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Abstract—Analysis of    Functional    Magnetic   Resonance 

imaging (fMRI) time series plays a vital role in identifying 

the activation behaviour of neurons in the human brain.  

However, due to the complexity of the fMRI data, its 

analysis is challenging. Some studies show that the 

clustering methods can be beneficial in this respect. We 

apply a   Neutrosophic   Set-Based   Clustering   Algorithm 

(NEBCA) to fMRI time series datasets by this motivation. 

For the experimental purpose, we consider fMRI time series 

related to working memory tasks and resting-state. The 

clusters with different densities for the two analyzed cases 

are determined and compared. The identified differences 

indicate brain regions involved with the processing of the 

short-memory tasks. The corresponding brain areas are 

denoted according to Automated Anatomical Labeling 

(AAL) atlas. The statistical reliability of the findings is 

verified through various statistical tests. The presented 

results demonstrate the utility of the neutrosophic set based 

algorithm in brain neural data analysis.   

 

Index Terms—neutrosophic set, entropy, clustering, 

functional Magnetic Resonance Imaging (fMRI) time series 

 

I. INTRODUCTION 

Many research contributions have been made related to 

the time series analysis of functional Magnetic Resonance 

Imaging (fMRI) in recent years [1]-[4]. In the last decade, 

fuzzy set theory [5] has also been increasingly used in 

fMRI time series analysis [6]-[8] due to its robustness in 

dealing with inherent uncertainties. However, fuzzy set-

based methods [6]-[8] applied to the fMRI data are not 

sufficiently effective to fully determine patterns in 

different brain areas. This indicates that a more robust 

method is needed to deal with the uncertain behaviour of 

fMRI data. Recently, a study by Singh and Rabadiya [9] 

demonstrated the effectiveness of Neutrosophic Set (NS) 

theory [10] over fuzzy set methodology. Based on NS, 

Singh [11] proposes a clustering algorithm called 

Neutrosophic-Entropy Based Clustering Algorithm  

(NEBCA) [11]. They demonstrate the application of 

NEBCA in clustering various Magnetic Resonance 

Imaging (MRI) of Parkinson’s Disease (PD) patients. The 

application of this algorithm has not yet been studied in 
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other domains. So, this motivates us to apply NEBCA to 

the analysis of the fMRI time series. For study purposes, 

we choose fMRI time series related to working memory 

task Global processing task (GLO) and Resting State 

(RES) data. By applying NEBCA, clusters with different 

densities are generated. Finally, these clusters are 

analyzed to identify the differences between GLO and 

RES in terms of their activation patterns of neurons in the 

human brain. 

This article is structured as follows. In Section II, the 

background for NS theory is presented. In Section III, the 

clustering method NEBCA is explained. Description of 

fMRI time series datasets is provided in Section IV. 

Experimental results are presented in Section V. In 

Section VI, Conclusions and future directions are 

illustrated. 

II. BACKGROUND FOR NS THEORY 

This section provides background for NS. 

Definition 1: (NS) [10]. Assume that X is a universe of 

discourse. A NS for x ∈ X can be represented by three 

degrees of membership functions, viz., true (TN), 

indeterministic (IN) and false (FN); where, TN, IN and FN 

for the x ∈ X can be expressed as: TN, IN, FN : X → ]-0, 

1+[, x ≡ x(TN(x), IN(x), FN(x)) ∈ ℕ, and -0 ≤ TN(x) + IN(x) 

+ FN(x) ≤ 3+. 

The three membership functions, namely TN, IN and FN, 

are called neutrosophic membership functions (NMFs). 

Wang et al. [12] defined an instance of the NS as a 

Single Valued Neutrosophic Set (SVNS). When the 

universe of discourse X is discrete and finite, then the 

SVNS can be defined as follows: 

N 1 N 1 N 1 N 2 N 2 N 2

1 2

T (x ),I (x ),F (x ) T (x ),I (x ),F (x )

x x
= + +{ }   

 

N i N i N i

i

T (x ),I (x ),F (x )

ix
i=1

= , x X{ } 
                              (1) 

When the universe of discourse X is continuous and 

infinite, then the SVNS can be defined as follows: 

N i N i N i

i

T (x ),I (x ),F (x )

ixX
, x X{ } 

=                  (2) 

In Eqs. (1) and (2), the horizontal bar denotes a 

delimiter. The numerator in each term represents the 
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membership values in the NS associated with the 

observation of the universe of discourse X indicated in 

the denominator. In Eq. (1), the summation symbol 

indicates the aggregation of each observation; hence, the 

“+” signs denote an aggregation operator. In Eq. (2), the 

integral sign denotes a continuous function-theoretic 

aggregation operator for continuous variables [11]. 

The NMFs can be defined as follows for the SVNS 

[11]: 

Definition 2: (NMFs). For an SVNS ℕ in X, the three 

NMFs TN, IN and FN for x X can be formulated as: 

x-min(X)

N max(X)-min(X)
T (x) =                          (3) 

N NF (x) = 1 T (x)−                           (4) 

2 2

N N NI (x) T (x) +F (x)=                    (5) 

In Eq. (3), “min” and “max” represent the minimum 

and maximum functions, respectively. 

Entropy can be used to quantify the inherent 

uncertainties in any feature. Such measurement of 

uncertainties with respect to NS is called Neutrosophic 

Entropy (NE), which can be defined below. 

Definition 3: (NE) [11]. The NE of an SVNS  at 

x X  is represented as a measure H( ,x),  where 

N N N:{ x,T (x),I (x),F (x) | x X}    which can be defined 

as follows: 

1
N N N 1 2 33

H( ,x)=1 (T (x) I (x) F (x)) E E E− + +       (6) 

here, c

1 N NE | T (x) T (x)|= − , c

2 N NE | I (x) I (x)|= − , and 

c

3 N N E | F (x) F (x)|= − .  

III. DETAILED DESCRIPTION OF NEBCA 

This section introduces the NS theory-based clustering 

algorithm called NEBCA. Each step of the algorithm is 

illustrated in terms of its application in the clustering of 

an fMRI time series dataset. 

Step 1. Input fMRI time series dataset: Select the 

fMRI time series dataset as an input. This dataset can be 

represented in terms of a m n matrix in the following 

way: 

12 1n11

22 2n21

MR

m1 m2 mn

f ff

f ff

f f f

 
 
 =
 
 
 

                   (7) 

here, m n  represents the size of the dataset. 

Step 2. Represent fMRI time series dataset into NS: 

For each 
ij MRf  , its respective NS is denoted as 

ij
, 

and can be expressed in the following matrix form as: 

12 1n11

22 2n21

MR

m1 m2 mn

 
 
 =
 
 
 

                (8) 

In Eq. (8), the three NMFs TN, IN and FN for 
ij ijf   

can be defined as: 
ijf min(U)

N ij max(U) min(U)
T (f ) = 

−

−
                         (9) 

N ij N ijF (f ) = 1 T (f )−                         (10) 

2 2

N N ij N ijI (x) T (f ) +F (f )=                  (11) 

In Eq. (9), U denotes the universe of discourse for the 

respective fMRI time series dataset. 

Step 3. Compute NE for the NS: For each 
ij

, its 

respective NE is denoted as 
ij ijH( ,f ) , and can be 

expressed in the following matrix as: 

, 12 12 1n11 11

22 22 2n 2n21 21

m1 m1 m2 m2 mn mn

H( ,f ) H( ,f )H( f ) 1n
H( ,f ) H( ,f )H( ,f )

MR

H( ,f ) H( ,f ) H( ,f )

 
 
 

=  
 
 
 

    (12) 

In Eq. (12), each 
ij ijH( ,f ) can be defined using Eq. 

(6). 

Step 4. Select number of clusters: Select δ  number 

of clusters as: C=1,2, ,δ . 

Step 5. Select cluster centers: Select set of randomly 

initialized cluster centers as: 

1 2 δC(itr) [C (itr),C (itr), ,C (itr)]=             (13) 

here, “itr” represents the 1st iteration of the algorithm. 

Step 6. Repeat: 

Step 7. Compute the distance: Calculate the 

Euclidean distance 
ij ij jD[H( ,f ),C (itr)]  between NE 

value 
ij ij MRH( ,f )  and the cluster center 

jC (itr) C(itr)  using the formula given below as: 

2

ij ij j ij ij jD[H( ,f ),C (itr)] | H( ,f ) C (itr) |= −      (14) 

If C(itr)  is the closest center to 
ij ijH( ,f ) , then it is 

assigned to the cluster 
jG . 

Step 8. Assign all NE values to cluster centers: 

Assign all 
ij ijH( ,f )  values to the nearest cluster center 

based on the minimum Euclidean distance. 

Step 9. Update the cluster centers: Update the new 

cluster centers with the following formula as: 

S

j ij ij

i=1

1
C (itr 1) H( ,f );( j=1,2, ,δ)

S
+ =           (15) 

In Eq. (15), S represents the size of the cluster 
jG , 

where ij ij jH( ,f ) G  .  

Step 10. Stop the clustering process: Goto Step 6 and 

proceed from iteration itr = 0 to the next iteration itr = itr 

+ 1. This process continues until the cluster centers stop 

changing or the algorithm reaches the maximum number 

of iterations Itr, i.e.; itr 0,1, ,Itr= . 

The pseudocode of NEBCA is summarized in Fig. 1. 

The time complexity of NEBCA depends on the size of 
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the matrix of an fMRI dataset, which is m n . Therefore, 

the total time complexity of NEBCA is O(m n)  for the 

maximum number of iterations Itr. 

 

Algorithm 1: PROCEDURE NEBCA() 

 

Input: An fMRI time series dataset as 
MR

(Eq. (7)). 

1. Represent each 
ij MRf   into NS denoted as 

ij
, and 

store into the matrix 
MR

 (Eq. (8)).  

2. Compute NE of each 
ij
 using NE function denoted 

by 
ij ijH( ,f )  (Eq. (6)), and store into the matrix 

MR
 (Eq. (12)). 

3. Select δ number of clusters as: C=1,2, ,δ . 

4. Select set of randomly initialized cluster centers (Eq. 

(13)) as: 

1 2 δC(itr) [C (itr),C (itr), ,C (itr)]=  

here, “itr” represents the 1st iteration of the algorithm. 

While itr 0= do 

a. Compute the Euclidean distances between NE 

values and the cluster centers using Eq. (14). 

b. Assign all the NE values to their respective 

closest cluster center based on the minimum 

Euclidean distance. 

c. Update each cluster center by employing Eq. (15). 

End 

itr itr 1;= +  

Output: clustered fMRI time series dataset.  

Figure 1. Pseudocode of NEBCA. 

(a) GLO, Encoding, Evening: HDC, MDC and LDC 

 

(b) GLO, Retrieval, Evening: HDC, MDC and LDC 

 

Figure 2. Differences between HDC, MDC and LDC with respect to the 
GLO (one typical participant). 

IV. DESCRIPTION OF DATASETS 

This study uses the datasets discussed in [13]. 

Information about the datasets is given below: 

• Experimental tasks: The data related to two kinds 

of brain activation, i.e. GLO and RES, are 

considered. The 116 Regions of Interest (ROIs) 

are defined according to Automated Anatomical 

Labeling (AAL) brain atlas [14]. 

• Sessions: The sessions involved in the tasks are: (a) 

morning and (b) evening. 

• Signal types: For the activation of signals, 

participants are asked to remember memory sets 

that are followed by simple masks. The response 

signals associated with this process is called 

encoding. Then, participants are asked to respond, 

and the response signals associated with this 

process are referred to as retrieval. 

• fMRI time series from GLO: In GLO, participants 

are presented with a collection of graphics 

characterized by a series of overlapping 

similarities. The experiments’ signals are recorded 

for both the encoding and retrieval phase in the 

morning and evening sessions. fMRI time series 

datasets of 52 participants from the GLO are 

selected for the experimental purpose. 

• fMRI time series from RES: In RES, participants 

are not involved in any activity associated with the 

memorization of sets. The experiments are 

conducted for recording the stimuli in the morning 

and evening sessions. For the study, fMRI time 

series datasets of 48 participants are selected from 

this source. 

V. EXPERIMENTAL RESULTS 

In this section, we present the experimental results 

based on the application of NEBCA on two different 

fMRI time series datasets obtained from the task GLO 

and RES. 

A. Clustering of fMRI Time Series 

NEBCA is applied to the fMRI time series of the GLO 

and RES to perform clustering. Labels are assigned to 

three different clusters obtained from NEBCA based on 

their densities. These three clusters with their labels are 

named as High Density Cluster (HDC), Medium Density 

Cluster (MDC) and Low Density Cluster (LDC). The 

mean values of their respective clustered entropy are 

obtained to distinguish the differences between HDC, 

MDC and LDC. These differences for sample participant 

and GLO task are presented in the form of curves shown 

in Fig. 2(a) and Fig. 2(b). From this Figure, one can 

easily notice that there are differences between HDC, 

MDC and LDC clusters. Moreover, these three clusters 

show the differences between two types of signals: 

encoding and retrieval. This Figure shows that fMRI time 

series belonging to HDC are strongly triggered, followed 

by MDC and LDC. 
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(a) GLO vs RES: HDC, Encoding, Morning (b) GLO vs RES: MDC, Encoding, Morning (c) GLO vs RES: LDC, Encoding, Morning 

   

Figure 3. Comparison of probability distributions of entropies in terms of original clusters and shuffle clusters for the GLO vs RES. 

(a) Difference in HDC (Original): Morning (b) Difference in HDC (Shuffle): Morning 

  
(c) Difference in LDC (Original): Morning (d) Difference in LDC (Shuffle): Morning 

  

Figure 4. Comparison of differences in terms of SD for GLO (Encoding) vs RES and GLO (Retrieval) vs RES with respect to the original 
and shuffled clusters. 

 

B. Distribution Analysis of Entropies 

A comparison of probability distributions of fMRI time 

series between GLO and RES is performed with respect 

to three individual clusters, namely HDC, MDC and LDC. 

To show the algorithm’s reliability, the test with 

randomly shuffled between the clusters time series, 

maintaining the original densities of the clusters, is 

carried out. Thus, three separate sets are prepared from 

the shuffled time series. These shuffled clusters are called 

HDC (Shuffle), MDC (Shuffle) and LDC (Shuffle). 

However, to distinguish the original clusters from the 

shuffled clusters, they are called HDC (Original), MDC 

(Original) and LDC (Original). A comparison of the 

probability distributions of the fMRI time series between 

original clusters and shuffle clusters with respect to the 

GLO and RES is shown in Fig. 3(a)-Fig. 3(c). In Fig. 3(a), 

it can be seen that the distribution of the fMRI time series 

is lower in HDC (Original) compared to HDC (Shuffle) 

in both GLO and RES cases. However, the distributions 

of fMRI time series in MDC (Original) and LDC 

(Original) are high compared to MDC (Shuffle) and LDC 

(Shuffle) in the case of GLO and RES, which is clearly 

shown in Fig. 3(b) and Fig. 3(c). Lower distributions of 

the fMRI time series in the HDC (Original) (Fig. 3(a)) 

indicate that NEBCA is able to perform clustering 

effectively and is able to accommodate the similar 

features of the fMRI time series in HDC (Original). 

C. Difference Analysis between GLO and RES 

This section presents the analysis indicating the 

differences in the fMRI time series of GLO and RES with 

respect to ROI. To show the variability of entropies, their 

Standard Deviations (SDs) are calculated for the HDC 

(Original), MDC (Original) and LDC (Original). Table I 

shows the mean values of all SDs belonging to HDC 

(Original), MDC (Original) and LDC (Original). This 

table shows that both encoding and retrieval phases in 

HDC (original) have low SD values of fMRI time series 

for GLO. Similarly, the fMRI time series of RES in HDC 

(Original) has low SD values for morning and evening 

sessions. The mean values of SD for HDC (Original), 

MDC (Original) and LDC (Original) also show the 

differences in the fMRI time series of GLO and RES. 

To visualize the differences in the fMRI time series 

between GLO and RES, standard deviations (SDs) of the 

entropies with respect to the original clusters’ ROI are 

considered together with the corresponding shuffled 

clusters (Fig. 4(a)-Fig. 4(d)). From Fig. 4(a) and Fig. 4(c), 

it can be easily seen that the fMRI time series of GLO 

and RES show significant differences in HDC (Original) 

and LDC (Original) clusters. Moreover, when comparing 

the curves of HDC (Original) and LDC (Original) (see 

Fig. 4(a) and Fig. 4(c)) with their respective shuffled 

cluster, i.e., HDC (Shuffle) and LDC (Shuffle) (see Fig. 

4(b) and Fig. 4(d)), significant differences are also 
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observed between the fMRI time series of GLO and RES. 

However, in the latter, the volatility of the signals is 

almost the same for HDC and LDC, which confirms the 

reliability of the used methodology. This comparative 

study shows that NEBCA is able to detect the differences 

between the stimulus patterns in GLO and RES in terms 

of sessions and signal types. From Fig. 4 and its 

representation on the brain, i.e., Fig. 5, it is possible to 

identify the brain areas that behave the most different 

between GLO and RES. According to the AAL atlas and 

LDC cluster, these ROIs mostly belongs to the range 45-

70, which corresponds to: sensory motor, visual I and 

visual II regions in the Resting State Network (RSN). 

 

Figure 5. Absolute values of differences between GLO (Encoding, 
Morning) and RES for LDC (Fig. 4 bottom left panel) presented on 

brain heatmap with AAL atlas. Dark blue corresponds to the lowest 
values and dark red to the highest values. 

VI. CONCLUSION AND FUTURE DIRECTIONS 

In this study, we addressed the problem of clustering 

fMRI time series. For this purpose, a clustering algorithm 

based on NS, called NEBCA, was adopted and applied to 

fMRI time series datasets of working memory task (i.e., 

GLO) and resting state (i.e., RES). NEBCA was 

simulated to generate three distinct clusters for the GLO 

and RES, which were designated as HDC, MDC and 

LDC. Finally, these clusters were compared to identify 

the differences between the fMRI time series of GLO and 

RES. The empirical results showed that NEBCA was able 

to detect the differences between them in terms of 

processing GLO and RES. Employing this methodology, 

it was possible to identify the ROIs in which the 

variability of these time series was significant. Finally, 

the visualization of the AAL atlas was used to indicate 

the variability in the brain areas. 

NEBCA was found to be efficient in the analysis of 

fMRI time series datasets. However, in this study, only 

GLO and RES fMRI time series were considered. In the 

future, we will apply the algorithm to other types of the 

fMRI time series and compare its efficiency between 

verbal and non-verbal tasks related to working memory 

research. 
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