol. These libraries were
sequenced on the Illumina HiSeq 4000 platform in Novogene (Beijing, China).

2.2. Chloroplast Genome De Novo Assembly and Annotation

The raw data were preprocessed using Trimmomatic 0.39 software [21], including
the removal of adapter sequences and other sequences introduced during sequencing,
the removal of low-quality and over-N-base reads, etc. The quality of newly produced
clean short reads was assessed using FASTQC v0.11.9 [22] and MULTIQC software [23].
High-quality data with Phred scores averaging above 35 were screened out. According to
the reference sequence (Litsea glutinosa, KU382356), the chloroplast-like reads were isolated
from clean reads by BLAST [24]. Short reads were de novo assembled into long contigs
with SOAPdenovo 2.04 [25] by setting kmer values of 35, 44, 71, and 101. Finally, the long-
contigs complete sequence expansion and gap filling was done by Geneious ver 8.1 [26],
which forms the complete cp genome. The complete cp genome was further validated
and calibrated using de novo splicing software NOVOplsty 4.2 [27]. GeSeq [28] was used
to annotate the assembled genomes, and tRNAscanSE ver 1.21 [29] was applied to detect
tRNA genes with default settings. RNAmmer [30] was used to validate rRNA genes with
default settings. As a final check, we compared the results with the reference sequence and
corrected misannotated genes by GB2Sequin [31] by manual selection. The circular map of
the genomes was drawn using CHLOROPLOT [32]. The nine newly assembled Litsea cp
genomes were deposited in GenBank with the accession numbers NC_056809–NC_056817.

2.3. Analysis of Chloroplast Genome Characteristics

Information regarding the GC content, genome length, and number of each region in cp
genomes was obtained using Geneious ver 8.1 software [26]. Relative synonymous codon
usage (RSCU) was calculated by the Computer Codon Usage Bias function in MEGA X [33].
SSRs were identified using MISA [34], with a setting of ten repeats for mononucleotide SSRs,
four for dinucleotide and trinucleotide SSRs, and three for tetranucleotide, pentanucleotide,
and hexanucleotide SSRs. REPuter [35] was used to identify four types of repeats with the
minimum repetition unit set as 20 bp and the maximum as 300, and the remaining options
set to default parameters.

2.4. Comparative Analysis

To compare the gene differences among the nine species, Litsea garrettii (NC_050349)
was selected as the reference species and the online comparison tool mVISTA [36] was used
for sequence alignment. IRscope [37] was used to detect and visualize the contraction and
expansion of IRs boundaries. SNP and InDels were detected using Geneious ver 8.1. The
Ka/Ks value was batch evaluated by TBtools with the NG method [38]. DnaSP 6 was used
to analysis the nucleotide diversity (Pi) value [39].

2.5. Phylogenetic Analysis

We downloaded 12 further cp genomes of Litsea from NCBI (National Center for
Biotechnology Information). Two species from Lauraceae but in different genera, Actin-
odaphne obovate and Neolitsea sericea, were selected as outgroups to root our phylogenetic
networks. A total of 23 species were compared for phylogenetic evaluation using maximum
likelihood (ML) and Bayesian inference (BI) approaches. MAFFT v7 was used to perform
multiple genome alignment [40], and we used the complete cp genome sequence data as
well as a separate dataset of 64 protein-coding genes shared by all species to construct
individual maximum likelihood (ML) topologies. The GTR+G+I model was evaluated
as the best suit model for both CDS and all cp sequences by applying the Bayesian in-
formation criterion (BIC) using jmodeltest v2.1.7 [41]. The ML analyses were performed
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using MEGA X [33], and bootstrap tests were performed with 1000 replicates with tree
bisection-reconnection branch swapping. MrBayes v3.2.7 [42] was used to the BI analysis,
for two million generations, sampled every 100 generations, with all other settings left at
their defaults and 25% of the trees discarded as burn-in.

3. Results and Discussion
3.1. Chloroplast Genome Features of Litsea

With reliable quality control, we filtered about 22.5 GB of high quality, 2 × 150 bp
pair-end reads generated by the Illumina HiSeq 4000 platform. The mean coverage of
sequencing was 1750 X. The cp genome features of nine species were analyzed and the
total length ranged from 152,051 to 152,747 bp (Figure 1). 128 genes were found in these
complete cp genomes, including 36 tRNA genes, eight rRNA genes, and 84 protein-coding
genes. These genes can be divided into three categories: self-replication related, photo-
synthesis related, and other genes. The large subunit of ribosomal proteins, small subunit
of ribosomal proteins, DNA-dependent RNA polymerase, rRNA genes, and tRNA genes
belong to the Self-replication category. Photosystem I, Photosystem II, NADH oxidoreduc-
tase, Cytochrome b6/f complex, ATP synthase, and Rubisco belong to the Photosynthesis
category. The remaining genes that have not been authorially classified yet were attributed
to the other genes category (Table 1) [43].
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trnH-GUG, trnK-UUU, trnQ-UUG, trnS-GCU, trnG-UCC, trnR-UCU, trnC-GCA, 
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Figure 1. Complete genome map of the chloroplast genome for representative species L. auriculata.
The inner gray ring is divided into four areas, clockwise, and they are SSC, IRb, LSC, and IRa. The
genes in the outer ring region are transcribed clockwise, while those in the inner ring are transcribed
counterclockwise. In addition, this figure also reflects the GC content; the inner ring dark gray
indicates the GC content, the light gray reaction AT content. In the lower left is a legend that classifies
cp genes according to their functions.
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Table 1. Gene content of the L. moupinensis chloroplast genome.

Group of Genes Gene Names Amount

Pholosystem I psaA, psaB, psaC, psal, psaJ 5

Photosystem II psbA, psbK, psbl, psbM, psbD, psbC, psbZ, psbG, psbL, psbF, psbE, psbB, psbT, psbN,
psbH 15

Cytochrome petA, petG, petL, petN, petB, petD 6
ATP syntliase atpA, atpF, atpH, atpI, atpE, atpB 6
NADH dehydrogenase ndhJ, ndhB *, ndhK, ndhC, ndhD, ndhF, ndhE, ndhG, ndhl, ndhA, ndhH 12
RubisCO large subunit rbcL 1
RNA polymerase RpoCl, rpoC2, rpoB, rpoA 4
Ribosomal proteins (SSU) rps16, rpsl2 *, rps2, rps14, rps4, rps18, rps7 *, rps11, rps8, rps3, rps19, rps15 14
Ribosomal proteins (LSU) rpl33, rpl20, rpl36, rpll4, rpll6, rpl22, rpl2, rpl23, rpl32 9

Transfer RNAs

trnH-GUG, trnK-UUU, trnQ-UUG, trnS-GCU, trnG-UCC, trnR-UCU, trnC-GCA,
trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-UCC, trnT-GGU,
trnS-UGA, trnG-UCQ, trnM-CAU, trnS-GGA, trnT-UGU, trnL-UAA, trnF-GUU,
trnV-UAC, trnM-CAU, trnW-CCA, trnP-UGG, trnl-CAU, trnA-UGC, trnR-ACG,

trnL-UAG, trnN-GUU, trnR-GUG, trnA-UGC, trnl-GAU, trnL-CAA

34

Ribosomal RNAs rrn4.5 *, rrn5 *, rrn16 *, rrn23 * 8
Hypothetical chloroplast
reading frames (ycf) ycfl, ycf2, ycf3, ycf4 4

Other genes accD, clpP, ccsA, cemA, infA, rpoA, matK 7

* Gene with two copies.

Typical quadripartite and circular structures were discovered. These cp genomes
contain a large single-copy (LSC) of 93,093–93,631 bp and a small single-copy region (SSC) of
18,813–18,902 bp, separated by two identical interspersed regions (IRs) of 20,014–20,117 bp.
Among the four types of regions, the LSC region contained the largest number of genes,
including 66 protein-coding genes and 23 tRNA genes. The SSC region contained only
11 protein-coding genes and one tRNA gene, but its average gene length was the longest
at 1100 bp. Two identical IR regions contained five protein-coding genes, six tRNA genes,
along with four rRNA genes (Table 1). The genome features of Litsea are consistent with
the basic structure of cps reported by other studies [44].

We also analyzed the GC content of the complete cp genome for the nine species of
Litsea, as well as the values of each region (Table 2). We discovered that the average GC
content of the full cp genome was 39.2% for all species except for L. sericea, which was
39.1%. In addition, the GC content of the IR region was firmly consistent at 44.4% and
significantly higher than the other two regions, which was assumed to be related to the
presence of many rRNA genes [45].

Table 2. Chloroplast genome features of nine species of Litsea.

L. auriculata L. chunii L. ichangensis L. moupinensis L. populifolia L. rubescens L. sericea L. tsinlingensis L. veitchiana

152,377 152,081 152,747 152,588 152,619 152,581 152,717 152,051 152,578
93,535 93,138 93,631 93,552 93,569 93,550 93,583 93,093 93,540
18,814 18,813 18,902 18,824 18,838 18,819 18,900 18,828 18,826
20,014 20,065 20,107 20,106 20,106 20,106 20,117 20,065 20,106
39.2 39.2 39.2 39.2 39.2 39.2 39.1 39.2 39.2
37.9 37.9 38.0 37.9 38.0 37.9 37.9 37.9 38.0
33.9 33.9 33.9 33.9 33.9 33.9 33.9 34.0 34.0
44.4 44.4 44.4 44.4 44.4 44.4 44.4 44.4 44.4

128 (113) 128 (113) 128 (113) 128 (113) 128 (113) 128 (113) 128 (113) 128 (113) 128 (113)
84 (79) 84 (79) 84 (79) 84 (79) 84 (79) 84 (79) 84 (79) 84 (79) 84 (79)
9 (4) 8 (4) 8 (4) 8 (4) 8 (4) 8 (4) 8 (4) 8 (4) 8 (4)

36 (30) 36 (30) 36 (30) 36 (30) 36 (30) 36 (30) 36 (30) 36 (30) 36 (30)
NC_056809 NC_056810 NC_056811 NC_056812 NC_056813 NC_056814 NC_056815 NC_056816 NC_056817

49.12 49.35 49.06 49.12 49.11 49.12 49.15 49.37 49.12
8.51 7.54 8.81 8.82 8.82 8.95 8.81 8.85 8.82
30.19 29.92 30.93 30.85 30.86 1.36 30.83 29.90 30.85

13 13 13 13 13 13 13 13 13
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3.2. Codon Usage Analysis

All organisms share the same common codon table, reflecting the shared ancestry of all
life. But through the process of biological evolution, disproportionate biases have evolved.
Different species exhibit certain preferences for not only different synonymous codons,
but also different proteins within the same species may show a preference for the same
amino acid, a phenomenon called codon bias. A measurement called RSCU is commonly
used to reflect the codon bias, which removes the effect of the amino acid composition of a
codon [44]. Since L. moupinensis had the largest cp genome, we used it as an example to
calculate the codon usage bias and RSCU values of 84 CDS genes. The protein-coding genes
in the complete cp genome of Litsea consist of 84 genes coded by 61 codons, which encode
20 amino acids. The results showed that Leu (UUA), Ala (GCU), and Arg (AGA) are the
most frequently used amino acids, while Ser (AGC) and Arg (CGC) are the least abundant
amino acids (Figure 2). RSCU values greater than one mean that there is significant codon
bias. This results in a different use of amino acids, which correlates with protein-positive
bias [45]. Analysis of RSCU values of the codons encoding each amino acid revealed that
most codons with RSCU > 1 contained either an A- or G-terminal. By contrast, RSCU
values for codons that ended with a C-terminal, such as CGC (Arg), UGC (Cys), CAC
(His), and AGC (Ser), were relatively low. This result was consistent with previous related
reports [46].
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3.3. Long Repeat and SSR Analysis

Long repeat sequences and SSRs analysis commonly exist throughout the cp genome,
consisting of one to six nucleotide repeats [44]. Due to its variability at the intraspecific
level, SSRs are commonly used as markers in population genetic analyses [47,48]. In
the cp genome of nine species, the total number of repeats ranged from 109 (L. chuni) to
119 (L. auriculata) (Table S1). A total of 111 SSRs were detected from the cp genome of the
representative species L. moupinensis, including 62 mononucleotide, 36 dinucleotide, tree
trinucleotide, eight tetranucleotide, one pentanucleotide, and one hexanucleotide repeats.
In general, the SSR number decreased along with the increase in nucleotide number. The
percentage of tri-, tetra-, penta-, and hexa-nucleotide repeat sequences detected were
remarkably lower than that of mono- and di-nucleotide repeat. Mono-nucleotide repeats
were the largest class of SSRs that consisting of 56.97% of all repeats. These repeats were
notably rich in A/T bases, causing the differences in terms of base content, which was
in line with other angiosperm species [49]. We also analyzed the distribution of SSRs in
LSC/SSC/IR regions. The number of SSR markers in the LSC region of nine species of
Litsea ranged from 79 to 87, far exceeding that of SSC (19) and IR regions (12). In particular,
IR region contains the lowest number of SSRs, which further demonstrates the high degree
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of conservatism of IR regions. This correlated phenomenon was previously reported in
other angiosperms studies [50].

Some repeats larger than 30 bp in length are called long repeat sequences, which
increase the rearrangement of the cp genome [51]. We investigated the interspersed repeated
sequences (IRs) including four types of long repeat sequences: complement repeats (C),
forward repeats (F), palindromic repeats (P), reverse repeats (R). In general, palindromic
repeatswere richest in most species, followed by forward repeats and reverse repeats.
Complement repeats (C) were notably rare among all species. However, in the cp genome of
L. ichangensis, the number of forward repeats were slightly higher than that of palindromic
repeats (16). What more, in the cp genome of L. auriculata, the ratio of reverse repeats (R)
was more than that of forward repeats (F), which is also different from the other eight
species (Figure 3A). Most repeats were found in LSC region, leaving SSC and R regions far
behind. This pattern is highly consistent in nine Litsea species analyzed (Figure 3B). We
also measured the number of long repeat sequences with different lengths (Figure 3C). It
was found that long repetitive sequences of length of 20 and 21 bp were most common,
while the remainder decreased in number with an increase in length in general. The repeats
with 29, 31, and 38 bp in length were almost absent. However, in 33 bp and 44 bp, the
repeats number presented to be tied for third place suddenly. This phenomenon varied
from different species, which may be affected by unknown molecular mechanisms [52,53].

3.4. IR Contraction Analysis and Sequence Identity Plot

The contraction and expansion of IR regions contribute greatly to variations of cp
genomes among different species, resulting in gene duplication, deletion, and the gener-
ation of pseudogenes. Studying the characteristic genes of the border region contributes
to species identification and phylogenetic analyses [54]. In this study, we analyzed and
visualized the genes located in the junction region of LSC and IRa (JSa) as well as the
junction of SSC and IRb (JSb) in the cp genome of the nine species of Litsea (Figure 4). JLa
represents the junction between LSC and IRa, and the same applies for JLb. In this study,
we observed that genes located in the junction of four regions were highly conserved,
with only a few variations. Most genes located at cp genome junctions in all nine species
differed only in the distance to their corresponding boundaries, such as ycf2, ndhF, trnH,
and psbA. To be more specific, the ycf2 gene spans LSC/IRb and is distributed in both
regions of similar length, with the LSC region being slightly longer. The ndhF gene exists
among nine species, completely located in SSC and a short distance from IRb except for
L. sericea, of which theirs was longer and closer to the JSb boundary. The trnH gene is
located in the LSC region, adjacent to the IRa/LSC border, and is 21–22 bp in length. PsbA
is located entirely in the LSC region. Yet, notable variations were found. The ycf1 gene was
absent in this junction, while the remaining eight species contain ycf1Ψ (pseudocopy, 5′ end
missing) in JSb, which spans JSb with only 4–5 bp of length, located in SSC. Apart from
that, the contraction and expansion event located in the JSb was greater than that of the JLa
boundary. This pattern is consistent with previous IR region research [55].

The whole sequence identity plot of nine species within Litsea was analyzed using
mVISTA with L. garretti (NC_050349) set as the reference sequence for comparison (Figure 5).
Genome sequences of the nine Litsea exhibited a high degree of concordance. In this
study, we revealed that most of the variations in the cp genome of different species were
distributed in CNS (non-coding sequences) regions. Notable high-divergent regions in
CNS were atpF–atpH and ndhC–trnV-UAC, the divergent value of which exceeded 100%.
Other variant regions include: rps16–trnQ-UUG, ycf4–cemA, rps8–rpl14, and rps12–trnV-
GAC. Some of the coding genes, such as ndhK, ndhF, and ycf1, were found to were contain
variable regions. In general, the divergence in the IR region was significantly smaller
than that in the LSC and SSC regions, a result comparable to the previous divergence
analysis [50].
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Figure 3. Comparison of microsatellites and oligonucleotide repeats in the chloroplast genomes of
Litsea species. (A) The number of SSR markers in the LSC/SSC/IR region for nine Litsea species.
(B) Number of four long repeat sequences in nine species: complement repeats. F represents forward
repeats, P represents palindromic repeats, R represents reverse repeats, C represents complement
repeats. (C) number of long repeat sequences with different lengths in nine species. Different colors
in the figure represent different long repeat sequence types. Species from left to right are: L. auriculata,
L. chunii, L. ichangensis, L. moupinensis, L. populifolia, L. rubescens, L. sericea, L. tsinlingensis, L. veitchiana.

3.5. SNP and InDels

To further explore the divergence of nucleotides, we compared and analyzed single
nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) using L. garrettii
(NC_050349) as a reference sequence. The polymorphism ratio of transition substitution
(Ts) was higher than transversion substitutions (Tv) in the LSC region of nine cp genomes
(Table 3). The most substitutions were located in the LSC region, while IR regions contained
the lowest rate of polymorphisms. This result is consistent with previous studies [56]. In
terms of transition substitutions, the polymorphism ratios of A/G and C/T were almost the
same, although the former took up a slightly larger proportion, with only three exceptions
(L. auriculata, L. chunii, and L. tsinlingensis). As for transversion substitutions, the polymor-
phism ratios of A/T and C/G were greatly lower than that of A/C and G/C substitutions.
The same pattern applied for InDels (Table 4). LSC presented the largest number of InDels
in comparison with IR and SSC regions, while the average length of InDels in IR regions
was the longest, with the longest variation length being 678 bp (L. tsinlingensis).
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In particular, we found that in the cp genome of L. auriculata, the average length of
InDels located in the IR regions contained a considerable number of small InDels rather
than only several long InDels, as was found in the other eight species, causing its average
length to be three times shorter than others. This result indicated that L. auriculata may have
experienced some degree of mutation during its evolution that differed from its related
species (Vaccinium) [57].

3.6. Nucleotide Divergence and Selection Pressure

Despite general consistency, variations occurred frequently during the evolutionary
process, forming different genotypes and phenotypes. These nucleotide variations (Pi)
could be distinguished as high divergent regions [58]. Some may accumulate through
generations to better adapt to the environmental changes, which is called positive selection.
In bioinformatics, the Ka/Ks value is commonly used to evaluate selection pressure. Here,
we calculated and analyzed the Pi value of 79 unique protein-coding genes, 101 IGS
(intergenic spacer) sequences, and the Ka/Ks value of 79 unique protein-coding genes
(Table S2). Most of the protein-coding genes possessed relatively low diversity, while
the rpl16 gene presented with an extremely high Pi value (0.00892) among all samples
(Figure 6A). However, in IGS regions, the Pi values of 64 genes out of 101 exceeded
0.01 (Figure 6B). Moreover, 54 among them surpassed 0.1. As for selection pressure, after
filtering genes with no value, the Ka/Ks value of 23 of 25 genes were less than one using
L. Garrettii (NC_050349) as a reference sequence. In other words, these genes were under
negative selection pressure. Only two genes, rpl16 and ycf2, presented with a Ka/Ks value
of greater than one, undergoing positive selection. No gene presented with a suggested
neutral selection (Figure 6C).
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Figure 5. Identification map of chloroplast genome of nine species of Litsea. From top to bottom:
L. auriculata, L. chunii, L. ichangensis, L. moupinensis, L. populifolia, L. rubescens, L. sericea, L. tsinlingensis,
L. veitchiana. The gray arrows above indicate the extension direction of the gene, and purple indicates
the exon, blue indicates the untranslated region, pink indicates the non-coding sequences, and the
grayish part indicates mRNA.
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Table 3. The number of SNP types in LSC, IR and SSC regions of nine Litsea chloroplast genomes.

Species Region Transition Substitutions Transversion Substitutions

A/G C/T A/T A/C C/G G/T

L. auriculata 109 106 25 46 6 63
L. chunii Large 137 129 20 52 11 80

L. ichangensis 129 139 26 58 11 75
L. moupinensis single 134 139 21 58 10 78
L. populifolia

copy

129 138 22 60 10 80
L. rubescens 134 140 22 58 10 78

L. sericea 123 129 23 55 10 78
L. tsinlingensis 136 127 19 56 11 73

L. veitchiana 127 128 21 59 10 75

L. auriculata 3 5 0 2 2 11
L. chunii

Inverted
repeat

4 8 2 12 1 15
L. ichangensis 4 5 1 3 1 3
L. moupinensis 3 8 2 12 1 12
L. populifolia 3 6 2 12 1 11
L. rubescens 3 8 2 12 1 11

L. sericea 3 6 3 12 1 12
L. tsinlingensis 2 9 2 12 1 14

L. veitchiana 3 7 2 12 1 12

L. auriculata 43 47 5 21 3 16
L. chunii

Small
42 37 10 19 4 17

L. ichangensis 42 45 5 24 5 21
L. moupinensis 38 41 5 24 6 21
L. populifolia single 37 43 4 19 5 21
L. rubescens

copy
38 41 5 10 6 21

L. sericea 38 39 6 19 5 24
L. tsinlingensis 42 37 5 20 4 18

L. veitchiana 37 43 4 18 5 22

Table 4. Comparative analyses of the number and average length of InDel sites in LSC, SSC, and IR
regions in the complete cp genomes of nine species of Litsea.

Comparative Analyses of InDel Sites

Species Large Single Copy Inverted Repeat Small Single Copy

No′s of
InDels

InDels′ Average
Length (bp)

No′s of
InDels

InDels′ Average
Length (bp)

No′s of
InDels

InDels′ Average
Length (bp)

L. auriculata 86 4.40 16 103.3 18 1.3
L. chunii 89 8.4 3 458.7 20 1.4

L. ichangensis 99 3.7 5 276.0 19 1.6
L. moupinensis 88 3.7 4 339.0 16 1.9
L. populifolia 86 3.8 4 339.0 17 1.5
L. rubescens 88 3.9 5 272.4 16 1.9

L. sericea 86 3.7 4 339.0 19 2.0
L. tsinlingensis 87 9.1 2 678.0 19 1.4

L. veitchiana 88 3.7 4 339.0 18 1.8

Average 88.6 4.90 5.2 349.4 18.0 1.6
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Figure 6. Nucleotide diversity in chloroplast genomes of nine species of Litsea. The abscissa represents
the position, and the red line represents the average of the nucleotide variations of the nine species.
(A) Pi values for each gene region. (B). Pi values for each intergenic region. (C) Ka/KS values for
each gene.

The hyper-variable regions detected in this study may provide a potential molecular
marker for further studies. In particular, the rpl16 gene possesses both a high Pi value
and Ka/Ks value at the same time. This might suggest that the rpl16 gene went through a
great mutation that was crucial to the evolution process of Litsea species. Although studies
have reported rpl16 to be one of the highly divergent genes [59] and a positive selection
site [60], as unique and significant as the present study is this is not a common in studies of
other angiosperms. The other positive selection site, the ycf2 gene, was more commonly
described in previous studies [61,62].

3.7. Phylogenetic Analysis

The expanding cp genome database provides an important basis for determining
evolutionary relationships [56,63–65] Phylogenetic trees based on different data had slightly
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varied topologies, with trees based on the whole cp genome and CDS data having the same
topology, and being more credible than trees based on the IR area and introns [61,66–69].
We found two similar topological structures with few changes based on the full cp genome
and the protein-coding sequences of 23 selected species, with N. sericea and A. obovate as
outgroup species (Table S3, Figure 7).
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(B) Phylogenetic tree based on 64 sets of protein-coding genes. N. sericea and Actinodaphne obovata
served as out groups. The colored branches show the difference between two trees. Numbers at
branch nodes are bootstrap values and posterior probability.

In general, the entire phylogenetic tree was divided into three main branches, with
the two outgroup species representing two distinct branches, each with high bootstrap
values. The first subclade consists of 11 species: L. moupinensis, L. rubescens, L. populifolia,
L. veitchiana, L. pungens, L. sericea, L. ichangensis, L. chunii, L. tsinlingensis, L. acutivena
and L. glutivena. Among them, the clade of L. chunii and L. tsinlingensis and the clade of
L. acutivena and L. glutinosa form sister pairs, respectively. Notably, L. pungens switched
phylogenetic positions with L. sericea, with relatively low bootstrap values in both trees.
Another clade included 10 species: L. cubeba, L. mollis, L. dilleniifolia, L. szemaois, L. auriculata,
L. coreana, L. monpinensis, L. garrettii, L. elongata, and L. japonica. Among them, L. cubeba
and L. mollis were grouped as sisters and clustered with eight other species. It is worth
noting that in topology based on the complete cp genome, L. coreana and L. monopetala
were sisters with low support (only 57). However, in the CDS-based tree, L. dilleniifolia and
L. szemaois split into a clade that aggregated with the remaining four species (L. monpinensis,
L. garrettii, L. elongata, and L. japonica), and merged with L. coreana to converge as a single
branch. In other words, in the two different analyses, the clade consisting of L. dilleniifolia
and L. szemaois switched its position with L. coreana. The phylogenetic trees resulting
from Bayesian inference analyses (File S1) were generally consistent with the results of
the maximum likelihood tree. However, in the Bayesian inference tree, the positions of
L. pungens and L. sericea were consistent with the results of the maximum likelihood tree for
the complete cp genome, while the relationships of L. coreana, L. dilleniifolia, and L. szemaois
were consistent with the results of the maximum likelihood tree constructed by CDS.

The development of low-copy nuclear DNA regions to investigate phylogenetic rela-
tionships among plant taxa has attracted growing interest [70]. Therefore, many studies
have tried to study the phylogenetic relationships of the genus Litsea using different meth-
ods, such as combined matK and ITS [71], rpb2 [72] gene fragments, and morphological
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characters [73]. These studies focused on the analysis of the relationships between different
genera in Lauraceae. In comparative terms, the phylogenetic relationships constructed
from the complete chloroplast genome are more accurate than those constructed from a
few fragments [74]. Zhang et al. (2021) [75] suggested that Litsea could be divided into four
sub-clades through the chloroplast genome. However, our study has suggested that Litsea is
more appropriately divided into two sub-clades (Figure 7). We discovered that both the ML
tree and the BI tree had greater support values for the phylogeny reconstructed from com-
plete cp genomes. Such different trees could originate from substitutions in the intergenic
spacer regions, which illustrates the importance of non-coding regions in phylogenetic
analyses [76]. Therefore, complete cp genomes can be used as a ‘super barcode’ [77], and
they have been demonstrated to be effective for preventing some identification errors and
the discovery of new species [78]. Despite minor differences, the phylogenetic relationships
of most species in the topologies were consistent, showing similar genetic affinities in the
topology, and which aligned nicely with the elevational distribution of the species [71,79].

4. Conclusions

In this study, we sequenced and reported the complete cp genome sequences of
nine species in Litsea, revealing typical quadripartite circular structures. We observed the
contraction and expansion of IR boundaries. This event caused gene loss, changes in gene
length, and the occurrence of pseudogenes, resulting in the differences between species.
In terms of alignment consistency, the LSC region had the largest number of nucleotide
variants, and IR regions showed a high degree of conservation. We found that the rpl16
and ycf2 genes underwent great positive selection pressure. Moreover, rpl16 gene also was
found to be the only hyper-variable protein-coding gene in the gene divergent analysis,
which was evaluated by the Pi value. This phenomenon is rare and further studies to
unfold the molecular mechanism behind is needed.

Phylogenetic relationships within the genus were explored using two sets of data
from the complete cp genome and another from 64 sets of protein-coding genes shared
by 21 Litsea and two outgroup species. Essentially the same conclusions were obtained: L.
moupinensis and Litsea rubescena, L. chunii, and L. tsinlingensis were sisters in the phylogenies
and showed similar genetic relationships consistent with their elevational distributions.
This study provides aid to taxonomic studies for Litsea, providing specific genetic markers
for taxon identification and for inferring evolutionary relationships among the species.
These data may also contribute to future conservation efforts as well as the practical use of
these species.
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the percentage of each group. Table S2: Raw data of Ka/Ks value and pi value of 79 protein-coding
genes. Raw data of pi value of 101 IGS sequences. Table S3: Details of taxonomy and accession
numbers of species mentioned in this study. File S1: The phylogenetic trees resulting from Bayesian
inference analyis.
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