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Abstract

In this article, we study the hyperbolic Anderson model driven by a space-time col-
ored Gaussian homogeneous noise with spatial dimension d = 1, 2. Under mild
assumptions, we provide L?-estimates of the iterated Malliavin derivative of the solu-
tion in terms of the fundamental solution of the wave solution. To achieve this goal,
we rely heavily on the Wiener chaos expansion of the solution. Our first applica-
tion are quantitative central limit theorems for spatial averages of the solution to the
hyperbolic Anderson model, where the rates of convergence are described by the
total variation distance. These quantitative results have been elusive so far due to the
temporal correlation of the noise blocking us from using the Itd calculus. A novel
ingredient to overcome this difficulty is the second-order Gaussian Poincaré inequal-
ity coupled with the application of the aforementioned L”-estimates of the first two
Malliavin derivatives. Besides, we provide the corresponding functional central limit
theorems. As a second application, we establish the absolute continuity of the law for
the hyperbolic Anderson model. The L?”-estimates of Malliavin derivatives are crucial
ingredients to verify a local version of Bouleau-Hirsch criterion for absolute continu-
ity. Our approach substantially simplifies the arguments for the one-dimensional case,
which has been studied in the recent work by [2].
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1 Introduction

One of the main tools of modern stochastic analysis is Malliavin calculus. To put
it short, this is a differential calculus on a Gaussian space that represents an infinite
dimensional generalization of the usual analytical concepts on an Euclidean space. The
Malliavin calculus (also known as the stochastic calculus of variations) was initiated
by Paul Malliavin [21] to give a probabilistic proof of Hormander’s “sum of squares”
theorem. It has been further developed by Stroock, Bismut, Watanabe and others. One
of the main applications of Malliavin calculus is the study of regularity properties of
probability laws, for example, the laws of the solutions to certain stochastic differential
equations and stochastic partial differential equations (SPDEs), see e.g. [27, Chapter
2]. The Malliavin calculus is also useful in formulating and interpreting stochastic
(partial) differential equations when the solution is not adapted to a Brownian filtration,
which is the case of SPDEs driven by a Gaussian noise that is colored in time.

Recently, the Malliavin calculus has found another important application in the work
of Nualart and Ortiz-Latorre [28], which paved the road for Stein to meet Malliavin. The
authors of [28] applied the Malliavin calculus (notably the integration by parts formula)
to characterize the convergence in law of a sequence of multiple Wiener integrals, and
they were able to give new proofs for the fourth moment theorems of Nualart, Peccati
and Tudor [30,37]. Soon after the work [28], Nourdin and Peccati combined Malliavin
calculus and Stein’s method of normal approximation to quantify the fourth moment
theorem. Their work [24] marked the birth of the so-called Malliavin-Stein approach.
This combination works admirably well, partially because one of the fundamental
ingredients in Stein’s method—the so-called Stein’s lemma (2.6)—that characterizes
the normal distribution, is nothing else but a particular case of the integration by parts
formula (2.5) in Malliavin calculus. We refer interested readers to [44, Section 1.2]
for a friendly introduction to this approach.

The central object of study in this paper is the stochastic wave equation with linear
Gaussian multiplicative noise (in Skorokhod sense):

9%u

a3 = Au+uW d

ot 9 onR, x R? ford € {1, 2}, (1.1
u(O,x):l, E(Oax)_o

where A is the Laplacian in space variables and the Gaussian noise W has the following
correlation structure

E[W(t, )W (s, )] = ot —s)y(x —y),
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with the following standing assumptions:

(i) yo: R — [0, oo] is locally integrable and non-negative definite;
(ii) y is a non-negative and non-negative definite measure on R¢ whose spectral
measure ! satisfies Dalang’s condition:

1

where |€| denotes the Euclidean norm of & € R?,
An important example of the temporal correlation is the Riesz kernel yy(z) = |¢|7%°
for some «g € (0, 1) (with yp(0) = 00).

Equation (1.1) is also known in the literature as the hyperbolic Anderson model, by
analogy with the parabolic Anderson model in which the wave operator is replaced
by the heat operator. The noise W can be formally realized as an isonormal Gaussian
process W = {W(¢) : ¢ € H} and here H is a Hilbert space that is the completion
of the set C° (R+ x R¥) of infinitely differentiable functions with compact support
under the inner product

(D, ¥)H =/

R% xR

" ¢, )Y (s, y)yot —s)y(x — y)dtdxdsdy (1.3)

=/ dtdsyo(t—s)f dx(t, x)[V (s, @) * y]|(x), (1.4)
RZ R4

where we write y (x) for the density of y if it exists and we shall use the definition (1.4)
instead of (1.3) when y is a measure. In (1.4), * denotes the convolution in the space
variable and yo(t) = yo(—t) for t < 0. We denote by H®? the pth tensor product of
H for p € N*, see Sect. 2 for more details.

As mentioned before, the existence of a temporal correlation yq prevents us from
defining equation (1.1) in the It6 sense due to a lack of the martingale structure.
In the recent work [3] by Balan and Song, the following results are established using
Malliavin calculus. Let G; denote the fundamental solution to the corresponding deter-
ministic wave equation, that is, for (¢, z) € (0, co) x RY,

1 .
51{\Z|<t} ifd = 1;
Gi(2) == 1 (1.5)

e | ifd =2.
zﬂ\/m {lz|<1}

To ease the notation, we will stick to the convention that

G:(z) =0whent <0. (1.6)

I The spectral measure p of y is a tempered measure on R4 such that y = Fu, that is, y is the Fourier
transform of w, and its existence is guaranteed by the Bochner-Schwarz theorem.
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Definition 1.1 Fix d € {1, 2}. We say that a square-integrable process u = {u(t, x) :
(t,x) € Ry x R4} is a mild Skorokhod solution to the hyperbolic Anderson model
(1.1) if u has a jointly measurable modification (still denoted by u) such that
sup{E[u(t, x)?] : (t,x) € [0,T] x R?} < oo for any finite 7'; and for any ¢ > 0
and x € RY, the following equality holds in L?(2):

I3
u(r,x)=1+// Gy (x — yuls, y)W(ds. dy).
0 R4

where the above stochastic integral is understood in the Skorokhod sense and the
process (s, y) € Ry x RY —> 10, (s)Gi—s(x — y)u(s, y) is Skorokhod integrable.
See Definition 5.1 in [3] and Definition 1.1 in [2].

It has been proved in [3, Section 5] that equation (1.1) admits a unique mild Sko-
rokhod solution u# with the following Wiener chaos expansion:

wt,x) =1+ I(fixn), (1.7)

n>1

where I, denotes the nth multiple Wiener integral associated to the isonormal Gaus-
sian process W (see Sect. 2 for more details), f; ., € H®" is defined by (with the
convention (1.6) in mind)

ft,x,n (t1, X1, ooy tas Xn) :=Gt—tl (x — xl)th—tz (x1 —x2)--- thfl—t,, (Xn—1—%n),
(1.8)

and f; , , is the canonical symmetrization of f; , , € H®" given by

~ 1
ft,x,n(tlv X1y oousln, Xp) 1= E Z fl,x,n(ta(l)’ Xo(1)s - -5 lo(n)s xo(n))’ (1.9)

" 0ed,

where the sum in (1.9) runs over &, the set of permutations on {1, 2, ..., n}. For
example, f7 x,1(t1,x1) = Gi— (x —x1) and

Srox2(t1, x1, 12, X2)

= (Gt = NGy (51— 4Gy — )Gy (2 — ).
We would like to point out that in the presence of temporal correlation, there is no
developed solution theory for the nonlinear wave equation (replacing W in (1.1) by
o (u)W for some deterministic Lipschitz function o : R — R). We regard this as a
totally different problem.
Now let us introduce the following hypothesis when d = 2:
(a)y € LY(R?) for some £ € (1, 00),
o)y (x) = |x| P for some B € (0, 2),
@y (x1,x2) = y1(x1)y2(x2), where y;(x;) = |xi| 7 or y; € LY (R)
forsome 0 < B <1 <¥¢; <+4o00,i =1,2.

(HI)
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Remark 1.2 (i) Note that condition (a) for d = 2 is slightly stronger than Dalang’s
condition (1.2). In fact, when d = 2, the paper [18] pointed out that Dalang’s
condition (1.2) is equivalent to

f ln(|x|_1)y(x)dx < o0; (1.10)
[x]=<1

let £* = 15%1 and 0 < ¢ < 1/¢£*, then there is some § € (0, 1) and a constant C,
such that In(|x|~!) < C¢|x|~ for any |x| < 8, from which we deduce that

/ In(jx|" My (x)dx <In(@s™") y(X)dx + Cs / x| 7fy (x)dx
[x[<1

S<|x|<1 |x|<8

<In@™h y (0)dx

s<|x|=<1

1/¢*
+ Celly ey (/ et dx) - oo,
[x|<8

(i) The case (c) in Hypothesis (H1) is a mixture of cases (a) and (b). Accordingly,
more examples of the noise W arise. In the space variables, W can behave like a
fractional Brownian sheet with Hurst indices greater than 1/2 in both directions,
ie. y(x1,x2) = |x1 /27172 |x,|2H2=2 for some Hy, H> € (1/2,1).

(iii) Ford = 1 we just assume that y is a non-negative and non-negative definite mea-
sure on R. In this case (see, for instance, Remark 10 of [11]) Dalang’s condition
is always satisfied.

Under Hypothesis (H1), we will state our first main result — the L” (£2) estimates
of the Malliavin derivatives of u(z, x). The first Malliavin derivative Du(t, x) is a
random element in the Hilbert space H, the completion of C2° (R+ x R?) under the
inner product (1.3); as the space H contains generalized functions, it is not clear at
first sight whether (s, y) = Dy yu(t, x) is a (random) function. The higher-order
Malliavin derivative D" u(t, x) is a random element in H®" for m > 1, see Sect. 2
for more details.

Let us first fix some notation.

Notation A (1) We writea < btomeana < Kb for some immaterial constant K > 0.
(2) We write | X[, = (E[|X|71)"/? to denote the L”(R)-norm of X for p € [1, 50).
(3) When p is a positive integer, we often write zp = (z1,...,2p) for points in
R” or R, and dzp = dzi---dz,, (dzp) = (dz1)-- - ju(dzp). For a function
h: (Ry x RY)? — R with p > 2, we often write

h(spv}’p) Zh(SI, "‘7Sps yls "'7yp) Zh(sls ylv"'ssp9 yp)7

which shall not cause any confusion. Form € {1, ..., p—1}and (sm, ym) € R} xR4M
the expression /(S , ym; ®) stands for the function
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(tlsxlv "'1tp—m1xp—m) = h(sls y17 s Sm ymatlaxls ---atp—mvxp—m)

= n(Sm> Ym:s tp—m>Xp—m)-

Now, with the above notation in mind, we are in the position to state the first main
2
result.

Theorem 1.3 Let d € {1, 2} and suppose that Hypothesis (H1) holds if d = 2. Then,
forany (t,x) € Ry x R, the random variable u(t, x) belongs to D™ (see Sect. 2.1).
Moreover, for any integer m > 1, the mth Malliavin derivative D™ u(t, x) is a random
symmetric function denoted by

(sm’ )’m)z (Sl s yl s ooy Sms }’m) > DS],)’] Dsz,yz e Dsm,y,,,u(tv x) ZD;’;,ymu(ta x)7
and for any p € [2, 00), we have, for almost all (Sm, Ym) € [0, t]" x Rmd,
m fixon(ms Ym) < | Dyttt 0| ) S Frovm Smo ym), (1.11)

where the constant in the upper bound only depends on (p, t, yo, ¥, m) and is increas-
ing in t. Moreover, D™u(t, x) has a measurable modification.

Throughout this paper, we will work with the measurable modifications of Du(t, x)
and D%u(z, x) given by Theorem 1.3, which are still denoted by Du(t, x), D%u(t, x)
respectively.

In this paper, we will present two applications of Theorem 1.3. Our first application
are quantitative central limit theorems (CLTs) for the spatial averages of the solution
to (1.1), which have been elusive so far due to the temporal correlation of the noise
preventing the use of Itd calculus approach. A novel ingredient to overcome this
difficulty is the so-called second-order Gaussian Poincaré inequality in an improved
form. We will address these CLT results in Sect. 1.1. While in Sect. 1.2, as the second
application, we establish the absolute continuity of the law of the solution to equation
(1.1) using the L?-estimates of Malliavin derivatives that are crucial to establish a
local version of Bouleau-Hirsch criterion [5].

1.1 Gaussian fluctuation of spatial averages

Spatial averages of SPDEs have recently attracted considerable interest. It was Huang,
Nualart and Viitasaari who first studied the fluctuation of spatial statistics and estab-
lished a central limit theorem for a nonlinear SPDE in [15]. More precisely, they
considered the following one-dimensional stochastic heat equation

2 1n higher dimension (d > 3), the fundamental wave solution is a uniform measure supported on certain
surfaces, then the Malliavin derivative Du(t, x) is expected to be merely a random measure instead of being
arandom function. In this case, the expression Dy, yu(t, x) does not make sense; see also the recent article
[34] for related discussions.
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0 _ Lt oww (1.12)

at = 2 u ou .
on Ry x R, where W is a space-time Gaussian white noise, with constant initial
condition # (0, e) = 1 and the nonlinearity o : R — R is a Lipschitz function. In view
of the localization property of its mild formulation (in the Walsh sense [43]),

13
u(t,x) =1 ~|—/0 /I;ptfs(x — y)o(u(s, y))W(ds, dy), (1.13)

with p; denoting the heat kernel,® one can regard u(z, x) and u(t, y) as weakly depen-
dent random variables for x, y far apart so that the integral

R
/ [u(t, x) — 1]dx
—-R

can be roughly understood as a sum of weakly dependent random variables. Therefore,

it is very natural to expect Gaussian fluctuations when R tends to infinity.
Let us stop now to briefly fix some notation to facilitate our discussion.

Notation B. (1) For > 0, we define, with Bg := {x € R? : |x| < R},

Fr(t) := t,x)—1\|d d t) = ,/Var(Fg(t)). 1.14
2 (1) /Bk[w 0 —1]dx and og(t) = \/Var(Fr () (1.14)

(2) We write f(R) ~ g(R) to mean that f(R)/g(R) converges to some positive
constant as R — oo.

(3) For two real random variables X, Y with distribution measures w, v respectively,
the total variation distance between X, Y (or i, v) is defined to be

drv(X,Y) =Sl;p|M(B)—V(B)|, (1.15)

where the supremum runs over all Borel set B C R. The total variation distance is
well known to induce a stronger topology than that of convergence in distribution, see
[25, Appendix C].

(4) We define the following quantities for future reference:

w1 =2, wr=m, and kg4 := /RM dxdy|x — y|_ﬂ13| (x)1p,(y) for B € (0, d).
(1.16)

(5) For an integer m > 1 and p € [1,00), we say F € D"™7 if F is m-times
Malliavin differentiable random variable in L?(2) and E[||Dj F ||§;® j] < oo for
every j = 1,...,m; see Sect. 2.1 for more details.

Now let us illustrate the strategy in [15]: (For this reference, d = 1)

3 pr(x) = (Znt)_d/ze_‘x‘z/(z’) fort > 0and x € R?; in (1.13),d = 1.
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e The authors first rewrite Fr(¢) = 8(V; g) with the random kernel

Vir(s, y) = o(u(s, y))/B pr—s(x — y)dx,

where § denotes the Skorokhod integral, the adjoint of the Malliavin derivative D.

e By standard computations, they obtained U,% () ~ R.

e If F=6() e D'2 is a centered random variable with variance one, for some v
in the domain of §, the (univariate) Malliavin-Stein bound (see [15, Proposition
2.2]) ensures that dry (F, Z) < 2+/Var((DF, v)y) for Z ~ N(0, 1).

e Combining the above points, one can see that the obtention of a quantitative CLT
is reduced to the computation of Var({(D Fr(?), Vi r)H)-

Because the driving noise is white in time as considered in [15], tools from It calculus
(Clark-Ocone formula, Burkholder’s inequality, etc.) are used to estimate the above
variance term. It is proved in [15] that dpv (Fr(t)/or(?), Z) < R~Y2 Meanwhile, a
multivariate Malliavin-Stein bound and similar computations lead to the convergence
of the finite-dimensional distributions, which coupled with the tightness property gives
a functional CLT for {R™V/2Fg(t) : t € Ry }.

The above general strategy has been adapted to various settings, see [9,10,16,19,
20,38] for the study of stochastic heat equations and see [4,12,35] for the study of
stochastic wave equations. All these references consider a Gaussian noise that is white
in time. Nevertheless, when the Gaussian noise is colored in time, the mild formulation
(1.13) cannot be interpreted in the Walsh-Itd sense. In this situation, only in the case
o (u) = u the stochastic heat equation (1.12) (also known as the parabolic Anderson
model) can be properly solved using Wiener chaos expansions, so that F(¢), defined
in (1.14), can be expressed as an infinite sum of multiple Wiener integrals. With this
well-known fact in mind, Nualart and Zheng [33] considered the parabolic Anderson
model (i.e. (1.12) witho (1) = u) on Ry x R? such that d > 1, the initial condition is
constant and the assumptions (i)—(ii) hold (see page 2). The main result of [33] is the
chaotic CLT that is based on the fourth moment theorems [30,37]. When, additionally,
y is a finite measure, the authors of [33] established or () ~ R%/2 and a functional
CLT for the process R™/2 Fp, they also considered the case where y (x) = |x|~#, for
some B € (0,2 A d), is the Riesz kernel, and obtain the corresponding CLT results.
As pointed out in the paper [33], due to the homogeneity of the underlying Gaussian
noise, the solution « to (1.12) can be regarded as the functional of a stationary Gaussian
random field so that, with the Breuer-Major theorem [6] in mind, it is natural to study
Gaussian fluctuations for the problems (1.12) and (1.1). Note that the constant initial
condition makes the solution stationary in space and, in fact it is spatially ergodic (see
[10,36]). At last, let us mention the paper [32] in which chaotic CLT was used to study
the parabolic Anderson model driven by a colored Gaussian noise that is rough in
space. However, let us point out that the aforementioned methods fail to provide the
rate of convergence when the noise is colored in time.
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In this paper, we bring in a novel ingredient—the second-order Gaussian Poincaré
inequality*—to reach quantitative CLT results for the hyperbolic Anderson model
(1.1). Let us first state our main result.

Theorem 1.4 Let u denote the solution to the hyperbolic Anderson model (1.1) and
recall the definition of Fg(t) and og(t) from (1.14). Let Z ~ N(0, 1) be the standard
normal random variable. We assume that yy is not identically zero meaning

||y0||Ll([0,8]) > 0 for any & S (0, 1) (117)

Then the following statements hold true:

(1) Suppose that 0 < y(RY) < oo ifd = 1 and y € L'(R?) N LY R?) for some
¢ > 1ifd =2. Then,

or(t) ~ RY? and dry (Fr(1)/or(1), Z) < R™Y2.
Moreover, as R — 00, the process {R’d/ 2FR(r) i t € R+} converges weakly

in the space of continuous functions C(Ry) to a centered Gaussian process G
with covariance structure

E[G(NG(s)] = wa Y p! /R N Fooplyordx. (1.18)

p=1
fort,s e Ry.Herew) =2, wp =1 andf?x,p are introducedin (1.16) and (1.9),
respectively. The convergence of the series in (1.18) is part of the conclusion.
(2) Suppose d € {1,2} and y (x) = |x|=? for some B € (0,2 A d). Then,
B
or(t) ~ R™% and dry (Fr(D)/or(1), Z) S R7PP2.

B
Moreover, as R — 00, the process {R_d+7 Fgr(t) :t € R+} converges weakly
in the space C(Ry) to a centered Gaussian process Gg with the covariance
structure

! s
E[gﬂ(t)gﬂ(s)] = Kﬂ’d/o dr/o dr/yo(r -t —r)(s—T1), (1.19)

fort,s € Ry. Here the quantity kg q is introduced in (1.16).

4 The use of second-order Gaussian Poincaré inequality for obtaining CLT on a Gaussian space is one of
the central techniques in the Malliavin-Stein approach; for example, in the recent paper [13], Dunlap et al.
have used this Poincaré inequality to investigate the Gaussian fluctuation of the KPZ in dimension three and
higher. We remark here that we can not directly apply this inequality because of the complicated correlation
structure of the underlying Gaussian homogeneous noise, while the underlying Gaussian noise in [13] is
white in time and smooth in space so that they can directly apply the version from [26]. In this article, we
have established a quite involved variant of second-order Poincaré inequality, which is tailor-made for our
applications.
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(3) Suppose d = 2 and y(x1, x2) = y1(x1)y2(x2) such that one of the following
two conditions holds:

)y e LY(R) N LY(R) and y2(x2) = |x2|_ﬂf0rsome 0<B <1<l <oo0.
(1.20)

{ @) i (xi) = [x;| ™ for some B € (0,1),i =1,2;

Then,

or(t) ~ RE1BHE) and dry(Fr(t)/or(t), Z) SR-PH2 i case (a'),
or()~ RC™P/2 and dry(Fr(t)/og(t), Z) SR PHD/2 in case (b').

. oy Bith
Moreover, as R — 00, in case (a') , the process {R 24+ Fr(t) .t € R+}

converges weakly in the space C(R,) to a centered Gaussian process Gg, g,
with the covariance structure

t s
E[Gp,.5,(1)Gp1.p,(5)] = K,gl,,gz/o dr/o dr'vor — 'Yt —r)(s —7'), (1.21)

fort,s € Ry, where

Kpipo s = /R Margenlpzngey =™ e — yo P dxidxadyidyy;
(1.22)

. B3 .
and in case (b') , the process {R 7 Fr(t) :t € R_,_} converges weakly in the
space C(Ry) to a centered Gaussian process Gg with the covariance structure

! s
E[Gs(1)Gp(s)] = Vl(R)ﬁﬁ/ dr/ dr'yo(r —r'Yt —r)(s —r')  (1.23)
0 0
fort,s € Ry, where
Lg = A; dxldxde3l{xlz+X%51}1{x12+x3251}|xz — X3|_ﬂ. (1.24)

For the above functional convergences, we specify that the space C (R.) is equipped
with the topology of uniform convergence on compact sets.

Remark 1.5 (1) Note that the case when y (x) = y1(x1)y2(x2) with y; € LS@®) N
LY(R) forsome ¢; > 1,i = 1, 2, is covered in part (1). Indeed, suppose that £1 >
05, then by Holder’s inequality, y; € LY (R)NLY(R) implies y; € L2 (R)NL'(R)
and hence y € L2(R?) N L1(R?).
(i) The rate of convergence can also be described using other common distances
such as the Wasserstein distance and the Kolmogorov distance; see [25, Appendix
Cl.
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(iii) The variance orders and the rates in parts (1) and (2) of Theorem 1.4 are consistent
with previous work on stochastic wave equations, see [4,12,35]. The setting in part
(3) is new. As we will see shortly, our strategy is quite different from that in these
papers.

Now, let us briefly explain our strategy and begin with the Gaussian Poincaré
inequality. For F € D2, the Gaussian Poincaré inequality (see e.g. [14] or (2.12))
ensures that

Var(F) < E[||DF||%_[] with equality if and only if F is Gaussian,

that is, if DF is small, then the random variable F' has necessarily small fluctua-
tions. In the paper [8], Chatterjee pointed out that for F = f(Xq,..., Xg) with
X1,...,Xg1.1d. N(O, 1) and f twice differentiable, F is close in total variation dis-
tance to a normal distribution with matched mean and variance if the Hessian matrix
Hessf (X1, ..., X4) is negligible, roughly speaking. This is known as the second-
order Gaussian Poincaré inequality. In what follows, we state the infinite-dimensional
version of this inequality due to Nourdin, Peccati and Reinert; see the paper [26] as
well as the book [25].°

Proposition 1.6 Let F be a centered element 0fD2'4 such that B[F?] = 62 > 0 and
let Z ~ N(0, 02). Then,

dv(F.Z) < (% (E[Ip*F e 0F2e]) " (EDDFI]) . a2s)

where D*F ®; D*F denotes the 1-contraction between D*F and itself (see 2.10).

It has been known that this inequality usually gives sub-optimal rate. In the recent
work [42] by Vidotto, she provided an improved version of the above inequality,
where she considered an L2-based Hilbert space H = L%(A, v) with v a diffusive
measure (nonnegative, o -finite and non-atomic) on some measurable space A. Let us
state this result for the convenience of readers.

Theorem 1.7 (Theorem 2.11in [42]) Let F € D** with mean zero and variance c* > 0
and let Z ~ N(0, o%). Suppose H = L?(A,v) with v a diffusive measure on some
measurable space A. Then,

dTv(F, Z)

1

A 1
< U—QUA A\/E[(DZF ®1 D2F)’(x, y)] ><IE[(DF)Z(x)(DF)Z(y)]v(dx)v(dy)] g

The proof of the above inequality follows from the general Malliavin-Stein bound

2 _
dry(F.2) < E <|02 — (DF,-DL 1F>H|) (1.26)

3 Note that there i a typo in equation (5.3.2) of [25]: We have E[|| D F|[3,1'/4 instead of E[||D? F||3,1'/4.
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(see [25, equation (5.1.4)])° and Vidotto’s new bound of
E[(Cov(F, G) — (DF, —DL™'G))*] for centered F, G € D**

(see [42, Proposition 3.2]), where L~ listhe pseudo-inverse of the Ornstein-Uhlenbeck
operator L; see Sect. 2.1 for the definitions.

Recall that our Hilbert space H is the completion of C2° (R x R?) under the inner
product (1.3). The Hilbert space H contains generalized functions, but fortunately
the objects Dzu(t, x), Du(t, x) are random functions in view of Theorem 1.3. By
adapting Vidotto’s proof to our setting, we have the following version of second-order
Gaussian Poincaré inequality. Note we write f € [H®”| to mean f is a real valued
function and e — | f (e)| belongs to H®”.

Proposition 1.8 If F € D>* has mean zero and variance o € (0, 00) such that with
probability 1, DF € |H| and D*F € |H®?|, then

4
dTv(F, Z) = —\/./—4,

o2

where Z ~ N(0, 0%) and

A= /s drdr'dsds'd0d0’dzdz dydy dwdw yo(0 — 0)yo(s — s )yor —r')
RS xR64

x y(z— Z/)V(w - w'))/(y - y/)”Dr,zDO,wF||4”DS,ny)’,w/F||4||
X Dr/‘z/F||4”Ds’,y/F”4o

As mentioned before, Proposition 1.8 will follow from the Malliavin-Stein bound
(1.26) and Cauchy-Schwarz inequality, taking into account that, by the duality relation
(2.5), we have that £ ((DF, —DL_IF)H) = E[F?] = 02. Indeed, we can write

2 - 2
dry(F.2) < B (102 — (DF,-DL lF)HD < ;\/Var((DF, —DL-'F)y)

4
< —+v.A by Proposition 1.9 below.
o

Proposition 1.9 If F,G € D>* have mean zero such that with probability one,
DF, DG € |H| and D*F, D*G € |H®?|, then

Var((DF, —DL_IG)H) = E[(Cov(F, G) — (DF, —=DL™'G)»)?] < 24 + 24,,
(1.27)

6 Unlike in [25], we do not assume F to have a density; in fact, it suffices to use [44, Proposition 2.1.1]
and [25, (5.1.1)] to establish [25, Eq. (5.1.4)].
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where
Aq: =/ drdr'dsds'd0d6’dzd7 dydy dwdw'
R$ xR64

X (0 —0)yo(s — sH(r —ry =2y (w—w)y(y—y")
X Dy .z Do, w Fllall Ds,y Do wy Fllall Dy 7 G ll4]l Dy, G |4

and A is defined by switching the positions of F, G in the definition of A1.

For the sake of completeness, we sketch the proof of Proposition 1.9 in Appendix A.2.
Once we have the information on the growth order of o'z (¢), we can apply Theorem 1.3
and Proposition 1.9 to obtain the error bounds in Theorem 1.4. The proof of Theorem
1.4 will be given in Sect. 4: In Sect. 4.1, we will establish the limiting covariance struc-
ture, which will be used to obtain the quantitative CLTs in Sect. 4.2; Proposition 1.9,
combined with a multivariate Malliavin-Stein bound (see e.g. [25, Theorem 6.1.2]),
also gives us easy access to the convergence of finite-dimensional distributions (f.d.d.
convergence) for part (1), while in the other parts, the f.d.d. convergence follows easily
from the dominance of the first chaotic component of Fg(?); finally in Sect. 4.3, we
establish the functional CLT by showing the required tightness, which will follow by
verifying the well-known criterion of Kolmogorov-Chentsov (see e.g. [17, Corollary
16.9]).

1.2 Absolute continuity of the law of the solution to Eq. (1.1)

In this part, we fix the following extra hypothesis on the correlation kernels yy, y.

(H2) yo = Fuo and y = Fu, where pg, (0 are nonnegative tempered measures
and have strictly positive densities with respect to the Lebesgue measure.

The following is the main result of this section.

Theorem 1.10 Let d € {1, 2} and assume that Hypothesis (H2) holds. In addition,
assume that Hypothesis (H1) holds if d = 2. Let u be the solution to (1.1). For any
t > 0andx € R?, the law of u(t, x) restricted to the set R\ {0} is absolutely continuous
with respect to the Lebesgue measure on R\{0}.

Let us sketch the proof of Theorem 1.10. In view of the Bouleau-Hirsch criterion
for absolute continuity (see [5]), it suffices to prove that for each m > 1,

|Du(t, x)||¢ >0 a.s.on 2, (1.28)
where 2, = {|u(t, x)| > 1/m}. Notice that

t t
IIDu(t,X)II%{=/O /0 Yo(r — s)(Dy eu(t, x), Ds ou(t, x))odrds,

@ Springer



770 Stoch PDE: Anal Comp (2022) 10:757-827

where Py is the completion of C2° (R?) with respect to the inner product (-, -)¢ intro-
duced in (2.1). The usual approach to show the positivity of this norm is to get a lower
bound for this integral by integrating on a small interval [r — &, #]> and use that, for r
close to t, D, yu(t, x) behaves as G, (x — y)u(s, y) (see, e.g., [31]). However, for
r # s, the inner product (D, 4u(t, x), Dg u(t, X))o is not necessarily non-negative.
Our strategy to overcome this difficulty consists in making use of Hypothesis (H2) in
order to show that

t
/ ||Dr,.u(t,x)||(2)dr > 0 implies |[[Du(t, x)|| > 0 (see Lemma A.1).
0

This allows us to reduce the problem to the non-degeneracy of fttf s 1Dy out(t, x) ||(2)d r
for § small enough, which can be handled by the usual arguments. At this point, we
will make use of the estimates provided in Theorem 1.3.

For d = 1, Theorem 1.10 was proved in [2] under stronger assumptions on the
covariance structure. The result in Theorem 1.10 for d = 2 is new. Indeed, the study
of the existence (and smoothness) of the density for the stochastic wave equation
has been extensively revisited over the last three decades. We refer the readers to
[7,22,23,31,39—41]. In all these articles, the authors considered a stochastic wave
equation of the form

2
ZTZ(L xX) = Au(t, x) + b(u(t, x)) + o (u(t, ) X(t, x),

on R} x RY, withd > 1. Here, X denotes a space-time white noise in the case d = 1,
or a Gaussian noise that is white in time and has a spatially homogeneous correlation
(slightly more general than that of W) in the case d > 2. The functions b, o are
usually assumed to be globally Lipschitz, and such that the following non-degeneracy
condition is fulfilled: |0 (z)| > C > 0, for all z € R. The temporal nature of the noise
X made possible to interpret the solution in the classical Dalang-Walsh sense, making
use of all needed martingale techniques. The first attempt to consider a Gaussian noise
that is colored in time was in the paper [2], where the hyperbolic Anderson model
with spatial dimension one was considered. As mentioned above, in that paper the
existence of density was proved under a slightly stronger assumption than Hypothesis
(H2).

The rest of this paper is organized as follows. Section 2 contains preliminary results
and the proofs of our main results—Theorems 1.3, 1.4 and 1.10—are given in Sects. 3,4
and 5, respectively.

2 Preliminary results

This section is devoted to presenting some basic elements of the Malliavin calculus
and collecting some preliminary results that will be needed in the sequel.
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2.1 Basic Malliavin calculus

Recall that the Hilbert space H is the completion of CZ°(Ry X R4) under the inner
product (1.3) that can be written as

(V. )y, = /Rz dsdtyo(t — ) (1, 0). §(s, @)}, foryr,¢ € CX[Ry x RY),
+
where
(h,g)o = / dzdz'y (z — 2)h(2)g(2). 2.1
RZd

As defined in Sect. 1.2, we denote by Py the completion of CZ° (R4) with respect to
the inner product (k, g)o. Let [Poy| be the set of measurable functions 4 : R? > R
such that

/ dzdz'y (z — 2)|h|(2)|h|(Z) < oo. (2.2)
]RZd

Then |Po| C Py and for h € |Pol, |hl|3 = [p2a d2dz'y (z — Z)h(2)h(Z). We define
the space || in a similar way. For h, g € C2° (R?) we can express (2.1) using the
Fourier transform:

(h,g)o = /Rd n(d&)Fh(€)Fg (). (2.3)

The Parseval-type relation (2.3) also holds for functions 4, g € L' (R N [Py

For every integer p > 1, H®? and H®” denote the pth tensor product of H and
its symmetric subspace, respectively. For example, f; x , in (1.8) belongs to H®" and
frxm € HO™; we also have f ® g € H®"+™) provided f € H®" and g € H®",
see [25, Appendix B] for more details.

Fix a probability space (€2, B,P), on which we can construct the isonormal
Gaussian process associated to the Gaussian noise W in (1.1) that we denote by
{W(¢) : ¢ € H}. Thatis, {(W(¢) : ¢ € H} is a centered Gaussian family of real-
valued random variables defined on ($2, B3, P) such that E[W (Y)W (¢)] = (¥, d)
for any v, ¢ € H. We will take B to be the o -algebra o {W} generated by the family
of random variables {W(h) : h € C°(Ry x RY)).

In the sequel, we recall some basics on Malliavin calculus from the books [25,27].

LetC §§1y (R™) denote the space of smooth functions with all their partial derivatives
having at most polynomial growth at infinity and let S denote the set of simple smooth
functionals of the form

F=f(W(h),...,W(hy)) for f € C3,(R") and h; € H,1 <i <n.

o0
poly
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For such a random variable F, its Malliavin derivative D F is the H-valued random
variable given by

Za—f (W(h1), ..., W(hy)hi

And similarly its mth Malliavin derivative D" F is the H®"-valued random variable
given by

n

om f

D"F= Y e (WhD..... Wh))h;, @ - ® by, (24
| _3,6,,1,_.3)6,( (h1) (h))hiy ® - @ hi,.  (24)

Im

which is an element in L? (Q2; H®™) for any p € [1, 0o). It is known that the space S
is dense in L” (2, o {W}, P) and

D™ : S — LP(Q2; HO™)

is closable for any p € [1, 00); see e.g. Lemma 2.3.1 and Proposition 2.3.4 in [25].
Let D™:? be the closure of S under the norm

1/
[Fllgns = (EIFI?]+E[IDFIL] + -+ E[ID" FIe,]) " and
letD* := (1) D™

m,p>1

Now, let us introduce the adjoint of the derivative operator D™. Let Dom(§™) be the
set of random variables v € L2($2; H®") such that there is a constant C, > 0 for
which

‘]E[(DmF, U>'H®m]

< Cy||F|lp forall F € S.

By Riesz representation theorem, there is a unique random variable, denoted by 6™ (v),
such that the following duality relationship holds:

IE[F(S’”(U)] = E[(DmF, v)H®m]. 2.5)
Equality (2.5) holds forall v € Dom(ém) and all F € 2. In the simplest case when

F = f(W(h))withh € Hand f € C!  (R), we have 8§(h) = W(h) ~ N(0, ||h||%{)
and equality (2.5) reduces to

poly

E[f (W)W ()] = E[f' (W (B)] 12113,
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which is exactly part of the Stein’s lemma recalled below: For o € (0, 00) and an
integrable random variable Z, Stein’s lemma (see e.g. [25, Lemma 3.1.2]) asserts that

Z ~ N(0, 0?) if and only if E[Zf (Z)] = o 2E[ £/ (2)], (2.6)

for any differentiable function f : R — R such that the above expectations are finite.
The operator § is often called the Skorokhod integral since in the case of the Brownian
motion, it coincides with an extension of the Itd integral introduced by Skorokhod,
see e.g. [29]. Then we can say Dom(8™) is the space of Skorokhod integrable random
variables with values in H®".

The Wiener-Itd chaos decomposition theorem asserts that LZ(SZ, o{W}, P) can be
written as a direct sum of mutually orthogonal subspaces:

LY2(Q,0{W},P) = @(C

n>0

where (C(‘;V , identified as R, is the space of constant random variables and (C,‘;V =
{8"(h) : h € H®" is deterministic}, for n > 1, is called the nth Wiener chaos asso-
ciated to W. Note that the first Wiener chaos consists of centered Gaussian random
variables. When h € H®" is deterministic, we write I,(h) = §"(h) and we call it the
nth multiple integral of & with respect to W. By the symmetry in (2.4) and the duality
relation (2.5), 8" (h) = §"(h) with h the canonical symmetrization of h, so that we
have I,(h) = I,,(h) for any h € H®". The above decomposition can be rephrased as
follows. For any F € L(Q, a{W},P),

F=E[F1+ Y L(f, 2.7)

n>1

with f, € H®" uniquely determined for each n > 1. Moreover, the (modified)
isometry property holds

E[Ip(f)lq(g)] = P!I{P=q}<f’ g’/)H@,,, (2.8)

forany f € H®” and g € H®4. We have the following product formula: For f € HOP
and g € H®4,

PAq
IRGIAGEDS r!(f ) (f)lpﬂ_zr(f ®r 8). 2.9)

r=0

where f ®, g is the r-contraction between f and g, which is an element in H®(P+4-2")
defined as follows. Fix an orthonormal basis {¢;, i € O} of H.Then,forl <r < pAg,

f@g= > (fie ® ®ei)ner(g.e; ® e )y
il,...,ip,jl,...,,/'qe(’)
X Y= ju Vh=1,..r}€ipyy ® - ®ei, ®ej Q- Qej,. (2.10)
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In the particular case when f, g are real-valued functions, we can write
(f ®r8) (tp—r s Xp—r, t‘;_r , x‘,l_r)

,
- / dsydsldyrdy, | T vots; —s)v vy —¥))
R?XR”d i1
/_
x f(sr, tp—r, Yr, xp—r)g(s;, t;_p y;, x;_,«),

provided the above integral exists. For F € "2 with the representation (2.7) and
m > 1, we have

|
DIF=Y" ﬁ]n,m( fu(®, %)) with convergence in L2(Q; H®™), (2.11)
n—m)!

n>m

where I, (fu (e, %)) is understood as the (n — m)th multiple integral of f; (e, %) €
H®1=m) for fixed e. We can write

!
D;:ln,YmF = Z (nf—m)!ln—m(fn(sm»)’m§ *)),

n>m
whenever the above series makes sense and converges in L (£2). With the decomposi-

tion (2.11) in mind, we have the following Gaussian Poincaré inequality: For F € D!-2,
it holds that

Var(F) < E[|DF|3,]. (2.12)

In fact, if F has the representation (2.7), then

Var(F) = Y " nlll fulljen and E[IDFI] =" nnlll fulfgen,

n>1 n>1
which gives us (2.12) and, moreover, indicates that the equality in (2.12) holds only
when F € (Cgv &) (C}V, that is, only when F is a real Gaussian random variable.

Now let us mention the particular case when the Gaussian noise is white in time,
which is used in the reduction step in Sect. 3.2. First, let us denote

Ho = L2(R+; 'P())

and point out that the following inequality reduces many calculations to the case of
the white noise in time. For any nonnegative function f € H? " that vanishes outside
([0, 1] x RI)",

1 3gen < T7 I Nyqon (2.13)
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where’
' 2 2
r =2f yo(s)ds and | f12 e =/ 11t ) gndy - diy
0 0 [0,¢]" 0
whenever no ambiguity arises, we write || fl|lo = ||f||7)6®n so that ||f||3_l®n =
0

Siop I1f @, ) 5dtn.

Let X denote the Gaussian noise that is white in time and has the same spatial
correlation as W. More precisely, {X(f) : f € Ho} is a centered Gaussian family
with covariance

E[X(/)X(g)] = (f.&)n,. forany f,g € Ho.

Denote by [ ;E the p-th multiple stochastic integral with respect to X. The product
formula (2.9) still holds with W replaced by the noise X. Moreover, if f € H®P
and g € H®9 have disjoint temporal supports,® then we have f ®, g = 0 for r =
1,..., p A g and the product formula (2.9) reduces to

YOI Q) =1, (f ® ). (2.14)

In this case, the random variables / [36( f)and [ q}: (g) are independent by the Ustiinel-
Zakai-Kallenberg criterion (see Exercise 5.4.8 of [25]) and note that we do not need
to assume f, g to be symmetric in (2.14).

Now let us introduce the Ornstein-Uhlenbeck operator L that can be defined as
follows. We say that F belongs to the Dom(L) if F € D"? and DF € Dom(3); in
this case, we let LF = —8DF. For F € L*(Q) of the form (2.7), F € Dom(L) if
andonlyif ), ., n2n!| f, ||%{®n < o0o. In this case, we have LF = )" | —nl,(fn).
Using the chaos expansion, we can also define the Ornstein-Uhlenbeck semigroup
(P, = e't, 1t € Ry} and the pseudo-inverse L~ of the Ornstein-Uhlenbeck operator
L as follows. For F € L?(2) having the chaos expansion (2.7),

RE =Y () and LE =Y (.

n>0 n>1

7 For the sake of completeness, we sketch a proof of (2.13) here: Given such a function f € H?”,

171260 = /Mzn dsndin(f (sn. ), f(t,,,->)7>0®,1j1;[I Yolsj — 1)

1 2 2 d
< /[OJ]ZH dsndrn5(||f(s,., -)Hpggn + | £ tn. o)llpgan) ,1_[:1 vlsj — 1)) < F?nfn;g@n.

8 This means f = 0 outside (J x R?)? and g = 0 outside (J¢ x R)? for some set J C Ry. We will
)

apply this formula to functions f = f[(x_

J=(r,1).

j(r, z;e) and g = fr ; »—; given in Sect. 3.1, in which case
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Observe that for any centered random variable F' € L*(Q,0{W},P), LLT'F = F
and for any G € Dom(L), L™'LG = G — E[G]. The above expression and the
modified isometry property (2.8) give us the contraction property of P; on L>(£2), that
is, for F € L>(, 6 {W}, P), || P,F||2 < | F||2. Moreover, P, is a contraction operator
on L7(Q2) for any g € [1, 00); see [25, Proposition 2.8.6].

Finally, let us recall Nelson’s hypercontractivity property of the Ornstein-
Uhlenbeck semigroup: For F € L9(Q2, o {W}, P) with ¢ € (1, 00), it holds for each
t > Othat |PFly < |Flly withg, =1+ (g — 1)e?'. In this paper, we need one of
its consequences — a moment inequality comparing L7 (£2)-norms on a fixed chaos:

If FeCYand p e[2,00), then |Fll, < (p — )"?|F|; (2.15)

see e.g. [25, Corollary 2.8.14].

2.2 Inequalities

Let us first present a few inequalities, which will be used in Sect. 3.

Lemma 2.1 Fix an integer d > 1. Suppose that either one of the following conditions
hold:

(@)y € LY“(RY) forsomet € (1,00) (b)y(x) = |x|™? forsomep € (0, d).

Define

)¢/ —1) incase(a)
" |d/@d — B) incase (b).

Then, for any f, g € L*4(R?),

/Rd /Rd F)gy(x —y)dxdy < Cy |l fllL2awa) gl 20 re)s

where C, = |y |l ¢gay in case (a), and C,, = Cq g is the constant (depending on
d, B) that appears in the Hardy—Littlewood—Sobolev inequality (2.16) below, in case

(b).

Proof In the case d = 2, this result was essentially proved on page 15 of [35] in case
(a), and on page 6 of [4] in case (b). We reproduce the arguments here for the sake of
completeness.

In case (a), we apply Holder’s inequality and Young’s convolution inequality:

/ SO xy)dx < |Ifll 1 g

<A1, 2ty 181, 2, (Rd)nyuu(Rd).

llg * )/||L2Z(Rd)
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In case (b), we apply Holder’s inequality and Hardy-Littlewood-Sobolev inequality:

/Rd J)(g *y)(x)dx < ||f||L%(Rd)||g * Y Nl L2a/8 (e

2 (2.16)

<C .
< Caplfll a8l

This concludes the proof. O
To deal with case (c) in (H1), we need the following modification of Lemma 2.1.

Lemma 2.2 Suppose that y(xi,...,xq) = ]_[?:1 yi(xj), where for each i €
{17 D] d})

(M1)y; el (R) for some £; €(1,00) or (M2)y;(x)= |x|_’3i for some B; €(0, 1)

Let gi = £;/(2¢; — 1) in case M1) and q; = 1/(2 — B;) in case M2). Let ¢ =
max{g; :i =1,...,d}.

If f.g € LX¥RY) satisfy f(x) = g(x) = 0 forx ¢ ]_[?Zl[ai, b;] for some real
numbers a; < b;,° then

/Rd /Rd F@gyx —yydxdy < A"Cy |l fll 29 ey lIg 1l 20 (Re)» (2.17)

with A = max{b; —a;;i = 1,...,d}, C, = [1_, Cpy and v = Y0 (¢7" —q~").
In particular, when q; = q foralli € {1, ..., d}, we have

My (x — y)dxdy < Cyll fll 120 rayllgll 20 -
R4 JRE

The constants C,, are defined as in Lemma 2.1.

Proof By Lemma 2.1, inequality (2.17) holds for d = 1 with v = 0. Now let us
consider d > 2 and prove inequality (2.17) by induction. Suppose (2.17) holds for
d <k —1 (k> 2). Weuse the notation x = (xq, ..., Xx) =: Xk.

Without loss of any generality we assume g1 > g2 > --- > gy, so that g = q;.
Applying the initial step (d = 1) yields

k
/R dxedye S @g 0 | i — 1)
i=1
k—1
< Cyk/Rz(k_” dxi-1dYe-1 | f =1, 0 | 200 3y 8 =1 )| 20 gy [ | 7Gx =30

i=1

(2.18)

9 We can apply this lemma to the function y € R2 > G,_s(x — y) whose support is contained in
{y e RZ; |x —y| <t — s}, sowe can choose A = 2f — 2s.
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By the induction hypothesis, we can bound the right-hand side of (2.18) by

. 1
: 2 2q
<E Cyi) A <~/Rk1 | f k-1, ®) ”L%qk (R)dxk_1>

1
2 2
X <ka—l g k=1, ®) HLqu(R)d)’kﬂ) i

with v* = Zf‘;ll (q,.*l — ¢~ ). By Holder’s inequality,

1
2
( /R e ol (R)dxk_l)
2q =

=N 2q
by 2k 24
= / / | f k=1, xi)| " dxi | dxg—y
Rk—1 ag
1

0 by , 2
< AM 2 (/ / | f k=1, x| qukdxk—l> .
Ri-1 ax

A similar inequality holds for g. Since v*+(g,” l—q —h= Zf: 1(q; - g~ 1), inequality
(2.17) holds for d = k. O

We will need the following generalization of Lemmas 2.1 and 2.2.

Lemma2.3 (1) Under the conditions of Lemma 2.1, for any f, g € L*4(R"?)

m
‘/1%2 ., S Xm)8(Ym) 1_[ y(xXj — yj)dXmdym < C;ZZ||f||L2q(]Rmd)”g”LZq(Rmd),
j=1
(2.19)

where C,, is the same constant as in Lemma 2.1. Here Xm = (X1, ..., Xp) with
X € Rd.

(2) Lety, C, andq be givenasin Lemma2.2.If f, g € L2 (R™) satisfy f (Xmd) =
g(xma) = Oforxmg ¢ H;’fl [ai, bi]for some real numbers a; < b;, then inequality
(2.19) holds with C,, replaced by AV C,,, where A = max{b;—a; :i =1, ..., md}
and v = Z?Zl(qi_l — g~ 1. Here Xma = (x1, ..., Xmaq) with x; € R.

Proof The proof will be done by induction on m simultaneously for both cases (1)
and (2). Let C = C, in case (1) and C = A”C,, in case (2). The results are true for
m = 1 by Lemmas 2.1 and 2.2. Assume that the results hold for m — 1. Applying the
inequality for m = 1 yields
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/;gzclm S xm)g (ym) 1_[ y(xj — yj)dxXmdym

j=1

<cC / 1 Com—t. )1l 20 18 Ot . ) L2020,
R2d(m—1)

m—1
X 1_[ y(xj — yj)dxXm—1dYm-1.
j=1

By the induction hypothesis, the latter term can be bounded by

1
cm 1f Cmets )12, s it )
Rdm—1) b L @) Il

1

2q d %
X o) g Xm—1, ')”qu(Rd) Xm—1 )

which completes the proof. O

Let us return to the three cases of Hypothesis (H1). Lemma 2.1 indicates that
L2 (R?) is continuously embedded into Py, with ¢ € (1/2, 1) given by

Y {z/(zz 1 %n case (a), (2.20)
2/(4 — B) incase (b).

Recall that Py has been defined at the beginning of Sect. 2.1. Moreover, for any
f.8 € LR,

/11@4 |f()g@)|y (x — y)dxdy < Dyl 1l 120w 181l 120 R2) (2.21)

where

. (2.22)
Cap in case (b).

D, = {IlyllLe(Rz) in case (a),
For case (c) of Hypothesis (H1), we consider three sub-cases:
1)y € LK"(R) forsome {¢; > 1,i =1, 2;
(ii) i (xi) = |x;| =P for some B; € (0, 1),i = 1,2;
(i) y; € LY(R) for some ¢ € (1, 00) and y2(x2) = |x2|_ﬂ for some 8 € (0, 1).
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Lemma 2.2 implies that, for any f, g € L% (R2) with

max{f; /(2¢; — 1) :i = 1,2} incase (i)
q=ymax{l/2—g;):i=1,2} incase (i) , (2.23)
max{f/(2¢ — 1), 1/(2 — B)} in case (iii)

such that f, g vanish outside a box with side lengths bounded by A, then inequality
(2.21) still holds with

1
7|

L_ . .
lyill e (R)”W”L‘fz(R)Al“ %' in case (i)
Dy, = Cl,ﬁlcl,ﬁzA‘ﬁl_ﬂfl in case (ii) » (2.24)
Ciplint ||L@(R)A|77'3| in case (iii)

where the constants Cy g, are given as in Lemma 2.1.
From Lemma 2.3, we deduce that in cases (a) and (b),

B = D [ 1)1 gy 2.25)
[0,2]"

for any measurable function f : (Ry x R?)” — R such that f vanishes outside
([0, 1] x Rz)”; in case (c), inequality (2.25) holds true for any measurable function
fRy x R2)" — R such that

2n
Fx1, ot Xn) = f (b, Xn) = O forty ¢ [0, 1]" and xp ¢ [ [lai, bi]

i=1

with A ;= max{b; —a; :i =1,...,2n} < oc.
Let us present a few facts on the fundamental solution G. When d = 2,

1GillLr w2y = (%)Uptﬁl for all p € (0, 2), (2.26)
Gl (x) < @rt)? PGl (x) forall p <gq, (2.27)

and
1jx|<r) < 271G (x). (2.28)

We will use also the following estimate.

Lemma 2.4 (Lemma 4.3 of [4]) Foranyq € (1/2,1) andd =2,
b g 29 \1/ 1y 2
/ (GLyx GL)()ds < Ayt —r)e G, (2),
-
where Ay > 0 is a constant depending on q.
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Finally, we record the expression of the Fourier transform of G, ford € {1, 2}:

FGi() = f 3G oydx = SUED & e (2.29)
” £

Note that (see e.g. (3.4) of [3])

G/® <2>v 1) (2.30)

1+ 1612

In Sect. 4, we need the following two results.

Lemma 2.5 Ford € {1, 2}, let yy satisfy the assumption (i) on page 2 and let i, be
a symmetric measure on (Rd)p, for some integer p > 1. Then, with 0 < s < t and
Ap(t)z{speRi:t=s0>s1 > > 5, >0},

0B,

P
FCRTRESRRY § § EXOEE Y I IS
Z A,;(t) /[Os PHs>S5 (1> ) =0} ]1:[] J8 a0 195p

X g(s1,&81,...,5p,6p)8Go (), Ea(1)s -+ > So(p)» o (p)
t

<17 / ds, / S (dEp) (51 Err sy £ With Ty = / yo(a)da,
Ap(l) Rpd

—t

for any measurable function g : (R4 x RY)P — R+ for which the above integral is
finite.

Proof After applying |ab| < angz and using the symmetry of 1, we have that the
left-hand side quantity is bounded by

p
D) Z /p(t) /() s dsp1{s>§<,(])>,,.>§”(p)>o}h(sp) 1_[ VO(S] - S]) (231)

UEG j=1
1 p
+5 Z/ dsp/ NS —— TR ) i | PO
oes,” Br®) (0,517 j=1
(2.32)
with

BGst, .o s 5y) = [I;pd wp(dEp)g(si, &1, ..., 8p, Ep)2, forsp, € A, (1)

0, otherwise.
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Putting Z;(s1, ..., sp) 1= 1{s>sl>~»->sp>0} and letting fs(sl, ..., 8p) be its canonical
symmetrization (so that ]L| <( p!)_l), we can rewrite the term in (2.31) as

| _ p
z / / dspdsph(sp)Z,Gp) [ | v0(s; — 5
2 Ja,m 10517 il

< 1/ / dspd5ph( )ﬁ (s; —5;)
< = SpdSph(s Yo(s; — §;
) a0 J0.s17 p=ep p J J

j=1

1
< -r,”/ dsph(sp),
2 A

p(0)

using also the bound sup{f(f yo(r —r"Ydr' : r € [0, t]} < T',. For the other term (2.32),
we argue in the same way: With (Z; - h)(s1, ..., sp) = Zs(s1, ..., Sp)h(s1, ..., Sp), We
rewrite the term (2.32) as

p! . — P B p! —
5 ds / d8pTi(sp) x (T - W) Gp) [ ] ols; =3 = T{T0 T hlyge
[0,1]7 [0,s]7 izl
p!<f 7, 1) 1/ f . lﬁ[
=—(I;,Z; - h <= dt hGp) | | vols; =5
5 o ds Mpep = 5 0017 P A p i J S
1 p
< Ert dsph(sp),
Ap(s)
since &7 > 0 and |f,| < (p!)_l. This concludes the proof. O

Lemma 2.6 Ford € {1, 2} let y, u satisfy the assumption (ii) on page 2. Then, for any
nonnegative function h € Py N L' (RY),

sup | u(dé)lfh($+z)|2S/Rdu(dé)lfh(é)lz-

zeR4 JR
As a consequence, for any integer p > 1 and wy, ..., w, € [0, 1],
SUPs 2 2 pds) \*
1, L vt L1106 20F = (2t [ 55 )
(2.33)

Proof Since i > 0, using the fact that Fh(& + z) = F(e '*h)(&) together with
le™12 )| = 1, we get

/ 1(dE)| Fhig + )| = / eI (OR(y)y (x — y)dxdy
]Rd RM
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< / OOy (xr — ydxdy,
RM

which is exactly fRd wu(dé) |]-' h(&) |2. In particular, by (2.30),

n(dé&)
a1+ g7

sup/ u(dé)las($+z)|2S/Rdu(dé)las(é)lz52(s2V1)/R

zeRd JR

which is finite due to Dalang’s condition (1.2). Applying this inequality several times
yields

p
- o 5 n@dg) \”
L, waen T11Gu, & 420 = (2o [ F55 )

j=1

which is a uniform bound over (zp, wp) € R x [0, t]7. m|

3 LP estimates for Malliavin derivatives
This section is mainly devoted to the proof of Theorem 1.3. The proof will be done
in several steps organized in Sects. 3.1, 3.2, 3.3, 3.4 and 3.5. In Sect. 3.6, we record a

few consequences of Theorem 1.3 that will be used in the proof of Theorem 1.10 in
Sect. 5.

3.1 Step 1: Preliminaries

Let us first introduce some handy notation. Recall that for ¢, := (¢1,...,1,) and
Xp = (x1, ..., Xy), we defined in (1.8)

Sroxnn,Xn) = Gy (x = x1)Gp—1y(x1 —x2) -+ Gy —p, (Xn—1 — Xp),

with the convention (1.6), and we denote by f,,x,n the symmetrization of f; x ,; see
(1.9). We treat the time-space variables (#;, x;) as one coordinate and we write

ft,x,n(r» 25 th—1,Xp—1) = ft,x,n(r, 2o, X1, oo In—1, Xn—1)
as in Notation A-(3). Recall that the solution u (¢, x) has the Wiener chaos expansion
o0
w(t,x) =1+ I(fixn)
n=1

where the kernel f; . , is not symmetric and in this case, by definition, I,( f; x.n) =

I, (fl,x,n)-
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Our first goal is to show that, for any fixed (r, z) € [0, ] x R4 and for any p €
[2, 00), the series

D onhy 1 (franr, z: @) 3.1

n>1

converges in L”(2), and the sum, denoted by D, -u(t, x), satisfies the L? estimates
(1.11).

The first term of the series (3.1) is f; x,1(r, z) = G;—-(x — z). In general, for any
n>1,

~ 1 )

Fron(r zo) == ,r. 2 0), (3.2)
n“
J=1
where hf‘y";n(r, z; @) is the symmetrization of the function (t,—1,Xp—1) — f,(i)n
(r, z; th—1, Xn—1), which is obtained from f; x , by placing r on position j among the
time instants, and z on position j among the space points: With the convention (1.6),
I(,{C),l’l (ra Z; tn—l ) xn—l)

=Gy =x1) Gy (xjm1 =2 Gr—t; (2 = xj) - Gyt (n—2—Xn—1).
(3.3)

That is,
() ca) — () . .
_ft,x,n(r7 23 .) - ft,x,j(r’ 25 .)®fr,z,n—./v (34)

with f, . 1 = 1. Forexample, fr(,i),l(r’ z;0) = Gi—r(x—z) and f,fi{n(r, 25 th—1, Xn—1)
= Gi—r(x — 2) fr z.n—1(ta—1, Xn—1). By the definition of the symmetrization,

() .
ht,jx,n(rv Z; tn—ls xn—l)

1

= 1) Z ft(,fc),n(r,z; to(1)s Xo(1)s - - - s to(n—=1)s Xo(n—1))-  (3.5)

€6,

Similarly, for s, € [0, 7]" and y,, € R4™ and for any p € [2, 00), we will show that

m n! ~
Dsm,y,,,”(t’ x) = Z mln—m (ft,x,n(SMa Ym; 0)) 3.6)

n>=m

converges in L”(€2). Note that if the series (3.6) converges in L?(£2), we can see that
almost surely, the function

(Sm,ym)'_> Dm u(tvx)

Sm>Ym
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is symmetric, meaning that for any o € G,

Dy, .y Dsy .y, = -+ Dy, u(t, x) = DSo(l),yau)DSa(z),yo(z) T D“‘U(m)»,\)(r(m)u(t’ x).

From now on, we assume t > s1 > ... > s,; > 0 without losing any generality. Note
that like (3.2), we can write

n!

o e me i ) = T B (5m yms #), 3.7)
’ im€lAnm
where im € App means 1 < ij <ip < -++ < iy < nand ht(f';,)n(sms)’m§ o) is the

(im)

symmetrization of the function f; ¥,

(Sm, Ym; o) that is defined by

£ smeymz @) = £V 1y @) @ £ L (52, 9210) @ ®

1,Y1,i2—01

f(lm*lm—l) (sm, ym, .) ® fsm,}’m,n_im’ (38)

Sm—1Ym—1,im —Im—1

which is a generalization of (3.4).

3.2 Step 2: Reduction to white noise in time

Let X denote the Gaussian noise that is white in time and has the same spatial correla-
tion as W and let {X(f) : f € Hp} denote the resulting isonormal Gaussian process;
see Sect. 2.1.

For any p € [2, 00), we deduce from (3.6) and (3.7) that

I D, ., u(t, x) ”p = Z In—m Z hlgl'}'),, (Sm> Ym; ®) by triangle inequality

nzm im€Anm p

=07 b | > ™ (sm.ymi0) || by 2.15).

nzm im€Anm 2

(im)

t,x,n

The function 3 ; A 1
deduce from (2.13) that

(Sm, Ym: ®) vanishes outside ([0, t] x Rd)"_m, thus we

2 2
(im) . (im) .

Liw [ D B Gmeymi o) || ==m)! | D" B (sm. ym: @)

im€Anm 2 im€Anm H®n—m)

2

- (im) .

ST —m) | D B (Sm. Ym: ®)
imEAn.m H?("—m)

@ Springer



786 Stoch PDE: Anal Comp (2022) 10:757-827

_Fn " Inxm Z hg,xn(sm»va‘)

im€lApm 2

Therefore, we get

|02 u. )|, < S [ = DI | Y 1, (£ m. ym: ®)
n>m im€Anm 2
(3.9)

This leads to

| D2 )] <> [ = DI O, (3.10)

=
with
2
Quan i =E| [ D X, (£ m. ym: ®)
im €Ay m
< (Z) i,,.e%m (15 (0 m . 3ms 0))°) G.11)

The product formula (2.14) and the decomposition (3.8) yield, with (i, so, Yo)
0,1, x),

Qun < (”)
m

(ij=ij-1) . 2
Z E In —im f:Sm Ymn—lm 1_[ lj—lj 1— 1( SJ 1,Yj— llj_lj l(sj’yj’.)
im€An,m
2
_< > Z H n— lm(fxmsynhn*im)”z
im€Anm

Xl_[

<z—z] ) o 2 310
ij—ij—1—1 SJl)’/l’/_ljl(s/’y]’.) 2’ (3.12)

where the last equality is obtained by using the independence among the random
variables inside the expectation. It remains to estimate two typical terms

|13 and Hlxl(ft(’) .z o))ijorl <j<nandt>r. (3.13)
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The first term in (3.13) can be estimated as follows. Using Fourier transform in space
(see (2.29)), we have, with g = r,

[ a3 = 3t Frcilyger = /[ et o

2/ / |}-frzj(t] f])| M(df])dt]
r>t;>>1;>0 RdJ

j-1
:/ / l_[ |5EGtk—tk+1(€k+1+'"+§j)|2u(dfk) dt;.
r>t;>->t;>0 RdAJ =0

(3.14)

By Lemma 2.6,
ol
|15 (a3 < R (3.15)

where C = 2(1% + 1) [pa(1 + |61~ n(d8).

Remark 3.1 By the arguments that lead to (3.9), we can also get, for any p € [2, 00),

Jut, )|, < 1+ 3 [ nCfoxm], < 14+ D [0 = DI (1 L) |,

n>1 n>1
and then the estimate (3.15) implies u(¢, x) € L?(2). Moreover,

sup lu(s, y)Ilp < +ooforany r € R. (3.16)
(5,y)€l0,1]x R4

This is done under the Dalang’s condition (1.2) only and the case p = 2 provides
another proof of [3, Theorem 4.4] whend = 1, 2.

In what follows, we estimate the second term in (3.13) separately for the cases
d = 1and d = 2. As usual, we will use C to denote an immaterial constant that may
vary from line to line.

3.2.1 Estimation of "II?E tx!(r z;0)) " whend =1

Whend = 1,G;(x) = My Forj = 1,1 l(f,(f’ (r,z; ) = G, (x — 7) with
the convention (1.6). For j > 2, it follows from the (modlﬁed) isometry property (2.8)
that

)
ht X,

[ ez = G-

(r, Z") HEUD
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= [ e st ol
,

where we recall that h(] ) ;(r, z; @) is the symmetrization of ft(] ) (r, z: 0); see (3.5).
Then, taking advantage of the simple form of G,(x) ford =1, We get

1
0< ft(/) (r,z; tj—1, o) < El{lx—z|<l—r}ft,x,j—l(tj—ls o),
from which we further get

[ e o) < 62— / oot @) [t

ci-
<
G =D

G2, (x —2). (3.17)

where the last inequality follows from (3.15) and (3.14).

2
3.2.2 Estimation of /%, (1% .(r, z; @) || whend = 2
o 2

Let g be defined as in (2.20) and (2.23) and we fix such a g throughout this subsection.
Forj=1,1 l(ft(j) (r,z;®)) = G;—r(x — z) with the convention (1.6). For j > 2,
we begin W1th

ool = [ 120 st o g,

j—1 ) 2
SC] / ||ftj (l" thj—lv.)||L2q(R2j72)dtj—1
I>11>>1j 1 >r
=/~
= ¢/,

where we applied Lemma 2.3 for the inequality above'® and we denote

1/q
2 2
T,-::f dtj_l(/_ Gtztl(x—xl)-~-G,qu_r(xj_1—z)dxj_1) .
I>1 >t >T R2(G-D

(3.18)

Note that we can choose C to depend only on (¢, y, ¢) and be increasing in ¢.
Case j = 2. In this case, we deduce from Lemma 2.4 and (2.27) that

1

) (x— z)<CG I(x—2) < CG2,(x — 7). 3.19)

n—r

t
= f 1 (G4, * G}’
r

10 The function xj_1 — ft g j(tj 1:Xj—1) = Gi—1; (x =x)Gr—r, (x] — x2) .. G,j_l_,(xj,l —2)
has support contained in {x;_} € R2U-D, |xj —x| <t —1t, foralli=1,..., Jj—1%L
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Case j > 3. In this case, we use Minkowski inequality with respect to the norm in
L'4([t5, 1], dt1) in order to get

! q
1
= / ( / | [ / (G124 *Gils) M(X—Xz)dﬁ}
t>t> >t >r R2G=2) t

1/q
2 2
X Gtzq_t3 (xp —x3) - -~ G,;{l_r(x]'_l —z)dxo - -- dJCj_l) dry - -- dtj_1.

Applying Lemma 2.4 yields

1 2g—1
T < Ay (t — 1) Gl (x—x)
t>t> >t >r R2(-2)

1/q
X Gtzzq_t3(x2 —X3)--- Gtzjq,l—r(xj—l —2z)dxo - -- de'_l) dt - - - dlj_l.
(3.20)

If j = 3, we have
! L G2 2 V4
T < Aq/ (t —1n)a (/R G2, (x —x2)Gl, (x2 —z)dX2) dr.
r

Owing to (2.27), we can bound G, f (x — x2) by Qm)(t — rz)c;?i,z (x — x2), and
then we apply again Lemma 2.4 and (2.27) to conclude that

2 1 3, 2-1 )
T < Ay Qm)a(t —r)e G,/ (x—2)<CG/_.(x —2). (3.21)

For j > 4, we continue with the estimate (3.20). We can first apply Minkowski
inequality with respect to the norm L!/4([t4, 1], dt3) and then apply Lemma 2.4 to
obtain

1_ 1_
| dindty - dtj 1 (t = 1)1 (12 = 14)7
I>0>14>>1j_1>1

2q 1
</RZ(j3) - (¥ = x2)

1/q
2
thz t4(xz—X4)Gt4 tS(x4—x5) t, - _r(xjo1 —2)dxadxy - - dle) .

(3.22)

Note that
2g—1 2g—1 2g—1 2g—1
G[ztz (x - XZ)G[Zq_[4 (x2 - X4) =< 1{|x7X4|§t7t4}Gtzzz (x - xZ)Gtzq_t4 (x2 - )C4).
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Then, by Cauchy-Schwarz inequality and (2.26), we can infer that

G- 21 21
/2 G (x—x2) G, (2 — xa)dxy < Ve <t 1G4 2oy |Gy 2 ey
R

22 22
=c1(t —12)7 "ty — t4)" I x—xy| <t —1a)

where ¢; = (2”) Thus, substituting this estimate into (3.22), we end up with
3_ 3_
T < Aéc}/"/ dtrdty -+ -dtj_i(t — )4 3Nty —ta)a 2
[>0>14>>1j_1>T

1/q
2 2
x (/Rzu—4> Vjesgg—)Gryls (a = x5) - G (xjo1 — 2)dxg - - 'dxj]) :
Focusing on the indicators, the right-hand side of this estimate can be bounded by
2 1/q 3_3 3.3
Agey  Yx—zj<i—r) diydty---dtj 1(t — )1 “(t2 —14)9
I>0>14>>1j_1>T
2 2 1/q
X ([]éﬂj@ Gt4—t5 (x4 —x5)--- sz,l—r(x/—l —2)dxg - - dxj_1> .
For j = 4, using (2.28), we have

Ti < A2 Vag ryi~ Uw_zj<i—r) < CG?_, (x —2). (3.23)

Now for j > 5, we just integrate in each of the variables x4, ..., x;_1 (with this
order) so that, thanks to (2.26), we end up with

1/g j—4
/Tj < Aczlcl/qcé l{lx—z\st—r}/ drdty - - ~dl‘j_1

I>0>14> >t 1>

33 3.3 29 2.5 .
X({t—10)1 “(tp —t4)9 (4 —t5)a ~---(tjo1 — 1) with ¢

2 .
Q2m)t=24 2 1/ j—alt —1)i73 i(2-2)
= (52 ) = G e 0 P,

where we used the rough estimate a¥ < (b + 1)” for0 < @ < b and v > 0. Thus,
using (2.28) we obtain:

c/i—3
T, < me_r(x —z) forany j > 5. (3.24)
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Hence, combining the estimates (3.19), (3.21), (3.23) and (3.24) and taking into

account that Ix(ft ((r,z; o)) G,_s(z — y), we can write
, [CGE,(x—2) for j =1,2,3,4
TR R e ,

G =3 _,(x—z) for j > 5

where the constant C > 1 depends on (¢, y, ¢) and is increasing in 7. For 1 < j < n,
we obtain the following bound

CJ
RGO RGeS (3.25)

3.3 Step 3: Proof of (1.11)

Let us first consider the lower bound in (1.11) for d € {1,2}. For p € [2, 00), we
deduce from the modified isometry (2.8) that
|| D;’,/ln’ymu(tv -x) ||P - || Sm ymu(tv -x) ||2 Z m!ﬁ,x,m(sm’ )’m)
Now let us establish the upper bound in (1.11). By symmetry, we can assume ¢ > s1 >
- > s, > 0. First we consider the case where d = 2. Recall the definition of Q,, ,
from (3.11), and then plugging the estimates (3.15) and (3.25) into (3.12) yields, with

(i, s0, yo) = (0,1, x),

n Cn=im mn n3Cli—ij-1 2
Qmn < (m> > i l_[ G =i Gy =5, Vj=1 =)

n—1iy)!
iMEAILm m) :
<eoya | ! FremSm. Ym)
— . . . . . . m>.Jm)s
. il — i) (i — i) (0 — i)! | 55
im€Anm

where we used the rough bound ( ;‘l ) < 2". The sum in the above display is equal to

n! ai,..ame1)  nl

Cay+..tamy1=n
a,—eN,Vi

by multinomial formula. That is, we can get

[Cm + D]'n

OQman =< St Sms Ym) s

n!

which, together with the estimate (3.10), implies the upper bound in (1.11), when
d=2.
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The case d = 1 can be done in the same way by noticing that the bound in (3.17)
can be replaced by ns—f G,2_r (x —z) for 1 < j < n. Then, like the estimate ford = 2,
we can get, fort > s; > --- > 5, > 0,

[C(m + 1)]nn’"

2
Qm,n S }’l‘ f[,x,m(SM1 }’m)»

which together with the estimate (3.10) implies the upper bound in (1.11), whend = 1.
This completes the proof of the estimate (1.11).

Notice that the upper bound also shows the convergence in L? for any p € [2, 00)
of the series (3.6), for any fixed sy, € [0, t]" and y,, € Rdm,

3.4 Step 4: Existence of a measurable version

We claim that there is a random field Y such that Y (sp,, ym) = D;?n‘ymu(t, x) almost
surely for almost all (s, ym) € [0, £]” x R™ and the mapping

(@, $m, Ym) € 2 x [0, 11" x R™ +— Y (0, $m, ym) € R
is jointly measurable. This fact is rather standard and we will sketch the proof only in

the case d = 2. From the explicit form of the kernels f; r , given in (1.8), it follows
that the mapping

(Sm> Ym) = fr.x.n(Sm> Ym @) (3.26)
is measurable from [0, 7] x R?" to L2([0, ¢]"~™; L4 (R2("=™))). Because

L%([0, t]"~™; L% (R*""~™))is continuously embedded into HE" ™ (see (2.13)
and (2.25)),

we deduce that the map (3.26) is measurable from [0, 71" x R?" into H®"~™)_ This
implies that the mapping

Sms Ym) = Lo (fr.x.0(Sm, Ym: ®)) (3.27)

is measurable from [0, 1] x R?" to L%(Q2). The upper bound in (1.11) implies that
the mapping (3.27) belongs to the space

L¥([0, 11" x R¥™; L*(Q)) € L*([0, 11" x R*™ x Q).
From this, it follows that we can find a measurable modification of the process
Unem (Fr.n ms Ym: 9)(@) : (@, $m, ym) € @ x [0, 1]" x R*™).

Finally, by standard arguments we deduce the existence of a measurable modification
of the series (3.6).
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3.5 Step 5: Proof of u(t, x) € D>

We have already seen in Remark 3.1 that u(¢, x) € LP(2) for any p € [2, 00). Then,
it remains to show that the function D”; Yo u(t, x) defined as the limit of the series
(3.6) coincides with the mth Malliavin derivative of u (¢, x). To do this, it suffices to
show that IE[HDmu(t, X) ”H®m] < oo for any m > 1. By Fubini’ theorem and using
the upper bound (1.11), we write

2/
(BLID" e, e ]) "

N H/o 2 R2 tdsmdsi"dymdy',"(D;n ym“(tvx))(D:} y u(t, x))
t]em x R4ma Y

[Trots; —spvev; =)

=1 p/2

: /[0 (]2m xR2md dsmdspdymdyn | D, 4 (1 x)”p“ D;’Z"y:nu(t, %) “p
m
1_[ vlsj — sy =y
j=1

S ||-f7’x’m||§-[®m < Q.

This shows u (¢, x) € D°° and completes the proof of Theorem 1.3. O

Remark3.2 When d = 2, p = 2,m = 1 and for the cases (a), (b) in Hypothesis
(H1), the upper bound in (1.11) can be proved in a much simpler way for almost all
(r,z) € [0,1] x R2. Let v, be the solution to the stochastic wave equation

32U)L 3
W = A'U)L + )\.U}Lx

ov
v;.(0,0) =1, a—;(o, ) =0,

where A > 0and X is given as before. This solution has the chaos expansion v; (t, x) =
> =0 M LX(fi.x.n) and its Malliavin derivative has the chaos expansion

Dy ova(t,x) =Y ALY th(”(r ze)|:

n>1

see (3.1) and (3.2). From this, we infer that for any (X, ¢, x) € (0, 00)? x R? and for
almost every (r, z) € [0, t] x R2,

CA.tyGt r()C )

®(n H—

n
| D v 0 5= — D132 S0z o
n>1 j=1

(3.28)
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where Cy ;, > 0is a constant depending on (A, , y) and is increasing in ¢. The
inequality above is due to Theorem 1.3 of [35] for case (a), respectively Theorem 1.2
of [4] for case (b). Therefore,

n
| D, )5 = 3 = DU Y 0z 07
j=1

n>1

n
<Y - SRz e ||§{?<n71> by (2.13).
j=1

n>1

Thus, using (3.28) with A = /T, we get ” D, u(t, x) ||§ < Cr,,,,yGtz_r(x —2).
3.6 Consequences of Theorem 1.3
We will establish two estimates that will be useful in Sect. 5.

Corollary 3.3 Let d = 1, 2. Then, for any finite T > 0,

sup  sup E[[1D.aut, 0)l[5] < oc. (3.29)
(t,x)€[0,T1xR4 rel0,t]

In particular, Dy (u(t, x)(®) € |Po| for almost every (w, r) € Q x [0, t], where |Po|
is defined in (2.2).

Proof We work with a version of {D, ,u(t,x) : (r,z) € [0, 1] x R?} that is jointly
measurable. By Fubini’s theorem and Cauchy-Schwarz inequality, we have

E[ 1o, 0)1]g] < E/de Dy (e, )1 Dy ottty )y (2 — 2)dzd?
< /de Dy cu(t, x) 2| Dy u(t, x) |2y (z — 2))dzdz
= C/de Gi—r(x—2)G;—r(x—z")y (z—2")dzdz' by Theorem 1.3
=C /Rd “(df)rG\tfr (§)|2 using Fourier transform

d&)
20(12 1/ HAS) o 2.33),
<200V [ by 233)

where C is a constant depending on yy, y, t and is increasing in 7. The above (uniform)
bound implies (3.29). Hence, D, (u(t, x)(w) € |Po| foralmostall (w, r) € 2 x [0, ¢].
O
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The space | H®Po| appearing in the next corollary is defined as the set of measurable
functions 4 : R4 x R?? — R such that

fRz » lh(r, w, )|, w', 2]
+><

vor —ryy(w —w)y(z — 2 )dwdw'dzdz drdr’ < co.

Then, |[H ® Po| C H ® Po.

Corollary3.4 Let d = 1,2. For almost all (w,r) € Q x [0,t], DD, 4u(t, x)(w) €
|H ® Po| and for any finite T > 0,

2
sup  sup E (H|DD,,.u(t,x)]H ) < +o0, (3.30)
(t,)€l0,T]x R4 r€[0,1] H&Po

Proof Using Theorem 1.3, Cauchy-Schwarz inequality and the estimate (1.11), we
can write

2
E H DD, qu(t,x H
(Jioorswccol]), .
=E</ / 1Dy 1 Dy (e E, X))
[0,12 JR4 R o

X 100 — 6')y (w — )y (z — z’)dwdw’dzdz’d@d&’)

= ‘/[Ao’t]2 /]1;4‘1 “D(z@,w),(r,z)u(t’x)HZ||D(29’,u/),(r,z/)u(t’x)“2

x (0 — 0y (w — w)y(z — 2 )dwdw'dzdz' dodo’
S C/ ﬁ,x,Z(V, 2, Gyw)f;,x,2(rv Z/’ 9/7 w/)
[0,t]2 R4d

00 — 0y (w — w)y(z — 2 )dwdw'dzdz' dodo’.

As a consequence,

2
E (H DD, wu(t, x))| HHWO)

=C / a2 Ol frealr, 2 @)y (c = 2dzdz
R
By the arguments used in the proof of Theorem 1.3, it follows that

1 frxa(r,z @)l < CGrr(x — 2).
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Therefore,
2 / / !/
E (H DD, e, ) e I e e L
H&Po R2

and the same argument as in the proof of Corollary 3.3 ends our proof. O

Remark 3.5 Note that for any finite 7 > 0, E(|||D2u(t,x)|”§i®2) < oo for any
(r,x) € [0, T] x RY.

4 Gaussian fluctuation: Proof of Theorem 1.4

Recall that

Fr(t) = / [u(t,x) — l]dx
Bpr

and og(t) =, /Var(F R (t)). First, we need to obtain the limiting covariance structure,

which is the content of Proposition 4.1. It will give us the growth order of og(?).
Then, in Sect. 4.2, we apply the second-order Gaussian Poincaré inequality to establish
the quantitative CLT for Fg(t)/og(t). Finally, we will prove the functional CLT by
showing the convergence of the finite-dimensional distributions and the tightness.

4.1 Limiting covariance

Proposition 4.1 Let u denote the solution to the hyperbolic Anderson model (1.1) and
assume that the non-degeneracy condition (1.17) holds. Then, the following results
hold true:

(1) Supposed € {1,2} and y(]Rd) € (0, 00). Then, forany t,s € (0, 00),

Jim R™E[Fr(t)Fr(s)] = wa ) p! /R Frxps Fs0p)pepdx,  (41)
p=1

see also (1.18). In particular, og(t) ~ RY/2,

(2) Suppose d € {1,2} and y(x) = |x|~P for some B € (0,2 A d). Then, for any
t,s € (0, 00),

dim RPTXME[Fr(t)Fr(s)] —Kﬂd/ dr/ dr'vo(r —r' Y@t —r)(s — r'),
4.2)

where kg g = fBlz dxdy|x — y|~P is introduced in (1.16). In particular, o (t) ~
]
RI"7,
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(3) Suppose d = 2 and y(x1,x2) = y1(x1)y2(x2) satisfies one of the following
conditions:

(c1) ¥i(x;)) = |xi|7P for some B; € (0,1),i = 1,2;

4.3)
() 71 € LY(R) and ya(x) = |x|_/8 for some B € (0, 1)
For any s, t € (0, 00), the following results hold true:
(r1) In (c1), we have
lim RPPAE[Fr(t)Fr(s)]
R— 0

t s
= Kp,.p, f dr/ dr'yo(r —r')(t —r)(s — 1), (4.4)

0 0

where Kg, g, is defined in (1.22).
(r2) In (c2), we have

t N
Jim RPTE[Fr(t) Fr(s)]=n (R)ﬁﬁ/ dr/ dr'yor — ')t —r)(s — 1),
4.5)

where Lg is defined in (1.24).

4.1.1 Proof of part (1) in Proposition 4.1

Preparation. In the following, we will denote by ¢ the density of u. For0 < s <t <
occand x,y € R4, we have

Elu(t, )u(s. )] = 1= pfrvps Foryop)rgor
p=1

1

=) =P, 535 =),

p=1 P
where ﬁ,x,p € ‘H®P is defined as in (1.8)—(1.9) and ® (¢, s; x — y), defined in the
obvious manner, depends only on the difference x — y. To see this dependency and to
prepare for the future computations, we rewrite @, (¢, s; x —y) using Fourier transform

in space:

@, (1, 55% — ¥) = (PDH frorops Frovp o

p
= p' / dsp/ ds:p VO(Sj - S:])
Z Ap(t) [0,s17 jl:[l

0e6,

@ Springer



798 Stoch PDE: Anal Comp (2022) 10:757-827

p
dy,dy o
AW YpiYp 11:11 vy =)
p—1 .
X 1_[ stfsjﬂ (vj = yj+1) 1_[ GEU(/)_ng(_/‘Fl)(yg(j) — %(jﬂ)) @.6)
Jj=0 1
P
=p' Yy dsp/ dsp yo(sj —§;)
0ce6, Ap(1) [0.5]7 1
P
- / dfp 1_[ 90(%:]) e_i(x_)’)'@]-i--u_f_gp)
e j=1
p—1 .
X 1_[ st—SjH (ép + .. 4 fj+1) 1_[ G:Y'n(j)—sz(r(j+])(éo'(p)+. . '+§o(j+1)) ’
~ j=0

4.7

where A, (1) = {sp : 1 > 51 > -+ > 55 > 0}, (50 Y0, 50.0)» Yo 0)) = (1. X, 5, ¥),
G,(&) = % is introduced in (2.29) and we have used again the convention
G:(z) =0fort <0.

Relation (4.6) shows that ® (¢, s; x — y) is always nonnegative and equality (4.7)
indicates that @, (¢, s; x — y) indeed depends only on the difference x — y, so that we
can write

D, (t,5:2) = (P Frzps F5.0.p)3gen- (4.8)

Note that ®, (¢, t; 0) coincides with «,(¢) given in [3, Equation (4.11)]. Moreover,
applying Lemma 2.5 with u,(dé,) = @& -9¢p)dé---d§, and
g(sl3 %‘17 ey Spv ép) = Hf;ol |GSj—Sj+1 (ép + e + ‘i:]-‘rl)lv we get (Wlth s S t)

D,(t,5;2) < r[’p!/
Ap(0)

p—1 R 2
ds,,/R RCCS) § G
V2
Jj=0

(4.9)

where we recall that ', = f it yo(a)da and point out that the right-hand side of (4.9)
is finite by applying Lemma 2.6 withz; = &4 +---+§, and z, = 0.
Now we are ready to show (4.1).

Proofof (4.1) Let us begin with

E[u(l,x)u(s, y)] —1
R4

E[Fg(1) Fr(s)] /
B

R = dxdy

2
R
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Leb BrNB
/d # 1 Br(= Z)) @, (1,55 2)dz,
R

p>1 Leb(BR)

where w1 = 2, w» = 7 and Leb(A) stands for the Lebesgue measure of A C RY. We
claim that

> = / ®,(t, 53 2)dz < 00, (4.10)

p>1

from which and the dominated convergence theorem we can deduce that

Jim R™ YE[Fr(t)Fr(s)] _a)dz / D, (1,53 2)dz. (4.11)

p>l

We remark that, by the monotone convergence theorem and the fact that ® (¢, s; z) >
0 for all z € R9, the claim (4.10) is equivalent to

sup —/ ,(t,552)e” 5P g7 < oo, (4.12)

e>0
Let us show the claim (4.12).

For p = 1, by direct computations, we can perform integration with respect to
Z,y, ¥y (one by one in this order) to obtain

/ Dy (t,5;2)dz
Rd

t s
:/ (/ dr/ diyo(r — f)/ dydyGi—,(y — 20)Gs_i )y (y — ?)) dz
R4 0 0 R2d

t s
= y(Rd)/ / yo(r — F)(t — r)(s — P)didr < y(RHSTY, (4.13)
0 Jo

where fRd ® (¢, s; z)dz > 0due to the non-degeneracy assumption (1.17) on yg. This
implies in particular that og () > O for large enough R.

Next we consider p > 2. Using the expression (4.7) and applying Fubini’s theorem
with the dominance condition (4.9), we can write

= (27T)7d/ q)p(fss;z)ef%‘zlzdz
R4

P
= p! Z / / dfl’l_[y()(sf_gf)/R idgp
j=1 .

oG, Ap(®)
p—1
X peEr+ -+ Ep) [[ 0G5, Gp+ -+ Ej)
Jj=0
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Gig(j)—fa(j+1) (éﬁ(p) +- 4+ so’(/"rl))

P P
st/ dsy [ ag([Teen | o[
Ap(t) Rprd j=1 j=1

2
, (4.14)

p—1
1_[ ‘GSj—Sj+1(ép + et + Ej-‘rl)
j=0

where p.(§) = (27T8)_d/2€_|é|2/(28) for & € R and we applied Lemma 2.5 with

wp(dép) = &) - oEp)pe (&1 + - - +&p)dEy - - - dE).
Next, we make the change of variables

nj =&y +---+&; with the conventionn 1 = 0,

and the bound (4.14) becomes

P p-l
A 2
Tp,e SF;pP!/A ()dsp/de dnp | [Temj —nje0) | e [] ‘st-fst(UjJr])‘
t . .
Jj=1 j=0

4

< Ft”plllwllootszd a’mpg(m)/A ()dsp/R . ddnz~-~d'7p
plt pa=

P ~ o~ ~ 2
[Tets =m0 | |Go-n0mGos) - Gy, ()]
=2

= I/ plliglloot® fR dnipe(n)Qp-1. (4.15)

where we used I’G\,,S] &) < t,and (1 — M) =< |l¢lleo (Which is finite because
¥ (R?) < 00) to obtain (4.15), and

P
-~ 2
Op-1 3=/ dSp/ Hfﬂ(ﬂj - le+1)‘Gs,~,1—sj(77j)| dnj. (4.16)
Ap() L

Observe that O, does not depend on 71, thus for any p > 2

Tpe < TP pl@lloct®>Qp_i. (4.17)

By Lemma 2.6, we have for any p > 2

-1
u(dé§) )p tr_CP

= (20 vi —<—.
o= (2t [ B5R) 5=
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Now, plugging the above estimate and (4.17) into (4.12), and using (4.13) for p = 1,
we have

r’ce
|

1 _&1,512
sup E/Rﬁ’p(t, 5;9e” 5 dz < y RHET, + 2m) gl —m <+oc.

e>0p21 p=2
This shows the claim (4.12) and the claim (4.10), which confirm the limiting covariance

structure (4.11). Hence the proof of (4.1) is completed.
O

4.1.2 Proof of part (2) in Proposition 4.1
In this case, the corresponding spectral density is given by ¢(§) = cq gl |A=4, for
some constant ¢y g that only depends on d and B.

Now, let us recall the chaos expansion (1.7) of u(z, x), from which we can obtain
the following chaos expansion of Fr(?):

Fr(t) =Y _Jpr().

p>1

where J, r(t) := 1, (flxlfR j?;,x,pdx) is the projection of Fr(¢) onto the pth Wiener

chaos, with ft,x,p given as in (1.9).
Using the orthogonality of Wiener chaoses with different order, we have

03(1) = Var(Fr(1)) = Z Var(J,, (1))

p=1

Let us first consider the variance of J; g(f). With Bp = {x € RY . |x| < R}, we can
write

Var(J1. & (1)) = / A (Gralx — #). G — )

Bg
L

Then, making the change of variables (x, x’, §) — (Rx, Rx’, £/R), we get

dx"x// dsds'vo(s — s') f dEp(&)e 4G, (6)8,_y (&),
[0,1]? R4
(4.18)

2
R

Var(J1 z(1)) = de_ﬁ/

[0,7

dsds’yy (s —s’)/ dxdx’
? B}

fR (&) TG (/R 5/ R).
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Note that 6, (£/R) is uniformly bounded and convergent to  as R — 00; observe
also that

Lr(&) ::/ dxdx'e 16—k — |f13R|2(g) € [0, 00). (4.19)
By

Thus we deduce from the dominated convergence theorem that, with kg4 :=
f312 dxdx'|x —x'|7P,

Var Jl, () R—oo , , ,
IEdeﬁ ) /[0,:]2 dsds'yo(s — s )(t —s)(t — s )[l‘&d dEp(§)| F1p, |2($)
=Kpd / dsds'yo(s — s')ss’. (4.20)
[0,

In the same way, we can get

ElJ HJ —00 ! $ , ’ ’
[ 1’;(23_;’R(s)] R K,g,d/o dr/O dr'yor —r'Y@t —r)(s —r)  (4.21)

In what follows, we will show that as R — oo,

> Var(J, (1) = o(R*F). 4.22)

p=2

In view of the orthogonality again, the above claim (4.22) and the results (4.20)—(4.21)
imply that the first chaos of Fg(¢) is dominant and

E|Fr(t)F oo t s , )
[ 1;(23_;(”] R Kﬂ,d/(; dr[o driygr —r) )t —r)(s —r'),

which gives us the desired limiting covariance structure. Moreover, we obtain imme-

diately that the process {R_‘H'gF r() : t € R+} converges in finite-dimensional
distributions to the centered Gaussian process Gg, whose covariance structure is given
by (1.19).

The rest of Sect. 4.1.2 is then devoted to proving (4.22). We point out that the
strategy in Sect. 4.1.1 can not be directly used, because ¢ is not uniformly bounded
here.

Proof of Claim (4.22) We begin by writing (with so = S5(0) = ¢ and Brp = {x : |x] <
R})

Var(Jp,R(t)) = p! /2 dde/<ﬁ,x,ps ﬁ,x’,p>H®p = P!/Z dde/<ft,x,pv ﬁ,x’,p)H®p
B

BR R

P P
=P f dxdx// dspds, [ T voGsk —gk)/ dg;|g; 1P~
d,p Z B2 [0,0]2P P pll:[l Rpd jI:[l I

0e6,
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p—1
X e_l(x_x )-Epttn) 1_[ GSj—Sj+l (ép +o 4+ §j+1)G§,,(,-)—s”a(_/+1)
j=0

X (So(p) +---+ Ea(j—i—l)),

where we recall the convention that G,(z) = 0 forr < 0.
Then, recalling definition (4.19) of £ (§), we can apply Lemma 2.5 with

p(dép) = @& - @Ep)lr(EL + -+ - +Ep)dEr - - - dE)

to get Var(J, z (1)) bounded by

p
ot [ sy [ | TTagielr ) enr+ 8
d.pht N L i jlsj p

p—1
o8 (AR @.23)
Jj=0

Making change of variables
() nj =&+ +& withnys1 =0 (i) (x,x',m) — (Rx, Rx',mR™Y),

we obtain

Var(J .z (1) < ¢} ﬁr;’ /

Ap([)
X /
B

= cgﬁrfRZd—f‘/
' A

p
dSp/ [Tdniin —njalP~
L

2
R

p—1 2
dxdx'e =¥ ”“) l—[ )Gs,-—S_/+|(77j+1)
j=0
dsp/ dni|m —mR|F~¢
p(®) Rpd

P
[Taniimj—njsatP=?
j=2

p—1
x dxdx'e =0 ) G, ( /R)2H Gy .. (0 )2
2 t—s1 UM Sj—Sj4+1 77]+1
i j=1

2 P—lp p2d—p
<t Ca.p 'R /A o
V4

p—1

o, . 2

X (/32 dxdx'|x —x/|5el(x")"72R> 1_[ ‘st—s,-+1(77j+1) )
j=1

P
dSp/ [ Taniing —njwalP~
Rpd—d =2

1

@ Springer



804 Stoch PDE: Anal Comp (2022) 10:757-827

where in the last inequality we used |§,| < t and the following Fourier transform:

/ dxdx’cd,ﬁ/ d771|’71 _anIﬂ*de*i(xfx’)q“
B? R4

1

- 2
=cap / dmlni = mRIP~|F1g,["(n)
R
= f dxdx'|x — x'| Pe i =xD)mR
B}

Note that the integral fBlz dxdx'|x — x'| e~ 1 =x)mR jg ypiformly bounded by Kg.d
and it converges to zero as R — oo for 1o # 0. This convergence is a consequence of
the Riemann-Lebesgue’s lemma. Taking into account the definition (4.16) of Q 1,
then we have

RP72Var(J, g (1)) < t*kp.aTF Qp_1,

which is summable over p > 2 by the arguments in the previous section. Hence by
the dominated convergence theorem, we get

RF2 3" Var(J, (1)) 2225 0.
p=2

This proves the claim (4.22). |
4.1.3 Proof of part (3) in Proposition 4.1

Recall the two cases from (4.3):

(c1) yi(xi) = |x;i| P for some B; € (0,1),i = 1,2,
(c2) y1 € L'(R) and y»(x) = |x|~# for some B € (0, 1).

In (c1), the spectral density is ¢(£1, £2) = c1,5,¢1,5, 16117~ 62127 for (61, 6) €
R?, where ¢, g is a constant that only depends on . Now, using the notation from
Sect. 4.1.2, we write

Var(J1 z (1)) = / dxdx'/ dsds'yo(s —s')
B2 [0,11?
x /R de@(E)e  CTEG,_ ()G, (&) see (4.18)
= RY PP f dsds'yo(s — s') / dé(&1, &)
[O,t]2 R4

X /2 dxdxle_"(x_x,).'é /G\tfs (é,-:/R)/G\tfs/ (S/R)’
Bj
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where the last equality is obtained by the change of variables (x, x’, &1, &) to
(Rx, Rx', &1 /R, & /R). Thus, by the exactly same arguments that lead to (4.20), we
can get

Var(J1 (1)) R—oo , .,
R P B Kg, 6, /[‘0’[]2 dsds'yp(s — s')ss’,

with Kg, g, introduced in (1.22). Similar to (4.21), we also have

ElJi.rOJ1r(S)]| R0 ! T / /
[ S 2R Kﬂl,m/o dr/o dr'yo(r — ')t —r)(s — ). (424)

To obtain the result (1), it remains to show

Z Var(J, g (1)) = o(R*P17F2), (4.25)

p=2

Its proof can be done verbatim as for the result (4.22), so we omit the details here.

Finally, let us look at the more interesting case (c2) where y; € LY(R) and Y (x) =
|x|~# for some fixed B € (0, 1). In this case, the corresponding spectral density is
@1, 62) = @1(61)¢92(82), where

(4.26)

(i) 1 = Fe1 and ¢ is uniformly continuous and bounded,
(i) ¢(52) =cip |€,|#~1 for some constant c1,g that only depends on . ’

Let us begin with (4.18) and make the usual change of variables (x,x’,&) —
(Rx, Rx', £/R) to obtain

Var(J,z (1)) :/ dxdx’f dsds’yo(s —s')
B2 [0,£]2
/Rz dég1EN@aEe TG )Gy (6)
=R"F f dsds'yo(s — ') f dEpi(E1/R)pa(82)
[O,t]2 R2
( / i dxdx/eiw’)f) Gi—s(/R)G,_y(§/R)
Bl

= R37‘3/ dsds’yo(s —s')
(0,712

/R 450161/ R02)| FLs ()G (6 /RIG -y €/ R).
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Recall that ¢y, 6,_s and 6,_5/ are uniformly bounded and continuous. Note that,
applying Plancherel’s theorem and the Parseval-type relation (2.3), we have

| tzm@lFin© =27 [ andtn|F1a m 0@

_ -
= 271'/]1‘@ dx1dxzdx31{xlz+x%§1}l{xlz+x3251}|x2—x3| <00.

Therefore, by the dominated convergence theorem and the fact that ¢ (0) = % y1(R),
we get

Var(J ! —x / / ,
ar;;’_lg( ) & »1(0) dsds'yo(s — )t —s)(t —5)
(0,17

« / dEga(E)| F1g, [2(©)
R2

=R Lg /

, dsds’yo(s — s)ss’,
[0,2]

where Lg is defined in (1.24). In the same way, we get for 5, ¢ € (0, 00),

E[J1,r()J1,r ()]
R3—#

t s
= @)L /0 dr /0 dr'yo(r —r')(t = r)(s —r').
4.27)

Now we claim that the other chaoses are negligible, that is, as R — o0,

> Var(J, (1) = o(R*F). (4.28)

p=2

Note that the desired limiting covariance structure follows from (4.27) and the above
claim (4.28). The rest of this section is devoted to proving claim (4.28).

Proof of Claim (4.28) By the same arguments that lead to the estimate (4.23), we can
obtain

Var(J, z(1)) < Ff’f

Ap(D)

dsp/ dgp("p(fp)
R2p

-l 5
X 1_[ ‘GSJ'—S_,'_H(EIJ+"'+$j+l)‘ WlthSO:t,
j=0

where ¢, Ep) = @(E) - @E)LRE + - + &) for & = V&) e R,
j =1,..., p and £ is defined in (4.19). Recall that in the current case, ¢(§) =
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01 EMpr(E@) for & = (M, @) € R? and ¢y, ¢, satisfy the conditions in (4.26).
Then, the following change of variables

nj =& +&+1+---+§ withny 1 =0

yields

Var(J,, g (1)) <T/ /

p—1

~ 2

dSp/ dflpER(m)l_[ eMj+1—nj+2)|Gs;—s; 0 (j+1)| -
INTORN j=0

In view of (4.19), we have £z (171/R) = R*¢{(n1). Thus, by changing 71 to n;/R, we
write

Var(J, (1)) < R’T} f

~ 2
dspf dnpli(m)e(mR™" — nz)‘GHl(m/R)
A (1) R2P

p—1
~ 2
X 1_[ oj+1 — 77j+2)‘Gs_,~fsj+1 (’7j+1)’
j=1

<Rt [ dsp [ doan,
Ap(t) R2P—2
2 2 -1
</le d’llﬁl(m)Cl,ﬁM - 77; )R|'8 )
p—1 . 2
X 1_[ e(Mj+1 — 77j+2)‘Gs,—s_,-+1(771+1)) ,
j=1
where we used |f?\,,sI (n1/R)|? < 2. Observe that with n = (1, n®), we deduce

from the fact €1 () = |F1g,|* (", n@) that

2
/R At e (n® —xR) = /R A Vdn® | F1g P00 + xRypa(n®)

=2n /R3 Lo ra<nlipan<y
e iR o TP dx dxadxs,
by inverting the Fourier transform. The above quantity is uniformly bounded by 27 Lg

with Lg given in (1.24) and convergent to zero as R — oo for every x # 0 in
view of the Riemann-Lebesgue lemma. Thus, RP _3Var(J p.r (1)) is uniformly bounded

by 2n£ﬁl"lp||<p1 ||oot2Q,,_1, with Q,_1 given by (4.16) and it converges to zero as
R — o0. Since Q, < C?/p!, we have

ZF,”Q,,_l < o0,

p=2
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and the dominated convergence theorem implies (4.28). O

Remark 4.2 Under the assumptions of Proposition 4.1, we point out that o (t) > 0 for
large enough R so that the renormalized random variable Fr(t)/or(¢) is well-defined
for large R.

4.2 Quantitative central limit theorems (QCLT) and f.d.d. convergence

In this section, we prove the quantitative CLTs that are stated in Theorem 1.4 and, as
an easy consequence, we are also able to show the convergence of finite-dimensional
distributions in Theorem 1.4. We consider first the part (1) and later we treat parts (2)
and (3).

4.2.1 Part (1)

We will first show the estimate

drv(Fr(t)/or(t), Z) S RV, (4.29)

where Z ~ N (0, 1). By Proposition 1.8 applied to —— Fg(r), we have

or(t)

VAR, (4.30)

( (t)/ (t) ) =
d| I o V4

where
Ag = / drdr’dsds'd0d0'dzdz dydy dwdw’
R xR64

Y00 — ) vo(s —sHw@r =y —2Nyw —w)
X y(y = Y Dr.z Do, w FR() |4l Ds,y Dgr wy FR(D14]| Dy o FR(2) |14
Dy y Fr(0)]la.

Recall from Sect. 4.1.1 that 01% (1) ~ R%. Therefore, in order to show (4.29) it suffices
to prove the estimate
Ar < RY. (4.31)

~

Using Minkowski’s inequality, we can write

1Dy.2 Do FR(0)lla = H / Dy Dg.wt(t, ¥)dx
Bg

sf | Dr .. Dg wu(t, )| dx.
4 Bg
Then, it follows from our fundamental estimates in Theorem 1.3 that

IDy Do FRONa S | Frxar, 2,60, wydx, (4.32)
Bg
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with

J;;,x,z(r, z,0,w)

1
= z [Gl—r(x —2)Gr_g(z — w)l{r>9} +Gio(x —w)Go—r(z — w)l{r<0}] )

and, in the same way, we have

I Drz FR(DIl4 S / Gi—r(x —z)dx, (4.33)

Br

where the implicit constants in (4.32)—(4.33) do not depend on (R, r, z, 8, w) and are
increasing in z. Now, plugging (4.32)—(4.33) into the expression of Ag, we get

Ar < / drdr'dsds'd0d0'dzdz dydy dwdw’
[0,7]0 xR6d

x yo(r —ryols — )0 —0)y(z — Ny (w —w')

xy(y=y) f  Jrn 22 0.w) fran (5.3, 0" )G (s = 2)
BR

4
X Gy_y(xg — Y)dxg =Y Ag,;.
j=1

The four terms Ag 1, ..., Ar.4 are defined according to whether r > 6 orr < 0,
and whether s > 0’ or s < 0’'. For example, the term Ag | corresponds to r > 6 and
s> 0"
1
Agr1 = —/ drdr'dsds'd0d0’dzd7 dydy dwdw’
4 [O,I]GXRM
X yo(r = ryo(s —s)yo(0 — 6)
xyw—w)y(y =y =266z —w)Gs_g(y —w')

x / ARG (61 — DGrs (52 = NGy (33 — )Gy (s — ¥).
BR

(4.34)

The term Ag » corresponds to r > 6 and s < €', the term A 3 corresponds to r < 6
and s > 6’ and the term Ag 4 corresponds to r < 6 and s < #’. In the following, we
estimate Ag ; for j = 1,2, 3, 4 by a constant times R4, which yields (4.31).

To get the bound for Ag 1, it suffices to perform the integration with respect to
dxi,dxy,dxs, dy’,dy,dw’, dw, dz, dz7’, dx3 one by one, by taking into account the
following facts:

Sup/ Gi—r(x—2)dx <t and sup / Yy =¥y = Iyl gd)-
Bp R4

zeRd y'eRd
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To get the bound for Ag 2, it suffices to perform the integration with respect to
dxi,dx3,d7', dz,dxy, dw,dw’, dy, dy’, dxa. To get the bound for Ap 3, it suffices to
perform the integration with respect to dxg4, dy’, dx, dy, dw’, dx|, dw, dz, dz’, dx;3
one by one. To get the bound for Ag 4, it suffices to perform the integration with
respect to dxi, dx3, dxo,d7’, dz, dw, dw’, dy, dy’, dx4 one by one. This completes
the proof of (4.29).

In the second part of this subsection, we show the f.d.d. convergence in
Theorem 1.4-(1).

Fix an integer m > 1 and choose #1,...,t, € (0,00). Put Fpg
= (F r(t1), ..., Fg (tm)). Then, by the result on limiting covariance structure from
Sect. 4.1.1, we have that the covariance matrix of R~4/2F R, denoted by Cg, converges
to the matrix C = (C;; : 1 < i, j < m), with

Cij _a)dZP / ft’ x”’f’/ 0P>H®Pd

p=1

Since Fr(t) = §(—=DL™'Fx()), according to [25, Theorem 6.1.21,"1 for any twice
differentiable function / : R” — R with bounded second partial derivatives,

‘E[h(R’d/zFR) - h(Z)]‘ < ‘]E[h(R’d/ZFR) - h(ZR)]‘ n ‘E[h(Z) - h(ZR)]‘

B oo Var((DFR(t,) — DL~ Fg(t)) ) (Eh(Z) h(Zg)],

m
i,j=1

<
= ogd!
(4.35)

withZg ~ N(0,Cg),Z ~ N(0,C) and ||| cc = sup{|dx Fh)|x eR™ i j =

1,..., m} It is clear that the second term in (4.35) tends to zero as R — 0. For the
variance term in (4.35), taking advantage of Proposition 1.9 applied to F' = Fgr(t;)
and G = Fg(¢;) and using arguments analogous to those employed to derive (4.31),
we obtain

Var((DFR(ti), —DL_IFR(IQ/»H) S R,

Thus, the first term in (4.35) is O(R~%/?), implying that E[2(R=%/*Fg) — h(Z)]
converges to zero as R — oo. This shows the convergence of the finite-dimensional
distributions of {R~4/2Fx(t) : t € R4} to those of the centered Gaussian process G,
whose covariance structure is given by

[g([)g(s) = wq ZP /R ftx P> fs 0 p>H®pdx fors, t € [0, 00).

p=1

This concludes the proof of part (1) in Theorem 1.4. O

1T Note that there is a typo in Theorem 6.1.2 of [25]: In (6.1.3) of [25], one has d/2 instead of 1/2.
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4.2.2 Proofs in parts (2) and (3)

In part (2), in view of the dominance of the first chaos, we have already obtained in

Sect. 4.1.2 that the finite-dimensional distributions of the process {R‘d+§F r(1) :
t € R+} converge to those of a centered Gaussian process {Gg(f)};er,, Whose
covariance structure is given by (1.19). By the same reason, the convergence of the
finite-dimensional distributions in part (3) follows from (4.24), (4.25), (4.27) and
(4.28).

In this section, we show that:

RA/2 in part (2),
drv(FRr(t)/or(1), Z) < { R=1P1+A2) i part (3) case (a), (4.36)
R=U+A)/2 in part (3) case (b'),

where Z ~ N(0, 1). Taking into account (4.30) and the variance estimates in
Sects. 4.1.2 and 4.1.3, in order to get (4.306) it suffices to show that, for j € {1, 2, 3, 4}
and for R > t,

R*—3P in part (2),
Ag,j S R 3B1HP) in case (a') of part (3), (4.37)
R38 in case (b') of part (3).

Since the total-variation distance is always bounded by one, the bound (4.36) still
holds for R < t by choosing the implicit constant large enough.

The rest of this section is then devoted to proving (4.37) for R > ¢ and for j €
{17 29 37 4}'

Proof of (4.37) Let us first consider the term A 1, which can be expressed as
A1 = / drdr'dsds'dodo’yo(r — r')yo(s — s")yo(@ — 0")S1 R.
[0,]°

with

S1.r 1 = [pea dzdZ/dydy' dwdw'y (w — w")y (y — y)y(z — 2) fB;;Q dx4G;_r(x] — 2)
XGr_p(z —w)Gr—s(x2 — y)Gs—O’(y - w/)Gt—r’(x3 - Z/)Gt—s’(x4 - )’/)-

From now on, when d = 2, we write (w, w’, y, ¥, z,2) = (w1, w2, w}, wj, y1, 2,
Yis Y5, 21, 22, 2, 25) and then dy = dyidy>; note also that xp, ..., x4 denote the
dummy variables in R?. By making the following change of variables

(z,Z y, ¥y w,w', x1,x2, x3,x4) > R(z, 2, y, ¥, w,w', x1, x2, x3, x4)  (4.38)
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and using the scaling property G,(Rz) = R'™9G,p-1(z) ford € {1, 2}, we get

Sir= R6+4d/ dzdz'dydy' dwdw'y (Rw — Rw)y (Ry — Ry )y(Rz — RZ)
[_272]611

/ dxa X Gzt (x1 = G -0 (2 = )G 1=1 (x2 = )G ygr (y — W')
Bil R R R R

G% (x3 — z’)G% (xa — y"). (4.39)

Note that we have replaced the integral domain R% by [—2, 2] in (4.39) without
changing the value of S g, because, for example, x; € By and |x; —z| < (t —r)/R
implies |z] < 14+ tR™! <2 while |z —w| < (r —0)/Rand |x; —z| < (t —r)/R
imply [w| <t —0)R™'+1<2.

In view of the expression of y in part (2) and part (3), we write, for z € R4
(z = (z1,22) € R? whend = 2),

R Py(z) in part (2),
Y(Rz) = Y R~P=Pry(2) in case (a’) of part (3),
R~ Py1(Rz1)y>(z0) in case (b') of part (3),

and it is easy to see that

sup f y(Rz — RZ)dz
Ze[—2,214 J[-2,2]¢

Rﬂ/[ . y(z2)dz < o0 in part (2),

IA

RP1=F / ; y(z)dz < oo in case (a’) of part (3),
[—4,4]

4
RP1y (]R)/ y2(s)ds < oo in case (D) of part (3).
—4
To ease the notation, we just rewrite the above estimates as

sup / y(Rz — R7)dz S R™“ (4.40)
e[-2,214 J[-2,2)4

with @ = B in part (2), « = B1 + B2 in case (a’) of part (3), and @ = 1 + B in case
(V) of part (3).

To estimate Ag |, we can use (4.40) to perform integration with respect to
dxi,dxy,dxs,dy',dy,dw’, dw, dz, dz’, dx; successively. More precisely, perform-
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ing the integration with respect to dx1, dxz, dx4 and using the fact

sup f Gs/r(z — Z)dz =t/R (441)
(5,2)€[0,1]xRd JRY

gives us

Si1r < R34 / dzd7' dydy dwdw'y (Rw — Rw')
[_2’2]6(1

y(Ry — RY)y(Rz — RZ)) : dxs
1

X Gro(z—w)G g (y—w)G(x3—2")
R R R

< R3FH R« f dzd7 dydwdw'y (Rw — Rw')y(Rz — RZ) | dx3
[—2,2]>4 By

X Gro(z—w)G g (y—w)Gy (x3—2")
R R R
by integrating out dy’ and using (4.40)

< RAFAd—« f dzd7 dwdw'y (Rw — Rw')y(Rz — RZ) | dx3
[—2,2]4 By

X G% (z — w)G,_ (x3 — ') by integrating out dy and using (4.41)
R

< R2+4d_2°‘/ dzdz' dwy(Rz — RZ) | dx3Gr—s(z — w)G,_ (x3 —2))
[_2’2]3d B R R

by integrating out dw’ and using (4.40); then, using (4.41) to integrate out dw

< RiH4d—2a / dzd7'y(Rz — RZ) | dx3G,_(x3 —z2') S R
[_2’2]241 B R

where the last inequality is obtained by integrating out dz, dz’, dx3 one by one and
using (4.40) and (4.41). The bound

RA—3P in part (2),
Sig S RM3% = L R8=3A1-362 i cae (a') of part (3),
R38 in cae (b') of part (3)

is uniform over (r, r’, s, s’,0,6’) € [0, t1°, and hence we obtain (4.37) for j = 1. For
the other terms Ag 2, Ag 3 and Ag 4, the arguments are the same: We first go through
the same change of variables (4.38) to obtain terms S; g similar to Sy g in (4.39), and
then use the facts (4.40) and (4.41) to perform one-by-one integration with respect to
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the variables

dxy,dx3,dz',dz,dxy, dw,dw’, dy,dy’, dxs for estimating Ag »
dxs,dy’,dx;,dy,dw’,dxy,dw,dz,dz7',dx; for estimating Ag 3
dxy,dx3,dxy,d7',dz, dw,dw’,dy,dy’,dxs for estimating Ag 4

This concludes the proof of (4.37) and hence completes the proof of (4.36). O

4.3 Tightness

This section is devoted to establishing the tightness in Theorem 1.4. This, together
with the results in Sects. 4.1 and 4.2 will conclude the proof of Theorem 1.4. To get the
tightness, we appeal to the criterion of Kolmogorov-Chentsov (see e.g. [17, Corollary
16.9]). Put

R1/? in part (1) of Theorem 1.4
Rd_g in part (2) of Theorem 1.4
R2-2Bi+A) i part .(3) — (a’) of Theorem 1.4
RG-P)/2 in part (3) — (&) of Theorem 1.4

(4.42)

OR =

and we will show, for any fixed 7 > 0, that the following inequality holds for any
integer k > 2andany 0 <s <t <T < R:

|Fr(t) = Fr(s)|, S (t = s)or, (4.43)

where the implicit constant does not depend on R, s or #. This moment estimate (4.43)
ensures the tightness of {GE 'F r(t) : t € [0, T]} for any fixed 7 > 0 and, therefore,
the desired tightness on R holds.

To show the above moment estimate (4.43) for the increment Fgr(t) — Fr(s), we
begin with the chaos expansion

Fr(t) — Fr(s) = Z I, (/ dx[ft,x,n - fs,x,n]) = Z I, (gn,R)»
n>1 Br n>1
where s, t are fixed, so we leave them out of the subscript of the kernel g, r and
n—1

gn& G ) =[0G = 05k | [ Gojmgpn 0 = v @444)
j=1

with H?‘:] = land ¢, r(r,y) := fBR Gt—r(x — y)dx. The rest of this section is then
devoted to proving (4.43).
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Proof of (4.43) By the triangle inequality and using the moment estimate (2.15), we
get, for any k € [2, 00),

| Fr(t) = Fr@) |, <> (k=" |1 (gn.&) ], -

n>1

Note that the kernel g, g = 0 outside [0, ¢]" x R4"_ Then, using (2.8) and (2.13), we
can write

n - 1/2
[ Fr(t) = Fr()|, = Y- [Tute = D] (nt13nlen)

n>1

where g, g is the canonical symmetrization of g, g:

- 1
8n,.R(Sn,yn) = ] Z [@t,R(Sa(l)s Yo (1)) — @s,R(So (1) ya(l))]
oe®,

n—1

X H Gso(y=soiien Vo () = Yo (j+1))-
j=1

With the convention (1.6) in mind, we can write

ﬂ!||§n,R||%{®n =/ dSn/ [fﬂt,R(Sl, Y1) — @5, R(S1, )’1)]
0 >s51>>5,>0 R2nd

t
n—1

X l_[ Gsj=sjpi (¥j = yj+1) | X [wt,R(Sl, Y1) — s, r (51, yi)]
j=1

n—1 n
< | TTGs;—sa 0 = ¥ | [ [ v s = ¥)dy;dy;.
j=1 j=1

2

o as follows:

Then, using Fourier transform, we can rewrite n!||g, r||

I’l”lgn,R”f?_l@n = f dSn / M(dgp)|f131e’2($] + .-+ E[J)
0 Rnd

t>s51>>5,>0

X [GrnE 4+ +E) = GynyE1 4+ E)[
n—1
< [T1Gs - [ Ear + -+ 8p).

j=1
(4.45)
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Recall the expression (2.29) @, &) = % and note that it is a 1-Lipschitz function

in the variable 7, uniformly over £ € R4, Then

|’G\f—fl G148 - Gy (&1 +"'+5§p)|2 <@t -7

Therefore, plugging this inequality into (4.45) and then applying Lemma 2.6 yields

dsn ( / u(ds>|f13R|2<s>)
Rd

~ 2 2
PG R 200 < (=)
0 1>5]>>5,>0

n—1
<1 fRd M(dsj)|asj_sj+l|2(§j)
j=1

n(ds§)
R 1+ |12

n
|

n—1
< “‘”2;_ (2(r2v 1) ) Alu(dé)|f13R|2(é),

which is finite since 15, € Py. Using Fourier transform, we can write

/ (d8)| Flg (&) = / L3, ()15, ()7 (x — y)dxdy.
Rd RZd

Now let us consider the cases in (4.42).
In part (1) where y € L'(R?),

/R 15,0y (& — dady <y ®RDwaR? 5 of.

In the other cases, we can make the change of variables (x, y) — R(x, y) to obtain

f 1, ()15, (V)y (x — y)dxdy = R* / 1p,(x)15,(»)y (Rx — Ry)dxdy
RZd RZ(I

g R2d—a — 02

R

using (4.40) with « = B in part (2), @ = B + Bz in case (¢’), and @ = 1 + B in case
®".

As a consequence, we get

~ 2 c" 2 2
n! < — _
'”gn,R”H(?n = !OR(I 5) s

and therefore,

| Fr() = Fr()|, < It —slor Y_ [CTy(k — D]

1
n>1 \/m
which leads to (4.43). O
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5 Proof of Theorem 1.10

We argue as in the proof of Theorem 1.2 of [2]. As we explained in the introduction,
it suffices to show that for each m > 1,

|Du(t, x)||¢x > 0 a.s.on €,
where 2, = {|u(¢, x)| > 1/m}.
We claim that, almost surely, the function (s, y) +— D; yu(t, x) satisfies the

assumptions of Lemma A.1. Indeed, for d = 2, by Minkowski’s inequality and the
estimate (1.11), we have

; 1/q ' g \'4
B [as ([ poucniay) ) < [Cas( [ Jelpoucnr)ay)
0 R? 0 R

t ) 1/q
< Cf ds <f G (x —y)dy) < 0.
0 R2
For d = 1, again by the estimate (1.11),

t t
IE(/ ds <f |D‘v,yu(t,x)|2dy>> < cf ds/ G?_(x — y)dy < oo.
0 R 0 R

Moreover, (s, y) = Dy yu(t, x) has compact support on [0, t] x By for some M > 0.
As a consequence, by Lemma A.1, it suffices to prove that

t
/0 1Dy ou(t, x)||5dr
t
= / / Dy ;u(t, x)Dy yu(t, x)y(z — 2')dzdz'dr > 0 a.s. on Q.
0 R2d
(5.1)

As in the proof of Lemma 5.1 of [2], Corollaries 3.3 and 3.4 allow us to infer that
the H ® Pp-valued process K ) defined by

KD (s,y,2) = Gi—s(x = y) Dy zu(s, y)
belongs to the space D?(H ® Po). This is because, using Corollary 3.3, we can write
(r)2
E(IK Igp,)
=[], Gt = 9Giota = IE((Dratts. ). Dy’ ), )
[r,t]2 R2d

x yo(s — sy (y — y)dydy'dsds'

< C/ / Gi—s(x = )Gy (x —y)
[r.1]? JR2
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vo(s — sy (y — y)dydy'dsds' < oo,

and in the same way, using Corollary 3.4 we can show that ]E(|| DK® ”%i@?—(@??o) <
0o. Therefore, the process K ") belongs to the domain of the Py-valued Skorokhod
integral, denoted by 8. Then, using the same arguments as in the proof of Proposition
5.2 of [2], replacing LZ(R) by Py, we can show that for any r € [0, 7], the following
equation holds in L?($2; Po):

t
D, qu(t,x) = Gi—r(x —o)u(r,e) +/ /d Gi—s(x —y)D, Ju(s, V)W (Ss, 8y).
r JR

5.2)
Let § € (0,1t A 1) be arbitrary. Due to relation (5.2) we have, almost surely,
1 t
/0 1Dy au(t, )G dr > / 1Dy sutt, x)|§ dr
-8
z 3 G- (x — @)u(r, o)|gdr — 1(5), (5.3)
=5

where

2
dr
0

t
/ / Gy (x — Y)Dy.at(s, y)W(5s, 5y)
r R4

t
1(5) = /
t—6
t
-,

On the event 2,, = {|u(¢, x)| > 1/m}, we have

2

t
/ / Gys(x — y)Dy.at(s, y)W(Es,5y)| dr.
t—8 JIRd 0

t
/ 1Gyor (x — oyu(r, o) |2dr
=48
t
_ f f G (x = DGy (x — Dy, Dulr, 2y — 2)dzd2'dr
1—8 JR2
t
_ / / Grr(x — DGy (x — (e, )y (2 — 2)dzdZdr
t—8 JR2
t
-/ J Gy (=G = a0 e, D, D]y @~ daddr
t—8J R
1
> 0G) — T 6)
where

t
Yo(8) == f f Gi—r(x —2)G—r(x — 2)y(z — 2)dzdZ dr
t—8 JR2d

@ Springer



Stoch PDE: Anal Comp (2022) 10:757-827 819

)
=/ / Gr(2)Gr (2 )y (z — 2dzdZ dr
0 de

and

t
J(8) = / / Gir(x =G (x =2y (z—2)
t—8 JR2d

(u(t, )% —ur, Dulr, z/))dzdz/dr.

Coming back to (5.3), we can write

! 1 1
/0 1Dy ou(t, x)l[5dr > 22 V0@ = 5 J(0) = 1(3) on Q. (5.4)

We now give upper bounds for the first moments of J(§) and 7(5). We will use the
following facts, which were proved in [3]:

C/ = sup lu(s, y)|lo < oo  (see also (3.16) in Remark 3.1)
(s,y)€[0,1]x R4

g .x(8):= sup sup Ju(t,x)—u(s,y)2—>0 asd— 0.
|[t—s|<§ |x—y|<d

We first treat J (8). By Cauchy-Schwarz inequality, for any € [0, f] and z, 7’ € R?,

EJu(t, x)* = ur, Dulr, ] < lut, )2 lu, x) = ur, 2|2
+ llur, Dl2llutt, x) — ulr, 22

= C; (It ) = ur, D2 + e, %) = u(r, 2)l2).

Since G;_,(x — z) contains the indicator of the set {|x — z| < ¢ — r}, we obtain:

t
Mumnsuﬁf / G (x = DGy (x — )y — Dllult, x)
1—8 JR2d
—u(r, 2)|l»dzdz dr
t
<267 [ [ Gt =G = 2y = 2)
t—8 JR2

sup lu(t, x) — u(s, y)|l2dzdz'dr.
t—8<s<t
lx—y|<é

It follows that

E(1J(®)) = 2C;g1,x()Y0(8). (5.5
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Next, we treat I (§). Applying Proposition 6.2 of [1] to the Py-valued process
Us,y) = 1j—5,0(8)Gi—s(x — y) Dy ou(s, y)
we obtain

E(ISW)I5) < EUU 39p,) + EUIDU 3 gren,)-

We have,
E(IUlgn,) = E(/ / Gi—s(x = Y)Gr—y (x = Y)yo(s =)y (y =)
[t—8,¢1% JR2M
X (Dy ou(s. y), Dy qu(s’, y/)>0dydy/dsds/>

and

E(IDU I3g11ap,)

_ E( / f f Grs(x — MGr—y (x — ¥)70(s — )Y (5 — ¥)
[I—B,l‘]2 [O,r]2 R4d
X <D(29,w),(r,.)u(s, ¥): D wy. r.0ytt(s', ¥))g vo (6 — 6")

x y(w — w’)dwdw/dydy/dede’dsds/)
- E( / / Gy (x = )Gy (x — Ym0l — )y (y — ¥')
[t—8,11> JR2d
x (DDy ou(s, y), DDy qu(s’, y’)>H®P0dydy’dsds/>.
Hence, E(1(8)) < I1(8) + I>(5), where
1) = E( / / Giy(x = )Gy (x = ¥)mo(s — sy (y — ¥')
[t—8,113 JR2d
X (Dr,.u(s, y), Dy ott(s’, y/))odydy/dsds’dr)
and
1) == E( / / Gy (x = )Gry (x = ¥yl — sy (v = ¥)
[t=8,¢]3 JR2

X (DDy Ju(s,y), DDr,.u(s/, y/))H®7;0dydy/dsds/dr>.

@ Springer



Stoch PDE: Anal Comp (2022) 10:757-827 821

Using Cauchy-Schwarz inequality and Corollaries 3.3 and 3.4 , we obtain:

E(|(Dr ait(s. ), Dyaut(s', ¥))o]) = €, and

E([(DDy auts, ), DDy (s’ Y)hriam,|) < €.
Hence,
E[1(8)] < (C; 4+ CNs¢(8), (5.6)
where
P (8) = /[t - ./]RZd Gi—s(x = )Gy (x = Y)yo(s =)y (v — y)dydy'dsds’

= / / Gs(MGy(Yyols — sy (y — y)dydy'dsds’. (5.7
0’5]2 R2d

Using (5.4), (5.5) and (5.6), we conclude the proof as follows. For any n > 1,

t
P ({/ Dy o, X)|Ig dr < 1} N Qm> <P (1(5) + l1(5) > L100(3) - l)
0 n 2 2m? n

< : 1 : 71E18 1]E J(
_<mwo<)—;) (BLU®)1+ SE1/G)))

_ G+ C”)8¢(5) +Cf gt x(8)wo(5)
B 2¢O(5) -

Letting n — oo, we obtain:

({/ Dy ou(t, x)|I3dr = 0} m) <2m ((C, +C”)8$((8)) +Ct*gt,x(8))~

Note that using Fourier transform and the expression (2.29), we can rewrite (5.7) as
60 = [ [ Gu&Cu@me —sugdsas
[0,812 JRY
It~ ~
< [ [ 5[6:©2 + G - suerdsas
[0’3]2 R4 2

=T / f G (®)2u(de)ds,
[0,8] R4

where I's = 2[6S yo(s)ds. That is, we have ¢ (§) < I'syo(8). Finally taking § — 0

proves (5.1), since g; (6) — 0 and 8% <él's > 0asé — 0. O
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6 Appendix

A.1 Auxiliary Results

Let d = 2 and assume Hypothesis (H1). Suppose that S : Ry x R> — R is a
measurable function such that § € L%(R,; L4 (R?)), where ¢ is given in (2.20) in
cases (a) and (b) and it is given in (2.23) in case (c). We assume also that S has support

in [0, T] x By for some M > 0. We claim that S belongs to  and the following
estimates hold true:

1S+ = VITISIH, = VT Dy ISIp2 R, 120 R2))-

Indeed, the first inequality is due to (2.13) and the second one follows from (2.25).
Ford =1,if S € L2(]R+ x R) has support in [0, T'] x By for some M > 0, then
S € 'H and the following estimates hold true:

1Sl < VTrlSIre < /Tr1y 1y 1@ IS1 2R, xR)-

Indeed, the first inequality is due to (2.13) and the second one follows from