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Three-Dimensional Affine Spatial Logics

Adam Trybus

Abstract. We focus on a branch of region-based spatial logics dealing with
affine geometry. The research on this topic is scarce: only a handful of
papers investigate such systems, mostly in the case of the real plane.
Our long-term goal is to analyse certain family of affine logics with inclu-
sion and convexity as primitives interpreted over real spaces of increasing
dimensionality. In this article we show that logics of different dimensional-
ities must have different theories, thus justifying further work on different
dimensions. We then focus on the three-dimensional case, exploring the
expressiveness of this logic and consequently showing that it is possible to
construct formulas describing a three-dimensional coordinate frame. The
final result, making use of the high expressive power of this logic, is that
every region satisfies an affine complete formula, meaning that all regions
satisfying it are affine equivalent.
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1. Introduction

1.1. History and Philosophy

Spatial logic, as the term has been used, can be viewed as built using any
first-order language with geometrical interpretation, where variables range
over geometrical entities and relation and function symbols are interpreted
as geometrical relations and functions. However, in most instances, the name
accompanies region-based, rather that point-based systems, meaning that the
geometrical entities variables range over are not points but some collections of
point. Although the name itself might be an invention of the early twenty-first
century (see [1]), spatial logics have rich and diverse background: after all, the
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notion of space is a staple in philosophy.1 One of the most famous treatments of
space was proposed by Kant, who in Critique of Pure Reason ([10]) argues that
geometry is both synthetic and a priori (using his, now well-known, labels).
Since the argument seem to be hinging on the existence of only one type of
geometry, the development of new, non-Euclidean geometries in the nineteenth
century was considered as a threat to Kantian views. Bertrand Russell, in one
of his earliest publications, tries to defend Kant’s approach (see [15]. Moreover,
the approach of many nineteenth-century geometers was very philosophically
informed. For example, Moritz Pasch — most famous perhaps for figuring out
the gaps in Euclid’s reasoning — viewed geometry as having a decidedly em-
prical basis (see e.g. [12]). As a consquence, his analysis starts not with the
Euclidean but rather with, what now is known as, affine geometry: one, where
the notion of metric is not important. Thus, affine geometry can be viewed as
emphasising qualitative rather than quantitative aspects of geometrical think-
ing. This theme is also important for contemporary researchers working within
the so-called qualitative spatial reasoning field. Logical formalisms that came
from that field are sometimes called spatial logics, and those spatial logics that
apply affine notions are the focus of our article. Although there has been some
interest in such type of logic (see e.g. [3,6] as well as [14,21]), it should be said
that it pales in comparison with the research on topological spatial systems
(see e.g. [1] for a wide selection of topic related to topological formalisms). We
believe that while there are good reasons for topological analysis, philosophical
investigations provide additional justification for extending the work on affine
systems. For example, Bertrand Russell, no doubt influenced by Pasch and
others,2 took up the idea of the importance of non-numerical, qualitative, ge-
ometry and argued extensively for the primacy of projective and affine notions
over the Euclidean ones (see [15,16] and [22] for a discussion). Moreover, while
Alfred N. Whitehead’s complex philosophical ideas influenced the development
of region-based theories of space (see [25]), which are closely related to topol-
ogy and mereology (a theory of part-whole relations, see [17]), he also devoted
his attention to affine and projective geometry in [23] and [24] respecively. Fi-
nally, affine geometry can be said to be an intermediate geometry between the
projective and Euclidean ones. Hence, it retains the status of non-numerical
geometry and at the same time is less general than projective geometry and
topology, thus remaining closer to our every-day experiences.

The region-based affine spatial logics — the focus of our article — are
not the first attempts at logical analysis of this type of geometry. Alfred Tarski
mentions affine geometry in his comparison between the developments in logic
and geometry (see [20], which is a written account of a talk he gave, which in
turn relfects his ideas from before the war). Moreover, together with his student
Les�law Szczerba, Tarski worked on point-based affine spatial logics (see [18]),

1See [5] for an excellent introduction into the intersection of philosophical and formal ap-
proaches to spatial reasoning.
2Notably by M. Pieri and F. Klein. For a more detailed description of their work see: [13]
and [7], respectively.
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which built on Tarski’s earlier work on formalising Euclidean geometry (see
[19] and [8] for a detailed look at Tarski’s involvement in geometry).3

1.2. Constructing a Spatial Logic

If we were to custom-build a spatial logic, the first problem we are going to
face is the choice of underlying geometric space. Many approaches have been
studied, in most of them however either R

n for some n or some more gen-
eral topological space is considered. Having set on the underlying geometric
space, say X, we are faced with another decision. Should the variables range
over elements of X or some subset S ⊆ 2X? In the first case we would be
talking about point-based spatial logics, in the second about region-based spa-
tial logics, which is our focus here. As mentioned above, we place our work
in the qualitative spatial reasoning (QSR) subarea of symbolic AI. The ad-
jective qualitative in this context means that all the primitive relations and
functions are of non-numerical nature. For example, consider a language with
a single relation symbol C understood as the contact relation. Intuitively two
sets are in contact if their boundaries share at least one point. This spatial
logic was investigated under many guises, most notably within the qualitative
spatial reasoning paradigm. We are now faced with the following question:
precisely what sort of regions should we consider? We could obviously decide
to consider all S ⊆ 2X for a given space X. Are there any reasons to con-
sider a special class of regions rather than give them all an equal footing? One
such reason is the admittedly vague notion of well-behavedness. First of all,
to smooth out the reasoning with regions, we would like to weed out as many
“special cases” as possible. Assuming we are working with some topological
space, this can be done by considering only regular subsets of that space as
plausible region-candidates. This gets rid of many a “strange” set e.g. of frac-
tal nature. In the next step we need to decide whether we consider our regions
to contain their boundaries or not. In the first case we end up with regu-
lar closed sets and in the second case with regular open sets. From a formal
point of view, this is not an essential choice. In the remainder we will consider
mainly regular open variants (and everything we say can be applied mutatis
mutandis to the regular closed case). The class of all regular open subsets of
some topological space is already a good choice for the well-behaved regions.4

Apart from what has been mentioned already, by a well-known result the el-
ements of the class of regular open subsets of some topological space form
a Boolean Algebra, that is, operations of sum, product and complement of
regular open sets conform to the laws of Boolean Algebra. We can do better
still. We can look inside this class for some more refined region candidates.
As is customary, we single out two classes: (regular open) polygons and (regu-
lar open) rational polygons (limiting ourselves to rational numbers). The fact
that it is countable, makes the second subclass especially interesting from the
point of view of computer science applications. The choice of geometric space

3The article [9] is a fascinating summary of the influence of geometrical results on the
development of logic.
4This is by no means the final word in the quest for well-behavedness, see [11].
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and either point- or region-based approach dictates the choice of relations and
functions that we are presented with. Within the qualitative spatial reasoning
paradigm, non-numerical predicates on regions are considered, most notably
contact and connectedness. Traditionally, spatial logics over languages con-
taining relation and function symbols interpreted as relations and functions
invariant under certain geometric transformations (topological, Eucidean etc.)
are called accordingly as e.g. Euclidean, topological (spatial) logic. We follow
this convention here. For example, consider an affine spatial logic constructed
in the following manner. Start with a language with two primitive symbols
conv and ≤. Let them denote the following predicates defined on regular open
rational polygonal subsets of R2. The symbol conv(a) is to be understood as
“region a is convex” and the symbol a ≤ b as “region a is a subset of region b”.
It is an affine spatial logic, since convexity is an affine-invariant property. This
spatial logic is in fact one that we are concerned the most within this article.
The last choice made in constructing a spatial logic concerns the syntactical
complexity of the language we want to use. In our case, we work with standard
first-order logic.

1.3. The Focus of this Article

The order of the article is as follows. After some more technical remarks re-
garding region-based theories of space and affine geometry, finally definining
the structures that are important for us. Then, we describe in short the most
important results obtained in [21]. This is done partially to introduce certain
(visual) intuitions that are easier to grasp in the two dimensional case but that
carry over, to some extent, to the three-dimensional case. Next, we describe
some more general results regarding the family of structures that we have de-
fined: namely that they all have different theories. Finally, we fix our attention
on the three-dimensional extension of the two-dimensional logic analysed in
[21]. We prove a number of expressiveness results that are helpful in establish-
ing a result similar to one of the main theorems of [14], regarding the existence
of formulas that are satisfied only by affine-equivalent regions.

2. General Setup

Let Lconv,≤ be a first-order language with two predicates: binary ≤ and unary
conv. We work with an Lconv,≤-structure with variables ranging over the set of
regular open rational polygons of the real plane; ≤ interpreted as the inclusion
relation and conv as a property of being convex. We start with defining a
notion of a regular open set.

Definition 2.1. Let S be a subset of some topological space. We denote the
interior of S by S0 and the closure of S by S−. S is called regular open if
S = (S)−0

.

The following result is standard.
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Proposition 2.2. The set of regular open sets in X forms a Boolean algebra
RO(X) with top and bottom defined by 1 = X and 0 = ∅, and Boolean opera-
tions defined by a · b = a ∩ b, a + b = (a ∪ b)−0 and −a = (X \ a)0.

We restrict our attention to certain well-behaved regular open sets (see
our remarks in the introduction). Let us start with a staple topological space
used in QSR, namely R

2. Note that every line in R
2 divides R

2 into two do-
mains, called half-planes. Open half-planes are regular open sets, hence we
can speak about the sums, products and complements of such half-planes in
RO(R2). By a regular open rational polygon we mean a Boolean combination
in RO(R2) of finitely many half-planes bounded by lines with rational coef-
ficients in R

2. We denote the set of all regular open rational polygons in R
2

by ROQ(R2). Note that ROQ(R2) is a Boolean subalgebra of RO(R2). The
notion of regular open rational polygon can be easily extended to that of a
polytope, when considering dimensions greater than 2. In general, we write
ROQ(Rn), n ∈ N, to denote the set of all regular open rational polytopes of
dimension n (all the mentioned results carry over from the two-dimensional
case).

Definition 2.3. A set S ∈ R
n is called convex if for all λ1, λ2 ∈ R, such that

λ1, λ2 ≥ 0 and λ1 + λ2 = 1 and for all x ∈ S,

λ1x + λ2y ∈ S.

Finally, let us introduce the family of n-dimensional structures we will
be interested in.

Definition 2.4. Let Mn = 〈ROQ(Rn), convM,≤M〉, where

≤M= {〈a, b〉 ∈ ROQ(Rn) × ROQ(Rn) | a ⊆ b};

convM = {a ∈ ROQ(Rn) | a is convex}.

We sometimes refer to Mn as a rational model (of dimension n) and often
drop the associated superscripts and subscripts if it does not lead to confusion.
In our exposition we follow the standard notational conventions. In partic-
ular, if φ is a formula, φ(x1, . . . , xn) means that φ has at most n variables:
x1, . . . , xn. Also, if an n-tuple of regions a1, . . . , an satisfy φ in M, we write
M |= φ[a1, . . . , an]. However, we eschew formal clutter and whenever possible
avoid dissecting the text with lemmas in favour of verbal description of re-
sults (especially the simpler ones) preserving the flow of thought. It should be
noted, however, that all results can be easily converted into a more formalised
description.

We also need a few simple facts regarding affine geometry. The following
generalises the notion of an affine transformation in R

2 to any dimension n.
Recall that an n × n matrix A is invertible if there exists a n × n matrix B
with AB = I, where I is the identity matrix; A is orthogonal if AAT = I,
where AT is the transpose of A.
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Definition 2.5. An (n-dimensional) affine transformation of Rn is a function
τ : Rn → R

n of the form

τ(x) = Ax + b,

where A is an invertible n × n matrix and b ∈ R
n.

Note that affine transformations map straight lines to straight lines, pre-
serve parallelism and ratios of lengths along parallel straight lines.5 Moreover,
it is a standard result that the set of affine transformations forms a group
under the operation of composition of functions. We say that two regions are
affine-equivalent if there is an affine transformation from one region to another
(this notion naturally extends to sequences of regions).

3. Two Dimensions

The papers [6,14] together with [21] deal with various systems related to M2.
The two-dimensional rational model turns out to be very expressive. Firstly
note that the Boolean operations are clearly Lconv,≤-definable (as are 0 and 1;
for details see below, Theorem 4.2). The paper [14] showed that a number of
interesting properties are definable in M2. It is easy to see that we can define
a formula satisfied in the two-dimensional rational model if and only if the
respective region is a half-plane (half-plane is the only region such that both
it and its complement are convex). For the remainder of this paragraph, we
use letters l,m, n etc. (possibly with subscripts) to denote such half-planes but
sometimes we abuse the convention and use the same symbols to denote the
lines bounding the half-planes in question. With that in mind, [14] showed that
there is a formula involving two variables satisfiable in the two-dimensional
rational model if and only if the two regions are half-planes with coincident
bounding lines. Similarly, there is a formula, such that the two regions involved
are half-planes with parallel bounding lines. Note that in affine geometry a
coordinate frame is defined as follows.

Definition 3.1. Let l,m, n be any non-parallel, non-coincident lines with l ∩
m = O, l ∩ n = I and m ∩ n = J. We say that l,m, n form a coordinate frame.

Figure 1 provides some examples of coordinate frames. Since the con-
struction involves all the notions expressible in the two-dimensional model, we
can “talk” about coordinate frames within that spatial logic.

Now, the papers [14] and [21] show, in a sequence of results, that there
exist formulas that allow fixing any rational half-plane with respect to a given
coordinate frame. This is done by further exploring the expressivity of the
model. Note that [6] shows that if two regions are affine-equivalent, then for
certain affine spatial logics these satisfy the same formulas. An analogous theo-
rem, relating the language Lconv,≤ is proved in [14]. Using the fixing formulas,
the converse theorem is shown to hold in the case of M2.

5Hence, the properties of being a straight line, of lines being parallel and of being a ratio of
a certain type are all affine-invariant.
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Figure 1. Example coordinate frames (m is the horizontal
and l the vertical line in (a), the image in (b) can be thought
of as an affine transformation of that of (a))

Theorem 3.2 ([14]). Every n-tuple in M2 satisfies an Lconv,≤-formula φ with
the following property: any two n-tuples satisfying φ are affine-equivalent.

As indicated above, the proof relies on constructing certain formulas that
allow us to “talk” about rational polygons and fixing their bounding lines in
a certain manner, heavily relying on the expressivity results outlined above.
(The paper [21] provides details for this construction.) Moreover, the paper
[21] uses these “fixing” formulas to provide an axiom system for the two-
dimensional model, which is proved to be sound and complete. The axioms
express a number of properties e.g. that there are at least three regions such
that lines bounding them form a coordinate frame or that if a region is a
Boolean combination of half-planes, then it is convex if and only if it is a
product of some of these half-planes. However, for the most part, the axioms



610 A. Trybus Log. Univers.

Figure 2. A very simple example of Helly’s Theorem in R
2

secure certain properties of these fixing formulas. The axiom system is also
equipped with two infinitary rules of inference stating that every half-plane
can be fixed in reference to a given coordinate frame and that every region is
a Boolean combination of some half-planes. Let us finally note that our main
result in the present article closely mimicks that described in Theorem 3.2.

4. Beyond Two Dimensions

What can be known about the rational models of dimensions greater than two?
Even at this stage, one can indeed make some statements about the relations
among such models. Recall the well-known Helly’s theorem.

Theorem 4.1 (Helly). Let A be a finite class of N convex sets in R
n such that

N ≥ n+1 and each n+1-element subclass of A has a non-empty intersection.
Then all N elements of A have a non-empty intersection.

First off, note that for all n, we have the following easy result.

Theorem 4.2. Let Mn be a rational polygonal model. Then, the Boolean opera-
tors: product (·), sum (+) and complement (−) are definable in Mn. Moreover
the top (1) and bottom (0) elements are also definable.

Proof. For simplicity, we shall represent such formulas in their (infix) form as
x · y, x + y and −x and top and bottom as 1 and 0, instead of more correct
but cumbersome standard notation as formulas in our language (which is what
they really are), abusing the symbol of equality to also render situations like
x·y = 0. Now for the definitions of formulas. The following formula is satisfiable
in Mn if and only if the region represented by the variable m is the product of
the regions represented by x and y respectively: (m ≤ x) ∧ (m ≤ y) ∧ ∀w(w ≤
x ∧ w ≤ y → w ≤ m). An analogous formula can be constructed for the sum
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(all easily expressible in our language). The top can be defined as ∀y(y ≤ x)
and the bottom as ∀y(y = x ∨ ¬(y ≤ x)). Moreover, the following formula is
satisfiable in Mn if and only if the region represented by y is the complement
of the region represented by x: y · x = 0 ∧ ∀w(w · x = 0 → w ≤ y). �

Now, consider the following formula φ(x1, . . . , xN ) :=
∧

I⊆2S

∏

i∈I

xi �= 0 ∧
∧

1≤j≤N

conv(xj) →
∏

1≤j≤N

xj �= 0,

where S = {1, . . . , N}.
This formula6 “says” in any n-dimensional model that regions r1, . . . , rN have
non-empty intersection if each rj is convex and for every subset of {r1, . . . , rN},
its elements have a non-empty intersection.

Theorem 4.3. For a given n there exists a set of formulas Φn expressing the
Helly’s theorem in Mn.

To see that this is the case, consider φN := ∀x1 . . . ∀xNφ(x1, . . . , xN ). We
define Φn = {φN |N ≥ n + 1 and |I| = n + 1}.

Recall that the theory of a structure is the set of all sentences valid in
that structure.

Theorem 4.4. The theory of Mn �= Mn+1 for all n.

To see that this is the case, observe that for some φN ∈ Φn we have
Mn |= φN but Mn+1 �|= φN .

Therefore, we can say that these models are indeed different. However, if
one were to extend the axiomatisation results from [21] to dimensions greater
than two — and this is indeed our long-term goal — the models should be
also shown to be similar in some other respect. Namely, the first task would
be to see whether the notion of a coordinate frame can be expressed in such
models in general.

5. Three Dimensions

5.1. Basic Expressivity

First of all, notice that the formula conv(x)∧conv(−x) is satisfiable in M3 only
by regions that are half-spaces. Since the plane bounding such half-spaces is
unique, this also allow us to talk indirectly about such planes. It is convenient
to be able to talk about a number of different half-spaces (planes); hence we
introduce the following abbreviation.

hsn(x1, . . . , xn) :=
∧

1≤i≤n

conv(xi) ∧ conv(−xi) ∧
∧

1≤i≤n,
1≤j≤n,

i�=j

xi �= xj ∧ xi �= −xj

6We use
∏

and
∑

as abbreviations for finite products and sums, respectively. We also use
±a to denote region a or its complement.
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Next, we see that we can talk about parallel planes by means of the following
formula.

hs2(x, y) ∧ ((x · y = 0 ∨ x · −y = 0) ∨ (−x · y = 0 ∨ −x · −y = 0))

This formula “says” in M3 that the two regions are distinct half-spaces (with
distinct bounding planes) and that it is either that the first region has a non-
empty intersection with the other or that its complement has this property.
(Note that the main disjunction in the brackets operates really as an exclusive
“or” when the two half-spaces are different.) Similarly, the following formula
expresses the fact that two planes meet in the single line. Since such lines are
unique, we can also — albeit indirectly — talk about lines in M3.

line(x, y) := hs2(x, y) ∧ ¬((x · y = 0 ∨ x · −y = 0)
∨(−x · y = 0 ∨ −x · −y = 0))

Finally, consider the case when the following is satisfied:

line(y1, y2) ∧ line(y1, y3) ∧ line(y2, y3)

(we thus assume this piece of formalism to be a part of all formulas described
in the remainder of this paragraph). This formula simply says that all the
planes bounding the three half-space have a non-empty intersection with each
other. Consider the following three configurations:

(i) A fan: where all the planes meet in a single line;
(ii) A prism: where two of the planes meet in a line not on the third plane

and meet the third plane in two separate, parallel lines;
(iii) A corner: where two of the planes meet the third plane in two separate,

non-parallel lines and meet each other in a line that passes through the
third plane.

Since in all the above cases, the number of domains into which the entire
space is being partitioned changes (6 domains for a fan, 7 for a prism and 8 for
a corner) and it can be expressed in terms of products of respective half-spaces
or their complements, one can build formulas describing all three cases in M3.
Noting that there are 8 non-empty intersections possible in total, in the case
of a corner, one enforces a non-empty intersection of all the half-spaces by
adding the formula

¬∃x¬∃y¬∃z(((x = y1 ∨ x = −y1) ∧ (y = y2 ∨ y = −y2) ∧ (z = y3 ∨ z = −y3))

∧ (x · y · z = 0))

Directly, and assuming that line(y1, y2) ∧ line(y1, y3) ∧ line(y2, y3) is sat-
isfied, this formula “says” that any three (out of six in total — remember
we alway have a half-space and its complement) half-spaces bounded by some
planes have a non-empty intersection.

Next, in the case of a prism, one simply adds the formula

∃x∃y∃z(((x = y1 ∨ x = −y1) ∧ (y = y2 ∨ y = −y2) ∧ (z = y3 ∨ z = −y3))

∧ (x · y · z = 0))
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forcing the existence of a non-empty intersection. However, when paired with

¬∃x′¬∃y′¬∃z′(((x′ = y1 ∨ x′ = −y1)

∧ (y′ = y2 ∨ y′ = −y2) ∧ (z′ = y3 ∨ z′ = −y3))

∧ (x �= x′ ∨ y �= y′ ∨ z �= z′) ∧ (x′ · y′ · z′ = 0)).

Thus, the end effect is only one empty intersection. Finally, in the case of a
fan, one has to force precisely two non-empty intersections. This is done by
stringing together the following:

∃x∃y∃z(((x = y1 ∨ x = −y1) ∧ (y = y2 ∨ y = −y2) ∧ (z = y3 ∨ z = −y3))

∧ (x · y · z = 0))

and

∃x′∃y′∃z′(((x′ = y1 ∨ x′ = −y1) ∧ (y′ = y2 ∨ y′ = −y2) ∧ (z′ = y3 ∨ z′ = −y3))

∧ (x′ · y′ · z′ = 0))

with the condition that

(x �= x′ ∨ y �= y′ ∨ z �= z′)

together with

¬∃x′′¬∃y′′¬∃z′′

(((x′′ = y1 ∨ x′′ = −y1) ∧ (y′′ = y2 ∨ y′′ = −y2) ∧ (z′′ = y3 ∨ z′′ = −y3))
∧((x �= x′′ ∨ y �= y′′ ∨ z �= z′′) ∨ (x′ �= x′′ ∨ y′ �= y′′ ∨ z′ �= z′′))

∧(x′′ · y′′ · z′′ = 0))

The above are admittedly long-winded but relatively simple and repet-
itive formulas. We hide the details under the self-explanatory abbreviations
fan(x, y, z), prism(x, y, z) and corner(x, y, z).

Having established this, let us note that the case (iii) provides a basis for
a coordinate frame. For the remainder of this section, we focus on fleshing out
one of the ways of defining a coordinate frame in M3. Consider the formula
frame(y1, y2, y3, y′) :=

corner(y1, y2, y3) ∧ line(y1, y′) ∧ line(y2, y′) ∧ line(y3, y′)

It is satisfiable by a tuple of elements a1, a2, a3, a
′ only when these are half-

spaces such that the planes bounding the first three of them form a corner
and the plane bounding the fourth half-space form a prism with each pair of
these planes. The three lines that lie at the pairwise intersections of the planes
a1, a2, a3 will determine the axes of the coordinate frame. Next, a′ meets the
remaining planes at three distinct lines that intersect pairwise on each of the
axes: the points of intersection of each pair of such lines and an axis will be
marked with a point, called the unit of measurement (akin to the points I and
J in Fig. 1 but for all the three planes involved). Thus, there are three axes
and three units of measurement.
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Figure 3. OA + OB = OC

5.2. Addition and Multiplication

Consider two planes intersecting a third one in two lines. These lines are coin-
cident, if the planes themselves are. Let us assume that line(y1, y) ∧ line(y2, y)
is satisfied. By adding

y1 = y2 ∨ y1 = −y2

we define a relevant formula, denoted coincident2(y1, y2, y).7 Similarly, such
lines are parallel, if the planes are. Therefore if we add

¬(y1 = y2 ∨ y1 = −y2)
∧(y1 · y2 = 0 ∨ y1 · −y2 = 0 ∨ −y1 · y2 = 0 ∨ −y1 · −y2 = 0)

we obtain a formula (denoted parallel2(y1, y2, y)) satisfied in M3 if and only if
the relation of parallelism holds between the respective lines. Also, when lines
in a plane are not coincident or parallel, they have to meet in a single point.
Thus, we can add the following constraints

¬coincident2(y1, y2, y) ∧ ¬parallel2(y1, y2, y),

defining a formula point2(y1, y2, y) with the obvious interpretation. We need
these expressivity results to define important operations on line segments found
on the planes forming the coordinate frame. We start with defining addition
in a plane (following [4]):

Definition 5.1. We say that OC is the result of the addition of OA and OB
and write OA+OB = OC if and only if the following lines can be found (see
Fig. 3):
(a) l1, l3 meeting at a point O;
(b) m parallel to l3;
(c) lA, meeting l3 at a point A and parallel or coincident with l1;
(d) lB , meeting l3 at a point B and such that lB , l1,m meet at a single point

J;
(e) lC , meeting l3 at a point C and parallel or coincident with lB and such

that lA, lC and m meet at a single point M.

7coincident2 should be understood as defining coincidence in two dimensions. Similarly for
other notions used in this paragraph.
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Say, for simplicity, that we adopted the same notational conventions for
objects in the structure M3 (remembering that these can refer to the rele-
vant lines only indirectly and that directly these denote objects in the three-
dimensional space!). Furthermore, let

M3 |= frame[l1, l3, n, n′],

for some n, n′ (with the plane bounding n′ meeting the plane bounding n in
the line l2, thus defining the unit of measurement): this takes care of (a).8 We
can enforce (b) by

M3 |= parallel[m, l3, n];

(c) with

M3 |= point2[lA, l3, n] ∧ (parallel2[lA, l1, n] ∨ coincident2[lA, l1, n]);

(d) with

M3 |= point2[lB , l3, n] ∧ corner2[lB , l1,m];

and (e) with

M3 |= point2[lC , l3, n] ∧ (parallel2[lC , lB , n] ∨ coincident2[lC , lB , n]).

Thus, we can construct a formula add2(y1, y3, yA, yB , yC , y, y′, z) such that
M3 |= add2[l1, l3, lA, lB , lC , n, n′,m] if and only if OA+OB = OC (assuming
the naming conventions above).

Similarly, again after [4], let us define multiplication in a plane.

Definition 5.2. We say that OC is the result of multiplication of OA and OB
and write OA · OB = OC if and only if the following lines can be found (see
Fig. 4):

(a) l1, l3 meeting at a point O and l2 meeting l1 at a point J and l3 at a
point I;

(b) lA meeting l3 at a point A and parallel or coincident with l2;
(c) lB meeting l3 at a point B and such that lB , l1, l2 meet at a single point

(J);
(d) lC meeting l3 at a point C, parallel or coincident with lB and such that

lC , lA, l1 meet at a single point M.

Given the similarity of the constraints for multiplication to those for addition,
it should be clear now that there is a formula multiply2(y1, y3, yA, yB , yC , y, y′)
such that M3 |= multiply2[l1, l3, lA, lB , lC , n, n′] if and only if OA · OB = OC
(assuming the naming conventions above).

Corollary 5.3. Addition and multiplication are definable in every plane bound-
ing the half-spaces used in defining a coordinate frame in M3.

To obtain this simple consequence one needs to change what counts as
the plane of reference (where these operations are defined by means of the
above-described formulas).

8Note that our entire two-dimensional construction is ‘happening’ in the plane bounding n.
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Figure 4. OA · OB = OC

5.3. Affine Completeness

In this part, we show how to obtain results analogous to those presented in
[14] with regard to M2. Assume for now that we work in a specified plane of
reference with the coordinate frame defined as above. How one would go about
actually defining the numbers on the x-axis (the y-axis being analogous)? Well,
we can start by defining these in terms of distance. So 0 would be OO and
1 would be OI with the rest of the natural numbers obtained by “repeating”
the construction of OI. This is in fact how things are done in [14] and [21],
so the interested reader is encouraged to consult these sources. In this article,
however, we propose a slightly different solution, using the fact that addition
is expressible to define a successor formula instead. Say, we defined 0 as the
point of intersection of the two axes, and 1 as the point of intersection of
l3 (assuming previous conventions) with the x-axis represented by l1. The
successor formula can be defined so that, starting with OO as the base case
(this is done by simply constructing a formula satisfiable only by those regions
whose associated lines determine the same point as the lines determining the
axes), one keeps on adding OI. More formally (yet still, with a lot of ancillary
details left out for readability), assume that a line m crosses the line l1 at a
point M, such that OM = nOI, n ∈ N. We then define the successor formula
that involves two important elements: the regions representing m and another
line m′, such that m′ is the result of adding OM and OI (clearly doable, by
the above).9 This takes care of the natural numbers on the line. The following
result shows that we can extend this to any rational number.

Theorem 5.4. Assuming the coordinate frame setup above and all the intro-
duced shorthands, let m be a line crossing the axis at a point M. Then there
exists a formula satisfiable in M3 if and only if OM = nOI, n ∈ Q.

Proof. For the proof of the above, the case when n ∈ N has been outlined.
Consider n = p

q , with p, q ∈ N (these do not have to be relatively prime). We
get qOM = pOI, that is, in our parlance, OQ ·OM = OP ·OI. OP and OQ
are clearly expressible using the successor formula. The formula capturing the

9It should be obvious at this point that the theory of M3 is undecidable.
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above equality must simply enforce that the same point (M) is the result of
both multiplications (and multiplications are expressible). What remains is the
case when n is negative. It is enough to make a copy of the triangle forming
the coordinate frame’s units of measurement (clearly doable) and perform the
operations “in reverse”. �

Given any line in a plane, and any coordinate frame, this line can cross
both axes at some points; cross one of the axis and be parallel to the other;
cross through the origin and be either parallel or cross the line forming the
units of measurements at some point; or equal one of the formulas involved
in the construction of the coordinate frame. Any intersection points can be
captured numerically using the formulas described in the outline of the proof
of Theorem 5.4 (if needs be, changing what counts as the axis, see [21]) and
the remaining parallel cases can also be dealt with as parallelism is expressible
in our language.

Theorem 5.5. Let h, h′ ∈ ROQ(R3) be half-spaces. Then there is a formula
satisfiable in M3, such that (1) h satisfies this formula and (2) if h′ satisfies
the formula, then h′ = h.

Proof. Repeating the construction from Theorem 5.5 on the other planes of
reference means that the resulting compound formula fixes the bounding plane
of h, yielding h′ = h or h′ = −h. The final disambiguation can be done by
insisting that there is no half-space that is contained in h and not contained
in h′. �

Such formulas are sometimes called fixing formulas. Note that this notion
can be extended from half-planes to arbitrary regions from the domain. In
addition we obtain an analogue of the result from [14]. Let us say that a
formula is affine-complete (in M3), if for any two regions r, r′ ∈ ROQ(R3)
satisfying it, there is an affine transformation mapping r to r′ (and, of course,
vice versa). Our final result is that — just as in the case of M2 — every region
satisfies an affine-complete formula.

Theorem 5.6. Every r ∈ ROQ(R3) satisfies an affine-complete formula in M3.

Proof. Recall that every element of ROQ(R3) can be represented as a Boolean
combination of half-spaces. Consider a formula stating that certain regions
form a coordinate frame (as done above), fixing all the half-spaces that are in-
volved in the construction of r with respect to the resulting coordinate frame
(again, as outlined above), and describing the exact Boolean combination re-
sulting in r (clearly expressible). Such a formula has m+n free variables, where
m is the number of variables involved in the construction of the coordinate
frame and the remaining n variables representing the lines fixed with respect
to the coordinate frame (for simplicity, allowing for repetitions of variables
in both groups). Consider now an two m + n-tuples satisfying this formula.
We show that the elements from both tuples are affine equivalent. Recall that
all tetrahedra (essentially: corners in our terminology) are affine-equivalent.
Therefore, there is a (unique) affine transformation, say τ , taking the m-
elements of the first tuple to the m-elements of the other. Moreover, since
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the remaining n half-spaces from the second tuple are fixed with respect to
the coordinate frame, by Theorem 5.5, the τ -transformed n half-spaces from
the first tuple must be the same as the n half-spaces from the second tuple.
That is, these are also affine equivalent. Therefore, τ takes all the elements
from the first m + n-tuple to the second one. The final formula existentially
binds all the variables apart from the one representing r. �

This result can be easily extended from a single region to formulas of
arbitrary arity, as in [14], thus providing an exact match to Theorem 3.2 men-
tioned above.

6. Open Problems

Thus, the stage is set for the task of axiomatising the theory of M3. This might
be no easy feat, considering how much simpler it is to talk about coordinate
frames in M2 compared to M3. If in the due process, some regularities regard-
ing the constructions are observed, this could be the basis for extending the
results to other dimensions. Even at this stage we can note, however, that what
has been presented in this paper regarding M3 can be most likely extended to
any dimension beyond 2.
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