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ABSTRACT
Bipolar disorder (BD) is associated with excessive pleasure-seeking risk-taking behaviors 
that often characterize its clinical presentation. However, the mechanisms of risk-
taking behavior are not well-understood in BD. Recent data suggest prior substance use 
disorder (SUD) in BD may represent certain trait-level vulnerabilities for risky behavior. 
This study examined the mechanisms of risk-taking and the role of SUD in BD via 
mathematical modeling of behavior on the Balloon Analogue Risk Task (BART). Three 
groups—18 euthymic BD with prior SUD (BD+), 15 euthymic BD without prior SUD (BD–), 
and 33 healthy comparisons (HC)—completed the BART. We modeled behavior using 
four competing hierarchical Bayesian models, and model comparison results favored the 
Exponential-Weight Mean-Variance (EWMV) model, which encompasses and delineates 
five cognitive components of risk-taking: prior belief, learning rate, risk preference, loss 
aversion, and behavioral consistency. Both BD groups, regardless of SUD history, showed 
lower behavioral consistency than HC. BD+ exhibited more pessimistic prior beliefs 
(relative to BD– and HC) and reduced loss aversion (relative to HC) during risk-taking on 
the BART. Traditional measures of risk-taking on the BART (adjusted pumps, total points, 
total pops) detected no group differences. These findings suggest that reduced behavioral 
consistency is a crucial feature of risky decision-making in BD and that SUD history in BD 
may signal additional trait vulnerabilities for risky behavior even when mood symptoms 
and substance use are in remission. This study also underscores the value of using 
mathematical modeling to understand behavior in research on complex disorders like BD.
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Risk-taking is a central and defining feature of bipolar disorder (BD), as its clinical presentation often 
includes pleasure- or reward-seeking pursuits despite the potential for negative consequences. Such 
behaviors include greater involvement in reckless and intoxicated driving, excessive spending, and 
impulsive aggression (Perroud et al., 2011; Reinharth et al., 2017), but the most prevalent of these 
is substance use, with an estimated 61% of individuals with BD experiencing a lifetime comorbid 
substance use disorder (SUD; Cerullo & Strakowski, 2007). Although risky behaviors in BD likely have 
multiple etiologies, abnormalities in reward processing and impaired cognitive control are potential 
driving factors. However, the underlying mechanisms by which such factors determine risk-taking 
behavior in BD are not well understood. The present study aimed to elucidate the cognitive processes 
underlying risk-taking behavior in BD using a mathematical modeling approach.

INTRODUCTION
PROCESSES UNDERLYING RISK-TAKING BEHAVIOR

The act of risk-taking draws on a constellation of underlying processes that interact during the 
decision-making process (Pleskac, 2015). It is generally understood (see Ahn et al., 2017; Pleskac, 
2008; Yechiam et al., 2005 for reviews) that these consist of: (1) motivational processes that shape 
how rewards are evaluated and the desire to pursue a reward (Gray, 1981; Kim & Lee, 2011; Suhr 
& Tsanadis, 2007; Zuckerman, 1979) or avoid consequences (Gray, 1981); (2) cognitive control 
processes that enable people to appropriately modulate these drives and prepotent response 
styles, adapting and inhibiting behavior to achieve goals (Diamond, 2013), (3) prior expectations 
or ‘mental models’ that people have about the outside world, and (4) learning process that control 
how people learn from experience and update their prior expectations about the world. Alterations 
to any of these underlying processes can lead to behavior that is overly risk-seeking (Ball et al., 
1994; Hoyle et al., 2000; Jonah, 1997), where pleasurable experience is pursued despite the 
potential of harm. For example, abnormally high motivation toward reward may increase tolerance 
of risk, altering behavioral tendencies and manifesting as risk-seeking behavior. Alternatively, 
a diminished ability to learn from experiences can result in individuals continuing to choose 
convenient or seemingly attractive options that produce losses (Busemeyer & Stout, 2002). Finally, 
executive function impairments may lead to a failure to adapt behavior to situational demands, 
making more erratic decisions in a way that is also (inadvertently) risk-seeking. Thus, there are 
various avenues to risk-taking behavior.

RISK-TAKING BEHAVIOR IN BD

Considering these different pathways to risk-taking, we face a unique problem in trying to isolate 
the source of risky behavior in BD: individuals with BD show chronic abnormalities in several of these 
underlying processes. Motivational and cognitive aberrations are common across mood states, as 
indicated by self-reports of higher reward sensitivity (Meyer et al., 2001; Salavert et al., 2007), sensation 
seeking (Cronin & Zuckerman, 1992) and an impaired ability to inhibit inappropriate responses 
(Martinez-Aran et al., 2004; Mur et al., 2007; Ryan et al., 2012). These differences would suggest that 
individuals with BD are more prone to risk-taking regardless of mood state. Yet, factors that may offset 
these vulnerabilities are also present in BD. For example, individuals with BD show greater aversion to 
negative consequences across mood states as indicated by self-reports (Meyer et al., 2001; Yechiam 
et al., 2008). It is possible that this would be especially evident during euthymia, exacerbated by the 
salience of negative consequences experienced from risky behavior in past manic episodes (which may 
also shape risk preferences and loss aversion over time). Limited by several methodological issues, the 
current literature does not offer a precise understanding of how these processes (i.e., motivation, prior 
experience, cognition, loss aversion) work together to result in risky behavior in BD. Below we highlight 
and discuss two specific issues that we attempted to address in the current study.

Inconsistent behavioral findings due to sample heterogeneity

In both clinical and non-clinical contexts, risk-taking behavior has been most often studied using 
controlled laboratory tasks theorized to tap similar processes as real-world risk-taking behaviors. 
Behavioral findings using this approach have been inconsistent in BD and difficult to compare across 
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studies (Bauer et al., 2017; Hidiroǧlu et al., 2013; Holmes et al., 2009; Linke et al., 2013; Ramírez-
Martín et al., 2020; Reddy et al., 2014; Scholz et al., 2016). One reason they have been difficult to 
compare is the differences in mood state between investigations (Ramírez-Martín et al., 2020). 
Some have studied purely euthymic samples (Hidiroǧlu et al., 2013; Linke et al., 2013; Scholz et 
al., 2016), while others have studied samples containing a mixture of hypo/manic, euthymic, and 
depressed participants (Bauer et al., 2017; Holmes et al., 2009; Reddy et al., 2014). Additionally, 
studies often collapse together BD groups with and without prior SUD (Hidiroǧlu et al., 2013; Linke 
et al., 2013; Reddy et al., 2014; Scholz et al., 2016) and recent evidence suggests that motivational 
abnormalities related to risk-taking in BD are driven by subgroups of BD with prior SUD (Henry et 
al., 2001; Holmes et al., 2009). Without considering SUD history, it is unclear whether abnormal 
risk-taking behavior is an endophenotype of BD, or of a subtype with trait vulnerabilities to risky 
behavior, including substance use (Frey et al., 2017). 

Traditional measurements are insensitive to underlying mechanisms

Traditionally, laboratory behavioral studies index risk-taking with a single metric based on overall 
performance on gambling tasks, such as the ‘average number of pumps on unpopped balloons’ 
on the Balloon Analogue Risk Task (BART; Lejuez et al., 2002) or the ‘number of cards’ on the 
Columbia Card Task (Figner et al., 2009). These metrics indicate the mean magnitude of risk 
behavior across trials but provide limited insight regarding the underlying cognitive processes. 
In BD, many underlying vulnerabilities could contribute to risk-taking behavior. For example, 
‘heightened risk-taking’ can arise from high-risk preference, poor response inhibition, and/or low 
loss aversion, where alterations in all of these processes have been found in BD (Chandler et al., 
2009; Holmes et al., 2009; Swann et al., 2003). Therefore, an accurate explanation of abnormal 
risk-taking behaviors in BD requires methods that can uncover the latent mechanisms. 

COMPUTATIONAL MODELING AS AN ALTERNATIVE

Computational models of risk-taking behavior have been proposed as solutions to the limitations 
of traditional behavioral metrics. They enable researchers to extract indicators of the underlying 
mechanisms of behavior from theory-linked equations and subject them to direct hypothesis 
testing. With computational modeling, we go from being able to identify the presence of an 
abnormality, to being able to explain the underlying processes it arose from. They provide a 
formal mechanistic understanding of behavior (Huys et al., 2016) that is capable of uncovering 
abnormalities that traditional measures are not sensitive to detect (Silverstein et al., 2017; 
Timmer et al., 2017; Vassileva et al., 2013; Yechiam et al., 2008; Zorowitz et al., 2020). In BD 
research, however, very few have modeled risk-related behavior in experimental contexts. 
Foundational work comes from Yechiam and colleagues (Yechiam et al., 2008), who modeled 
impulsive decision-making in BD during the Iowa Gambling Task (Bechara et al., 1994) using 
the Expectancy Valence Model (Busemeyer & Stout, 2002; Yechiam et al., 2008). They showed 
that manic-BD (relative to euthymic-BD and HC) were more inconsistent in choosing the higher-
valued option. This suggests that a failure to consistently adhere to a responding schema that 
would maximize long-term reward is likely one factor contributing to altered risk-taking in 
BD. Other contributing psychological processes remain to be delineated in order to gain a full 
understanding of what drives excessive involvement in pleasurable activities in BD (American 
Psychiatric Association, 2013).

THE PRESENT STUDY

To probe risk-taking in BD, the present study examined behavior on the Balloon Analogue Risk 
Taking (BART; Lejuez et al., 2002) in three groups: euthymic BD with prior SUD (BD+), euthymic BD 
without prior SUD (BD–), and healthy comparisons (HC). The BART is a computerized task devised 
by Lejuez and colleagues (2002) to measure clinically relevant risky behavior, and performance 
has been shown to predict real-world risk-taking including substance use (Lejuez et al., 2003) and 
risky sexual behavior (Lejuez et al., 2004; see Lauriola et al., 2014 for meta-analysis). 
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During the BART, participants earn rewards by sequentially inflating virtual balloons. On any 
balloon, each successful pump adds to the total reward the participant can earn on the current 
trial. For example, at 10 points/pump, after 10 successful pumps the current balloon is worth 
100 points, after 50 it is worth 5000 points, and so on. However, not all pumps are successful—if 
the participant pumps and the balloon bursts, they earn nothing for that balloon. Thus, pumps 
made on a given balloon represent a series of choices between two alternatives: (1) keep the 
total reward amount they have accumulated, or (2) pump the balloon and risk losing the amount 
accumulated in pursuit of greater potential reward. This sequential format has ecological validity 
because many risk-taking behaviors in the real world occur in a similar sequential manner (e.g., 
gambling, repeated use of illicit substances). From a theoretical perspective, behavior on the first 
balloon is likely determined by several processes: prior belief, risk preferences/tendencies, aversion 
to loss, and decision-making patterns (i.e., consistent vs erratic decision strategy). Then, as the 
decision-maker gains experience with the task, on subsequent balloons, we expect them to learn 
from experience and incorporate this into their behavior on subsequent trials.

Several computational models have been posed to characterize the cognitive processes underlying 
risk-taking on the BART (Park et al., 2021; Pleskac, 2008; van Ravenzwaaij et al., 2011; Wallsten et al., 
2005) (for discussion see Park et al., 2021). Here, we focus on the novel Exponential-Weight Mean-
Variance (EWMV) model (Park et al., 2021), which models five constituent cognitive components 
of risk-taking behavior: prior belief, learning rate, risk preference, behavioral consistency, and loss 
aversion. We chose the EWMV model because it shows good parameter recovery, outperformed 
existing BART models (Park et al., 2021; Wallsten et al., 2005), and its parameters index various 
processes likely involved in risk-taking in euthymic BD (namely, risk preference, behavioral 
consistency, and loss aversion). Furthermore, in our current study, we subjected the EWMV to a 
model competition comparing its performance against several other models using leave-one-out 
cross validation. The EWMV equaled or outperformed the other models.

Using the EWMV we (1) assessed group differences at the mechanistic level, and (2) explored 
relationships between parameters and external self-report and neuropsychological measures to 
support the validity of those parameters. We anticipated the risk preference and loss aversion 
parameters of the EWMV model would capture motivational aspects of risk-taking (i.e., motivation 
towards reward) and that the behavioral consistency and learning rate parameters would reflect 
cognitive control aspects of risk-taking. As such, we expected that risk preference and loss aversion 
parameters would correlate with self-reported motivational measures (sensation seeking, 
behavioral activation/inhibition), and that behavioral consistency and learning rate parameters 
would correlate with executive functioning performance on neuropsychological tests. Because 
of previous reports of heightened self-reported reward sensitivity (Meyer et al., 2001; Salavert 
et al., 2007) and sensation seeking (Cronin & Zuckerman, 1992), as well as poorer executive 
functioning, in BD across mood episodes (Martinez-Aran et al., 2004; Mur et al., 2007; Ryan et al., 
2012), we hypothesized that BD would show, as indicated by model parameters, increased risk 
preference, reduced loss aversion, lower behavioral consistency, and lower learning rates than HC. 
Previous studies have also shown that, among populations with BD, more pronounced cognitive 
impairments (Levy et al., 2008; van Gorp et al., 1998) and higher self-reported reward sensitivity 
(Alloy et al., 2009) are found in those who have engaged in problematic substance use. Moreover, 
BD+ has been found to have greater levels of impulsivity than BD– (Swann et al., 2005). Thus, we 
also hypothesized in the domain of risk-taking that BD+ would exhibit more pronounced cognitive/
motivational differences than BD– would be more pronounced among relative to BD–.

METHODS
PARTICIPANTS

Participants were 33 individuals with BD (currently euthymic) and 32 HC. These participants were 
involved in a parent fMRI study, as such the sample sizes were determined by a power analysis for 
fMRI effect sizes (not related to the expected behavioral effect sizes of the BART). All were ages 
18–55 without history of medical conditions with neurological sequelae. BD met criteria for either 
bipolar disorder I, II, or not otherwise specified (NOS) according to the Structured Clinical Interview 
for DSM-IV-TR (First et al., 2002) (SCID-IV), and euthymic state was confirmed via clinician ratings 
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(i.e., <10 on the Hamilton Depression Rating Scale [HAM-D; Hamilton, 1960] and <7 on the Young 
Mania Rating Scale [YMRS; Young et al., 1978]). Within BD, 18 met SCID-IV criteria for past substance 
abuse/dependence (BD+) and 15 did not (BD–). HC who had lifetime axis-I disorders (according to 
SCID-IV) or immediate family with bipolar/psychotic disorder(s) were excluded from the study. 

PROCEDURE

This study was approved by the Institutional Review Board at the University of Michigan Medical 
School. All participants provided informed consent and were compensated for their time. 
Testing was completed in a single session in the following order: SCID and HAM-D/YMRS; BART; 
neuropsychological testing and self-reports.

MATERIALS
BART

The BART was programmed in E-Prime 2.0 Standard (PST, Inc., Pittsburgh, PA) and consisted of 
6 practice and 20 experimental balloons. An example of the task presentation is displayed in 
Figure 1. During the BART, a simulated balloon is shown on a computer screen as represented by 
an image of the balloon. Pressing the “Space” bar pumped the balloon increasing the diameter 
of the balloon in all directions (about 2–3 mm). If the balloon did not burst, then the participant 
earned 100 points per pump. If the balloon did burst, then the balloon image disappeared and 
a message told the participant the balloon broke (Figure 1B). If the balloon broke, then the 
participant lost all the points they earned for that balloon. Thus, the participant must decide when 
to stop pumping and collect the points earned on that balloon. Participants were deliberately given 
only general information about when balloons may burst (i.e., “Each balloon can pop anywhere 
from the first pump all the way through enough pumps to make the balloon fill the screen”). To 
stop and collect the points, participants had to hit “Enter.” Doing so ended the balloon trial and 
transferred their earned points to a bank; the balloon image disappeared and a message told the 
participant total points they had earned for that balloon (Figure 1A). The explosion point for each 
balloon was pseudorandomized over practice and experimental trials such that burst thresholds 
were approximately normally distributed between 1 and 128 pumps with a mean of 64 (practice 
breakpoints: 57, 100, 19, 93, 67, 48 [M = 64, SD = 30]; experimental breakpoints: 110, 23, 121, 94, 
59, 102, 47, 16, 74, 62, 65, 56, 92, 45, 82, 35, 76, 27, 84, 10 [M = 64, SD = 31]). This process means 
that the probability that the balloon would burst on pump i given the balloon given the balloon 
had not burst on i–1 trials is: 1 / (128 – i +1). We used the same explosion points and sequence of 
breakpoints across participants.
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Figure 1 Sample balloons for 
the computerized Balloon 
Analogue Risk Task (BART) 
used in the present study. 
Participants earned 100 points 
to a temporary account with 
each pump made (balance 
at bottom of screen) and 

‘banked’ points were saved to a 
permanent account (balance 
at top of screen). Balloons 
were programmed to burst 
at unknown breakpoints. 
A) Example of trial in which the 
participant successfully banked 
points and earned a reward. 
B) Example of trial in which the 
balloon burst. 
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During experimental trials, each pump earned 100 points to a temporary account. Points banked 
during the task were added to participants’ compensation at a rate of 1¢ per 100 points. Practice 
trials were identical in appearance to experimental trials, but participants were informed that 
these were not part of the actual experimental task. This helped ensure that risk-taking behavior 
on experimental trials was as stable and did not reflect acclimation to the experiment. Behavior 
during practice was qualitatively different from experimental trials (because no risk or reward 
was involved during practice), so practice responses were omitted from analyses. Standard 
BART measures—adjusted pumps (average pumps on unpopped balloons), total pops, and total 
points—were also computed for each participant to facilitate comparison with model parameters.

Self-report and neuropsychological measures

Complete descriptions for all self-report/neuropsychological measures are provided in Supplement 
1.1 to 1.3. In summary, participants completed self-reports (Behavioral Inhibition/Activation 
System Scale [BIS/BAS; Carver & White, 1994], Sensation Seeking Scale [SSS; Zuckerman et al., 
1964]) and a battery of five neurocognitive tests of executive functioning (see Supplement 1.3). 
A principal components analysis (PCA) was performed on standardized scores from these five 
neurocognitive tests to derive a single executive functioning component.

COMPUTATIONAL MODELING
In the present paper we focus on the EWMV model to investigate the mechanisms of risk-taking 
behavior in BD. However, we did not simply assume that the EWMV model was the best-fitting 
model for our three samples. Rather, we tested four separate models using hierarchical Bayesian 
estimation: the EWMV model, the Bayesian sequential risk-taking model (Wallsten et al., 2005) 
(reparameterized by Park et al., 2021) and two simpler baseline models. First, we describe the 
specific computations and assumptions involved in each model (see ‘Model descriptions’). Next, 
we review the modeling approach (see ‘Model implementation’) and procedures used to verify the 
integrity of parameters/predictions and select a winning model (see ‘Model evaluation’).

MODEL DESCRIPTIONS

The computations involved in each of the four models tested are described in detail in sections 1.1 
to 1.4 below. This information is also summarized in Table 1.

Exponential-weight mean-variance model (EWMV)

The exponential-weight mean-variance (EWMV) model assumes that decision makers have a 
subjective probability ( burst

kp ) that pumping the current balloon, k, will cause the balloon to burst. 

MODEL PARAMETERS ESTIMATED VIA

Exponential-Weight Mean-Variance (EWMV) Model 
Park et al. (2021)

ψ = Prior belief of burst 
ξ = Learning rate 
ρ = Risk preference 
 = Behavioral consistency 
λ = Loss aversion

Equation 1 
Equation 1 
Equation 2 
Equation 3 
Equation 2

Bayesian Sequential Risk-Taking (BSR) Model 
Park et al. (2021); Wallsten et al. (2005)

 = Prior belief of success 
η = Learning rate 
γ = Risk propensity 
 = Behavioral consistency

Equation 4 
Equation 4 
Equation 6 
Equation 7

3-Parameter No Learning (3par) Model 
Park et al. (2021)

θ = Prior belief of success 
γ = Risk propensity 
 = Behavioral consistency

Equation 8 
Equation 8 
Equation 9

2-Parameter No Learning (2par) Model 
Adapted – van Ravenzwaaij et al. (2011)

γ = Risk propensity 
 = Behavioral consistency

Equation 10 
Equation 9

Table 1 Overview of models 
tested.
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Psychologically, burst
kp  depends on the decision maker’s prior belief and learning processes (via which 

prior beliefs are updated as they gain experience on the BART; Park et al., 2021). Mathematically, 
this is represented in Equation 1:

 1 1

0 0

1

0
1

0

– –1  0  1, 0
k kpumps pumps

i ii i

k pumps success
n n i iburst i

k k pumps
ii

n n
p e e with

n
   

 

 








              




� (1)

where, burst
kp  is the weighted average of the decision maker’s prior belief that pumping will burst 

the balloon (ψ ) and the ‘observed burst probability’, which is simply a ratio of the number of bursts 
( ( )1

0

k pumps success
i ii

n n
−

=
−∑ ) to the total pumps that the decision-maker has made at that point in the 

task (
1

0

k pumps
ii

n
−

=∑ ). The weight given to the observed burst probability depends on the total amount 
of evidence accumulated. The weight given to accumulated evidence is determined by both the 
total evidence accumulated and the learning rate (ξ), which indicates how readily the decision-
maker incorporates new evidence into their prior experience. We should note that in the original 
model development, Park and colleagues (2021) interpret ξ simply in terms of a learning rate, 
but the rate of updating may also reflect the certainty of one’s prior beliefs. Both ψ and ξ are free 
parameters estimated from the data. Higher values for the prior belief parameter ψ indicate more 
pessimistic prior beliefs (i.e., the balloon is more likely to burst) and higher values for the learning 
rate parameter ξ indicate a decision-maker that more readily incorporates new evidence into their 
prior beliefs. Higher values for ξ may also signal a decision-maker that has less certainty in their 
prior beliefs and more readily updates their expectations as a function of this uncertainty.

Next, the EWMV framework assumes that the probability of a decision-maker pumping/stopping 
on pump opportunity l for a given balloon k depends on their current subjective burst probability 
( burst

kp ; from Equation 1) and their current subjective utilities for pumping ( pump
klU ) or stopping ( stop

klU ) 
at each pump opportunity l on any given balloon k. These notions of subjective utilities borrow 
from the principles of Prospect Theory (Kahneman & Tversky, 1979). The subjective utility of 
stopping ( stop

klU ) is fixed at 0 because stopping does not add any further reward to the total amount 
for the current balloon. The subjective utility of pumping ( pump

klU ), on the other hand, is determined 
by the perceived probability that pumping will cause the balloon to burst ( burst

kp ), the amount of 
reward per successful pump, the decision-maker’s risk-taking preferences, and their aversion to 
loss. Computationally, this is captured in Equation 2:

	 ( ) ( ) ( ) ( ){ }2
1 1 1 1  0pump burst burst burst burst

k k k kklU p r p l r p p r l r withλ ρ λ λ= − − − + − + − > � (2)

where, r is the amount of reward per pump, ρ is the decision-maker’s risk preference, and λ is their 
level of loss aversion. The value of r is constant and determined by the task design (e.g., 100 points 
in our implementation). Both λ and ρ are free parameters estimated from the data. Higher values 
for ρ indicate higher risk propensities and higher λ values indicate greater aversion to loss.

Finally, the probability of pumping on each opportunity l for a given balloon k is calculated using 
Equation 3:

	 ( )
1

  0
1

pump
kl stop pump

kl kl

p with
e U Uτ

τ= ≥
+ −

� (3)

where the likelihood of pumping ( pump
klp ) is determined by the value difference between subjective 

utilities of stopping ( stop
klU ) and pumping ( pump

klU ), and the decision-maker’s behavioral consistency ( ; 
i.e., inverse temperature) which is estimated from the data. Higher  values indicate behavior that 
is more deterministic in terms of maximizing their subjective utility, while lower values indicate 
behavior that changes more erratically from trial-to-trial. 

In sum, the EWMV model estimates five variables of interest: prior belief of burst (ψ), learning rate 
(ξ), risk preference (ρ), loss aversion (λ), and behavioral consistency ( ).

Bayesian sequential risk-taking model (BSR)

The BSR model assumes that the decision-maker has an initial subjective value that pumping 
will burst the balloon, which is updated after each balloon based on prior experience (Pleskac, 
2008; Wallsten et al., 2005). Initial belief undergoes updating as evidence is accumulated, 
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producing the decision-maker’s subjective probability that the balloon will burst ( burst
kp ) given 

by Equation 4:
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where  is the initial belief that pumping will not make the balloon burst (i.e., prior belief of success), 
η is the learning rate, and the observed probability of a successful pump is given by the ratio of 
successful pumps (

1

0

k succ
ii

n
−

=∑ ) to total pumps (
1

0

k pumps
ii

n
−

=∑ ). We used the reparameterized version of 
the BSR that improves the recoverability of the parameters (Park et al., 2021). 

The BSR model also assumes that the decision-maker determines a target number of pumps 
before each trial that does not change while the decision-maker is pumping. This is a crucial 
distinction from the EWMV model because the assumption that the target number of pumps is 
determined prior to pumping means that the decision maker is not considering the potential loss 
if the balloon bursts. 

The decision-maker’s subjective utility of pumping on balloon k on pump l—where utility is defined 
as a power function (Tversky & Kahneman, 1992)—is given in Equation 5:

	 (1 ) ( )  burst l
kklU p lr γ= − � (5)

where r is the amount of reward per successful pump and γ is the decision-maker’s risk propensity. 
We then take the first derivative of Equation 5 with respect to l and set it to zero in order to 
optimize the equation and determine what the decision-maker considers their ‘optimal’ target 
number of pumps on each trial k (vk):
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Here, the optimal target number of pumps (vk on trial k is determined by the subjective probability 
that the balloon will not burst (1 burst

kp− ) and the decision-maker’s propensity for risk-taking (γ). 
Values for γ are estimated from the data and higher values indicate greater risk propensity. We 
then use the target pumps on balloon k to calculate the probability that the decision-maker will 
pump the balloon on pump l for trial k ( pump

klp ) using Equation 7:
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where vk is the optimal number of pumps and  is the behavioral consistency (i.e., inverse 
temperature). Higher  values indicate more consistent behavior while lower values would suggest 
behavior that is more random or erratic. 

In sum, the BSR model estimates four variables of interest: prior belief of success (), learning rate 
(η), risk propensity (γ), and behavioral consistency ().

3-parameter model (3par)

The 3par model assumes sequential decision-making but does not assume learning. It is therefore 
not a cognitively plausible account of behavior (as we expect individuals to learn over the course 
of the task), but it is a mathematically simpler baseline model that other models must statistically 
outperform. It estimates three free parameters—prior belief of burst (θ), risk propensity (γ), and 
behavioral consistency ()—from the data using modified versions of Equations 6 and 7. Because 
it assumes the decision-maker does not learn, we must modify Equation 6: a fixed prior belief 
parameter (θ) replaces burst

kp  and v replaces vk since, without learning, the optimal number of 
pumps also remains constant. These changes yield Equation 8, from which θ and γ are estimated.
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Similar modifications are then made to Equation 7 to account for the no learning assumption: v is 
replaced with vk and pump

klp  is replaced by pump
lp . This produces Equation 9, from which  is estimated:
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pump
l l v

p with
e




 


� (9)

2-parameter model (2par)

The 2par model assumes sequential decision-making, but not learning. However, in the 2par 
model we do not attempt to estimate prior belief (θ). Rather, the decision-maker’s prior belief is 
fixed at 0.01 across all balloons. This model represents the simplest iteration of the four models; a 
baseline model that other more complex models must outperform. So, the 2par no learning model 
estimates just two parameters—risk propensity (γ) and behavioral consistency ()—from the data. 
The value of θ in Equation 9 is fixed at 0.01 to produce Equation 10:

	
     0

ln 1 0.01
v with

 
 


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Here, a γ value is estimated from the data and used to calculate the optimal number of pumps (v). 
This value for v is then incorporated into Equation 9 to calculate values for . 

MODEL IMPLEMENTATION

All models were run separately for BD+, BD–, and HC groups. While it is possible that running 
models separately in distinct groups may exaggerate group differences in parameters, leading 
to some false positives, modeling all groups at once is even more likely to underestimate group 
differences, causing a greater proportion of false negative findings (Valton, Wise & Robinson, 
2020). We thus chose to model the groups separately.

Parameters were estimated using hierarchical Bayesian estimation using the hBayesDM v1.1.1, a 
Python package for modeling for common decision-making tasks (Ahn et al., 2017). This package 
performs Markov-chain Monte Carlo (MCMC) sampling in PyStan (Carpenter et al., 2017). The 
present analysis used PyStan v2.19.1.1 running on Python 3.6. For all models, the likelihood of 
the data given the parameters was calculated using the likelihood function specified by Wallsten 
et al. (2005). We used weak default priors to have minimal impact on the data. All models were 
run separately for BD+, BD–, and HC groups using 4 separate MCMC chains of 4000-samples (2000 
burn-in) each. Because Stan uses Hamiltonian Monte Carlo (HMC), we tuned sampling parameters 
(adapt_delta, stepsize, max_treedepth) to ensure zero divergences (Betancourt, 2017). Additional 
information about the specifics of model implementation and links to all code used are provided 
in Supplement 2.1.

MODEL EVALUATION
Diagnostics

For nearly all parameters/models/groups, trace plots were well-mixed, rhat values were < 
1.1 (indicating convergence; Gelman & Rubin, 1992), and autocorrelation was ~0 by a lag of 
15. Collectively, this indicated parameters converged to target distributions. The exception 
was the 3par model, which showed poor posterior sampling distributions for γ for BD+ and BD– 
groups. Raw diagnostic outputs for each model are available at: https://osf.io/zjmy8/?view_
only=4bd534b2c3db4304be941f9414541440. 

Model comparison

Model comparison was performed by calculating the leave-one-out (LOO) information criterion 
(Vehtari et al., 2017) for each group/model. This was done using the ‘loo’ function of the ArviZ 
Python package (Kumar et al., 2019). Results of the model comparison are provided in Table 2. 
For BD+ and BD–, EWMV performed marginally better than BSR. For HC, BSR performed marginally 
better than EWMV for HC, but the LOO difference was well within the LOO standard error. Given that 
EWMV and BSR unanimously outperformed 3par and 2par models in terms of LOO, we excluded 
the 3par and 2par models.
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Posterior predictive checks

Posterior predictive checks were used to test the accuracy of predicted values produced by 
EWMV and BSR models for all groups. Predicted values were obtained using the ‘inc_postpred’ 
model specification from the hBayesDM package. We obtained 8000 MCMC samples of predicted 
behavior (i.e., 4000 samples [minus 2000 burn-in] by 4 MCMC chains) at all pump opportunities for 
all balloons. From this, we calculated the predicted adjusted average pumps (excluding samples 
where predictions exceeded actual breakpoints) and the 90% highest density interval (HDI) of the 
predicted distribution per subject. Then, we compared these values to the actual adjusted average 
pumps for each subject on the BART to assess the ability of each model to predict observed trial-
level behavior. 

Complete outputs for posterior predictive checks are available in Supplement 3.1. Results showed 
that observed values for EWMV and BSR models were strongly correlated with predicted values (all 
Pearson r’s ≥ 0.995), indicating both models had high predictive accuracy.

Model selection

The EWMV model outperformed the BSR model within BD+ and BD– groups in terms of LOO values; 
in the HC group, LOO differences between EWMV and BSR were negligible. EWMV also showed 
excellent predictive accuracy in all three groups according to posterior predictive checks. For 
these reasons, we selected the EWMV model as our winning model and use it to examine group 
differences. In the supplement, we examine group differences with the BSR. Largely the same 
conclusions are reached with the two models, but we report differences when they arise.

Parameter recovery

Park et al. (2021) showed good parameter recovery performance for the EWMV model using a 
30-trial version of the BART, but the present study employed a shorter 20-trial version of the task. 
Therefore, we performed a simulation-based model recovery to evaluate how well the EWMV 
parameters could be recovered using data from only 20 trials. 

Complete details and results of parameter recovery are presented in Supplement 3.2. In summary, 
results indicated that in general EWMV parameter values can be recovered from a 20-trial BART, 
but difficulties recovering precise values can arise when: 1) participants show highly deterministic 
behavior, and 2) posterior distributions of certain parameters are narrow. In those cases, we were 
still able to recover group differences observed in the present study (that we report in ‘Results’). 
Based on these findings, one should interpret the precise values of EWMV parameters cautiously 
(using only 20-trials), but can have confidence in the validity of the group differences it identifies. 

GROUP MODEL LOO  SE ∆LOO

BD+ EWMV 1774.00 82.68 0

BSR 1799.72 87.02 25.72

Par2 1935.07 76.89 161.07

Par3 1938.79 75.99 164.79

BD– EWMV 1497.36 70.89 0

BSR 1512.64 73.54 15.28

Par3 1612.30 77.64 114.94

Par2 1614.21 78.27 116.85

HC BSR 2854.09 114.28 0

EWMV 2855.26 107.53 1.17

Par2 3119.08 129.02 264.99

Par3 3121.87 128.22 267.78

Table 2 Model comparison: 
Leave-one-out (LOO) 
information criterion.

Note. Lower LOO values are 
indicative of better model 
performance. LOO = Leave-
one-out Information Criterion; 
SE = LOO standard error; BD+ = 
bipolar disorder (BD) with prior 
substance use disorder (SUD); 
BD– = BD without prior SUD; 
HC = healthy comparisons; 
EWMV = Exponential-Weight 
Mean-Variance model;  
BSR = Bayesian Sequential 
Risk-Taking Model; 
Par2 = 2-parameter 
(no learning) model; 
Par3 = 3-parameter model (no-
learning; estimates prior belief).
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Because the goal of the present paper is to primarily evaluate group differences in model 
parameters, we conclude that using EWMV parameters derived from a 20-trial BART is a suitable 
means of achieving this.

STATISTICAL ANALYSES

Statistical analyses were performed in RStudio (version 1.4.1717) (R Core Team, 2013). Group 
differences on model parameters were assessed for all parameters by calculating the 90% highest 
density interval (HDI) of the posterior differences between groups using the ‘HDIofMCMC’ function in 
the hBayesDM R package (Ahn et al., 2017). This gives a reliable interval of the posterior differences 
between two groups for any given parameter. But, we denote a 90% HDI of differences that does 
not contain zero as a credible difference in the posteriors of two groups for a given parameter. 

For traditional BART measures, self-report questionnaires, and neuropsychological assessments, 
group differences were assessed via one-way ANOVAs. Individual (mean) estimates were 
extracted for each participant for all parameters and subjected to correlational analysis. 
Correlations were used to examine relationships between model parameters and measures of 
motivational processes (SSS, BIS/BAS) and executive functioning. Although the EWMV model 
had difficulty recovering precise parameter values for certain combinations of values, parameter 
recovery results suggest that this was due to a small bias across values where we would expect 
the order of values to be preserved. Thus, we used Spearman’s correlations (using functions 
from ‘ggpubr’ [Kassambara, 2020], ‘ggstatsplot’ [Patil, 2021]), which relies on ranks rather than 
precise values. Original participant data is not openly available because participants did not 
provide permissions for public upload, but analysis code is available at https://osf.io/zjmy8/?view_
only=4bd534b2c3db4304be941f9414541440 to promote transparency and replicability. Analysis 
outputs are also provided in the supplement.

RESULTS
The groups were well-matched in terms of age, sex, and education. BD+ and BD– did not differ 
in terms of diagnosis distribution (i.e. BD I, II, NOS), use of psychotropic medication, or mood 
symptoms. Descriptive statistics of participant characteristics are summarized in Table 3. 

EWMV PARAMETERS 

In this section the 90% HDI of the posterior group differences (for each parameter and group 
pairing) is presented in brackets, followed by the mean of the posterior difference. Intervals that 
do not contain zero are interpreted as a ‘credible difference’ and the mean gives an indication of 
effect size. Credible posterior group differences were found for several EWMV parameters (Figure 2).

Prior beliefs

In terms of prior beliefs that the balloon would explode, BD+ exhibited more pessimistic prior 
beliefs (ψ) than BD– [0.003 0.01; M = 0.008] and HC [0.003 0.01; M = 0.008], while BD– and HC did 
not show credible differences [–0.003 0.003; M = –0.0002]. 

Learning rate

Unexpectedly, BD+ had credibly higher learning rates (ξ) than HC [0.0004 0.01; M = 0.006], though 
did not credibly differ from BD– [–0.005 0.01; M = 0.002]. BD– and HC did not credibly differ [–0.002 
0.009; M = 0.004]. This may also indicate less certainty in prior beliefs among the BD+ group 
relative to HC.

Risk preference

Contrary to our hypothesis, none of the groups exhibited credible differences in estimates of risk 
preference ρ: BD+ vs. HC = [–0.02 0.003; M = –0.007; BD+ vs. BD– = [–0.02 0.01; M = –0.005]; BD– vs. 
HC = [–0.01 0.004; M = –0.003]. 

https://osf.io/zjmy8/?view_only=4bd534b2c3db4304be941f9414541440
https://osf.io/zjmy8/?view_only=4bd534b2c3db4304be941f9414541440
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Figure 2 Group differences in 
EWMV parameters indexing the 
mechanisms of risk-taking.

Note. Violin plots are based 
on 8000 post warm-up MCMC 
samples of the posterior 
distributions. Horizontal bars at 
top indicate credible differences 
between two groups based on 
90% HDI of posterior differences 
for the given parameter. Dots 
indicate the mean of the 
posterior. BART = Balloon 
Analogue Risk Task; EWMV 
Model = Exponential-weight 
mean-variance model; ψ = prior 
belief of burst; ξ = learning rate; 
ρ = risk preference;  = behavioral 
consistency; λ = loss aversion; BD+ 

= bipolar disorder with lifetime 
substance use disorder (SUD); BD– 

= bipolar disorder without lifetime 
SUD; HC = healthy comparisons. 

BD+  
(n = 18)

BD–  
(n = 15)

HC 
(n = 33)

GROUP DIFFERENCES

M (SD) M (SD) M (SD) F/t/χ2 p Post-hoc

Demographic

  Age (years) 36.5 (10.9) 29.7 (9.5) 33.5 (10.3) 1.76 0.180

  Sex (% female) 38.9 66.7 57.6 2.79 0.248

  Education (years) 14.9 (2.6) 15.4 (4.2)a 16.0 (1.9) 0.96 0.390

Clinical

  Psych Meds (%) 77.8 93.3 1.54 0.215

    Antidepressant (%) 27.8 46.7 1.26 0.261

    Antipsychotic (%) 44.4 26.7 1.12 0.291

    Benzodiazepine (%) 38.9 20.0 1.38 0.240

    Mood Stabilizer (%) 61.1 73.3 0.55 0.458

    Stimulant (%) 11.1 6.7 0.20 0.658

  Diagnosis 0.55 0.761

    BD I (%) 83.3 73.3

    BD II (%) 11.1 20.0

    BD NOS (%) 5.6 6.7

  YMRS 2.8 (2.1) 1.7 (1.9) –1.48 0.149

  HAM-D 3.4 (2.9) 2.7 (2.5) –0.76 0.455

Self-report

  BIS 20.4 (3.3) 20.9 (4.0) 18.2 (3.8) 3.61 0.033* HC < BD–

  BAS-Reward 17.2 (2.2) 17.9 (2.2) 17.5 (1.6) 0.54 0.587

  BAS-Fun 11.1 (3.1) 11.1 (3.2) 11.0 (2.2) 0.02 0.984

  BAS-Drive 11.2 (3.3) 11.4 (2.5) 10.7 (2.8) 0.35 0.705

  SSS-Disinhibit 5.2 (2.9) 5.1 (2.3) 3.8 (2.6) 1.95 0.151

  SSS-Thrill 5.7 (3.5) 5.2 (2.9) 5.7 (2.8) 0.18 0.838

  SSS-Bored 3.8 (1.8) 2.8 (2.0) 2.0 (1.4) 6.82 0.002** HC < BD+

  SSS-Exper 6.3 (1.7) 5.6 (2.3) 5.5 (1.6) 1.18 0.313

Neuropsychological

  Exec Func –0.5 (1.1)b 0.2 (1.0) 0.2 (0.9) 2.97 0.059

Table 3 Characteristics of the 
sample.

Note. BD+ = bipolar disorder (BD) 
with prior substance use disorder 
(SUD); BD– = BD without prior 
SUD; HC = healthy comparisons; 
M = mean; SD = standard 
deviation; Psych Meds = taking 
psychotropic medication; 
BD NOS = BD not otherwise 
specified; YMRS = Young 
Mania Rating Scale; HAM-D = 
Hamilton Depression Rating 
Scale; Exec Func = measure 
of executive function from 
Principal Components Analysis 
on Trail-Making Test (Part-B; 
TMT-B), Category Verbal Fluency 
(CVF), Stroop, Tower of London 
(ToL), and Digit Span Backward 
(DSB) scores; BIS = behavioral 
inhibition; BAS = Behavioral 
Activation Scale (reward 
sensitivity, fun-seeking, drive); 
SSS = Sensation Seeking Scale 
(disinhibition, thrill/adventure 
seeking, boredom susceptibility, 
experience seeking). aBased on 14 
participants due to missing data. 
bBased on 17 participants due to 
missing data. *p < .05 **p < .01.
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Behavioral consistency

As hypothesized, BD groups had credibly lower behavioral consistency  estimates than HC (BD+ 
vs. HC = [–6.37 –1.32; M = –4.034]; BD– vs. HC = [–6.47 –0.94; M = –3.749]). This difference indicates 
that both BD+ and BD– made more inconsistent decisions than HC during risk-taking on the BART 
and replicates Yechiam et al.’s (2008) results. BD+ and BD– did not differ in terms of behavioral 
consistency ( [–2.36 1.68; M = –0.286]). 

Loss aversion

As hypothesized, BD+ had credibly lower loss aversion estimates (λ) than BD– [–1.67 –0.02; M = 
–0.849] and HC [–1.37 –0.23; M = –0.772]. BD– and HC did not show credible differences [–0.73 
0.91; M = 0.076]. 

Correlations

On the BIS/BAS self-reports, reduced aversion to negative events on the BIS correlated with higher 
risk preference estimates (ρ) from the EWMV model, rho = –0.44, p < 0.01 (Supplement 4.2). BIS 
scores also varied between groups (F = 3.61, p < 0.05; post-hoc = BD– > HC). BAS self-report scores 
did not relate to EWMV model parameters (Supplement 4.2) and did not vary by group (Table 3). For 
the SSS, greater self-reported boredom susceptibility was associated with more pessimistic prior 
beliefs (ψ; rho = 0.25, p < 0.05), higher learning rates (ξ; rho = 0.32, p < 0.05), reduced behavioral 
consistency (; rho = –0.28, p < 0.05), and lower loss aversion (λ; rho = –0.35, p < 0.05)—consistent 
with the profile of the BD+ group. Indeed, SSS-boredom self-reports differed between groups (F = 
3.61, p < 0.05), with post-hoc test indicating BD+ > HC. Remaining SSS subscales did not correlate 
with EWMV model parameters (Supplement 4.2) and did not vary by group (Table 3). Finally, poorer 
executive functioning on neuropsychological tests was related to lower behavioral consistency 
(; rho = 0.3, p < 0.05) and higher learning rates (ξ; rho = –0.28, p < 0.05), although executive 
functioning performance did not differ between groups (F = 2.97, p > 0.05). 

Post-hoc comparison to BSR parameters

As a point of comparison for the results from the EWMV model, we re-ran analyses (post-hoc) using 
parameters from the BSR model. Results are provided in Supplement 6.1 to 6.3. To summarize, 
group differences and correlation results of the EWMV model were largely the same with those 
based on the BSR model. The main exceptions were: (1) loss aversion (λ) differences found with 
the EWMV model were instead captured by the risk propensity parameter (γ) of the BSR model, 
and (2) the BSR model was not able to distinguish between BD groups and HC based on behavioral 
consistency.

TRADITIONAL BART MEASURES

Groups did not differ significantly in terms of traditional BART measures (Supplement 5.1), which 
included adjusted pumps (F = 1.70, p > 0.05), total points (F = 1.04, p > 0.05), and total pops 
(F = 1.45, p > 0.05). Within the full sample, traditional BART measures also did not significantly 
correlate with BIS/BAS or SSS self-reports or neuropsychological tests of executive functioning 
(Supplement 4.2).

Simulations (post-hoc)

To better understand how differences in the EWMV parameters translated into pump behavior, 
we performed a set of post-hoc simulations with the EWMV model for each credible group 
difference we observed. For each simulation, for each subject, we defined a set of plausible values 
for model parameters by randomly sampling from normal distributions (with a mean and SD 
matching the distribution of a group posterior for that given parameter) truncated by the value 
constraints imposed on parameters. These values were used to generate trial-level pump behavior 
for a simulated agent using the EWMV model. The total number of agents generated for a given 
simulation equaled the sample size of the group in question. From this, we calculated the adjusted 
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average number of pumps, averaged across all simulations. Using these procedures, we first 
used the EWMV model to perform 50 simulations of pump behavior based on true parameter 
values. Second, we used the EWMV model to perform 50 simulations of pump behavior based on 
parameter values that had been adjusted for the group difference in question. For instance, BD+ 
had credibly higher estimates for prior beliefs (ψ) than HC and the mean of the difference in their 
posterior distributions was 0.008. Therefore, we performed 1) 50 simulations for BD+ with prior 
belief (ψ) estimates reduced by 0.008, and 2) 50 simulations for HC with prior belief (ψ) estimates 
increased by 0.008. This gave us an indication of the level of behavioral change that a difference of 
the magnitude observed could produce. 

Complete simulation results are presented in Table 4. Results indicated that the credible difference 
we observed in prior belief (ψ) parameters between BD+ and HC/BD– produced changes in 
behavior by ~3–15 pumps. Changing true values for learning rate (ξ) parameters by a magnitude 
of the difference between BD+ and HC altered the adjusted pumps of the group by ~5–6 pumps. 
Shifting behavioral consistency () values (relative to true parameter values) by a magnitude of 
the difference observed between BD+/BD– and HC changed the adjusted pumps of the group by 
~2–12 pumps. Finally, adjusting true values of loss aversion (λ) parameters by a magnitude of the 
differences observed between BD+ and HC/BD– produced some of the most pronounced changes 
in behavior, changing the group adjusted pumps by ~8–21 pumps. 

In general, increasing/decreasing parameter values produced changes in pump behavior in 
expected directions. For instance, increasing prior belief (ψ) values (i.e., more ‘pessimistic’ 
expectations), learning rates (ξ), and loss aversion (λ) all led to decreases in pump behavior. 
However, contrary to expectation, increasing behavioral consistency () led to apparent increases 
in pump behavior. This result has been found previously and represents an artifact of the adjusted 
BART score that modeling approaches can help to address (see Pleskac, 2008 for discussion).

DISCUSSION
The present analysis parsed the cognitive processes underlying risk-taking behavior on the BART 
using the Exponential-Weight Mean-Variance (EWMV) model. We uncovered several mechanistic 
distinctions in risk-taking in euthymic BD: some were BD–specific and others were unique to BD 
with prior SUD; some may confer vulnerabilities for risk-taking in BD and others may offset them. 
These results highlight the value of computational modeling in mechanistic studies of risk-taking 
in complex disorders like BD.

OBSERVED DIFFERENCES SIMULATIONS

DIRECTION MEAN  
DIFFERENCE

GROUP ADJUSTMENT 
(∆ PARAMETER VALUE)

OUTCOME  
(∆ ADJ. PUMPS)

Prior Belief  
(ψ)

BD+ > BD– 0.008 BD– Increased ψ by 0.008 Decreased 3 pumps

BD+ Decreased ψ by 0.008 Increased 4 pumps

BD+ > HC 0.008 HC Increased ψ by 0.008 Decreased by 15 pumps

BD+ Decreased ψ by 0.008 Increased by 4 pumps

Learning  
Rate (ξ)

BD+ > HC 0.006 HC Increased ξ by 0.006 Decreased by 6 pumps

BD+ Decreased ξ by 0.006 Decreased by 5 pumps

Behavioral 
Consistency 
()

BD+ < HC –4.034 BD+ Increased  by 4.034 Increased by 8 pumps

HC Decreased  by 4.034 Decreased by 11 pumps

BD– < HC –3.749 BD– Increased  by 3.749 Increased by 2 pumps

HC Decreased  by 3.749 Decreased by 12 pumps

Loss Aversion  
(λ)

BD+ < BD– –0.849 BD– Decreased λ by 0.849 Increased by 21 pumps

BD+ Increased λ by 0.849 Decreased by 11 pumps

BD+ < HC –0.772 HC Decreased λ by 0.772 Increased by 17 pumps

BD+ Increased λ by 0.772 Decreased by 8 pumps

Table 4 Post-hoc simulation 
results.

Note. Mean difference = to 
calculate the ‘mean difference’ 
we took the difference between 
the mean posterior distributions 
for both groups (for a given 
parameter) and determined 
the mean of the resulting 
distribution of differences; 
Adjustment (∆ Parameter 
Value) = indicates the direction 
and magnitude the parameter 
was changed for simulations; 
Outcome (∆ Adj. Pumps) = 
change in the overall adjusted 
average number of pumps that 
resulted from the change in 
parameter value shown in the 

‘adjustment’ column (relative 
to adjusted pumps using true 
parameter values), averaged 
across 50 simulations.
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In partial alignment with hypotheses based on existing findings (Martinez-Aran et al., 2004; Mur 
et al., 2007; Ryan et al., 2012), we found that a reduction in the consistency of choice behavior 
(τ) during risk-taking was general to BD regardless of SUD history. While these differences were 
not also exacerbated in BD+ as originally anticipated, behavioral consistency (and learning rate 
parameters) were related to performance on neuropsychological tests of executive functioning, 
offering preliminary evidence suggesting that these parameters capture meaningful facets of 
cognitive control during risk-taking. Taken together, these results suggest that reduced behavioral 
consistency is a feature of BD (irrespective of SUD history) that may be related to general executive 
control deficits observed in the disorder. Future studies using larger samples and a greater number 
of trials are needed to replicate and confirm this notion.

Our finding of reduced behavioral consistency among the BD groups aligns with Yechiam et al.’s 
(2008) finding of reduced behavioral consistency in manic-BD during the Iowa Gambling Task, relative 
to HC. However, they found no reductions in behavioral consistency in euthymic-BD as we did. This 
discrepancy may be due to the use of different tasks and perhaps also the modeling approach. 
Bayesian hierarchical modeling, the approach used in our study, estimates parameters more 
accurately than non-hierarchical ones (Rouder et al., 2005; e.g., maximum likelihood estimation used 
by Yechiam et al.) because pooling data over groups reduces variability of parameters. In our case, 
this may have enabled detection of subtle group differences. Intriguingly, Park et al. (2021) found 
very little difference in behavioral consistency between HC and SUD samples (who presumably were 
non-BD). These findings together suggest that reductions in behavioral consistency may be specific 
to BD, not SUD. Given emerging evidence of the important role played by behavioral consistency in 
predisposing altered risk-taking in BD (regardless of substance use history), longitudinal investigations 
are needed to elucidate how executive functioning and behavioral consistency interact with mood 
states over time in BD and contribute to risk-taking behavior. 

We also examined underlying motivational processes relevant to risk-taking behavior. The 
‘motivational parameters’ of the EWMV model (i.e., risk preference and loss aversion) were 
significantly associated with self-reported aversion to negative events and sensation seeking, 
providing support to the relevance of these parameters to motivational processes underlying risk-
taking. While we did not find increased risk preferences in either of the BD groups, BD+ exhibited 
reduced loss aversion relative to both BD– and HC, and this reduction was not present in BD–. This 
suggests that SUD history in BD may reflect a trait-level vulnerability characterized by altered reward 
processing, which in turn predisposes risk-taking behavior (see also Stout et al., 2004; Park et al., 
2021). Fittingly, Holmes et al. (2009) found reductions in risk-taking on the BART (i.e., fewer pumps) 
after a burst in HC and BD– but not BD+, suggesting a persistently high drive for reward in BD+ that 
was not deterred by negative feedback. Considered together, these findings suggest that a history 
of SUD among those with BD may reflect certain vulnerabilities for risk-taking (e.g., due to reduced 
loss aversion) and thus higher risk for poorer outcome. However, these results should be interpreted 
cautiously because we did not include a control group of individuals with lifetime SUD but not BD. 
In addition to examining added control groups, future work should also employ tasks with a larger 
number of trials, based upon which loss aversion parameters can most reliably recovered. 

If BD groups possess trait vulnerabilities for risk-taking (particularly BD+), we should address why 
our groups showed similar overall levels of risk-taking on the BART in terms of adjusted number of 
pumps. One reason is that opposing factors were also observed in both BD groups that may have 
offset these vulnerabilities. For instance, our results indicated that BD+ appeared more cautious 
at the beginning of the task as indicated by more pessimistic prior beliefs but simultaneously 
had lower behavioral consistency and loss aversion. Together this combination of alterations can 
cancel out each other and result in little observed differences at the aggregate behavioral level. 
However, this combination of alterations would imply specific behavioral changes over the course 
of the task. Specifically, the more pessimistic prior beliefs in the BD+ group would suggest that they 
would pump less in the early trials of the BART and over time increase their level of risk taking due 
to their lower levels of loss aversion and faster rate of learning. This pattern was exactly what we 
observed in our data. We examined the adjusted pumps in the first, second, and last thirds of the 
trials in our sample, and found that BD+ were cautious and pumping on average about 38 times 
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(compared to 45 in HC) in the first third trials of the task; by the final third, they pumped on average 
44 times (compared to 44 in HC) (see Supplement 7.1 to 7.3). Although these group differences 
did not reach statistical significance at the observed behavioral level, the latent processes isolated 
by the computational model parameters showed credible group differences. Future study should 
examine the interplay between these motivational vulnerabilities and (possible) protective factors 
in their contribution to observed risk-taking in BD.

One surprising finding was that BD+ exhibited the highest learning rates on the BART, followed by 
BD– and HC. While this result should be interpreted cautiously, it raises an interesting question: 
are higher learning rates always favorable? Initially, we expected that higher learning rates 
would be associated with improved executive functioning performance on neuropsychological 
tests and the highest learning rates would occur in HC. But, in our case BD+ exhibited the higher 
learning rate and those were associated with poorer executive functioning. It is useful, however, 
to revisit what this ‘learning rate’ parameter actually indexes. It refers to the rate at which prior 
beliefs are updated based on observations over the course of the task. At least in the BART, as we 
discussed above, BD+ showed the greatest degree of change in their behavior across the balloons. 
In comparison, the low learning rates from HC and BD– simply indicate that these groups did not 
update their beliefs very much and as such, their adjusted pumps stayed relatively stable over 
blocks (as seen in Supplement 7.3). One possible interpretation is that in the absence of altered 
motivational processes, BD– and HC were able to maintain their prior beliefs throughout the task, 
even after the excitement of banking points on initial trials. Perhaps, BD+ were unable to maintain 
more conservative initial beliefs due to altered reward processing, which led them to more readily 
update their mindset and take more risks over time. A second possible interpretation considers that 
learning rates also reflect the certainty of one’s prior beliefs. Decision-makers with less confidence 
in their prior beliefs will also update their expectations more quickly than those with greater 
confidence in their expectations. It is therefore possible that while BD+ showed more pessimistic 
prior beliefs, that they held less confidence in these expectations, leading them to update their 
beliefs more quickly as they gained experience. However, these are merely speculative. Future 
studies using sequential risk-taking paradigms (like the BART) are needed to shed light on how risk-
taking behavior in BD changes over time as a function of alterations in the underlying processes.

It is noteworthy that computational parameters (from both the EWMV and BSR models), but not 
traditional measures (adjusted pumps, pops, points), revealed group differences (distinguishing 
between BD and HC, as well as BD+ and BD–) and relationships with self-reports and 
neuropsychological tests of executive functioning. It is possible that the theoretical mechanisms 
giving rise to behavior can be decomposed and extracted only by examining trial-level data, 
rather than averaging behavior across the entire task. This is consistent with previous accounts of 
increased sensitivity of computational approaches to subtle nuances in behavior than mean-based 
metrics (Huys et al., 2016; Yechiam et al., 2008), underscoring the value of using mathematical 
models to understand behavior in psychopathology research. 

The results of this study should be interpreted in light of several limitations. First, the sample size 
of the present study was modest and future studies with larger samples are needed to not only 
replicate the findings, but also provide greater statistical power to examine effects or relationships 
not examined in this study (e.g., sex differences, relationship with illness chronicity). Second, while 
focusing on the euthymic phase of BD had the advantage of revealing vulnerabilities not confounded 
by mood states, we were not able to address the questions whether and how risk-taking changes 
during acute mood episodes, and whether the model parameters (or their fluctuations over time) 
are predictive of future mood episodes like changes in BIS/BAS self-reports are (Alloy et al., 2008). 
Longitudinal studies could expand on these findings and render clinically relevant knowledge to 
guide treatment planning. Third, data has shown that behavior in the BART is relatively stable and 
reliable (Lejuez et al., 2007; White et al., 2008). However, some recent work has questioned this, 
indicating that standard behavioral risk-taking measures show poor reliability over time (Frey et 
al., 2017). One possible explanation for theses reliability differences is the probabilistic nature of 
the BART, which makes it a risk-taking task but also can lead to very different experiences between 
participants and thus insert additional noise into the measurement (Schürmann et al., 2019). We 
worked to minimize these differences by fixing the burst points between participants and modeling 
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participants at the individual level using the trial level data via the cognitive model, while also 
arranging a set of practice trials to allow for greater stability of performance during the task itself. 
Nevertheless, future work should establish the reliability of key parameters using the BART and other 
risk-taking tasks. Fourth, we did not include a control group with lifetime SUD but not BD. Inclusion of 
such a group in future investigations would help examine which aspects of our findings were unique 
to SUD in the context of BD (i.e., BD+) and which were characteristic of prior SUD more generally. 
Fifth, the current study was not preregistered because we chose this specific computational analysis 
approach after the data was collected. Sixth, there were differences in LOO values between BD 
groups and HC. This may indicate small differences in strategy between BD and HC (i.e., behavioral 
inconsistency within BD groups and/or greater exploration in BD+). Additional studies should explore 
the possibility of disparate decision-making strategies to further clarify this. Seventh, we recognize 
the possibility that findings related to decision consistency may be a function of increasing general 
psychiatric vulnerability (and not specific to BD and SUD, per se; [e.g., Moutoussis et al., 2021]) 
and future work should compare across diverse diagnostic groups to examine this directly. Eighth, 
our simulation results indicated that we could confidently interpret differences identified by the 
EWMV model for a 20-trial BART, which allowed us to accomplish our goals of assessing group 
differences on model parameters. However, we recognize that this is not the goal of all studies 
and, consequently, using the EWMV model on a 20-trial BART may not always be appropriate. 
Therefore, future work (especially those interested in loss aversion and interpreting precise values of 
parameters) should employ tasks with a larger number of trials. Ninth, participants were trained with 
a variable distribution of burst points (during the initial practice), while the models used assumed 
a flat probability of the balloon bursting on each trial. One could argue that the probability of the 
balloon bursting should match this training phase (i.e., modeling a variable burst probability per trial 
rather than a constant one), but the use of a flat probability is well-supported by prior evidence (see 
Supplement 7.4 for complete discussion). Tenth, as we built on past work showing that the EMWV 
showed better prediction of data out of sample (Park et al., 2021) and our study was not designed 
to carry out extensive model comparisons, we did not perform a formal model recovery analysis 
by simulating data using the EMWV and BSR models within our study design and checking that our 
model comparison approach can infer the correct model in the case of each group. Taken together, 
pre-registered replications with larger sample sizes, more trials, additional populations, and more 
observations would help further validate and clarify the findings reported here.

In summary, the present study used a computational (EWMV) model to characterize the cognitive 
processes underlying behavior in risky decision-making in euthymic BD. The EWMV model could 
distinguish between groups based on both BD diagnosis and history of SUD, showing that more 
inconsistent behavior during risk-taking was general to BD, but additional differences (reduced loss 
aversion, more pessimistic prior beliefs, and a potentially maladaptive tendency to update beliefs 
based on recent experience) were unique to BD with history of SUD. Taken together, our findings 
suggest that reduced behavioral consistency is a crucial feature of risky decision-making in BD and 
that SUD in BD may reflect additional trait vulnerabilities (e.g., reduced loss aversion) contributing 
to risky behavior even when mood symptoms and substance use are in remission. 
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