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N a n o ro d -T iO 2 e le c tro d e s  w e r e  ob ta in ed  b y  a  h yd ro th e rm a l m e th o d  in  th e  p resen ce  o f  d if fe r e n t  con cen tra tion s  o f  

sod iu m  ch lo r id e . T h e  a d d it io n  o f  N aC l d u rin g  th e  syn thesis  p ro m o ted  th e  fo rm a tio n  o f  th inner, w e ll-c ry s ta ll iz e d  

n an orods  g r o w in g  a lo n g  th e  [0 0 1 ] c ry s ta llo g ra p h ic  d ire c tion , w h ile  s till, th e  m os t in ten se  re f le c t io n  is re la ted  to  

(1 0 1 ).  T h e  op t im a l e le c tro d e  d em on s tra ted  a p p lie d  b ias p h o to n  to  cu rren t e f f ic ie n c y  (A B P E ) o f  0 .2 4 %  in  so la r 

s ea w a te r  sp litt in g , w h ic h  is a m o n g  th e  h igh es t rep o rted  e ffic ie n c ie s  fo r  th e  p r is tin e  T iO 2 n anorods. N o te w o r th y , 

th e  A B P E  o f  th e  ob ta in ed  e le c tro d e s  s ta yed  in ta c t d u rin g  v a r ia t io n  o f  th e  so la r  ir ra d ia t io n  in  th e  ran ge  o f  0 .2 -1  

Sun. It  w as  a lso  d em on s tra ted  th a t th e  e f f ic ie n c y  o f  n a n o ro d -T iO 2 e le c trod es  is h ig h e r  fo r  s e a w a te r  sp litt in g  (0 .5  

M  N a C l)  than  fo r  w a te r  p h o to e le c tro ly s is  in  th e  p resen ce  o f  0 .5  M  N a 2 SO4 . T h is  p h en o m en o n  is th e  resu lt o f  

c h lo r id e  e v o lu t io n  re a c t io n  tak in g  p la c e  in  a d d it io n  to  w a te r  o x id a tio n . A  g rad u a l d ec rea se  in  e f f ic ie n c y  resu ltin g  

fro m  th e  lo w  m o b il i t y  o f  h o les  w a s  o b s e rv ed  fo r  a ll e le c trod es . T h is  con c lu s ion  w a s  c o n firm e d  b y  exp er im en ts  

w ith  a  h o le -s ca v en ge r  ( im p ro v e d  p e r fo rm a n ce  o f  th e  c e l l ) ,  as w e l l  as su rface  p h o to v o lta g e  m easu rem en ts  and 

e le c tro ch em ica l im p ed a n ce  spec troscopy .

1. Introduction

G lobal energy consum ption is constantly g row in g  and is pred icted to 

increase by  50%  betw een  2010 and 2050 [ 1,2 ]. In this context, green 

energy is one o f  the key elem ents o f  sustainable deve lopm en t [3,4 ] and 

is an im portant means to ach ieve the ob jectives o f  the 2015 Paris 

A greem ent [ 5 ]. Solar, w ind , and nuclear pow er plants are am ong the 

possible clean energy sources w ith  lo w  CO2 emissions [6 -8 ]. The recent 

developm en t o f  ph otovo lta ic cells increased the hope fo r m ore e ffic ien t 

exp lo itation  o f  solar energy [9 -1 2 ]. H ow ever, storing solar energy to 

a llow  its transportation is an equally  im portant task [ 13,14]. Am ong the 

possible technologies, solar w ater splitting enables storing the energy o f  

ligh t in the hydrogen  bond, w h ich  is a clean, transportable, and 

cost-effective energy source [ 15, 16]. W ater splitting is an uphill reac

tion, w h ich  needs 237 kJ to produce 1 m ol o f  hydrogen  [ 17]. T o  p rov ide 

it, solar energy can be used to oxid ize/reduce w ater. H ow ever, using 

freshwater as an electro lyte  fo r w ater splitting is expensive due to  the 

cost o f  the purification process. A t the same tim e, m ore than 96%  o f  the 

ava ilab le w ater is sea/ocean w ater, w h ich  makes it a perfect feed  for 

solar w ater splitting due to its abundance and natural conductivity  [ 18,

19]. In seawater oxidation, the oxygen  evo lu tion  reaction (O ER ) can be 

partia lly  or fu lly  rep laced b y  the ch lorine evo lu tion  reaction (C lER). In 

the early  w ork  o f  Bennett, it w as shown that ClER is the m ain route in 

d irect seawater oxidation, whereas OER exists at current densities be low  

1 m A  cm ~2 or at extrem ely  h igh current densities w here the mass 

transfer prevents the ClER to proceed [20 ]. M oreover, D ionigi et al. 

determ ined the potentia l and pH  ranges in w h ich  ClER is h igh ly  

com petitive  w ith  OER [2 1 ]. The PV-in tegrated electrocata lytic (EC ) 

system, reported by  Hsu et al., showed high solar to  hydrogen  effic iency 

w ith  no trace o f  ch lorine production, w h ile  fo r the catalysts w ith  low er 

activ ity , production o f  Cl2 w as recorded [22 ], corroborating Bennett’ s 

report. In the genuine photoelectrochem ical (PEC) systems reported by 

Rassoolkhani et al., the ClER was detected upon an applied  potentia l o f  

1.6 V  vs. RHE, w h ich  was h igher than the therm odynam ic potentia l 

(1 .42 V  vs. RHE) o f  Cl2/2Cl~ redox couple, facilita ting 80%  o f  oxidation  

processes to proceed as ClER. M oreover, Jadw iszczak et al. [ 23 ]. Re

ported  ch lorine production under low er potentials com pared to the 

therm odynam ic potentia l o f  the Cl2/2Cl~ redox  couple and observed a 

lo w  Faradaic e ffic iency  and stability during their measurements. H ow 

ever, the current density w as h igher than 1 m A  cm ~2, again correlating

*  C orresp on d in g  au thor. F a cu lty  o f  C h em is try , J a g ie llo n ia n  U n iv e rs ity , ul. G ro n o s ta jo w a  2, 3 0 -3 8 7  K ra k ow , P o lan d .

* *  C o rresp on d in g  au thor.

E -m a il addresses: ta y m a z .ta b a r i@ u j.ed u .p l (T .  T a b a r i),  m a c y k @ ch em ia .u j.ed u .p l (W . M a cyk ).

h ttp s ://d o i.o rg/1 0 .1 0 1 6 / j.r in en g .2 0 2 3 .1 0 0 9 2 1

R e c e iv e d  5 O c to b e r  2022 ; R e c e iv e d  in  r e v is ed  fo rm  15  Jan u a ry  2023 ; A c c e p te d  26  Jan u ary  2023  

A v a i la b le  o n lin e  2 F eb ru a ry  2023

2 5 9 0 -1 2 3 0 / ©  2023  T h e  A u th o r (s ).  P u b lish ed  b y  E ls e v ie r  B .V . T h is  is an  o p e n  access a r t ic le  u n d er th e  CC B Y -N C -N D  l ic en se  ( h ttp :/ / c rea tivecom m on s .o rg/ licen ses/b y - 

n c-nd/4 .0/ ).

ELSEVIER

http://www.sciencedirect.com/science/journal/25901230
https://www.sciencedirect.com/journal/results-in-engineering
mailto:taymaz.tabari@uj.edu.pl
mailto:macyk@chemia.uj.edu.pl
https://doi.org/10.1016/j.rineng.2023.100921
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


w ith  Bennett’ s results.

Solar w ater splitting can be rea lized  b y  em p loy ing partic le sem i

conductors. H ow ever, the e ffic iency  o f  such systems is lo w  because o f  

the increased charge recom bination rate [24,25 ]. Interestingly, the 

life tim e o f  the photo induced charge carriers can be enhanced by  using 

structurally designed 1D sem iconductors [2 6 -2 8 ]. As a result o f  aniso

tropic crystal m orphology, they are characterized b y  a directional 

charge transfer, w h ich  facilitates charge separation. In photoanode, for 

exam ple, positive charge carriers travel to the electrode/electro lyte 

interface, w h ile  the negative  charge carriers m igrate to the counter 

electrode. There is a trem endous number o f  reports on rod architecture 

design and engineering w ith  a focus on contro lling the thickness o f  the 

film , w h ich  strongly influences the absorption coeffic ien t and overa ll 

activ ity  o f  the electrodes [2 9 -3 3 ]. A t the same tim e, contro lling the 

length and thickness o f  the rods via  applying the w ell-kn ow n  hydro

therm al synthesis methods, seems to  be a challenging task. This is 

d irectly  related to  the crysta llization  process o f  the rods, in w h ich  the 

rod size is an outcom e o f  a com petition  betw een  nucleation and crystal 

grow th  stages [32,34 ]. I f  nucleation is faster than crystal grow th , the 

d iam eter o f  the rod is thinner, and vice versa [ 35 ]. In the synthesis o f  

m etal ox ide rods, such as T iO 2  and Fe 2 O 3 , the w h o le  process o f  deter

m ining the thickness and length is contro lled  by  pH, tem perature, and 

tim e [29,34 ].

NaC l is an environm en ta lly  ben ign  and cost-effective salt, w h ich  can 

be em p loyed  to  increase the ion ic ity  o f  the solution w ithou t increasing 

the acidity. In other w ords, b y  adding the NaC l to the solution, the 

concentration o f  positive and negative  charges (N a+  and Cl~ ) w il l  be 

increased w ithou t changing the pH. M oreover, NaC l is an active catalyst 

in ox idation  and decoupling processes [36,37 ]. These properties 

encouraged researchers to  use NaC l during the synthesis process. Pre

viously, Liu et al. em p loyed  a series o f  surfactants and salts, including 

NaCl, to synthesize nanorod-TiO 2 , w h ich  w as used in an integrated 

dye-sensitized solar ce ll [ 29 ]. Their find ing shows that in presence o f  a 

concentrated solution o f  NaCl, both  the diam eter and density o f  the rods 

are decreased, resulting in less active nanorod T iO 2 . H ow ever, they w ere  

unable to  define the ro le  o f  NaC l in this matter. Next, Rui et al. showed 

that in the presence o f  NaCl, rutile is the m ajor product o f  the synthesis 

[ 30 ]. H ow ever, they w ere  unable to  contro l the shape and size o f  the 

rods, and instead o f  ach ieving a uniform  film , they synthesized an 

urchin-shaped structure. In those publications, the role o f  NaC l was 

attributed to the increased ion ic  strength o f  the solution.

In this com prehensive study, uniform  film s o f  T iO 2  nanorods w ere  

synthesized w ith  the use o f  NaCl, and their activ ity  in w ater and syn

thetic seawater splitting was tested under d ifferen t intensities o f  the LED 

and sim ulated solar light. W e  show, that the application o f  re la tive ly  

sim ple approaches to the synthesis o f  T iO 2  nanorods and the use o f  

seawater as an electro lyte  can result in photoelectrodes o f  significant 

perform ance, com parable to those observed in the case o f  much m ore 

sophisticated T iO 2 -based heterostructural architectures.

2. M ateria l and  m ethods

2.1. Synthesis o f  T iO 2 nanorods

A  hydrotherm al process w as used fo r the synthesis o f  the nanorod- 

T iO 2  electrodes. T w e lv e  series o f  m aterials w ere  prepared using d ifferent 

concentrations o f  NaC l and calcination temperatures. The contro l sam

ples (w ithou t NaC l) w ere  synthesized in a solution consisting o f  de ion 

ized  w ater (D I w a ter), titanium  isopropoxide (97% , Sigma A ld rich ), and 

concentrated HCl (37% , Sigma A ld r ich ) in a vo lum e ratio o f  12:0.35:12 

ml, respectively , w hereas fo r the other series 1 m l o f  NaC l (pure, Carl 

R oth ) solution (1, 2, and 3 M ) w as add itiona lly  added to the g iven  

m ixture w ith  vo lum e ratios 11:0.35:12 ml. Synthesis solutions w ere  

placed in the Te flon -lined  stainless-steel autoclave and kept at 150 °C for 

12 h. A fter  the process, the samples w ere  thorough ly washed w ith  DI 

w ater to  rem ove any excess NaC l from  the surface. Then, the electrodes

w ere  treated fo r 15 m in in a Diener low-pressure oxygen  plasma 

generator to rem ove organ ic residue le ft on the surface. Next, the e lec

trodes w ere  d iv id ed  into groups and calcined under d ifferen t tem pera

tures: 300, 450, and 600 °C. The heating/cooling rate and annealing 

tim e at the final tem perature w ere  1  °C/m in and 2  h, respectively. 

Evenly coated nanorod-T iO 2  layers covered  a 1 cm 2  area o f  the obtained 

electrodes. T o  keep the text concise, the samples w ere  labeled  as 

NTX _YYY, w here X  stands fo r concentration o f  NaC l during synthesis 

and Y Y Y  is the ca lcination tem perature, e.g., NT1_300 (1 M  NaCl, 

300 °C).

2.2. Structural and physicochemical characterization o f  the electrodes

The structural and physicochem ical properties o f  the prepared 

samples w ere  studied using several techniques. The characterization 

m eth od o logy  related to the X-ray d iffraction  (XR D ), X-ray photoelectron  

spectroscopy (XPS ), surface ph otovo ltage (SPV ), scanning electron  m i

croscope (SE M ) and diffuse reflectance spectroscopy (U V -v is  DRS) was 

sim ilar to our previous w ork  [26 ]. The least-square fit  o f  the selected 

X-ray reflections w as perform ed w ith  W inCSD software [3 8 ]. The 

m orpho logy  in  nanoscale was thorough ly investigated em p loying 

transmission electron  m icroscopy (TE M ) and selected area electron 

d iffraction  (SAED) using Tecnai TF 20 X -T W IN  m icroscope (FEI, H ills

boro , USA; FEG, 200 kV ). Samples fo r TEM  analysis w ere  scraped o f f  the 

synthesized electrodes, dispersed in isopropanol using an ultrasonic 

bath, and transferred onto a copper grid. The bandgap energy o f  the 

m aterials w as estim ated using the m od ified  Tauc plots [39 ]. Raman 

spectra w ere  recorded under a green  laser (532 nm ) em p loy ing a 

Renishaw  InV ia  spectrom eter, w h ich  was equ ipped w ith  a CCD detector 

and a Leica DM LM  con focal m icroscope.

2.3. Photoelectrochem ical characterization o f  the electrodes

Linear sw eep vo ltam m etry  and chronoam perom etry w ith  LED light 

illum ination  w ere  perform ed using M in i Photoelectric Spectrom eter 

(InstytutFotonow y) equ ipped w ith  an LED revo lver  (371, 388, 397, 425, 

and 455 nm, spectra are g iven  in Fig. S10). Experiments w ith  sim ulated 

solar ligh t w ere  conducted using the xenon arc lamp (XBO, 150 W , 

Instytut Fotonowy, spectrum g iven  in Fig. S11) equ ipped w ith  the A M  

1.5G filter  and w ater filter. The absorption o f  the FTO glass substrate 

was taken in to account during setting up the experim ents. M easure

ments w ere  conducted w ith  a three-electrode setup in 0.5 M  NaCl (pure, 

Chempur) and 0.5 M  N a 2 SO4  (> 9 9 % , A lfa  Aesar) using platinum  w ire  and 

A g/A gC l (3 M  KCl, redox. m e) as counter and reference electrodes, 

respectively . The selected samples w ere  add itiona lly  tested in 0.5 M  

NaC l w ith  the addition  o f  5% w t. o f  m ethanol (pure, W archem ) as a hole 

scavenger. The w ork ing electrode was irrad iated from  the backside. 

Before each test, the surface o f  the P t e lectrode was cleaned by  dipping it 

in  concentrated sulfuric acid  for 1  m in and the electro ly te  w as purged 

w ith  A r  for at least 30 min. Herein, accord ing to the w ork  o f  Chen et al., 

the Pt deposition  on the w ork ing  electrode during the w ater splitting 

reaction  can be neglected , since Pt is prone to  redeposition  on the 

cathode and a slight dissolution o f  P t cannot have an im pact on the 

activ ity  o f  the OER photocatalyst [40 ]. A pp lied  potentials w ere 

norm alized accord ing to the reversib le hydrogen  electrode (RH E ) using 

the Nernst equation (Eq. (1 ) ):

Vrhe [mV] =  Vappiied vs. Ag/AgCl +  212 m V +  (59.2 m V x  p H ) (1 )

w here 212 m V is the potentia l o f  A g/A gC l (3 M  KCl) versus standard 

hydrogen  electrode.

Photocurrent density, j ph, was obta ined by  subtracting current den

sity values measured under illum ination and in dark. The electro

chem ica l im pedance spectroscopy (E IS) was conducted under sim ulated 

solar irrad iation (A M  1.5 G ) w ith  a frequency range from  100 kHz to 0.1 

Hz in 0.5 M  N a 2 SO4  (> 9 9 % , Sigma A ldrich ). The frequency response



analysis (F R A ) potentia l scan is perform ed w ith in  the potentia l range o f  

—500 to  1600 m V vs. RHE, w h ile  the frequency w as ranging from  10 kHz 

to 0.1 Hz.

3. Results and  discussion

3.1. Structural and physicochemical analysis

3.1.1. X -ray diffraction

The synthesized nanorod-TiO 2  film s form ed uniform , opaque layers 

on the FTO substrate. The X-ray d iffraction  (XR D ) analysis revea led  all 

obtained samples to contain exclusive ly  rutile phase (space group P 4 2 / 

mnm, a ^  4.59 A , c ^  2.96 A ), and the observed reflections w ere  indexed 

w ith  (10 1 ), (11 1 ), (00 2 ), (30 1 ), and (1 1 2 ) M ille r indices (Fig. 1, Fig. S1). 

A dd itiona l peaks are related to the FTO substrate layer (JCPDS card 

number # 7 7 -4 5 2 ). In general, the (11 0 ) re flection  (the most intensive 

one in the theoretical d iffractogram  fo r ru tile ) w as absent in each XRD 

pattern and the intensities o f  the other peaks strongly d iffe r from  the 

theoretical ones (Fig. 1). Th is is a clear ind ication o f  the preferred 

orientation o f  the g row n  films. It w as proposed previously  that the 

addition  o f  NaC l during the hydrotherm al synthesis influences the 

m orpho logy and grow th  direction  o f  the films, due to the selective 

adsorption o f  ch loride ions onto the (11 0 ) surface [30,41 ]. For N T0 

samples synthesized w ithou t NaC l ( Fig. 1a), the (1 0 1 ) re flection  has the 

highest intensity, ind icating the exposition  o f  the ( 1 0 1 )  plane o f  nano

rods. M oreover, in this series, the crysta llin ity  is im proved  w ith

increasing tem perature. A fter  the addition  o f  1 M  NaCl, the (0 0 2 ) peak 

becam e the m ost intense one (in tensity ratio I ( 1 o1)/I(oo2) =  0.3-0 .5 , 

Tab le  S1, Fig. 1b ). Upon further increase o f  NaC l concentration, the 

intensity ratio I (101)/I(002) again increased (1 .1 -1 .3  and 1.8-3.1 w ith in  

NT2 and N T3 series respectively , Table S1, Fig. 1c and d). This indicates 

the change o f  the m ost exposed crystallograph ic plane from  ( 0 0 2 )  again 

to  (10 1 ) upon increasing NaCl concentration from  1 M  to  3 M. Since this 

m ay orig inate from  an inclination o f  nanorods w ith  respect to  the sub

strate or a d ifferen t crystallograph ic grow th  direction  o f  nanorods, this 

observation  w ill  be ve r ified  w ith  TEM  analysis in the fo llow in g  part. 

Generally, the fu ll w id th  at half-m axim um  (F W H M ) o f  the peaks 

decreased for the h igher NaCl concentration, e.g., from  0 .38-0.42° to 

0 .25 -0 .26° fo r N T0  and NT3 series, respectively  (Tab le S1), w h ich  

suggests enhancem ent in the crysta llin ity  and/or in the grain  size o f  the 

nanorod-T iO 2  layer. M oreover, (1 1 1 ) and (30 1 ) peaks, not observed for 

the NT0_300 sample, appeared fo r NT2_300 and NT3_300, w h ich  proves 

that the presence o f  NaC l facilitates ach ieving higher crysta llin ity  at a 

low er  tem perature. Interestingly, for the film s annealed at 450 °C, the 

FW H M  o f  the (1 0 1 ) and (0 0 2 ) reflections w ere  low er than for samples 

calcined at 300 and 600 °C, w h ich  suggests a h igher degree o f  crystal- 

lin ity  and/or larger diam eter o f  rods in film s calcined at 450 °C.

3.1.2. Raman spectroscopy

The Raman spectra o f  the nanorod-T iO 2  samples ( Fig. 2) w ere  in 

agreem ent w ith  previously reported ones fo r the rutile phase [42 ]. T w o  

first-order Raman peaks observed at 447, and 610 cm ~ 1  can be

Fig. 1. XRD patterns o f the synthesized nanorod-TiO2  samples using different concentrations o f NaCl and different calcination temperatures: 0 M NaCl (a), 1 M NaCl 
(b ), 2 M NaCl (c ), and 3 M NaCl (d).



Fig. 2. Raman spectra o f nanorod-TiO2 prepared in different conditions: 0 M NaCl (a), 1 M NaCl (b), 2 M NaCl (c), and 3 M NaCl (d).

attributed to Eg, and A 1g m odes, respectively. A n  additional peak related 

to the m ultip le phonon scattering (M P ) Raman m ode w as observed at 

240 cm ~ 1  and it originates from  the presence o f  small particles b e lo w  25 

nm [43 ]. M oreover, the B2g m ode (143 cm ~ 1 ) w as observed for the 2 M  

and 3 M  series, as w e ll as fo r the NT0_450 sample. The sloping back

ground observed in spectra o f  samples calcined at 300 ° C m ay result 

from  the low er  crysta llin ity  o f  the nanorods (com pare Fig. 1). Peak 

positions rem ained practica lly  constant (w ith in  1-3  cm ~ 1 ), w ithou t any 

systematic changes (Fig. 2 ). For instance, spectra o f  nanorod-TiO 2  

samples annealed at 600 °C w ere  com pared in Fig. S3.

3.1.3. X -ray photoelectron spectroscopy

The X-ray photoelectron  spectroscopy (XPS ) results o f  the T iO 2  series 

are co llected  in Fig. S4. The XPS core-leve l analysis o f  T i 2p o f  all 

samples revea led  tw o  intense peaks at 459 and 464 eV, characteristic o f  

the rutile phase [4 4 -4 6 ], w h ich  correspond to T i 2p3 / 2  and T i 2p 1 / 2 , 

respectively. The form al ox idation  num ber o f  titanium  is 4 + . Shifts in 

peak positions betw een  samples (< 0 .3  eV ) w ere  b e lo w  the resolution 

lim it o f  the used XPS apparatus. The signal orig inating from  the O 1s 

core leve l, fo r a ll samples, appeared as tw o  peaks, centered at 530 and 

532 eV , w h ich  are attributed to the la ttice oxygen  (T i-O ) and adsorbed 

oxygen  (O -H ), respectively  [44 ]. The ratio betw een  these tw o  peaks 

(It ì-o / Io -h ) was unchanged for samples w ith in  NT1 and NT3 series 

( Figs. S4d and h), w hereas it w as the low est fo r samples calcined at 

450 °C w ith in  N T0  and NT2 series. This suggests the h igher content o f  

the adsorbed oxygen  fo r NT0_450 and NT2_450 samples com pared w ith  

other specimens in the respective series. Generally, samples synthesized 

in the presence o f  NaC l (N T 1 -N T 3 ) showed a h igher ITi - O/IO-H ratio, le . ,

a low er amount o f  the adsorbed oxygen , than respective specimens 

obta ined w ithou t NaC l (N T 0  series). O 1s core leve l analysis o f  the NT2 

series show ed an increased content o f  adsorbed oxygen  com pared to the 

la ttice oxygen . In both NT1 and NT2 series, the content o f  la ttice oxygen  

is s ign ificantly  larger com pared to the adsorbed oxygen . N otab ly, the 

ratio  o f  the T i-O / O -H  in  the NT3 series w as sm aller than in the NT1 

series. It seems that at h igher NaC l concentrations (2 and 3 M ) the 

content o f  surface O -H  groups increased.

3.2. M orphology analysis

The scanning electron  m icroscopy (SEM ) top -v iew  im ages are shown 

in  Fig. 3 and Fig. S6 . The NT0_300 sample show ed w e ll-g row n  and 

uniform  rods w ith  sharp ends, w h ile  NT0_450 consists o f  uniform  thick 

rods w ith  fla tter ends. NT0_600 im itated a sim ilar m orpho logy to 

NT0_300 w ith  sharp ends. The flat-ended rods in the NT0_450 sample 

a long w ith  its thicker architecture po in t to the grow th  o f  d ifferent 

crystallograph ic planes com pared to NT0_300 and NT0_600 architec

tures, w h ich  supports the conclusions from  the XRD analysis. M oreover, 

NT1_300 revea led  a sim ilar m orpho logy w ith  thinner rod architecture 

com pared to the N T0 series. The NT1_450 sample show ed a low er uni

fo rm ity  o f  rods com pared to NT1_300 and w as constructed from  

considerably thinner rods (m ajo r structure) grow n  am ong thicker rods 

(m inor structure). Such m orpho logy  generates several inter-rod con

nections that can have an im pact on charge transportation and thus, its 

co llection  and recom bination. NT1_600 ind icated uniform , thin, and 

w ell-g row n  rod architecture, w h ich  is m orpho log ica lly  resem bling 

NT1_300, be ing s ligh tly  thinner than that o f  NT1_300. A ll rods o f  the



Fig. 3. T h e  SEM  m ic ro g ra p h s  o f  th e  n a n o ro d -T iO 2 sam ples, s yn th es ized  u n d er  d if fe re n t  con d ition s .

NT1 series are sharp-ended. NT2_300 demonstrated two different rod 
structures, in which some o f  the rods align horizontally on the vertically 
grown ones. NT2_450 shows flat-ended thick rod architecture, which has 
a more uniform structure with an insignificant number o f rods grown 
horizontally compared to NT2_300. In addition, NT2_600 was charac
terized by uniform, well-constructed rods with sharper ends compared 
to NT2_300 and NT2_450. However, in general, the NT2 series demon
strated a more round-ended rod structure compared to NT0 and NT1

series. Furthermore, NT3_300 showed less sharp-ended, uniform rods. 
While NT3_450 clearly demonstrates two different types o f rods, in 
which thin rods (as minor features) grow among the vertically aligned 
thick rods (major features). NT3_600 shows thin rods grown among the 
thicker rods. However, in general, the thickness o f the rods in NT3_600 is 
increased compared to NT3_450. Also, in NT3_600, the smaller rods are 
stand-alone vertically, while in NT3_450, the thinner rods are laying on 
the thicker ones.



The cross-sections o f  the obta ined electrodes are depicted in Fig. S7. 

The synthesized nanorod-T iO 2  form ed uniform  and dense layers w ith  

thicknesses ranging from  0.7 to 2.7 pm. In general, the addition  o f  NaC l 

during the synthesis resulted in the increased layer thickness fo r each 

calcination tem perature -  the weakest relation w as observed fo r samples 

annealed at 600 °C. For the N T0  series obta ined w ithou t NaCl, the 

thickness o f  the layer increased along w ith  the calcination tem perature, 

w hereas fo r the NT1 series (1 M  NaC l during synthesis) the trend is 

reversed. For NT2 and NT3 series, the thickest film s w ere  obta ined for 

NT2_450 and NT3_450 samples.

Synthesis w ith  the addition  o f  1 M  NaC l leads to a decrease in the 

thickness o f  the rods. In other w ords, 1 M  NaC l enhances the seeding 

process, dw ind ling the grow th  rate o f  the crystals. Th is phenom enon was 

reported by  Sofyan et al., in w h ich  the presence o f  NaC l decreases the 

size o f  the particles due to a sign ificant increase in the nucleation rate 

[ 47 ]. The grow th  rate w as a ffected  by  the ca lcination tem perature as 

w ell. For instance, the synthesis o f  the NT1 series at 450 ° C resulted in 

rods w ith  tw o  d ifferen t features, w hereas at 300 and 600 °C a uniform  

rod m orpho logy w as observed. Com pared to the NT1 series, the NT2 

series (2  M  N aC l) dem onstrated thicker rods revea ling  proper conditions 

o f  crystal growth. Analysis o f  the m orpho logy o f  the N T0  to NT3 series 

revea led  that the presence o f  NaC l during the synthesis process affects 

the diam eter and shapes o f  the rods, w h ich  can be associated w ith  the 

nucleation reported b y  Sofyan. The energy-d ispersive X-ray spectros

copy (EDS) o f  the rods ind icated the presence o f  titanium  and oxygen , as 

w e ll as additional signals from  FTO glass. N o  traces o f  sodium w ere  

found in the synthesized samples (see Fig. S6 ).

M ore details on the m orpho logy  o f  grow n  nanorods in the selected 

samples (NT0_600, NT1_450, NT2_450, NT3_450) w ere  prov ided  by 

TE M  analysis. T h e  SAED patterns co llected  from  the group o f  nanorods 

in a ll samples con firm ed the crysta llization  o f  the rutile po lym orph 

(Fig. S8 , right panels), in agreem ent w ith  XRD analysis. Nanorods w ith  

m ain ly conica l geom etry  w ere  observed fo r NT0_600 and NT2_450 

(Fig. 4, Fig. S8 ), w h ile  m ore flat-ended rods w ere  found in NT1_450 and 

NT3_450. Interestingly, the NT0_600 electrode show ed dense single 

rods, w hereas som e NT1_450 nanorods (r igh t panel in Fig. 4) w ere  

constructed from  several single crystal rods (5 -1 5  nm in diam eter), 

g row in g  coheren tly  in the same orientation. Th is e ffe c t is even  m ore 

pronounced fo r NT2_450 and NT3_450, w here boundaries betw een  thin 

rods are easily recogn izable (Fig. 4 ), sim ilar to the rods reported pre

v iously  [32,4 8 -5 0 ]. Form ation o f  such aggregates, characterized by 

larger specific surface areas than single thicker rods, m ay enhance the 

adsorption o f  reactants, w h ich  can prom ote h igher photo

electrochem ica l a ctiv ity  [ 33,48,49 ]. Nanorods g rew  along [00 1 ] crys

tallograph ic d irection  (d (001) =  0.296 nm ) fo r a ll samples, w h ile  the most 

exposed planes changed from  (11 0 ) and (1 0 1 ) (w ith  d(110) =  0.325 nm 

and d (1 0 1 ) =  0.249 nm ) fo r NT0_600 and NT1_450 to alm ost exclusively 

(11 0 ) plane fo r NT2_450 and NT3_450 (exposed (1 1 1 ) plane w as also 

found on the tip  o f  some nanorod in NT3_450). A dd itiona lly , m ore de

fects, e.g., fo lded  surface, disordered atom  lines, or small d isordered 

domains, w ere  observed fo r nanorods from  NT0_600 and NT1_450 

samples. A ll these observations ind icate that the addition  o f  NaC l favors 

the grow th  o f  thinner T iO 2  nanorods (considering diam eters o f  thin 

single nanorods, not their aggregates) w ith  h igher crysta llin ity  and w ith  

the exposed (11 0 ) crystallograph ic plane. These results correlate w ith  

the previous studies [ 51 -5 3 ], as w e ll as w ith  the fact that the (11 0 ) plane 

has the low est surface energy am ong other low est index planes such as 

(10 1 ) [ 54 ]. The length o f  nanorods could not be correctly  determ ined 

from  TE M  analysis due to the sam ple preparation procedure (scraping 

o f f  nanorod-TiO 2  la yer) that resulted in the breaking/shortening o f  long 

nanorods/aggregates. Nevertheless, the longest rods w ere  observed for 

the NT3_450 sample, sim ilar to the conclusions from  SEM analysis.

3.3. Bandgap analysis -  diffuse reflectance spectroscopy

The U V-Vis-DRS spectra are p lo tted  using the Kubelka-Munk

Fig. 4. HR-TEM images o f the NT0_600, NT1_450, NT2_450, and NT3_450 
electrodes. Inset graphs present a fast Fourier transform (FFT) analysis o f the 
given images, with indexed reflections (red) and zone axis (white). FFT was 
calculated either for highlighted yellow areas or from the whole image ( i f  no 
yellow  square was shown). (For interpretation o f the references to colour in this 
figure legend, the reader is referred to the Web version o f this article.)

function (Fig. S9). A ccord ing to Fig. S9a, the absorption edge o f  all 

electrodes o f  the N T0  series is p laced around 405 nm. T h e m aximum  

ligh t absorption coeffic ien t in the N T0  series rem ained com parable for 

NT0_450 and NT0_600, w hereas NT0_300 show ed the sm aller one, like ly  

due to a low er crysta llin ity  o f  this sam ple (com pare Fig. 1 and Fig. S1a). 

The absorption edge o f  the electrodes in  the NT1 series ( Fig. S9b) was 

s ligh tly  sh ifted to the longer w avelengths starting from  410 nm, 

com pared w ith  the N T0  series. The NT1_300 sam ple show ed the smallest 

absorption coeffic ien t, w h ile  NT1_450 and NT1_600 electrodes w ere 

characterized by com parable values. Both the NT2 (Fig. S9c) and NT3 

( Fig. S9d) series exh ib ited  sim ilar positions o f  the absorption edge



located at 410 nm. In general, the absorption coeffic ien t w as the highest 

fo r the NT2 series. T h e bandgap energies o f  the samples w ere  estim ated 

using Tauc plots, and the values are co llected  in Table S2. The bandgap 

energies fo r a ll the samples are around 3 eV , w ith  the lim iting  values for 

N T0  (3 .04 eV ) and NT2 (2 .99  eV ) series. The results revea l that the 

synthesized nanorod-TiO 2 electrodes absorb ligh t in the U V  region.

3.4. Photoelectrochem ical analysis

3.4.1. PEC analysis under LED light

The photoelectrochem ical (PEC ) activ ity  o f  the prepared electrodes 

was tested by  linear sw eep vo ltam m etry  (LSV ) measurements in 0.5 M  

NaCl under the illum ination o f  LED ligh t ranging w ith in  371-455 nm. 

The j - V  curves are shown in Fig. 5a and S15. Since the observed activ ity  

trends in each series w ere  analogous fo r a ll studied w avelengths (see 

Fig. 5c ), the discussion in the m ain text is focused on the measurements 

w ith  the LED o f  371 nm -  at these conditions, nanorod-TiO 2  electrodes 

showed the highest PEC activ ity. The photocurrent density j  at 1230 m V 

vs. RHE ranges from  2.2 m A  cm ~2 for the NT1_300 electrode to  14.4 m A  

cm ~2 fo r the NT3_450 sample. A  gradual increase in  photocurrent was 

observed along w ith  the increase o f  the ca lcination tem perature w ith in  

the N T0  series w ith  the highest j  =  6.1 m A  cm ~2 fo r the NT0_600 sample 

(Fig. 5 and Fig. S15). Th is behavior can be related to the increased 

crysta llin ity  o f  the nanorods synthesized at h igher temperatures. Inter

estingly, this trend w as changed fo r samples synthesized in the presence 

o f  NaC l -  the highest photocurrents w ere  observed fo r samples annealed 

at 450 °C, whereas the calcination at 600 °C dw ind led  the perform ance 

o f  the electrode. Th is e ffec t seems to be related to the fact that ca lci

nation at 450 ° C prom oted  the form ation  o f  th icker nanorod-TiO 2 layers

com pared w ith  annealing at 600 °C ( Fig. S7). Independent o f  calcination 

tem perature, photocurrent density increased along w ith  the rising NaCl 

concentration used during the synthesis. A ccord ing ly , the NT3 e lec

trodes exh ib ited  a 2 -3 .4  times h igher photocurrent density com pared to 

the respective N T0  samples. These results show  the benefic ia l ro le  o f  

NaC l in enhancing the PEC activ ity  o f  the electrodes, even  those calcined 

at low er temperatures. The onset potentia l Vonset fo r the obta ined e lec

trodes w as in the range o f  400-550  m V  vs. RHE, except fo r the NT0_300 

sam ple that show ed Vonset <  400 mV. The potentia l o f  current saturation 

was around 700 and 800 m V fo r the NT0_300 and NT1_300 samples, 

respectively , w hereas the saturation w as not reached even  at 1600 m V 

fo r the other electrodes. T h e  inciden t photon to current effic iency 

(IPC E ), d erived  from  photocurrent values, is presented in Fig. 5b and 

Fig. S16. The low est IPCE o f  9 and 13%  w as observed fo r NT1_300 and 

NT0_300 samples, respectively , w h ile  the h ighest activ ity, am ong all 

synthesized samples, w as recorded fo r NT3_450 w ith  IPCE =  57%  at 

1230 m V vs. RHE. The IPCE values at the constant potentia l o f  1000 m V 

vs. RHE w ere  com pared in Fig. 5c. The values increased rap id ly  for 

w avelen gth  <4 2 5  nm ( Fig. 5c ), w h ich  corresponds w e ll to the absorp

tion  edge at 410 nm derived  from  DRS measurements. Since photocur

rent density itse lf does not p rov ide un ivocal in form ation  on the 

perform ance o f  the electrode, the applied  bias photon to  current e ffi

c iency (ABPE ), as the m ain param eter to characterize the activ ity  o f  

photoelectrodes, w as calcu lated accord ing to Eq. (2 ) (Fig. 5d and 

Fig. S17):

(2 )

w here j  is the photocurrent density (m A-cm  ), 1.23 V  is the potentia l o f

F ig .  5 . P a ram eters  d e r iv e d  fr o m  lin e a r  sw eep  v o lta m m e try  m easu rem en ts  (LSV , scan  ra te : 10  m V  s 1)  in  0 .5  M  N a C l u n d er constan t i l lu m in a t io n  w ith  LED  ligh t: 

p h o to cu rren t d en s ity  fo r  371 n m  (a ) ,  in c id en t p h o to n  to  cu rren t e f f ic ie n c y  (IP C E ) fo r  371 n m  (b ) ,  IPC E  a t 1000  m V  vs. R H E  (c ) .  A p p lie d  b ias p h o to n  to  cu rren t 

e f f ic ie n c y  (A B P E ) fo r  371 n m  (d ) .  B o ld  v e r t ic a l lin es  in  (a )  and  (b )  a re  c en te red  a t 1 2 3 0  m V .

, N \j\x (1.23V -  VappUtń) 
ABPE(%o) =  -  i - ------



w ater oxidation, Vapplied (V ) is the potentia l versus RHE app lied  to the 

w ork ing electrode, and P  (m W -cm ~2) is the pow er density o f  the light. 

The electrodes dem onstrated their highest ABPE values in the range o f  

800-900  m V  (< 7 0 0  m V fo r NT0_300 and NT1_300 sam ples), in w h ich  

NT3_450 reaches ABPE =  3 .15%  upon irrad iation  w ith  371 nm LED 

light. Based on these values, w e  have selected these potentials fo r further 

experim ents w ith  the solar simulator.

In paralle l to the experim ents in 0.5 M  NaCl discussed above, LSV 

measurements under LED ligh t w ere  conducted in  0.5 M  N a 2 SO4  

(Figs. S12-S14). In general, the measured photocurrent densities w ere  

low er than those determ ined in 0.5 M  NaCl. The b iggest d ifferences 

under the illum ination o f  371 nm ligh t w ere  observed fo r NT0_300 and 

NT1_300 samples, w ith  five- (0 .7 m A  cm ~2) and four-tim es (0.5 m A  

cm ~2) low er j  at 1230 m V vs. RHE in 0.5 M  N a 2 SO4. For other electrodes, 

photocurrent densities d iffer by  m axim ally  30%  w ith  the h ighest value 

o f  11 m A  cm ~ 2  at 1230 m V measured fo r the NT3_450 sample. Conse

quently, IPCE =  43%  at 1230 m V  and ABPE =  1.8%  at 960 m V fo r the 

371 nm ligh t w ere  determ ined fo r NT3_450, w h ich  are 14%  and 1.35% 

low er than in 0.5 M  NaCl, respectively . These results suggest that the 

photoelectrochem ical activ ity  o f  nanorod-TiO 2  electrodes w ith  low er 

crystallin ity, as the one synthesized in the N T0  series and NT1_300 

sample, is m ore sensitive to the type o f  e lectro lyte  used fo r water- 

splitting reactions. Interestingly, fo r the m ajority  o f  samples, the onset 

potentia l was s ligh tly  h igher (b y  50 -100  m V ) and the slope o f  the j -V  

curves w as less steep at low er potentials w hen  measured in 0.5 M  

Na 2 SO4. Th is m ay be the consequence o f  a d ifferen t mechanism  o f  

ox idation  reaction at the e lectrode-electro lyte interface. M oreover, the 

application o f  the NaCl electro lyte  (op tion a lly  seaw ater) opens the 

possib ility to ox id ize  not on ly  w ater but also ch loride ions [ 55]. A lso, the 

im proved  e ffic iency  o f  photoelectrochem ical reaction in presence o f  

NaC l m ay be a consequence o f  the low er activation  energy o f  ch loride 

ox idation  com pared to w ater oxidation, and thus m ore e ffic ien t kinetics 

o f  this process. The faster kinetics o f  Cl~ ox idation  (ow in g  to the 2e- 

process) com pared to w ater ox idation  (4 e-  process) w as a lready re

ported b y  Dresp et al. [ 55]. In general, in N a 2 SO4, the e ffic ien cy  o f  

nanorods is low er than in NaC l electrolytes, h ow ever, the trend o f  

increasing e ffic iency  is sim ilar. Th is phenom enon suggests that the 

increased photocurrent in seawater b y  30%  (vide supra)  can be attrib

uted to ClER.

3.4.2. PEC analysis under solar simulated light (A M  1.5G f il te r )

Th e  LSV measurements w ere  also conducted under solar sim ulated 

ligh t w ith  A M  1.5G filter fo r the four top-perform ing electrodes (w ith  the 

highest observed photocurrents) from  each series: NT0_600, NT1_450, 

NT2_450, and NT3_450 ( Fig. 6 a). The highest photocurrent densities in 

the potentia l range 400-1600  m V  vs. RHE w ere  registered fo r the

NT3_450 (0 .9  m A  cm ~ 2  at 1585 m V ) and NT2_450 (0.8 m A  cm ~ 2  at 

1575 m V ) electrodes, w h ich  are m ore than 2 times h igher than those o f  

NT1_450 and NT0_600. Consequently, the NT3_450 sam ple dem on

strated the highest ABPE va lue o f  0 .24%  at 782 m V ( Fig. 6 b ), w h ich  

belongs to the h ighest values reported fo r pristine T iO 2  nanorods. A  

com parison o f  ABPE effic iency  w ith  electrodes reported in the literature 

is g iven  in Tab le S3. For instance, the ABPE values reported recently 

ranged from  0.04%  [ 56,57] and 0 .1%  [ 58 ] to  0 .22%  [27,59 ]. The per

form ance o f  the best electrodes reported in this w ork  is also h igher than 

that o f  T iO 2  nanorods decorated w ith  co-catalysts (e.g., T iO 2 @ W , and 

T iO 2 @ S n ) [ 58], and sim ilar to the activ ity  o f  the T iO 2 @ P -C 3 N 4  heter

o junction architecture [ 56,57 ].

T o  v e r ify  the consistency betw een  experim ents w ith  LED ligh t and 

solar simulator, the ABPE obta ined under solar sim ulated irrad iation 

was re-calculated using the irradiance o f  the UV reg ion  on ly  (E  >  2.99 

eV , J, <  415 nm; Fig. S19a). The obta ined ABPEmax o f  3 .7%  and 2.9%  for 

the NT3_450 and NT2_450, respectively , are som ew hat h igher than the 

values o f  3 .15%  and 2 .5%  determ ined for these samples under 371 nm 

LED ligh t (the low est w avelen gth  ava ilab le w ith  the experim ental 

setup). This result suggests that ABPE at J <  371 nm is even  h igher than 

the one at 371 nm.

T h e  possible relationship betw een  ligh t intensity and the activ ity  o f  

the nanorod-TiO 2  electrodes w as ve r ified  by perform ing LSV scans w ith  

the ligh t pow er ranging from  0.2 to  1.0 Sun fo r the NT3_450 sample. The 

photocurrent increased m onotonously w ith  the ligh t pow er ( Fig. 7a), 

whereas ABPE e ffic iency  stayed constant w ith in  the experim ental ac

curacy (Fig. 7b ). Such observation  excludes any in fluence o f  ligh t pow er 

on  the PEC activ ity  w ith in  the tested ligh t pow er range.

3.4.3. Stability o f  electrodes under solar simulated light (A M  1.5G f ilte r )

T h e  PEC stab ility  o f  the electrodes in seawater ox idation  was also 

studied during 16-20  h o f  1 Sun irrad iation  (4  h irrad iation  periods w ith  

5 m in dark intervals in be tw een ) at the applied  potentia l o f  m aximum  

ABPE (7 8 4 -8 1 0  m V vs. RHE). A fter  this period, gas bubbles w ere 

rem oved  from  the sam ple cavity  in the test cell, the electro ly te  was 

m ixed  using a m agnetic stirrer, and pH  w as controlled. Then , a short 

second scan (5  m in illum ination ) w as perform ed (Fig. 8 a -d ). A ll samples 

show ed a gradual loss o f  photocurrent density in the range o f  9 -19% , 

a fter excluding the e ffe c t o f  gas bubbles that accum ulated at the sem i

conductor surface.

The first phase o f  irrad iation  (250  m in ), w h ich  is shown in Fig. S20, 

revea led  a 12% photocurrent loss fo r NT3_450. Upon starting irrad ia

tion, a charging spike occurred and w as fo llow ed  by  decay fo r approx. 

25 s fo r NT2_450 and 75 s fo r NT3_450 (Fig. S20a). Then, NT2_450 

show ed an increase in  photocurrent density fo r 9 -1 4  m in, fo llow ed  by  a 

gradual decrease, w h ile  NT3_450 ind icated no increase in the

Fig. 6. PEC measurements under constant and modulated 1 Sun illumination in 0.5 M NaCl: LSV data with the scan rate o f 10 mV s 1 (a), ABPE data (b). The bold 
vertical line in (a ) and is centered at 1230 mV.



Potential vs. RH E/ m V  Potential i/s. RH E/ m V

Fig. 7. PEC measurements for the NT3_450 sample in 0.5 M NaCl under simulated solar illumination o f different irradiance: LSV data with the scan rate o f 10 mV s 1 
(a), ABPE data (b).

photocurrent density in the first phase (Fig. S20a). In the next illu m i

nation intervals, the in itia l decay times increased to 9 0 -15 0  s, and no 

further systematic changes w ere  observed. T h e decay in  the e ffic iency  o f  

the electrodes suggests that the m aterials undergo a photocorrosion 

during the long-term  (hours-long) measurement. N otab ly, no qualitative 

changes w ere  observed in XRD patterns o f  the op tim ized  samples after 

PEC measurements (Fig. S2), i.e., corrosion resulted neither from  the 

crystal structure change o f  nanorods nor the appearance o f  a new  phase. 

Interestingly, a sim ilar photocorrosion phenom enon w as also shown in 

the w ork  o f  Im inashi et al., in w h ich  the decrease o f  the photocurrent in 

a pro longed  reg im e is attributed to the nucleophilic attack o f  H 2O on the 

holes trapped at the surface [60 ]. In addition, Yang et al. show ed that 

photohole-induced corrosion is the key factor in the photocorrosion o f  

T iO 2-nanorod architectures [61 ]. Thus, to  elucidate the photocorrosion 

occurring in this study and to cla rify  the ro le  o f  hole transfer at the 

sem iconductor/electrolyte interface, the measurements em p loying 

m ethanol as a hole scavenger w ere  perform ed (Fig. 8 f )  in a tim e fram e o f  

250 min. In the presence o f  5% w t. o f  m ethanol, the recorded photo

currents w ere  m ore stable, w ith  a m axim um  decrease o f  < 4 %  for 

NT3_450 ( Fig. 8 f), revea ling  an e ffic ien t hole consum ption b y  m ethanol. 

M oreover, in m ethanol, the decay a fter the in itia l spike w as shorter for 

NT2_450 (approx. 8 s) and NT3_450 (4  s), w h ile  a further increase o f  

photocurrent was much longer, from  approx. 20 m in fo r NT3_450 to 4 h 

fo r NT0_600 ( Fig. 8 f  and Fig. S20b). Th is in itia l spike is attributed to the 

charge recom bination, occurring faster than the m ethanol or w ater 

ox idation  at the surface o f  the electrode. A fter  4 s (fo r  NT3_450), the 

charge generation  equ ilibrates w ith  the charge recom bination  and 

m ethanol/w ater oxidation. An  e ffic ien t hole consum ption b y  m ethanol 

and the mechanism  o f  the photocurrent doubling e ffe c t are responsible 

fo r the increase and further stabilization o f  the photocurrent density 

( Fig. 8 f). The ABPE values determ ined w ith  and w ithou t m ethanol are 

close to  each other fo r NT3_450 and d iffe r by  10% fo r NT2_450. The 

ABPEmax recalculated for irradiance from  the range o f  213-415 nm is 

equal to 3.8 and 3 .3%  fo r NT3_450 and NT2_450, respectively , w h ich  are 

sligh tly  h igher values than those measured in 0.5 M  NaC l on ly  ( Fig. S19).

3.5. Mechanism

3.5.1. Surface photovoltage analysis

Fig. 9 presents the transient surface ph otovo ltage o f  the nanorod- 

T iO 2  electrodes. Upon irrad iation  (380  nm ), a ll samples revea led  a drop 

o f  the surface ph otovo ltage (SPV ) signal, w h ich  is related to the accu

m ulation o f  positive charge at the surface and thus, confirm s their n-type 

conductivity. Am ong the NT0_series, the largest drop was observed for 

the NT0_600 sam ple (338 m V vs. 160 m V and 141 m V  for NT0_300 and 

NT0_450, respectively ), w h ich  indicates the most e ffic ien t charge sep

aration. A fter  sw itch ing the ligh t o ff, a m oderate rate o f  relaxation was

observed, poin ting at the presence o f  trapping states at the surface, 

w h ich  increases the life tim e o f  photogenerated charge carriers. These 

observations correspond w ith  the im proved  photoelectrochem ical ac

t iv ity  o f  the NT0_600 sample in this series.

NT1_300 show ed the largest decrease o f  SPV signal (260  m V ) after 

illum ination  w ith in  the NT1 series, fo llow ed  by  a m oderate relaxation o f  

the signal in dark -  NT1_450 and NT1_600 show  a sligh tly  slower 

relaxation  rate com pared to NT1_300. W h ile  the low est SPV signal for 

NT1_450 ( —114 m V ) suggests the low est band bending w ith in  this se

ries, the photocurrent measurements ind icated the NT1_450 and 

NT1_600 samples to  be far m ore active com pared to NT1_300 (Fig. 5a). 

Th is phenom enon suggests the v ic in ity  o f  an e ffic ien t charge process 

separation and suppressed charge process recom bination in  these tw o 

m aterials (NT1_450 and NT1_600).

T h e  electrodes from  the NT2 series show ed a fast evo lu tion  o f  a 

nega tive  SPV signal ranging from  —194 m V to — 221 mV. Interestingly, 

the relaxation  rates a fter sw itch ing the ligh t o f f  w ere  extrem ely  s low  for 

these samples, particu larly fo r NT2_450, w h ich  can be attributed to the 

increased concentration o f  the surface states low erin g  the rate o f  the 

charge recom bination. These results are in line w ith  the photocurrent 

measurements, w h ich  indicated NT2_450 to be s ligh tly  m ore active 

com pared to NT2_300 and NT2_600.

In the NT3 series, the m ost sign ificant negative SPV signal w ith  a 

m oderate declin ing pace w as observed fo r NT3_450 and NT3_600 e lec

trodes ( —287 m V and —280 mV, respectively ), much h igher than —158 

m V  for the NT3_300. T h e  latter, how ever, show ed a slow er decay o f  the 

signal in  the dark. Besides NT0_600, the m agnitude o f  SPV for the 

NT3_450 sample is one o f  the highest observed fo r the synthesized 

nanorod-T iO 2 electrodes. These observations correlate w ith  the photo

current measurements and h igh ligh t the im portance o f  e ffic ien t charge 

separation fo r reaching the h ighest photoelectrochem ical activ ity  in the 

NT3_450 electrode.

As thorough ly discussed in our previous paper [26 ], the SPV signal 

can o ffer  quantitative insight into the type and number o f  accumulated 

charges, as w e ll as the band bending degree upon irradiation. Th e  latter 

is attributed to  the d ifference betw een  the equ ilibrated Ferm i lev e l and 

the conduction band o f  nanorod-TiO 2 [6 2 -6 4 ]. The m ore pronounced 

band bending can be interpreted as the larger number o f  positive 

charges and therefore larger number o f  active sites at the surface o f  the 

electrode. NT3_450 w ith  a s ligh tly  low er band bending degree showed 

tw o  times h igher activ ity  com pared to NT0_600. Th is phenom enon is 

related to the increased charge separation and dim inished charge 

recom bination  due to the specific m orpho logy  o f  NT3_450, w h ich  is 

constructed from  long and thin rods.

3.5.2. M ott-Schottky measurements

T o  con firm  the trend o f  charge separation and relaxation observed in



Fig. 8. C h ro n o a m p e ro m e tr ic  m easu rem en ts  u n der 1 Sun i l lu m in a t io n  (O N  fo r  4  h, O FF fo r  5 m in ) in  0 .5  M  N a C l a t th e  p o ten tia ls  o f  m ax im u m  A B PE  fo r  N T 0 _6 0 0  (a ), 

N T 1 _4 5 0  (b ) ,  N T 2 _4 5 0  (c ) ,  and  N T 3 _4 5 0  (d )  sam ples. F irs t 4  h -segm en t o f  th e  m easu rem en ts  in  0 .5  M  N aC l (e ) .  F irs t 4  h  s egm en t o f  th e  m easu rem en ts  in  0 .5  M  N aC l 

+ 5 % w t .  m e th a n o l as a  h o le  s ca v en ge r  ( f ) .

SPV, the charge separation and in jection  yields w ere  calcu lated ac

cord ing to Dotan et al. [6 5 ]. Considering the hole in jection  y ie ld  o f  the 

op tim ized  electrodes at the potentia l o f  around 800 m V vs. RHE (the 

long-term  chronoam perom etry measurements w ere  conducted at such 

potentia l, Fig. 8 ), the highest (0 .93 ) and the low est (0 .79 ) values w ere  

determ ined fo r NT3_450 and NT0_600 electrodes, respectively  

(Fig. S21a). Surprisingly, NT1_450 ind icated a h igher hole in jection  

y ie ld  (0 .9 ) com pared to  NT2_450 (0 .82 ). The trends o f  charge separation 

y ield , shown in Fig. S21b, corroborate w ith  the tota l a ctiv ity  (A BPE ) o f  

the electrodes. The charge separation y ie ld  is ascribed to  the number o f  

photogenerated charges, w h ich  did not recom bine in the bulk and 

reached the surface, w hereas the in jection  y ie ld  is attributed to the 

number o f  charges, w h ich  are consumed in the reaction w ithou t being 

trapped at the surface. These results are in agreem ent w ith  the SPV

measurements, in w h ich  the relaxation times o f  NT0_600 and NT2_450 

are prolonged, pointing at the presence o f  the trapping states at the 

surface, w h ich  prevents the separated holes from  being consum ed by  the 

electrolyte .

The M ott-Schottky (M —S) measurements fo r the m ost active m ate

rials are presented in Fig. S22. The positive slope ind icated the n-type 

conductivity  o f  the electrodes, i.e., the accum ulation o f  positive charge 

carriers at the surface. The observed frequency dispersion is related to 

the roughness o f  the surface o f  the electrodes, w h ich  w as also reported 

fo r T iO 2 b y  Sivula [66 ]. H ow ever, the roughness should not influence 

the measurements o f  the fla t band potentials [67 ]. Therefore, by  taking 

in to account the UV-DRS and M —S measurements, the band alignments 

can be concluded, as shown in  Fig. 10. The positions o f  the band edges 

are gradually  shifted negatively , w h ile  the potentials o f  the VBM  in all



Fig. 9. Su rface  p h o to v o lta g e  m easu rem en ts  a t r o o m  tem p era tu re , a tm osp h eric  con d ition s , and  u n d er i l lu m in a t io n  w ith  m o n o ch ro m a tic  l ig h t  (3 8 0  n m ).

cases o ffer  appropriate conditions fo r ox idation  o f  w ater. In other words, 

even  though the band gap energy has not been in fluenced by  em p loying 

NaCl during the synthesis, the positions o f  band edges w ere  sh ifted 

systematically.

3.5.3. E lectrochem ical impedance spectroscopy

The electrochem ica l im pedance spectroscopy (EIS) measurements 

under sim ulated solar ligh t and at the OCP (Fig. 11b ) show ed a general 

enhancem ent in the charge transport at the surface o f  the electrodes

com pared to  the dark (Fig. 11a). In the OCP conditions, there is no 

current generated in  the electrochem ica l cells and the enhanced con

du ctiv ity  and im proved  charge transfer under illum ination w ith  the 

sim ulated solar ligh t are d irectly  attributed to the photo-response o f  the 

electrodes. The Nyqu ist p lo t o f  NT3_450, in the dark, show ed a sem i

circ le in the high frequencies, w h ich  continues w ith  W arburg charac

teristics at the m oderate-low  frequencies, ind icating the mass transfer 

betw een  the electrode and electrolyte . The NT1_450 and NT2_450 

samples dem onstrated identical charge transfer characteristics,



F ig .  10 . T h e  ban d  d ia g ra m  o f  th e  m ost a c t iv e  m a ter ia ls : N T 0 _6 0 0  (a ),  N T 1 _4 5 0  

(b ) ,  N T 2 _4 5 0  (c ) ,  and  N T 3 _4 5 0  (d ) .

ind icating the low est charge transfer rate at the interface o f  the e lec

trode/electrolyte. In the dark, NT0_600 ind icated the smallest sem i

circles am ong a ll the electrodes. H ow ever, the most im proved  

conductivity  under irrad iation  w as observed fo r NT2_450, w h ich  also 

showed the most pronounced change in resistance (Z ” ) com pared to  the 

dark. The spectrum o f  NT0_600 consisted o f  three sem icircles: the 

sem icircle at lo w  frequencies attributed to charge transfer at the inter

face o f  e lectrode and electro lyte , and sem icircles at m oderate and high 

frequencies are ascribed to  the diffusion o f  charge carriers in the bulk. 

Th is continues w ith  a W arburg im pedance, w h ich  indicates dep letion  o f  

the number o f  ph otoelectroactive sites at the surface [68 ]. Under irra

diation, the Nyqu ist plots o f  the N T1-NT3 series genera lly  show ed tw o  

sem icircles. The NT1_450 shows the largest sem icircles m atching the 

low est IPCE and ABPE. The NT3_450 is the best-perform ing electrode, 

w h ich  is m atching to the increased conductivity  upon irradiation, in 

paralle l to the most e ffic ien t charge separation (Fig. 9 ).

4. Conclusions

The u tilization  o f  NaC l during straightforw ard hydrotherm al syn

thesis plays an im portant ro le  in the im provem ent o f  photo

electrochem ica l activ ity  o f  pristine rutile nanorod-T iO 2 electrodes. NaC l 

facilitates the form ation  o f  a thicker T iO 2 layer, com posed o f  aggregates 

o f  thinner rods that g row  along the [00 1 ] d irection. It w as found that the 

h ighest activ ity  in seawater splitting can be reached for electrodes 

consisting o f  th icker vertica l rods or aggregates o f  nanorods (m ajor 

structure) w ith  in tergrow n thin horizontal rods (m inor structure). 

A lthough the bandgap energy o f  nanorod-TiO 2 rem ained intact fo r all 

electrodes upon the increasing concentration o f  NaC l during the syn

thesis, the positions o f  band edges (VB and CB) sh ifted gradually  to the 

h igher energies. Studied electrodes revea led  an im provem ent in the 

charge transport at the sem iconductor/electrolyte interface upon illu 

m ination, as deduced from  electrochem ica l im pedance spectroscopy. 

T h e  m ost benefic ia l match o f  structural, m orphologica l, and electron ic 

properties was rea lized  in the NT3_450 sample (3  M  NaCl, ca lcination at 

450 °C ), w h ich  revea led  a pronounced increase (b y  the factor o f  2 ) o f  the 

w ater splitting e ffic iency  com pared w ith  NT0_600 electrode synthesized 

in  the absence o f  NaCl. M oreover, the determ ined ABPE effic iency  o f  

0 .24%  under sim ulated solar irrad iation  is not on ly  higher than the 

h ighest reported values fo r the pristine nanorod-T iO 2 electrodes but is 

also sim ilar to  the one determ ined fo r the T iO 2@ P -C 3N 4 heterojunction. 

Such T iO 2 nanorods obta ined through our robust hydrotherm al pro

cedure constitute a good  starting po in t fo r benefic ia l doping, hetero

junction  design, or other surface m od ifica tion  aim ed to further im prove 

their activity. T h e T iO 2 nanorods show ed a gradual decrease in their 

perform ance in long-term  exposure to solar ligh t in seawater splitting. 

T h e  dim in ished activ ity  is d irectly  related to the in e ffic ien t consum ption

F ig .  11 . EIS m easu rem en ts  w e r e  con d u c ted  in  a  w id e  ra n ge  o f  freq u en c ie s  (0 .0 1 -1 0  H z )  a t th e  O C P  in  d a rk  (m a in  f ig u re s ) and  u n d er ir ra d ia t io n  w ith  s im u la ted  so la r 

l ig h t  (in s e t  f ig u re s ) fo r  N T 0 _6 0 0  (a ) ,  N T 1 _4 5 0  (b ) ,  N T 2 _4 5 0  (c )  and  N T 3 _4 5 0  (d )  sam ples.



o f  photogenerated holes, w h ich  w as resolved by  em p loy ing m ethanol as 

a hole scavenger. Accum ulation o f  holes w as also con firm ed using sur

face ph otovo ltage measurements -  the NT2_450 electrode showed the 

highest loss in  a ctiv ity  (b y  19% ), w h ich  stems from  the presence o f  

trapped holes at the surface. These results point to the sign ificant in

fluence o f  the synthesis m ethod on  the perform ance o f  the electrodes. It 

was also dem onstrated that the properties o f  nanorod-TiO 2  electrodes 

can be u tilized  m ost e ffic ien tly  by  conducting seawater splitting (here 

0.5 M  NaCl so lution ) instead o f  photoelectrolysis o f  the aqueous solution 

o f  N a 2 SO4  -  m ore than 1.5 times h igher ABPE at 371 nm w as observed 

fo r the form er process. Com pared w ith  N a 2 SO4 , the im proved  effic iency 

o f  photons u tilization  in the presence o f  NaC l m ay stem from  the low er 

activation  energy o f  ch loride ox idation  com pared to  w ater oxidation, 

and hence com petition  o f  both  reactions during the PEC process. These 

features o f  the NaC l solution translate into an im proved  generation  o f  

hydrogen  at the cathode.
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