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Abstract

Cosmological models and their parameters are widely debated because of theoretical and observational mismatches
of the standard cosmological model, especially the current discrepancy between the value of the Hubble constant,
H0, obtained by Type Ia supernovae (SNe Ia), and the cosmic microwave background radiation (CMB). Thus,
considering high-redshift probes like quasars (QSOs), having intermediate redshifts between SNe Ia and CMB, is a
necessary step. In this work, we use SNe Ia and the most updated QSO sample, reaching redshifts up to z∼ 7.5,
applying the Risaliti–Lusso QSO relation based on a nonlinear relation between ultraviolet and X-ray luminosities.
We consider this relation both in its original form and corrected for selection biases and evolution in redshift
through a reliable statistical method also accounting for the circularity problem. We also explore two approaches:
with and without calibration on SNe Ia. We then investigate flat and nonflat standard cosmological models and a
flat wCDM model, with a constant dark energy equation-of-state parameter w. Remarkably, when correcting for the
evolution as a function of cosmology, we obtain closed constraints on ΩM using only noncalibrated QSOs. We find
that considering noncalibrated QSOs combined with SNe Ia and accounting for the same correction, our results are
compatible with a flat ΛCDM model with ΩM= 0.3 and H0= 70 km s−1 Mpc−1. Intriguingly, the H0 values
obtained are placed halfway between the one from SNe Ia and CMB, paving the way for new insights into the H0

tension.

Unified Astronomy Thesaurus concepts: Quasars (1319); Cosmological parameters (339); Dark energy (351);
Cosmology (343); Cosmological models (337)

1. Introduction

Quasars (QSOs) are extraordinarily luminous active galactic
nuclei currently observed up to redshift z= 7.642 (Wang et al.
2021). These features make them potentially the next rung of
the cosmic distance ladder beyond Type Ia supernovae (SNe Ia)
that have been observed only up to z= 2.26 (Rodney et al.
2015). Using QSOs as cosmological tools requires a full
understanding of their physical mechanisms that are still being
debated by the scientific community.

A nonlinear relation between the ultraviolet (UV) and X-ray
luminosities in QSOs was first discovered by the first X-ray
surveys (Tananbaum et al. 1979; Zamorani et al. 1981; Avni &
Tananbaum 1986), and has been confirmed using various
samples of QSOs observed with the main X-ray observatories
over a wide redshift range and wide ranges of UV luminosity
that span over 5 orders of magnitudes (e.g., Steffen et al. 2006;
Just et al. 2007; Lusso et al. 2010; Lusso & Risaliti 2016;

Bisogni et al. 2021). One possible physical explanation of this
relation is as follows: QSO accretion disk on a central
supermassive black hole emits photons in the UV band, which
are then processed through the inverse Compton effect by an
external plasma of relativistic electrons, giving rise to the X-ray
emission. This physical explanation, while plausible, lacks
accounting for the stability of the X-ray emission, as the
external electrons should cool down due to the inverse
Compton effect and fall onto the central region. Ultimately,
one needs an efficient energy transfer between the accretion
disk and the external region to describe such a stable emission.
The nature of this link between the two regions is not known
yet. However, some models have been proposed (see, e.g.,
Lusso & Risaliti 2017).
This X–UV relation has been recently used to provide

independent measurements of QSO distances (see, e.g., Risaliti
& Lusso 2015, 2019; Lusso et al. 2020, for details) making
them standardized cosmological tools. In its cosmological
application, this relation is referred to as the Risaliti–Lusso
(RL) relation. To use this relation in cosmology, we need to
properly select the QSO sample addressing as many observa-
tional issues as possible, such as dust reddening, X-ray
absorption, galaxy contamination, and Eddington bias, as
specified in Lusso et al. (2020) and Dainotti et al. (2022a).
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Indeed, in its first applications, the X–UV relation showed a
very large intrinsic dispersion sv∼ 0.35/0.40 dex in logarith-
mic units (Lusso et al. 2010). Only recently has it been
discovered that this dispersion is not completely intrinsic, but
has mainly an observational origin (Lusso & Risaliti 2016);
thus, an accurate selection of the sources is crucial. This finding
has allowed reducing the intrinsic scatter to sv∼ 0.2 dex (Lusso
et al. 2020) and has rendered this relation suitable for
cosmological analyses, turning QSOs into more reliable
cosmological tools. In addition, Dainotti et al. (2022a) proved
through well-established statistical tests that this relation is not
induced or distorted by selection biases and/or redshift
evolution, but it is intrinsic to the physics of QSOs. The
methodology used to standardize QSOs is complementary to
the one traditionally applied for SNe Ia to estimate the
cosmological parameters, yet it extends the Hubble–Lemaître
diagram (i.e., the distance modulus–redshift diagram) to a
redshift range currently inaccessible to SNe Ia (z= 2.26–7.54).
Indeed, extending the cosmological computations with high-
redshift data is crucial to distinguish between different
cosmological models that are degenerate at low redshifts, to
allow for better constraints on the dark energy (DE) behavior,
and to explore possible extensions of the standard cosmological
model.

As a matter of fact, the most widely adopted parameteriza-
tion of the observed universe is based on the so-called ΛCDM
model (Peebles 1984), which relies on the existence of cold
dark matter (CDM) and DE (Λ) associated with a cosmological
constant (Carroll 2001) in a spatially flat geometry. Predictions
from this model have been found to agree with most of the
observational probes such as the cosmic microwave back-
ground (CMB; e.g., Planck Collaboration et al. 2020), the
baryon acoustic oscillations (BAOs; e.g., Alam et al. 2021),
and the present accelerated expansion of the Hubble flow,
based on the Hubble–Lemaître diagram of SNe Ia (e.g., Riess
et al. 1998; Perlmutter et al. 1999), where the dominant
dynamical contribution of DE related to the cosmological
constant should drive such an acceleration. However, the
fundamental physical origin and the properties of DE are still
unknown, as the interpretation of Λ is hampered by a severe
fine-tuning issue to obtain the right amount of DE observed
today. Moreover, the data sets mentioned above do not fully
exclude a spatially nonflat universe (Park & Ratra 2019; Di
Valentino et al. 2020, 2021; Handley 2021; Yang et al. 2021).
Relevant deviations from the spatially flat ΛCDM model have
already been found using high-redshift probes; Dainotti et al.
(2008, 2011, 2013a, 2020a, 2020b, 2022c) worked extensively
on the standardization of gamma-ray bursts (GRBs) as
cosmological candles, while QSOs combined with SNe Ia
have been studied by Risaliti & Lusso (2019), Lusso et al.
(2019, 2020), and Bargiacchi et al. (2021, 2022).

In addition, the search for high-redshift standard candles has
also been enhanced by the Hubble tension, a 4σ–6σ
discrepancy between the direct measurements of the local
Hubble constant H0 and the one inferred from cosmological
models, remarkably the value from the Planck data based on
the CMB within the ΛCDM model. The restricted number of
cosmological probes at intermediate redshifts and selection
biases are the major shortcomings that prevent a solution to this
problem. Thus, additional high-z standardized probes beyond
SNe Ia, such as GRBs and QSOs, could be instrumental in
shedding light on this problem (Cardone et al. 2009, 2010;

Postnikov et al. 2014; Benetti & Capozziello 2019; Capozziello
& D’Agostino 2020; Capozziello et al. 2020; Bargiacchi et al.
2021, 2022; Dainotti et al. 2021b, 2022b, 2022d; Moresco et al.
2022). Several groups worldwide are investigating if this
tension is due to selection biases, or due to new physics. The
H0 tension is mainly discussed within the ΛCDM model,
characterized by a constant equation of state of DE (w=−1),
but it is vital to investigate the extensions of this model, such as
the wCDM model, in which w≠− 1, or nonflat models.
Relaxing the standard ΛCDM model, rigorously flat in spatial
curvature and with nonevolving Λ, is conceptually useful both
for solving the cosmological constant problem and as a
possible arena for new physics asking for the evolution of
DE (Perivolaropoulos 2014; Capozziello et al. 2019;
Perivolaropoulos & Kazantzidis 2019; Perivolaropoulos &
Skara 2021, 2022).
Therefore, we here conduct a detailed analysis of both of

these extensions of the flat ΛCDM model using QSOs, through
the RL relation, and SNe Ia as cosmological probes. For the
first time in the literature, the so-called circularity problem can
be solved for QSOs corrected for evolutionary effects. The
circularity means that the computations of cosmological
parameters depend on the underlying the cosmological model
assumed, and hence this implies the assumption of given
cosmological parameters. In general the parameters of correla-
tions depend on values of cosmological parameters if they
involve the luminosities or energies, thus fixed parameters of
the correlations obtained under the assumption of some
cosmological model, would bias cosmological results com-
puted with such fixed parameters. This work shows important
points of originality compared to previous analyses based on
QSOs (e.g., Risaliti & Lusso 2015, 2019; Khadka &
Ratra 2020a, 2020b; Lusso et al. 2020; Bargiacchi et al.
2021, 2022; Colgáin et al. 2022): (1) we apply the RL relation
not only in its original form, the one commonly used for
cosmological studies, but we also take into account selection
biases and the evolution in redshift of the luminosities through
reliable statistical methods overcoming the so-called circularity
problem; (2) we investigate how cosmological results change
upon the choice of calibrating or noncalibrating QSOs with
SNe Ia; and (3) we discuss how the H0 tension will be impacted
by the inclusion of QSOs in the analyses and to what extent
nonflat cosmological models can be a viable explanation for
describing the current results. Our point of view is empirical
and conservative and shows that improving data samples and
distance indicators, first of all in the redshift range between
SNe Ia and CMB, could alleviate the H0 tension.
Recent studies have investigated the reliability of the

application of the X–UV relation in cosmology. In Petrosian
et al. (2022), the authors argued that the RL procedure is
circular. In this work, we completely overcome, for the first
time in the literature on QSOs, the circularity problem while
also accounting for the correction for evolution in redshift of
luminosities. Indeed, we apply this correction contempora-
neously to the variation of cosmological parameters, as detailed
in Section 3.2. Moreover, the authors of the above-mentioned
paper base their criticism on a binned analysis of the
parameters of the RL relation, which is not an appropriate
approach due to the relative large dispersion of the correlation.
Although we agree that without correcting the relation there
exists a clustering of data points in relation to the redshift, as
shown in the left panel of Figure 1, we overcome this issue by
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applying the correction for redshift evolution and selection
biases, as visible in the right panel of the same figure. Thus, we
agree that one cannot apply calibration methodology in a
simple straightforward way without any correction. Our results
presented in this article show that calibration methodology
becomes unnecessary in many cases, when our innovative
approach is applied, but we still show results of the calibration
methodology without the correction, for the sake of comparison
on how our correction changes the results. Indeed, in this
article, we show that QSOs have a high potential to be
standalone cosmological probes. From another point of view,
Khadka & Ratra (2021, 2022) doubted the applicability of the
QSO sample in its entirety for constraining cosmological
parameters stating that the parameters of the RL relation
depend on the cosmological model assumed and the redshift.
Khadka & Ratra (2021, 2022) stated that due to those issues,
some QSO subsamples cannot be standardized. Thus, their
effort is in the direction of pinpointing a subsample with a
higher potential for standardizing QSOs. Our approach is
different, and we focus on the correction of the whole sample in
order to use its full potential of extending the Hubble diagram.
We agree that the noncorrected RL relation is changing with
redshift, and we solve this issue further in the article.
Conversely, we here find compatibility in 1σ (except for one
case with a 2σ discrepancy) between the values of all of the
parameters of the relation when using noncalibrated QSOs
combined with SNe Ia, independently of the model studied.
Khadka & Ratra (2021, 2022) found incompatibility in more
than 3σ only in very exotic models. Moreover, our correction
for selection bias and redshift evolution, treated as a function of
evolution, leads to the compatibility of all parameters in less
than 0.2σ. These results are shown and discussed in
Sections 5.2–5.4. Thus, these discussions on the RL relation
and its applicability are not a concern given our innovative
approach and results.

The article is organized as follows. In Section 2 we present
the data sets used for the cosmological analyses and their
selection, and in Section 3 we present the methodology applied
for the fits and the treatment of selection biases, redshift
evolution of luminosities, circularity problem, and calibration
of QSOs. In Section 4 we describe the cosmological models
studied in this work and our assumptions on their corresp-
onding parameters, while in Section 5 we present the main
results for all data sets and different approaches comparing

them and discussing the implications. Finally, in Section 6, we
summarize our findings.

2. The Data

Here, we work by selecting and combining samples of QSO
and SNe Ia measurements to investigate the late-time universe.
In this section, we describe each data set used for the
cosmological analyses. These are carried out using both QSOs
alone and the two probes combined.
For SNe Ia, we consider the collection of 1048 sources from

the Pantheon sample (Scolnic et al. 2018). These are collected
by different surveys and span from z= 0.01 up to z= 2.26. The
sample of QSOs used is the one described in Lusso et al.
(2020). This is composed of 2421 sources that cover the
redshift range up to z= 7.54 (Bañados et al. 2018). These
sources have been carefully selected for cosmological studies,
and we refer the reader to the detailed descriptions in Risaliti &
Lusso (2015, 2019), Lusso & Risaliti (2016), Salvestrini et al.
(2019), and Lusso et al. (2020). Here and in Section 3.1, we
summarize the crucial points required by the present work.
This QSO sample is properly selected to remove as many

observational biases as possible. First, a selection is made by
removing the sources for which the signal-to-noise ratio (S/N)
does not guarantee well-sampled photometry (i.e., S/N< 1).
After this first screening, all QSOs with a spectral energy
distribution (SED) that shows UV reddening and near-infrared
host-galaxy contamination are discarded, requiring only sources
with extinction E(B− V )� 0.1. This corresponds to selecting
only the sources that satisfy 0.82 0.40 1.11,UV

2
2,UV

2( ) ( )G - + G -  ,
where Γ1,UV and Γ2,UV are the slopes of a log(ν)–log(ν Lν)
power law in the rest frame 0.3–1 μm and 1450–3000Å ranges,
respectively, and ν and Lν are the frequency and the luminosity
per unit of frequency. The values Γ1,UV= 0.82 and Γ2,UV= 0.4
refer to an SED with zero extinction (see Richards et al. 2006).
In addition, X-ray observations where photon indices (ΓX) are
peculiar or indicative of absorption are excluded by requiring
ΓX+ΔΓX� 1.7 and ΓX� 2.8 if z< 4 and ΓX� 1.7 if z� 4,
where ΔΓX is the uncertainty on the photon index. Finally, the
remaining observations are corrected for the Eddington bias.
Indeed, the cleaned sample consists only of sources fulfilling

F Flog logX,exp min -  , where  is a threshold value, and
FX,exp is the X-ray flux computed from the observed UV flux
assuming the RL relation with fixed parameters within the flat
ΛCDM model with ΩM= 0.3 and H0= 70 km s−1Mpc−1. Flim

Figure 1. Comparison of the RL relation with and without the correction for evolution in redshift of luminosities, as shown in the right and left panels, respectively.
Points are marked with different colors according to their redshift, as depicted in the pictures, and the red line represents the best-fit linear RL relation.
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is the flux limit of the specific observation estimated from the
catalog. More precisely, as detailed in Lusso & Risaliti (2016),
for each object the minimum detectable flux is computed from
the total exposure time of the charge-coupled device where the
source is detected using the functions plotted in Figure 3 by
Watson et al. (2001). The value of  required in this filter is

0.9 = for the Sloan Digital Sky Survey Data (SDSS) Release
14 (DR14)–4XMMNewton (Pâris et al. 2018; Webb et al. 2020)
and XXL (Menzel et al. 2016) subsamples and 0.5 = for the
SDSS-Chandra (Evans et al. 2010). All of the surviving multiple
X-ray observations are ultimately averaged to reduce the effects
of the X-ray variability. The sample we use is the result of all of
these selection filters.

Here, we also remark that, as opposed to what has been done
by other authors (e.g., Lusso et al. 2020; Bargiacchi et al.
2021, 2022), we consider the full sample of QSOs, without the
filter of z> 0.7 proposed in Lusso et al. (2020), thus
highlighting that the results shown here are not biased by any
cut in redshift in the sample nor suffer from artificial truncation
of the current data sample. In addition, this QSO sample is the
most suitable one for cosmological studies, compared to others
previously used in the literature (see, e.g., Risaliti &
Lusso 2015, 2019; Singal et al. 2016; Lusso et al. 2019), for
several reasons: (1) it is obtained by matching recent UV and
X-ray surveys (e.g., SDSS DR14, 4XXM Newton), (2) it is
carefully analyzed and selected against observational biases
(Lusso et al. 2020), (3) it presents observations of 29 luminous
QSOs in the high-redshift range of z= 3.0–3.3, which have
been obtained from an XMM-Newton campaign (cycle 16,
proposal ID: 080395, PI: Risaliti), and had been specifically
selected as suitable for cosmological analyses because they
represented the most luminous QSO population with homo-
geneous optical/UV properties (Nardini et al. 2019), and (4) it
includes two samples of z> 4 QSOs published by Salvestrini
et al. (2019) and Vito et al. (2019) and a local sample in the
redshift range 0.009< z< 0.1. These factors guarantee a high
quality of measurements, a huge number of sources, high-
redshift points to extend the Hubble–Lemaître diagram far
beyond the one of SNe Ia, and coverage at very low-z that
allows for a better calibration with SNe Ia.

3. Methodology

3.1. Fitting Methodology

All of the analyses presented in this work are obtained using
our own codes in Mathematica 12.2 (Wolfram Research, Inc.,
2021) and Jupyter notebooks (Kluyver et al. 2016), in which
we computed the investigated parameters using a Bayesian
technique, the D’Agostini method (D’Agostini 2005). This
technique makes use of Markov Chain Monte Carlo (MCMC)
approach. The D’Agostini method has the advantage of
accounting for error bars on both variables considered and
also for an intrinsic dispersion sv of the relation fitted. Our
applied algorithm starts from a given uniform prior of the
parameters. Then the algorithms search in a loop for solutions
of values of the parameters within the priors that maximize the
likelihood. With every iteration of the loop, the priors are
updated, remembering previous results based on the application
of Bayes’ theorem. With this technique we can obtain a
distribution of probabilities of all parameters at once without
fixing any of them. This allows us to overcome the circularity
problem without the aid of any calibrator.

The likelihood function (LF) used in this method to fit the
SNe Ia sample is defined as12

y yCln LF
1

2
1T

SNe
1( ) [( ) ( )] ( )m m= - - --

where y is the distance modulus measured, C is the associated
1048× 1048 covariance matrix that includes both statistical
and systematic uncertainties, and μ is the distance modulus
predicted by the cosmological model assumed, yet depending
both on the free parameters of the model and the redshift.
As anticipated, the strategy to compute QSO distances

makes use of the nonlinear relation between their UV and
X-ray luminosity (Steffen et al. 2006; Just et al. 2007; Lusso
et al. 2010; Lusso & Risaliti 2016; Bisogni et al. 2021), namely

L g L blog log 2X UV ( )= +

where LX and LUV are the luminosities (in erg s−1 Hz−1) at
2 keV and 2500Å, respectively. In Dainotti et al. (2022a), this
relation has been corrected for selection biases and redshift
evolution using the Efron & Petrosian method (Efron &
Petrosian 1992, hereafter EP), and it has been proved that it is
intrinsic to QSO’s properties so that it can be reliably used to
standardize QSOs as cosmological tools. To make use of
Equation (2), we compute luminosities from measured flux
densities F according to L d F4 lX,UV

2
X,UVp= , where dl is the

luminosity distance. dl is computed under the assumption of a
cosmological model using the corresponding parameters as free
parameters of the fit. Usually, luminosities of the sources have
to be corrected for the K-correction, defined as 1/(1+ z)1−α,
where α is the spectral index of the sources, but for QSOs it is
assumed to be α= 1, leading to a K= 1. So the K-correction
has been omitted following Lusso et al. (2020). The LF
function used for QSOs is (see also Khadka & Ratra 2021, 2022;
Bargiacchi et al. 2022; Colgáin et al. 2022):

y

s
sln LF

1

2
ln . 3

i

N
i i

i
iQSO

1

2

2
2⎡

⎣⎢
⎤
⎦⎥

( )
( )

( ) ( )å
f

= -
-

+
=

In this case, the data yi correspond to Llog X, while fi
corresponds to the logarithmic X-ray luminosity predicted by
the X–UV relation. Moreover, s g svi y x

2 2 2 2 2
i i

s s= + + , and it
takes into account the statistical uncertainties on Llog X (y) and

Llog UV (x), but also the intrinsic dispersion sv of the X–UV
relation, which is another free parameter of the fit. Practically,
LFQSO is just the same LF function used for SNe Ia in
Equation (1), but modified to include the contribution of the
intrinsic dispersion of the X–UV relation. In all models studied
in this work, we fit also QSOs combined with SNe Ia; thus, the
joint LF function used for the combined sample of QSOs and
SNe Ia is given by ln LF ln LF ln LFQSO SNe SNe QSO( ) ( ) ( )= ++ .
In this work, we explore different methods to apply the QSO
relation to cosmology. Specifically, we use (i) Equation (2) in
its form, (ii) Equation (2) corrected for a fixed evolution in
redshift of luminosities, and (iii) Equation (2) corrected for a
redshift evolution of luminosities that varies together with
cosmological parameters. For each of these approaches, we

12 For the sake of simplicity, we always use ln instead of loge and log instead
of log10.
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also consider two different cases: with and without calibration
with SNe Ia. Details of all of these different approaches are
given in the following subsections.

3.2. Selection Biases and Redshift Evolution with a Circularity-
free Treatment

As already stressed, QSOs are observed at very high
redshifts, which is their huge advantage for cosmological
applications, but also the reason for significant selection biases.
Indeed, as it has been pinpointed in astrophysics, such selection
biases can deform a correlation between the physical
parameters of a source (see Figure 1), distort the cosmological
parameters (Dainotti et al. 2013a), or even induce an artificial
correlation. Thus, it is vital to test correlations against this type
of effects.

The most commonly used method to correct data for
selection biases and redshift evolution is the EP method,
whose reliability has already been demonstrated for GRBs, also
via Monte Carlo simulations (see, e.g., Dainotti et al.
2013a, 2013b, 2015, 2017, 2021a). This method assumes that
the corrected, de-evolved, physical quantity (in our case the
luminosity) L¢ is equal to the observed one L divided by some
function of the redshift ξ(z) of an assumed form, L L

z( )
¢ =

x
. The

simplest function that mimics the evolution is the power law
ξ(z)= (1+ z)k (see, e.g., Dainotti et al. 2013a, 2017). As
addressed in Dainotti et al. (2015), the functional form for the
evolution can be a power law of this form or a more complex
function (see also Singal et al. 2011), but both of these
functions result in computed parameters that are compatible in
1σ for the case of QSOs (see Table 1 of Dainotti et al. 2022a).
To determine the k parameter, one has to compute a grid of
values for k and find the one that corresponds to the absence of
correlation between the corrected quantity and the redshift.
Therefore, the Kendall’s τ coefficient is perfect for this task.
Namely, we are looking for such a k for which τ= 0, where,
following the EP method, we define τ as:

. 4i i i

i i

 



( )
( )t =

å -

å

In this formula, for each redshift zi in our sample, we compute
the number of data points in a rectangular built intersecting the
limiting luminosity L ilim, (i.e., the lowest possible luminosity
observed at a given redshift computed with the assumed
limiting flux from L F d z4i l ilim, lim

2 ( )p= ´ ) and the redshift zi
itself. The associated set for zi contains all QSOs verifying
L Lz imin,j  and zj� zi, where j and i refer to objects of the
associated set and the complete QSO sample, respectively. The
rank i of the data point yi with luminosity Li at redshift zi is
computed as the number of these data points in the
corresponding associated set. Then, we subtract from the rank
of each data point its expectation value corresponding to a
distribution with no correlation: i 1i

1

2
 ( )= + . After summing

the obtained differences, the correlation is removed when the
sum is 0 (i.e., τ= 0). To make this concept clearer, we present
the visualization of the computation of the rank i in the
above-described rectangle in Figure 2, where the case of the
X-ray luminosity is shown as an example. In Figure 2 the
assumed limiting flux is F 6 10 erg s cm Hzlim

33 1 2 1= ´ - - - -

(see Dainotti et al. 2022a) and in our computation, we discard

the data points that are below the value of the corresponding
limiting luminosity (purple curve). This figure was obtained for
demonstrative purposes under the assumption of a flat ΛCDM
model with ΩM= 0.3. For completeness, we have to consider
the normalization for the variance i 1i

1

12
2 ( )= + . To this end,

we compute τ by dividing the above-described sum by the sum
of variances for each data point. To find the 1σ uncertainty on
the investigated k parameter, we compute the k values
corresponding to τ= 1 and τ=− 1.
This method has already been successfully applied in the

literature to many probes, including QSOs. In particular, using
the same QSO sample as the one used in this work,
Dainotti et al. (2022a) tested two different functional
forms of ξ(z) obtaining numerically compatible results.
Assuming ξ(z)= (1+ z)k, the authors obtained LX¢ =
L z1X

3.36 0.07( )+  and L L z1UV UV
4.36 0.08( )¢ = +  , with

F 4.5 10 erg s cm Hzlim
29 1 2 1= ´ - - - - for UV and Flim =

6 10 erg s cm Hz33 1 2 1´ - - - - for X-rays. These choices are
legitimated by the authors showing that the evolutionary
coefficient k depends only weakly on these assumptions: even
spanning over 1 order of magnitude in Flim both in UV and
X-rays, the evolutionary coefficient’s results remain compa-
tible within 2σ. This was already proved in Dainotti et al.
(2021c) for several sample sizes of GRBs.
As can be seen Figure 1, the application of the above-defined

correction removes the dependence of the RL relation on
redshift, and additionally, once corrected, the data points are
evenly dispersed in redshift. Indeed, in the case without
correction (left panel), the redshift increases with higher
luminosities, while, once the relation is corrected for evolution
(right panel), this trend completely disappears and redshifts are
blended over the whole range of luminosities.
It has to be pinpointed here that the execution of such a

method is possible only with an assumed cosmology, required
by the computation of luminosities; thus, this technique cannot
be straightforwardly applied in cosmological computations.
Such a calculation of cosmological parameters would be indeed
affected by the so-called circularity problem. To overcome this
issue, we repeat the same procedure for a grid of cosmological
parameters that fall in reasonable physical ranges of values, and
we study how the k parameter behaves with cosmology. Thus,
when applying this correction in the MCMC method for
obtaining the values of cosmological parameters such as ΩM,
Ωk, H0, and w, we consider k= k(ΩM), k= k(Ωk), k= k(ΩM,
Ωk), k= k(ΩM, H0), k= k(w), or k= k(ΩM, w) according to the
free parameters of the model considered. Indeed, we here
remind the reader that k does not depend on H0, since this
parameter is responsible only for a scaling of the luminosity’s
value and does not change the correlation, as shown in Dainotti
et al. (2022a), so we do not have to consider also k= k(H0).
In our computations, the numerical functions k= k(ΩM),
k= k(Ωk), and k= k(w) are always created with a cubic-spline
method, while k= k(ΩM, Ωk) and k= k(ΩM, w) are created with
a “quintic” type of interpolation. Since cosmological para-
meters usually depend on each other and have to be fitted
simultaneously in the MCMC method, we compute two maps
that show how k changes in the parameter spaces {ΩM, Ωk} and
{ΩM, w}, which covers all cases studied in our cosmological
computations (see Figure 3). We comment on the results of
these investigations in Section 5.1.
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3.3. Calibration Methodology

Many attempts have been made in the literature to improve
cosmological constraints by applying the so-called calibration
method. This approach is based on anchoring a probe to
another one that presents an overlapping redshift range and has
measured distances. This procedure is commonly applied, for
example, to calibrate SNe Ia with the distances of Cepheids
measured through their pulsation period–luminosity relation
(see, e.g., Sandage et al. 1996; Riess et al. 2009). This has lead
to the so-called cosmic distance ladder to measure distances in
the universe. At redshifts higher than the ones explored by SNe
Ia, the most commonly used technique assumes that high-z
cosmological probes follow the same cosmology as SNe Ia in
their common redshift range. Thus, the subsample composed
only of sources observed up to the maximum redshift of SNe Ia
is fitted under the assumption of a cosmological model with
parameter values based on the computations with SNe Ia. The
parameters of the correlation are then fixed to the values
obtained assuming the cosmology obtained by SNe Ia in that
particular overlapping region. This approach is the one we
follow in this work to calibrate QSOs. As the maximum
redshift of our SNe Ia data set is z= 2.26, we create our
calibrating subsample composed of 2066 QSOs (out of the
initial 2421 sources) and fit the RL relation on this subsample
combined with SNe Ia. The results of the MCMC fitting
without correcting for evolution in redshift of luminosities are
as follows: g= 0.648± 0.009, b= 6.817± 0.265, and sv=
0.234± 0.004. Once the correction for evolution is applied,
we obtain: g 0.591 0.013¢ =  , b 8.278¢ = 0.0362, sv¢ =
0.231 0.004 , where the ′ symbol stands for the same
parameters as before but once the correction is applied.

4. The Cosmological Models

In this work, we investigate three cosmological models,
which are the most commonly studied in recent analyses. In
both cases, the considered cosmological components are: DE
(indicated by the subscript Λ), nonrelativistic matter (M),

including both baryons (b) and CDM (CDM), and the relativistic
component (r), composed of radiation (γ) and neutrinos (ν). The
last one makes a negligible contribution to the late universe (in
which Ωr=Ωγ+Ων= 9× 10−5); thus, we set the current
relativistic density parameter Ωr equal to 0 in our computation.
In the first case, we consider a universe with a potential

nonzero curvature of spacetime, in which all parameters are
connected via the relation 1=Ωr+ΩM+ΩΛ+Ωk. Within this
model, the luminosity distance dl is given by:
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where E(ζ) stands for the dimensionless Hubble parameter
defined as
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Ωk= 0 corresponds to a flat spacetime, and we refer to the
model with this fixed value as the flat ΛCDM model, while the
model with any possible value of Ωk is referred to as the nonflat
ΛCDM model.
The other model investigated in this work is the most natural

extension of the ΛCDM scenario. Indeed, we consider an
equation of state of DE w= PΛ/ρΛ, where PΛ and ρΛ are the
pressure and energy density of DE, respectively, which can
assume any constant value. The case with w=−1 corresponds
to the ΛCDM model. In this model, Equation (5) changes only
in the form of the E(ζ) function, which becomes

7

E

1 1 1 1 .

w

r M k
w4 3 2 3 1

( )
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( ) ( ) ( ) ( ) ( )

z

z z z z= W + + W + + W + + W +L
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In this case, we assume a flat universe fixing Ωk= 0 and, as a
consequence, ΩΛ= 1−ΩM−Ωr. This assumption is consis-
tent with the most recent cosmological observations on the
CMB (Planck Collaboration et al. 2020) and other recent
studies (e.g., Alam et al. 2021; Gonzalez et al. 2021), where
nonflat universes are consistent with zero curvature.

4.1. Assumptions on Cosmological Parameters

It is worth mentioning some of the assumptions we use in
our cosmological analyses. First of all, in all models, we
use flat uniform priors on the free parameters as
follows: 0�ΩM� 1, 60�H0� 80, −2.5�w�− 0.34, and
−0.9�Ωk� 0.6. The limits on Ωk have been increased to
obtain convergence in all cases studied. The upper limit on w is
imposed following the second Friedmann’s equation, according
to which we need w(z)<−1/3 to explain the present
accelerated expansion of the universe (Riess et al. 1998;

Figure 2. X-ray luminosity (in logarithmic units) vs. (1 + z). The solid purple
curve shows the truncation due to the flux limit, which is here assumed to be
F 6 10 erg s cm Hzlim

33 1 2 1= ´ - - - - (Dainotti et al. 2022a). The rank i of the
point of luminosity Li at redshift zi is the number of points in the rectangle
within black lines, with points under the purple curve being discarded. This
figure is computed under the assumption of a flat ΛCDM model
with ΩM = 0.3.
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Perlmutter et al. 1999) as a DE dominant effect. In addition to
these priors, we do not look for solutions to the values of
cosmological parameters in the whole parameter space, as there
are regions that lead to nonphysical or nonreasonable solutions.
Thus, in our analyses, we discard the part of the {ΩM, Ωk}
parameter space that leads to the “no Big Bang” solutions,
which do not admit an initial singularity. Following Carroll
et al. (1992), the region that admits physical solutions with an
initial singularity in a ΛCDM model corresponds to:

8
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Part of the discarded region can be seen in both panels of the
upper row of Figure 3 under the dashed black line.

Furthermore one can consider only the region of ΩM, w
space that does not lead to present values of the Hubble
constant higher than its value in the past. This would allow
only for the case of 0d H z

d z z 0∣( )
=  , which satisfies the null

energy condition (Visser & Barcelo 2000). Taking the
derivative of Equation (7) and substituting z= 0, one can
obtain the following criteria:

w
1

1
. 9

M
( )

W -


The border set up by this condition is shown in both panels
of the bottom row in Figure 3 with a thick white line. The
depicted region can be a test of violation of the null energy
condition regarding the present discussion about its viability.

5. Results

In this section, we present and comment on the results of our
analyses. Section 5.1 is focused on how the correction for
evolution in redshift of luminosities is impacted by cosmolo-
gical parameters (see Figures 3 and 4). Sections 5.2–5.4 show
the cosmological constraints obtained in all three models
studied in this work considering all of the data sets and
approaches used. Tables 1 and 2 report, for each case studied,
the mean values of free cosmological parameters with their
corresponding 1σ error. Figures 6–9 show the corresponding
corner plots obtained in the cosmological computations.

5.1. Impact of Cosmology on Correction for Evolution

All of the cases considered in this work present a smooth
dependence of k on cosmological parameters (i.e., there are no
bumps or discontinuities in computations) for both kLX and
kLUV. The upper row of Figure 4 shows how k depends on the
parameter determining the curvature of the universe Ωk with
fixed ΩM= 0.3 for both UV (left panel) and X-ray (right panel)
cases. In both panels, the computed dependence has a similar
trend, with values of k that do not vary much for values of Ωk

close to Ωk= 0 (the ones expected from the most recent
observations and studies). For a matter of a pure, more
theoretical discussion on how close these solutions are to the
nonphysical regions, also showing peculiar behavior in terms
of the evolution, we can observe the following features: at the
negative values far from Ωk= 0, a rapid decrease of k values is
present, and k becomes incompatible within 3σ with the value

computed for Ωk= 0 at Ωk∼− 0.7 for both quantities
considered. In all of the panels, we mark with a thick, black
line the values of kLX and kLUV computed for ΩM= 0.3, Ωk= 0,
and w=−1 together with 1σ, 2σ, and 3σ error bars marked
with red, orange, and green dashed lines, respectively. We also
computed values of the k-parameters for values of Ωk close to
1, and we observe that these values do not change significantly
from the highest value shown on the plot (Ωk= 0.2). Thus, as
we do not exceed this region in our computations, we show on
the plot only a range of Ωk between −0.9 and 0.2. The upper
row of Figure 3 shows instead the results of a more general
approach, in which we compute the value of k over a grid of
values of both ΩM and Ωk, as described in Section 3.2. The
variation of both kLX

and kLUV with these cosmological
parameters is very similar. Unsurprisingly, the most significant
evolution of the luminosities appears in the region close to the
point {ΩM= 0, Ωk= 0}, because in such a universe E(ζ) would
become E(ζ)= 1, and it would result in a quadratic function of
the distance luminosity with redshift, which would lead to still
quite a dispersed but power-of-four relation of the luminosity
with the redshift. Values of k close to the restricted region
marked with the black dashed line rapidly decrease with
distance from the origin of axes. We can conclude that, in
reasonable regions of this parameter space (i.e., near
{ΩM= 0.3, Ωk= 0}), the values of k are compatible with the
ones obtained for Ωk= 0 and ΩM= 0.3. As is visible from the
plots, we discard a part of the {ΩM, Ωk} space bigger than the
region defined by Equation (8). Indeed, the rapid decrease of k
values close to this region affects the precision of the
interpolation method that we use to compute the function
k(ΩM, Ωk), which we then use for our cosmological computa-
tions. Nevertheless, we must note that this discarded region
does not impact our analysis, as our results do not fall in this
cutoff region in any of the cases.
Results of the investigation of the dependence of k on the w-

parameter fixing ΩM= 0.3 are shown in the bottom row of
Figure 4 for both the UV (left panel) and X-ray cases (right
panel). Within the whole range of w values explored, k values
are compatible with the value obtained for w=−1 within less
than 2σ. Thus, we do not expect a significant difference in
cosmological results between the computation of w with fixed
correction for evolution and the one with k= k(w). If we look at
the more general investigation in the parameter space of both
ΩM and w presented in the bottom row of Figure 3, we see that,
as in the previous case, the variation of both kLX

and kLUV with
the cosmological parameters presents very similar features, and
in reasonable regions of this parameter space {ΩM, w} (i.e.,
near {ΩM= 0.3, w=− 1}), the values of k are compatible with
those obtained for ΩM= 0.3 and w=−1, while kʼs values vary
more significantly in exotic regions of this space. Due to high
dispersion of the RL relation, our analyses still cover a large
range of the cosmological parameters. Thus, the change of
evolutionary parameter, k, with cosmology could still be
significant in some computations. For example, when using
k= k(ΩM, w) for the joint sample of SNe Ia and QSOs, the 3σ
contours in the {ΩM, w} space extend from ΩM= 0.2 and
w=− 0.8 to ΩM= 0.5 and w=− 1.6 (see plot (i) in Figure 9).
In this case, we find that the values of kLUV vary from
4.13± 0.08 (for ΩM= 0.5 and w=− 1.6) up to 4.47± 0.08
(for ΩM= 0.2 and w=− 0.8). Thus, the values of k result to be
compatible with each other within 3σ, while kLX varies from
3.13± 0.06 (for ΩM= 0.5 and w=− 1.6) up to 3.48± 0.06
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(for ΩM= 0.2 and w=− 0.8), being compatible with each
other within 4σ. The explored range of k values in the MCMC
fitting becomes even wider when we consider the case of QSOs
alone, both calibrated and noncalibrated. Thus, the variation of
k with cosmology is often not negligible.

In the approach presented in this article, we also compute, in
all considered cases, the error on k values as a function of
cosmology. In reasonable ranges, we always observe very
small variations of the error with cosmology. As is visible in
the upper row of Figure 4, the error on k for Ωk<− 0.8 is

Figure 3. Behavior of the k parameter in the parameter spaces {ΩM, Ωk} (panels (a) and (b)) and {ΩM, w} (panels (c) and (d)) for both UV (left panels) and X-rays
(right panels). (a) Behavior of the k parameter in the parameter space {ΩM, Ωk} for UV. The dashed black line shows the “no Big Bang” constraint (see Section 4.1 and
Equation (8)). (b) Behavior of the k parameter in the parameter space {ΩM, Ωk} for X-rays. The dashed black line shows the “no Big Bang” constraint (see Section 4.1
and Equation (8)). (c) The behavior of the k parameter in the parameter space {ΩM, w} for UV. The region under the thick white line corresponds to the scenario of
H z 0z 0( )∣¢ =  , while the region above the following line corresponds to H z 0z 0( )∣¢ >= . (d) The behavior of the k parameter in the parameter space {ΩM, w} for
X-rays. The region under the thick white line corresponds to the scenario of H z 0z 0( )∣¢ =  , while the region above the following line corresponds to H z 0z 0( )∣¢ >= .
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about twice the size of that for Ωk= 0; but for values of
Ωk>− 0.55, the errors are <8% larger than than those for
Ωk= 0 for both kL kX ( )W and kL kUV ( )W . Concerning the error
Δk(w), we do not observe variations of the errors larger than
4% across the entire considered region for both k wLX ( ) and
k wLUV ( ) (see the bottom row of Figure 4). For Δk(ΩM, Ωk), we
always observe variations <7% for every computed point for
both kL M kX ( )W W and k ,L M kUV ( )W W . The same result is obtained
for the errors Δk(ΩM, w), for both k w,L MX ( )W and
k w,L MUV ( )W . Thus, in future analyses, the evolution of the
errors on the k-parameter with cosmology could be possibly
neglected.

5.2. Results on the Flat ΛCDM Model

5.2.1. Calibrated QSOs Alone

Assuming a flat ΛCDM model, the case with QSOs alone
calibrated with SNe Ia and without any correction for evolution
favors high values of ΩM, even if compatible in 3σ with
ΩM= 0.3, when H0 is fixed, and high values of H0 when ΩM is
fixed, while, when both parameters are free, we do not obtain
convergence on the ΩM parameter, which tends to have very
high values even outside our uniform prior bound. Including a
fixed correction for the evolution instead, ΩM always goes to
lower values, both for fixed and free H0 (ΩM= 0.251± 0.054
and ΩM= 0.167± 0.062, respectively), while H0 ranges from

67.55–72.09 km s−1 Mpc−1 in 1σ when ΩM is fixed, corresp-
onding to intermediate values between the one measured from
SNe Ia (H0= 74.03 ± 1.42 km s−1 Mpc−1) and the one
obtained from the Planck data on the CMB under the
assumption of the same cosmological model (H0= 67.4±
0.5 km s−1 Mpc−1). The case with both parameters free does
not converge for either of the two parameters, leading to too
low ΩM values (ΩM= 0.167± 0.062), compatible within 3σ
with the theoretical De Sitter universe in which ΩM= 0, and
too high H0 values (H0= 76.40± 3.33 km s−1 Mpc−1). Taking
into account the variation of the correction for evolution
together with the cosmological parameter ΩM, ΩM becomes
consistent with ΩM= 0.3, when H0 is fixed, also due to large
uncertainties, but ΩM does not converge when H0 is free to
vary, going to the upper limit of our uniform prior. In this case,
H0 is compatible within 1σ with the value from the CMB.

5.2.2. Noncalibrated QSOs together with SNe Ia

When combining noncalibrated QSOs with SNe Ia, we do
not deal with convergence issues in any of the cases.
Specifically, without accounting for the correction for evol-
ution, we find ΩM close to 0.3 (in 1σ and 2σ when H0 is fixed
and free, respectively) and H0 close to 70 (in 1σ and 2σ when
ΩM is fixed and free, respectively). When accounting for a fixed
correction for evolution, we still have ΩM close to 0.3 even if in

Figure 4.We mark with a thick, black line the values of kLX and kLUV computed for the ΩM = 0.3, Ωk = 0, and w = −1 together with 1σ, 2σ, and 3σ error bars marked
with red, orange, and green dashed lines, respectively. (a) Behavior of k-parameter for the correction of LUV in relation to Ωk for a nonflat ΛCDM model with
ΩM = 0.3. (b) Behavior of k-parameter for the correction of LX in relation to Ωk for a nonflat ΛCDM model with ΩM = 0.3. (c) Behavior of k-parameter for LUV in
relation to w for a flat wCDM model with ΩM = 0.3. (d) Behavior of k-parameter for LX in relation to w for a flat wCDM model with ΩM = 0.3.
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2σ and 3σ when H0 is fixed and free, respectively, and H0 close
to 70, in 1σ and 3σ when ΩM is fixed and free, respectively.
Letting the evolution vary together with the cosmological

parameter (i.e., k(Ωm)), we obtain ΩM and H0 always
compatible within 1σ with 0.3 and 70, respectively. Indeed,
we here remind the reader that k does not depend on H0, as was
already stressed, so we do not have to, again, study the case in
which only H0 is free.
Since in these cases we are not calibrating QSOs with SNe

Ia, we also fit g, b, and sv contemporaneously with the
cosmological parameters. Without evolution, we always obtain
g= 0.66± 0.01 independently of the number of free para-
meters, in which b is always compatible within 1σ with a
central value of b= 6.33, and sv= 0.230± 0.004 in all cases.
When we account for the correction for evolution, both fixed or
as a function of cosmological parameters, we obtain
g= 0.59± 0.01, in which b is always compatible within 1σ
with a central value of b= 8.24, and sv= 0.225± 0.003 in all

Table 1
Cosmological Results Obtained for All Considered Cases

Only QSOs Calibrated on SNe Ia Combination of SNe Ia with QSOs without Calibration

Results without Correction for Evolution

ΩM H0 w Ωk ΩM H0 w Ωk

0.443 ± 0.054 70 −1 0 0.305 ± 0.008 70 −1 0

0.3 73.76 ± 2.18 −1 0 0.3 69.97 ± 0.14 −1 0

0.663 ± 0.108 62.77 ± 2.52 −1 0 0.338 ± 0.022 69.44 ± 0.32 −1 0

0.3 70 −0.696 ± 0.132 0 0.3 70 −1.003 ± 0.019 0

0.3 70 −1 −0.531 ± 0.275 0.3 70 −1 −0.01 ± 0.018

0.522 ± 0.052 70 −1.966 ± 0.395 0 0.462 ± 0.034 70 −1.552 ± 0.166 0

0.517 ± 0.06 70 −1 −0.740 ± 0.106 0.656 ± 0.048 70 −1 −0.762 ± 0.101

Results with Fixed Correction for Evolution

ΩM H0 w Ωk ΩM H0 w Ωk

0.251 ± 0.040 70 −1 0 0.291 ± 0.008 70 −1 0

0.3 69.82 ± 2.27 −1 0 0.3 69.99 ± 0.14 −1 0

0.167 ± 0.062 76.40 ± 3.33 −1 0 0.251 ± 0.02 70.72 ± 0.34 −1 0

0.3 70 −1.113 ± 0.182 0 0.3 70 −1.006 ± 0.018 0

0.3 70 −1 0.01 ± 0.122 0.3 70 −1 0. ± 0.018

0.151 ± 0.099 70 −0.765 ± 0.267 0 0.059 ± 0.038 70 −0.662 ± 0.041 0

0.24 ± 0.05 70 −1 0.076 ± 0.104 0.118 ± 0.032 70 −1 0.377 ± 0.069

Results with Correction for Evolution as Function of Cosmology

ΩM H0 w Ωk ΩM H0 w Ωk

0.382 ± 0.178 70 −1 0 0.299 ± 0.008 70 −1 0

0.543 ± 0.251 67.50 ± 2.80 −1 0 0.3 ± 0.022 69.99 ± 0.35 −1 0

0.3 70 −1.074 ± 0.205 0 0.3 70 −1.005 ± 0.019 0

0.3 70 −1 −0.041 ± 0.102 0.3 70 −1 −0.006 ± 0.018

0.546 ± 0.172 70 −1.591 ± 0.500 0 0.358 ± 0.054 70 −1.168 ± 0.156 0

0.591 ± 0.217 70 −1 −0.235 ± 0.191 0.415 ± 0.063 70 −1 −0.250 ± 0.134

Note. In the upper part of the table, we show the results without the correction for evolution. In the middle part, we show the results obtained with fixed evolution, and
at the bottom, we show the results obtained with correction for evolution as a function of cosmology. Errors reported in the table correspond to 1σ uncertainties. Bold
values represent the values fixed for ΩM and H0 in the corresponding cosmological analysis.

Table 2
Cosmological Results Obtained with only the QSO Sample without Calibration

Results Obtained with QSOs Alone without Calibration ΩM

Results without correction for evolution 0.934 ± 0.059

Results with fixed correction for evolution 0.067 ± 0.017

Results with correction for evolution as a function of ΩM 0.500 ± 0.210

Note. We show the results without the correction for evolution, with fixed
correction for evolution, and with correction for evolution as a function of ΩM.
Errors reported in the table correspond to 1σ uncertainties. In this computation
we fix the parameters as H0 = 70 km s−1 Mpc−1, Ωk = 0, and w = −1.
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cases. We note that the correction for evolution reduces the
intrinsic dispersion by 2.2%, making the RL relation tighter.

5.2.3. Noncalibrated QSOs Alone

Only in this case of a flat ΛCDM model do we also consider
the data set composed of QSOs alone noncalibrated on SNe Ia
to investigate how this sample can impact the determination of
the ΩM parameter in the cosmological analysis. These results
are shown in Table 2 and Figure 7, where H0 is fixed to
H0= 70 km s−1 Mpc−1. If we do not consider the correction for
the evolution, ΩM is not constrained and hits the upper limit
ΩM= 1 in the range of uniform priors. Once accounting for a
fixed correction for the evolution instead, we obtain closed
contours on this parameter, but with values shifted to very
small values ΩM= 0.067± 0.017, although not compatible
with ΩM= 0 within 3σ. Unsurprisingly, the case with the
correction k= k(ΩM) allows us to overcome the convergence
issue and the nonphysical behavior with ΩM close to 0, leading
to ΩM= 0.500± 0.201, which is compatible within 1σ with
ΩM= 0.3. Concerning the values of the parameters of the RL
relation, we obtain consistency with the ones from noncali-
brated QSOs combined with SNe Ia, as well as a similar
reduction in the intrinsic dispersion when accounting for the
correction for the evolution. Concerning this, we have also tried
to compute other cosmological parameters such as H0, Ωk, and
w for the sample composed of QSOs alone without calibration,
but we have not obtained closed contours in any of these cases;
thus, we do not show these results here. This can be ascribed to
the fact that the RL relation, even after the correction for
evolution, still retains an intrinsic scatter. Thus, noncalibrated
QSOs alone are too weak to constrain parameters of more
complex models. Our results show a path in which further
investigations of the properties of this probe could lead to
tighter, more reliable results.

5.3. Results on the Nonflat ΛCDM Model

5.3.1. Calibrated QSOs Alone

When allowing for Ωk≠ 0, QSOs alone calibrated with SNe
Ia point toward negative values of Ωk, if we do not correct for
luminosity evolution in redshift. More precisely, Ωk=
−0.531± 0.275 when ΩM is fixed, while, when both are free
parameters of the fit, ΩM tends to 0.52, but Ωk does not
converge due to too low values in our range of uniform prior.
Very interestingly, when we correct for a fixed evolution,
convergence is reached for both Ωk and ΩM left free to vary
(however, with large uncertainties), while ΩM shifts toward 0.3
and Ωk toward 0. Instead, when Ωk is the only free parameter of
the fit, it is not constrained, as happens when also accounting
for a correction that varies with Ωk. This can be ascribed to the
fact that QSOs are more sensitive to the value of ΩM, which is
better determined by probes at intermediate redshifts, rather
than the value of Ωk, which is instead constrained at very high
redshifts as that of CMB; thus, when ΩM is also free, QSOs can
constrain ΩM and, as a consequence of their degeneracy, also
Ωk. Varying both parameters and taking into account a
correction for evolution that varies together with these
parameters does not constrain ΩM, which tends to have values
close to ΩM= 1.

5.3.2. Noncalibrated QSOs together with SNe Ia

In the case of noncalibrated QSOs combined with SNe Ia, Ωk

is always compatible with Ωk= 0 within 1σ when ΩM is fixed
to 0.3 (as expected for a flat universe), both with and without
the correction for the evolution, while, when ΩM is also free, it
tends to negative values (i.e., Ωk=− 0.762± 0.101) if we do
not correct for evolution, and to positive values (i.e.,
Ωk= 0.377± 0.069) when considering a fixed correction.
In these two cases, ΩM is shifted to high and low values,
respectively. When accounting for the correction with
k(ΩM, Ωk), we observe an intermediate behavior: ΩM= 0.415±
0.063, within 2σ from ΩM= 0.3, and Ωk=− 0.250± 0.134,
within 3σ from a zero curvature.
Concerning the free parameters of the RL relation, the

results are the same as those obtained for the flat ΛCDM
model, showing that the values of these parameters do not
depend on the curvature of the universe. In addition,
comparing the values of g and b obtained when only Ωk is
the free parameter and when both ΩM and Ωk are free
parameters, we note that there are slight discrepancies (∼2σ)
in the case without evolution, which are completely removed
once the evolution is taken into account. This shows that the
correction for the luminosity evolution makes the parameters
of the RL relation compatible within 1σ, comparing the cases
with different numbers of free parameters. Many computa-
tions involving QSOs through the literature concerning the
value of Ωk show traces of its value being smaller than zero
(Khadka & Ratra 2022). Our results could indicate that this
behavior is due to selection bias and redshift evolution since,
after this correction treated as a function of cosmology is
applied, the obtained values of Ωk become more compatible
with zero. For the computations with noncalibrated QSOs
together with SNe for the case without correction for
evolution varying only Ωk, we obtain Ωk=− 0.010±
0.018, while in the analogous case with applied correction
for evolution as a function of cosmology, Ωk=− 0.006±
0.018. For the computations with noncalibrated QSOs
together with SNe for the case without correction for
evolution varying Ωk together with ΩM, we obtain Ωk=
−0.010± 0.018 and ΩM= 0.656± 0.048, while in the
analogous case with applied correction for evolution as a
function of cosmology, Ωk=− 0.250± 0.134 and ΩM=
0.415± 0.063. Very similar behavior can be seen in the cases
with calibrated QSOs. We see here that the results after the
correction for evolution as a function of cosmology is applied
are much closer to the flat ΛCDM model parameters obtained
with SNe alone than those without this correction. This could
indicate that previous results in the literature showing values
of Ωk that are incompatible with zero were possibly driven
simply by the selection bias and redshift evolution. In order
to obtain clear conclusions on the flatness of the universe,
more work still needs to be done. This issue could be solved
in the future with a larger sample of QSOs and the addition of
more high-redshift probes, like GRBs.

5.4. Results on the Flat wCDM Model

Considering the flat wCDM model, we need to distinguish
between two different DE regimes in the values of the
equation-of-state parameter w. Indeed, the regime w>− 1 is
referred to as a “quintessence,” while that with w<− 1 as
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“phantom.” The phantom DE scenario predicts a final “Big
Rip” for the universe in which all of the matter is ripped apart
by the accelerated expansion. In relation to a region of the
viability of the null energy condition given by Equation (9),
none of our computations shows any trace of violation of this
condition.

5.4.1. Calibrated QSOs Alone

If we consider QSOs alone calibrated with SNe Ia and we do
not take into account any correction for evolution, we obtain
very different results concerning the DE scenario, depending
on if we did or did not fixed the parameter ΩM. In particular, if

Figure 5. The results of the 100 looped fits of the H0-parameter for all cases with calibrated QSOs. H0 is in units of km s−1 Mpc−1.
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ΩM= 0.3, we obtain w∼− 0.7, corresponding to the quintes-
sence behavior (even if compatible within 3σ with w=−1). If
ΩM is a free parameter of the fit, we run into the phantom DE
region with w∼− 2 and ΩM∼ 0.5, even if, in this case, w does
not converge, going to values too negative compared to our
uniform prior on this parameter. On the other hand, we observe
the opposite trend when accounting for a fixed correction for
evolution. In this case, indeed, the phantom regime is obtained
with ΩM fixed (but at only 1σ from a quintessence case with
w=− 0.931) and the quintessence regime (at 1σ from w=−1)
with ΩM as a free parameter, even if in this latter case ΩM does
not converge, hitting the barrier at ΩM= 0. When considering
k= k(w) with ΩM fixed, w results are compatible with both
scenarios in 1σ. When ΩM is free to vary instead, both
parameters are unconstrained.

5.4.2. Noncalibrated QSOs together with SNe Ia

When fitting jointly noncalibrated QSOs and SNe Ia, we
obtain that w is always consistent within 1σ with w=−1 if ΩM

is fixed to 0.3 (as expected in a flat ΛCDM model),
independently of the treatment of the correction for evolution.
Instead, when also varying ΩM, we obtain w∼− 1.6 and
ΩM∼ 0.46 without correction, w∼− 0.7 and ΩM∼ 0.06 with a
fixed correction, even if in this last case ΩM does not converge,
and w∼− 1.2 and ΩM∼ 0.36 with a correction that varies with
the cosmological parameters. This last case is compatible with
ΩM= 0.3 and w=−1 within 2σ. The results presented for the
flat ΛCDM model on the values of g, b, and sv are once again
valid in this case of a flat wCDM model. This strongly stresses
the independence of the parameters of the RL relation on the
assumed cosmological model.

5.5. Impact on the H0 Tension

We also would like to stress that if we consider noncalibrated
QSOs + SNe, both with H0 and ΩM changing together or only
changing H0, then we can safely state that the resulting H0

values are all compatible with each other, and they are between

the values of H0 determined by the Planck collaboration and
those of the SNe Ia. This result is very intriguing since it is
similar to the results obtained by Freedman (2021; see their
Figures 10 and 11). In Freedman (2021), the authors use a
different methodology due to a local characteristic of the red
giants. Their approach follows the traditional, cosmic-ladder
treatment, which means that distant objects such as SNe Ia are
calibrated by nearby standard candles such as tip of the red
giant branch. In this approach, H0 is determined for nearby
objects (i.e., redshift of the objects is much smaller than 1), for
which the luminosity distance mainly depends on H0 and z only
and does not depend on other cosmological parameters such as
ΩM and ΩΛ. In that sense, Freedman’s approach is different
from our new approach that overcomes the circularity problem
where H0 is obtained simultaneously with other cosmological
parameters. Those results could imply that the Hubble constant
tension could be due to observational biases, but one needs
to have a larger sample to verify such a hypothesis
(Freedman 2021). When we consider the QSOs alone but
calibrated with SNe Ia, we have mixed results about the H0

values. If we consider that the evolutionary function for ΩM

provides the most reliable estimates, then we can conclude that
values closer to the Planck results are the most favored. On the
other hand, from their Figure 11, we can still learn that when
we vary only one cosmological parameter at time, again the
results are mixed. Indeed, if we consider only H0 varying
without evolution, then we have compatibility for H0 with SNe
Ia, while when we fix the evolution, the H0 value lies between
the values obtained by CMB and SNe Ia. From this analysis,
we still cannot conclude that evolution is the driving factor that
pushes H0 closer to the Planck values. Indeed, for the case of
both parameters free to vary, the results with and without
evolution lie on the opposite side of the Planck (no evolution)
and SNe Ia values for H0 (for fixed evolution). We also would
like to stress that the H0 trend toward the value of
70 km s−1 Mpc−1 may also stem from the fact that SNe Ia
are uncalibrated (namely, calibrated arbitrarily for an
absolute magnitude M=− 19.35 and thus consequently at
H0= 70 km s−1 Mpc−1, see also Perivolaropoulos & Skara
2023); thus, the trend may not stem from the underlying
physics, but from this calibration choice (A. Riess, private
communication). Notwithstanding the importance of this
discussion, this topic is beyond the scope of the current paper,
and we will address it more in detail in a forthcoming
publication.
In order to verify these results statistically, due to a large

uncertainty of the parameters in cases with calibrated QSOs, we
have run the Monte Carlo simulations 100 times to better
evaluate the uncertainties and the true value of the cosmolo-
gical parameters. The achieved distributions of the values of the
H0 obtained in looped computations are shown in Figure 5, and
the mean values are presented in Table 3. This approach has
been already successfully used for GRBs in Dainotti et al.
(2023), and here we show the histograms of the distributions of
H0 for the five cases that are detailed in the lower part of
Table 3.

6. Summary and Conclusions

In this work, we analyzed the flat and nonflat ΛCDM
models and the flat wCDM model using SNe Ia and the most
updated sample of QSOs, as cosmological probes in view of
testing QSOs as distance indicators and alleviating the H0

Table 3
Comparison of Results for the H0-parameter Obtained in This Work with

Different Approaches

Considered Case H0
km

Mpc s
⎡⎣ ⎤⎦´ z-score

Without calibration QSOs+SNe

k = k(ΩM), H0 varied with Ωm 69.99 ± 0.35 4.24
Fixed evolution, H0 varied with Ωm 70.72 ± 0.34 5.49
Fixed evolution, H0 varied alone 69.99 ± 0.14 4.99
No evolution, H0 varied with Ωm 69.44 ± 0.32 3.44
No evolution, H0 varied alone 69.97 ± 0.14 4.95

Calibrated QSOs alone

k = k(ΩM), H0 varied with Ωm 68.00 ± 2.61 0.23
Fixed evolution, H0 varied with Ωm 76.48 ± 3.04 2.95
Fixed evolution, H0 varied alone 69.68 ± 2.19 1.01
No evolution, H0 varied with Ωm 62.84 ± 2.41 1.86
No evolution, H0 varied alone 73.76 ± 2.18 2.84

Note. The z-score marking the compatibility of our results with the results

obtained with Planck data is computed as zi
H H i

i

0,CMB 0,

CMB
2 2

∣ ∣=
s s

-

+
, where

H 67.4 0.50,CMB CMB
km

Mpc s
s = 

´
is the measurement of the Hubble

constant with the Planck data, and H0,i ± σi is one of our measurements.
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Figure 6. Corner plots obtained under the assumption of the flat ΛCDM model.
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tension issue. This study is strongly motivated by the need
for testing the predictions of the spatially flat ΛCDM model
and searching for possible deviations to explain the
theoretical and observational shortcomings of this model,
both in the direction of a nonflat universe and of a potential
new physics. The inclusion of QSOs in the cosmological
analysis is crucial to this aim as they extend the Hubble–
Lemaître diagram of SNe Ia up to a higher redshift range
(z= 2.26−7.54) in which predictions from different cosmo-
logical models can be better distinguished and more easily
compared to observational data. We explored and compared
different approaches to apply the RL relation for including
QSOs in the cosmological analyses. Specifically, we used this
relation both in its original form and with luminosities
corrected for selection biases and evolution in redshift. In this
latter approach, making use of the EP method, we
investigated both a fixed evolution and an evolution that
depends on the cosmological parameters of the model studied
to overcome the circularity problem. The latter technique has
recently been applied to GRBs (Dainotti et al. 2023), but this
is the first time in the literature that it has been used for
QSOs. This study also addresses some previous criticisms
concerning the application of the X–UV relation in
cosmology (e.g., Petrosian et al. 2022). All of these
approaches have also been explored using both noncalibrated
QSOs combined with SNe Ia and QSOs alone calibrated with
SNe Ia. Below, we summarize our main results.

1. In the effort to overcome the circularity problem, we
apply the innovative method in which the correction of
luminosities for the evolution in redshift varies together
with the cosmological parameters of the assumed
cosmological model. Our investigation proves that kLX

and kLUV significantly depend on the cosmological
parameters, as shown in Figures 3 and 4. Assuming a
nonflat ΛCDM model with ΩM= 0.3, the values of k do
not vary much for Ωk close to Ωk= 0, being compatible
within 1σ with the value obtained for Ωk= 0 up to
Ωk∼− 0.4 for both UV and X-ray wavelengths (upper
row of Figure 4). Moreover, if we consider the whole
parameter space (i.e., k(ΩM, Ωk) in the upper row of
Figure 3), we conclude that, in reasonable regions of this
space, the values of k are compatible with those obtained
for Ωk= 0, ΩM= 0.3 for both UV and X-ray cases.

Similar conclusions can be drawn for k(w) and k(ΩM, w)
in the flat wCDM model. Indeed, if we fix ΩM= 0.3, k
values are compatible with those obtained with w=−1 in
the whole range of w explored, as shown in the bottom
row of Figure 4 for both the UV and X-ray cases. This
explains why we do not observe any significant
differences in the cosmological results between the
computation of w with fixed correction for evolution
and that with k= k(w) (see Table 1). As happens for the
nonflat ΛCDM case, k values in the parameter space {ΩM,
w} result are compatible within 2σ with those obtained
for ΩM= 0.3 and w=−1 for both UV and X-ray cases
(see bottom row of Figure 3). Nevertheless, since we
explore the behavior of k in very wide ranges of the
cosmological parameters ΩM, Ωk, and w, we do observe
significant deviation (>3σ) of k values from that expected
for ΩM= 0.3, Ωk= 0, and w=−1 in some extreme
regions of the parameter spaces. Thus, in these particular
regions, although one may argue the need of exploring
such exotic parameter space, the dependence of k on the
cosmological parameters is significant and should be
taken into account in the computations.

2. Under the assumption of a flat ΛCDM model, results
from QSOs alone calibrated with SNe Ia (the left side of
Table 1 and Figures 6(a)–(c)) do not show a common
trend, with values of ΩM and H0 that have large
uncertainties, span a wide range of values, and are not
well constrained. These issues are completely removed
by joining noncalibrated QSOs and SNe Ia in the
analyses. Indeed, with this sample, we do not encounter
any convergence issue and, in addition, we always find a
common trend toward ΩM= 0.3 and H0= 70 that
becomes tighter (within 1σ), with the application of a
correction for the evolution in the redshift of luminosities
that varies together with the cosmological parameters (see
the right side of Table 1 and Figures 6(j) and (k)). Within
this model, considering the data set of QSOs alone not
calibrated on SNe Ia and fixing H0= 70 km s−1 Mpc−1,
presents interesting results on the ΩM parameter (see
Table 2 and Figure 7). More specifically, this invest-
igation also shows that QSOs alone, without any
calibration, well constrain ΩM once we include a
correction for the evolution with redshift that varies with
the cosmological parameter (i.e., k= k(ΩM)). This case

Figure 7. Corner plots obtained under the assumption of the flat ΛCDM model using noncalibrated QSOs alone.
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results in ΩM compatible within 1σ with ΩM= 0.3, but
with a preference toward higher values.

3. When allowing for a possible curvature of the universe,
QSOs calibrated alone present, as in the previous case,
some convergence issues. Nevertheless, when consider-
ing a fixed correction for evolution and both ΩM and Ωk

as free cosmological parameters of the fit, we obtain ΩM

compatible with ΩM= 0.3 within 2σ. These results are
shown on the left side of Table 1 and Figures 8(a)–(c).

When fitting together QSOs that are noncalibrated and
SNe Ia (the right side of Table 1 and Figures 8(d)–(i)), Ωk

remains compatible within 1σ with Ωk= 0 if we fix
ΩM= 0.3, both correcting and not correcting for the
evolution. However, Ωk approaches very different values
once ΩM is free to vary.

4. Assuming a flat wCDM model, calibrated QSOs alone do
not clearly distinguish between the quintessence and the
phantom DE scenario, as shown in the left side of Table 1

Figure 8. Corner plots obtained under the assumption of the nonflat ΛCDM model.
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and in Figures 9(a)–(c). Instead, when considering
noncalibrated QSOs together with SNe Ia, in all cases,
we obtain compatibility in 1σ with w=−1 when
ΩM= 0.3 (as expected in a flat ΛCDM scenario), while
also varying ΩM results in significant deviations from
w=−1, except for the case with a correction that varies
with the cosmological parameters, in which we recover
compatibility in 2σ with ΩM= 0.3 and w=−1. This is
shown in the right side of Table 1 and in Figures 9(d)–(i).

5. Investigating the results on the parameters of the RL
relation when the QSO sample is not calibrated, we
obtain that, by comparing cases with the same treatment
of the correction for evolution, the fitted values of g, b,
and sv are always the same, independently of the
cosmological model assumed and cosmological results
obtained. Indeed, in our cosmological computations, we
do not obtain any significant correlation of the parameters
of the RL relation with the cosmological ones, as is

Figure 9. Corner plots obtained under the assumption of the wCDM model.
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visible in Figures 6–9. In addition, the application of the
correction for the evolution, both fixed and free to vary
with the cosmological parameters, reduces the intrinsic
dispersion of the relation by a factor of 0.022 (from
sv= 0.230 to sv= 0.225) making the RL relation even
stronger.

6. Focusing on how the H0 tension is impacted by our
analyses, we show in Figure 10 the H0 values with their
corresponding 1σ uncertainties obtained in all of the
cases studied in this work. These values can be compared
to the reference measurements from SNe Ia (H0=
74.03 ± 1.42 km s−1 Mpc−1) and CMB (H0= 67.4 ±
0.5 km s−1 Mpc−1), shown with vertical dashed gray
lines. Beside each point, we also report the computed z-
score zs with respect to the CMB. This is defined as
zs

H H

H H

0,CMB 0

0,CMB
2

0
2

∣ ∣=
s s

-

+
, where H0,CMB= 67.4, 0.5H ,CMB0s = ,

and H0 and H0s refer to the value and 1σ error obtained
from our fit, respectively. This computation allows us to
compare each of the case results with that obtained from
the CMB. Referring to Figure 10 and to Table 1, we note
that the 1σ errors on H0 strongly decrease when we
consider noncalibrated QSOs combined with SNe Ia,
compared to the cases with calibrated QSOs alone, due to
the significant contribution of SNe Ia. Indeed, the
inclusion of SNe Ia in the cosmological computations
guarantees tighter constraints on the free cosmological
parameters, also removing convergence issues that are
instead present when we do not consider the SNe Ia
sample. In addition, calibrated QSOs alone do not show
any precise hint of the H0 favored value, as the best-fit
values span a very wide range of values, even from

values lower than that of the CMB to values greater than
that of SNe Ia (blue, orange, green, red, and black points).
Conversely, all of the H0 values obtained with noncali-
brated QSOs combined with SNe Ia (purple, brown, pink,
dark blue, and olive points) are compatible within 2σ
with each other, pointing clearly to the region inter-
mediate between that of the CMB and SNe Ia, with a z-
score that increases significantly. Notably, the 1σ
uncertainties on H0 obtained with noncalibrated QSOs
together with SNe Ia are even smaller than 0.5H ,CMB0s = ,
reaching a value of 0.14H0s = in the case with a fixed
correction for evolution with H0, the only free parameter
of the fit. These results, concerning both the H0 value and
its uncertainty, prove the possible strong impact of our
work on the H0 tension. In light of the newest results of
binned analysis of the SNe Ia sample (Dainotti et al.
2021b) and SNe Ia together with BAOs (Dainotti et al.
2022b) showing the existence of an evolution of the H0

parameter with redshift, our results underscore the
significance of studying such a model, as high-redshift
QSOs could be shown more clearly if such an evolution
exists, and as the model could explain the current H0

tension problem.

In conclusion, among all of the data sets and methodologies
investigated in this work, the case with noncalibrated QSOs
combined with SNe Ia and with the correction for the evolution
in redshift of luminosities varying together with the cosmolo-
gical parameters is the one that turned out to be the most
reliable and complete, as expected. Indeed, including the SNe
Ia sample and taking into account this type of redshift evolution
removes convergence issues and results in tighter constraints

Figure 10. Comparison between the values of H0 obtained in all of our analyses. Beside each point, we report both the corresponding data set and methodology used

for the computation and the z-score zs with respect to the H0 value obtained from the CMB, defined as zs
H H

H H

0,CMB 0

0,CMB
2

0
2

∣ ∣=
s s

-

+
, where H0 refers to the value obtained from

our fit. The two vertical dashed gray lines with the corresponding dashed light-gray lines are the reference points of CMB and SNe Ia measurements with their 1σ
uncertainties. The points marked with “⧫” correspond to the cases in which the analyses do not converge for one or more parameters.
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on the fitted parameters in all cosmological models studied,
also allowing us to overcome the circularity problem.
Considering this case, our results are always compatible
with a flat ΛCDM model with ΩM= 0.3 and H0=
70 km s−1 Mpc−1, without any hint of a DE with w≠− 1
nor a nonflat universe. More precisely, we always have
compatibility in 1σ, except for two cases: the flat wCDM and
the nonflat ΛCDM models in which both cosmological
parameters are free to vary, showing a 2σ discrepancy from
ΩM= 0.3 and w=−1, and from ΩM= 0.3 and Ωk= 0,
respectively. We note that our approach has lead to values of
cosmological parameters closer to those obtained with SNe Ia
alone (assuming a flat ΛCDM model) than those presented in
the QSO literature. In addition, this case also allowed us to
investigate how the values of the parameters of the RL relation
are impacted by the assumption of a specific model. About this,
we have strongly proved that these parameters do not show any
dependence on the choice of the cosmological model.

This article shows that, when it comes to cosmological
measurements, one should be extremely careful in assuming
the absence of selection biases and redshift evolution. Indeed, it
is necessary to study their possible presence and behavior, as
corrections for such effects can push the constraint of
cosmological parameters further. Future analyses should
investigate those biases also for other probes, such as SNe Ia.
We showed that QSOs alone can be used as standalone probes
without any cut in redshift or calibration, once the correction
for the evolution is accounted for. Indeed, for the first time in
the literature for such a sample, we have obtained closed
contours in 2σ for the computation of ΩM. In the end, this work
could represent a leap forward in shedding light on the H0

tension and investigating if the current tension could be
ascribed to an evolution of H0 with redshift or to a constant H0

value that stands between that of SNe Ia and CMB.
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