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Abstract: Herein, we present the novel method targeted for determination of plant nutritional state 
with the use of computer vision and Neural Networks. The method is based on multispectral imaging 
performed by an exclusively designed Agroscanner and a dedicated analytical system for further 
data analysis with Neural Networks. An Agroscanner is a low-cost mobile construction intended for 
multispectral measurements at macro-scale, operating at four wavelengths: 470, 550, 640 and 850 nm. 
Together with developed software and implementation of a Neural Network it was possible to design 
a unique approach to process acquired plant images and assess information about plant physiological 
state. The novelty of the developed technology is focused on the multispectral, macro-scale analysis 
of individual plant leaves, rather than entire fields. Such an approach makes the method highly 
sensitive and precise. The method presented herein determines the basic physiological deficiencies of 
crops with around 80% efficiency.
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1. Introduction

Agriculture is an economic sector that relies on many variables that cannot be easily 
controlled (i.e., temperature, solar radiation, soil properties). Unfavorable growing condi
tions can significantly change the productivity of a field in a short time period [1]. Over the 
years, with the growth of large-scale agriculture, a need for a quick and reliable assessment 
of plant physiological state emerged.

Physiological condition reflects the yield potential of plants, which is significantly 
influenced by climatic conditions, soil fertilization and plant nutrition. Symptoms caused 
by unfavorable climatic conditions and improper fertilization are often observed in plants. 
These are related to incorrect photosynthesis and nutrient deficiencies or excesses. Precise 
assessment of the physiological state of plants conducted mainly on the basis of visual 
diagnostics (observation of plants and identification of alarming symptoms) or chemical 
analysis of the substrate, nutrient solutions and plants is not a fully effective method. 
Accurate assessment of the condition of plants in relation to their nutritional and climatic 
requirements made with the use of a scanner will increase the efficiency of the system 
of plant production advisory by rationalizing feeding strategies and optimizing plant 
production conditions. Thus, it will make it possible to optimize production, and precise 
diagnostics allowing to conduct rational fertilization will also influence environmental and 
social aspects.

Different diagnostic methods are used to assess the physiological state of plants, but 
all are based on chemical analysis of soil and plants and observation of plant appearance,
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which significantly extends the determination of the cause of occurring symptoms. The 
subject matter of this research project, a multispectral method of determining the nutritional 
status of plants, gives the possibility for a quick assessment of the physiological state of 
plants, allowing measurements and presentations of agrotechnical recommendations in 
the real conditions of cultivation of a particular plant, which is extremely important for 
large areas of crops. Therefore, it allows one to quickly verify the problems associated with 
feeding plants, thereby reducing the incidence of diseases and pests on plants.

Optimizing agricultural production with a cheap and reliable multispectral method 
of determining the nutritional status of plants will correct errors in fertilization and plant 
nutrition while reducing the use of crop protection products. It provides opportunities for 
precise plant fertilization and application of plant protection products, which will increase 
the resistance of plants to biotic (pathogens) and abiotic (climate) stress. Fast diagnosis 
and proper nutrition of plants will improve the quantity and quality of obtained crops and 
increase the nutritional value of plants, while reducing the amount of harmful substances 
(pesticides, nitrates, heavy metals) and therefore having a positive impact on consumer 
safety. It will also eliminate excessive feeding of plants, which will have a positive impact 
on limiting the use of fertilizers and thus reduce soil and groundwater contamination with 
components originating from fertilizers.

Sustainable growth and development of plants means that their metabolism takes 
place at the highest energy level that the plant can achieve under current environmental 
conditions. This means that the products of photosynthesis and carbon assimilation are 
efficiently distributed in the plant, which then produces active green matter and the 
m ost valuable generative organs. These interrelationships are used in crop production 
for maximum yield with high commercial quality. However, due to often unfavorable 
climatic conditions both in the field and under cover production, the natural physiological 
processes of the plants are disrupted and they do not achieve maximum yield and quality. In 
traditional plant production, the remedy is soil fertilization and plant nutrition conducted 
on the basis of chemical analyses of the substrate, nutrients and plants, and often only on the 
basis of visual diagnosis (observation of plants and identification of alarming symptoms). 
However, the results of chemical analyses reflect only the condition of the sample at the 
time of sampling. It is also not possible to assess from them what caused any disorders 
or how much they modified the entire plant organism. Visual diagnosis is subject to the 
“error of knowledge and skill" of the person making the observations. These aspects cause 
crops to be grown according to a “human point of view " and do not take into account the 
actual condition and requirements of the plants. This results in the use of excessive or ill- 
balanced doses of fertilizers, biostimulants or even plant protection products (susceptibility 
to disease infections and pest activity is often dependent on plant vigor). The improper use 
of such inputs is a burden on the environment and generates problems with the biological 
quality of plant products and even their safety for consumers.

Classical spectroscopic methods provide a single spectrum per measurement com
prising overall chemical information from the whole sample volume, while hyperspectral 
imaging provides thousands of spectra combined into a spectral image where each pixel 
corresponds to one spectrum. This approach enables obtaining not only the chemical 
signature of a given material but also a correlation of chemical information with its precise 
localization within the sample [2]. The application of hyperspectral imaging varies from a 
micro-scale or even molecular level in biomedicine and biological samples to landscape 
or field scale in agriculture, geology and astronomy [2]. In agriculture, it was first used to 
determine physical properties such as leaf size or leaf area index [2]. Further development 
of this technique allowed for differentiation between various plants based, e.g., on pig
ment concentration for monitoring plant growth and photosynthetic productivity potential, 
fertilization efficiency, and finally for detection of the early onset of plant diseases [2,3].

To avoid the loss of crops and gain maximum yield, different methods of remote sensing 
(i.e., RGB, near-infrared (NIR), far-infrared (FIR; thermal), lidar, multi- and hyper-spectral) 
were introduced for detection of early signs of malnutrition or disease in plants [4,5]. Near-



infrared (NIR) spectroscopy has been known in agriculture since the 1960s [2,6], but since it 
lacks spectral range and precision, it has been combined with other techniques to become 
multispectral imaging [2]. Apart from NIR, broadbands detected by the multispectral sensors 
comprise RGB, ultraviolet light, red edge and/or thermal bands [4]. A combination of these 
can give voluminous information regarding plant nutritional status, and thus be helpful in 
crop maintenance.

1.1. Elements and Their Function
Two elements that play a vital role in plant growth and nutritional status are nitrogen 

(N) and calcium (Ca). An appropriate amount of available nitrogen is the key to ensuring 
maximum plant growth. It plays a role in the growth rate of leaves and fruit quality. Not 
only does nitrogen deficiency limit plant growth more often than the lack of any other plant 
nutrient, additionally, plants exposed to its excess are unable to develop roots properly and 
turn brown and wither [7].

Plant growth and fruit development also strongly depend on the calcium supply. 
Calcium is a macronutrient required for cell elongation and cell division [8], activation of 
enzymes involved in biosynthesis [9], and regulation of many metabolic functions [10]. Ca 
deficiencies are first seen in the youngest parts of the plant (i.e., young leaves), where the 
reduction in growth rate is followed by deformations, and chlorosis leading to necrosis [11]. 
Interestingly, Ca deficiency often occurs in soils rich in this element [12]. This may happen 
when low temperature limits Ca transport in roots [13]. Unfortunately, these problems 
can only be identified at the time of the onset of symptoms, while the disease develops 
earlier, in a way imperceptible to the naked eye. Thus, it seems advisable to develop a 
remote sensing method that allows for routine check-ups of plant nutritional status at the 
cultivation site.

1.2. Neural Networks and Computer Vision

A Convolutional Neural Network (CNN) is a class of networks, most commonly 
applied in computer image processing. CNN is a Deep Learning algorithm designed to 
automatically and adaptively learn spatial hierarchies of features. For a few years, CNNs 
have been dominant in various computer vision systems. They have excellent results in 
video processing, object recognition, picture classification and segmentation [14].

According to the publication “A review of the use of convolutional neural networks in 
agriculture" from The Journal o f  Agricultural Science in 2018, at that time only 23 research 
efforts employing CNN existed for addressing various agricultural problems [15]. This 
shows that the field of image analysis using artificial intelligence in agriculture is a very 
new issue. Neural Networks and computer vision have become increasingly important 
for precision agriculture, which is why more and more publications on this topic have 
appeared in the last three years [16- 18].

2. Methodology

The present study aimed to develop technology enabling the assessment of the physi
ological state and nutrition of plants based on multispectral imaging using Agroscanner 
and a dedicated IT analytical system for further data analysis based on Neural Networks.

To achieve this goal, we constructed an innovative low-8ju mobile device, i.e., Agroscan
ner, based on multispectral measurements at a macro-scale (1 pixel less than 1mm2 of a 
scanned plant). The device was tested on reference crops which were used to simulate de
ficiencies in fertilization that may occur in real crops, divided into 5 fertilizer groups. The 
device is supported with an IT analytical system created to achieve automatic analysis of the 
collected measurements. The main goal of the system was to determine the correct fertilizer 
group of a particular measurement. Based on that information, farmers can adjust fertilization 
schemes to maximize future harvests.



2.1. Agroscanner

One of the challenges of the project was to create an optical system that would allow 
efficient performance of multispectral measurements in field conditions. The system had to 
take into acc ount different requirements:

- Variable optical measurement conditions;
- The ability to perform measurements in light winds;
- Necessity of recording parameters such as temperature, humidity and GPS pos;tion;
- Low manufacturing cost.

During the project 4 prototypes of the optical system were created, from a prototype 
based on a single camera with a filter turret (used in astrophotography) to a lightweight 
system of 4 spectral cameras (Figure 1). During the development of the prototypes, different 
approaches to lig hting the measurements were tested, from artificial lighting with daylight 
blocking to a systtm  using dayl ight with advanced image normalization techniques. Each 
change in the optical system forced a change in the algorithms for normalization and 
analysis nf the measurements.

Figure 1. Agroscanner generations created during the research project.

Finally, the Agroscanner is a device constructed by Active Text. Krakow, Poland 
designe d t o perform multispectra l images based on four simultaneously working spectral 
cameras— allowing for the collection oC 19 im ages per second. The Agroscanner comprises 
a Basler daA1600-60um (CS-Mount) camera with a 1/1.8" Teledyne e2v EV76C570 CMOS 
image sensor providing mono-color images at 60 fps in 2MP resolution (1600 x 1200 px). 
The device is designed tec cappure crop images on a macro-scale;: one pixel corresponds to 
less than 1 mm2 of a real plant. This approach enabled us to build an IT analytical system 
based on the features of both plants and scans (e.g., soii mask-out, leaf vein detection, 
shape detection, etc.), which was impossible with the currently used high-attitude drone 
crop scanning.

Each of four cameras is equipped with the following 10 nm Narrow-Band Filter: 470, 
550, 640 and 850 nm. Apart from cameras, Agroscanner is equipped with sensors enabling 
to control both external conditions and geolocation:

1. Temperature sensor— (“AirTemperature");
2. The first light sensor— (“AmbientLight");
3. Second light sensor— (“SurfaceAmbientLight");
4. UV sensor— (“UV");
5. GPS— (“Gps");
6. Humidity sensor— (“AirHumidity");



7. Compass— (“SurfaceCompass");
8. Accelerometer— (“SurfaceAccelerometer");
9. Gyroscope— (“SurfaceGyrometer").

The whole unit is controlled by a central computer based on an Intel i5 CPU, to be able 
to perform preliminary computer vision analysis. The device is battery powered, allowing 
up to 60 min of device work.

The final prototype is the outcome of a four-year-long research project and has multiple 
versions. In most cases, the Agroscanner is used as a handheld device, but the company 
has also created a drone version.

2.2. Reference and Experimental Crops

The crops were chosen based on their properties, regarding their specific demand for 
elements and fertilizers and their growth period. The project was focused on cauliflower 
(Brassica oleracea L. var. botrytis L.)—varieties Gohan F1, Cabral F1 and David F1.

One of the main parts of the project was reference crops grown under specific condi
tions designed to simulate defined deficiencies in fertilization that may occur in real crops. 
The following fertilizer groups were defined:

Standard medium (compliant with the nutritional requirements of cauliflower seedlings) 
with the content of macronutrients: N-NO3 114 mg/L, P 44 mg/L, K 230 mg/L, Mg 49 mg/L 
and Ca 126 mg/L, Cl 13 mg/L, S-SO4 102 mg/L and the full spectrum of micronutrients;

medium with an increased amount of N 186 mg/L (including N-NO3 160 mg/L, N-NH4 
26 mg/L);
medium with a reduced amount of N 60 mg/L with an increased amount of Ca 208 mg/L; 
medium with a reduced amount of Ca 88 mg/L.

Crops were monitored by agronomists during the multispectral measurements with 
the Agroscanner. Additionally, both soil and leaf chemical analyses were conducted 
simultaneously. Along with the project, cauliflower was cultivated in phytotrons and green
houses located in the Research Institute of Horticulture, Skierniewice, Poland, and in arable 
fields scattered over three geographically distant locations: the community of Igolomia- 
Wawrzenczyce, Malopolska Voivodeship, Poland; community of Pacanow, Swietokrzyskie 
Voivodeship, Poland; and community of Obrazow, Swietokrzyskie Voivodeship, Poland. 
Arable fields enabled us to develop normalization and image morphing algorithms in 
various weather conditions. On the other hand, greenhouses crops which had much more 
supervised conditions were used to build the final analytical system.

In greenhouses, seedlings were grown in phytotron model 730 DD INOX from Biosell, 
allowing precise control of temperature (day: +10 ° C to +40 °C; night: +3 °C to +40 ° C), 
humidity (30% to 90% RH) and light intensity (LED lamps). Cauliflower seeds were sown 
into mini rockwool cubes (AO block) soaked in water and placed in vegetation chambers— 
phytotrons, under optimal climatic conditions (humidity 70-75% , temperature 22 ° C, 
light period 12 h). After germination, seedlings were placed in rockwool seedling cubes 
(10 x 10 x 7.5 cm) soaked in standard nutrient solution and re-inserted into vegetation 
chambers, gradually changing the temperature to that appropriate for the given growth 
stage, i.e., from 20 °C after picking to 16 °C at the stage of at least 4 leaves. After rooting the 
quilt, each of the objects was fed with a nutrient solution with specific N and Ca content. 
Plants were fertigated using the underseeded method.

Observations and measurements were made at intervals of 2 -3  and 7 days, starting 
from the stage of 2 proper leaves (i.e., about a week after the introduction of differentiated 
nutrient solution) until obtaining seedlings that were ready for planting (4 weeks). Next, 
ready seedlings were transferred to the greenhouse for further cultivation.



2.3. Crop Monitoring

Observations and measurements can be divided into two categories:
Ongoing monitoring process— observations made every 2-3 and every 7 days, starting 

with the appearance of two true leaves (ca. one week after the introduction of diversified 
medium) until the seedling was ready to be planted (ca. 4 weeks).

Monitoring during Agroscanner measurement— soli and leaf samples were taken 
during Agroscanner measurements for subsequent chemical analysis.

2.4. IT Analytical System

Before each series of measurements, the device was calibrated, to check the operation 
of all cameras, image sharpness, the relative position of images recorded by different 
cameras and the operation of additional sensors. The calibration page was printed on a 
carbon-based tonner, so images °ook almost the same in all wavelengths, which makes 
it much eaeier to analyze and calibrate. F ig u re2 shows tlie images captured by all four 
cameras. Due to the tsanslation s f  the photos, calibration images were recorded ta enable 
the analysis of acquired data.

Figure 2. .Agroscanner camera geometry calibration on crrbon-brsed (laser printout) calibration plate. 
A carbon-based calibration plate provides similar images for every spectral image from all cameras.

Each plant was photographed from different perspectives, and the total number of 
images of one object equaled 30, each of them comprising 4 corresponding pictures from 
each camera fcaptured at 470, 550, 640 asd  850 nm wavelengih). After measurement 
completion, recarded delta, were automatically sant to Active Text servers.

Each measurement consists of 4 greyscale images (one for each wavelength) of 
1600 x 1200 pixels (Figure 3).



Figure 3. Agroscanner sample measurement from 4 spectral cameras— each spectral resolution 
1400 x 1200 pixels, spectral lengths: 470, 550, 850 and 640.

Each multispectral measurement was processed using the following algorithm:
Cropping images: Active Text Agroscanner takes 4 spectral images at once using 

4 cameras. Each of the: images is shifted in relation to the others so as to be able to proceed 
with the next steps— a common part of the images must be designated.

Image quality assurance: Agroscannet has two implementations, htndheld and drone 
installed. Both implementations aire used in motion (limited). Rejected images comprise; 
those captured out of focus, too darle, thoae comprising the shadow of a drone or Agroscan
ner operator, or Coo bright, or the light condi tions changed during the image s eries (light 
calibration was performed only ot the be°inning o f a measurement series).

Three-dimensional image morphing: The way the cameras were placed makes per
spective slightly shifted. Further analysis requires that perspective must be in cync between 
every multispectral measurement. This was a very important step). Morphing calculations 
wete complicated because each band was different (especially the IR band), so classic 
photogrammetty algorithms do not epply hert.

Soil recognition: Using multiple techniques (also using Neural Network models), soil 
was detected in images and cut out from further processing.

Leaf and vein recognition: Using multiple techniques (also using Neural Network 
models), leaf veins were detected. Some physiological indexes were calculated ior different 
plant ateas (e.g., vein )

Image normalization: Two normalization methods were created during the project: 
One was to multiply the measurements by a factor calculated from the ratio of the average 
measurement) valiue in the vein area to the rest of the leaf. The other was to use a calibration 
plate and adjust the parameter measurements while: taking a series of images. The design of



the calibration plate as well as the scanner itself allows for real-time measurement analysis 
of lighting cond itions (Figure4).

Figure 4. Image normalization using calibration plate.

Physiological index calculation: For each pixel in the synchronized, 3D-morphed and 
normalized multispectral set we calculated a set of 1 8 physiologicat indeees.

1. ATIndexATLeat—Active Tex; normatized index based on leat detectioo algoeithm;
2. ATIndexATVein— Active Text nnrmalized index based on vein detection algorithm;
3. ATIndexCI_RE— Chlorophyll index— red edge;
4. ATIndexCI_G—Chlorophyll index-green;
5. ATIndexCVI— Chlorophyll vegetation index;
6. ATIndexEVI— Enhanced vegetation index;
7. ATIndexGLI—Green leaf index;
8. ATIndexgNDVI—Green normalized difference vegetation index;
9. ATIndexMSAVI—MSAVI index;
10. ATIndexMTVI2— Second modified triangular vegetation index
11. ATIndexNGRDI—Normalized green-red difference index;
12. ATIndexOSAVI—Optimized soil adjusted vegetation index;
13. ATIndexSAVI— Soil adjusied vegetation index, atso known aa MSAVI;
14. ATIndexTVI— Triangular vegetation index;
15. ATIndexVARI—Visible atmospherically resistant index;
16. ATIndiciesNDVI— NDVI index;
17. ATIndiciesSIMPLE—SIMPLE index;
18. ATIndexATLeelVeinRatio—Active Text normalized index-based vein to leaf index: ratio.

Each pixel in the multispectral set (with spectral images) was transformed by calcula
tion of indexes into an 18-dimensional vector.

1. Physiolog.cal Index Analysis: Final goal is to determine which fertilizer group a
measured plant belongs to. Therefore, multiple classifiers were built. Input classifiers 
have an 18-dimension imege, as does the output fertilizer group. During- the whole 
project we were testing the Oollowing methods:

a. Statistical methods: Based on data sets gaihered during the project we calculated
focus points for every fertilizer group. The created metric can define the nearest 
focus point for each new vector, hence the fertilizer group.



b. Neural Network method: We tested multiple models— custom-built dense;
Neural Network model, KINN Classification and CNN model.

A synthetic version of the algorithm is shown in the Figure .

Figure 5. Multispectral measurement analytical algorithm.



3. Results

As part of the project, approx. 30,000 multispectral measurements were performed 
(more than t20,000 single images). During three years of measurements, the Research 
and Development Team worked on the hardware, Agroscanner, statistical and analytical 
algorithms. T ht final measurement batch was used to test the last version of the system. 
The main research task was to identify the correct fertilizer group of scanned plants using 
the Agroscanner. Two epproaches were used:

Statistical approach— based on defining a proper subset of calculated indexes and 
metrics to tie able to define the focal point for each fertilizer group.

AI approach—based on classifying Convolutional Neural Networks.

3.1. Statistical Approach

The statistical approach ie to look for cluster points m a multidimensional space 
w hert each measurement corresponds to an averaged 'vector of indices. Averaging of 
indices for measurement takes place only on the green leaf surface (other artifacts from the 
measurement such as soil are rejected). For each fertilizer group, wet looked for a focal point 
so that as many measurements as possible arie located in its proximity. We can visualize this 
on a two-dimensitnal plsne osing the TSNE (t-Distributed Stochastic Ngighbor Embedding) 
method, which reduces the dimensions of a -vector to a two-dimensional vector. The blue 
color signed as zero represents samples with nitrogen deficiency, while the orange color 
signed as three symbolizes samples without nitrogen deficiency (Figure 6).

Figure 6. Sample statistical clustering oB a series ot measurements. Each dot rep resents one; Agroscan
ner measurement. A 16-dimension index measktement vector- was converted to 2-dimensional space 
using T-Distributed Stochastic Neighbot Embedding algorithm. Bled and green spaces repretent two 
different clusters for two d iflerenl fertilizer groups.



In both cases, there are obvious focal points between the two groups. Nevertheless, in 
both cases, some measurements are in the wrong surroundings.

We tested multiple statistical approaches to the cluster vector set (Nearest Neighbors— 
KNN, ExtraTreesClassifier, etc.). The best results gave us a Dens four-layer Neural Network 
classifier with recognition quality at 71%.

3.2. A I Approach

To be able to achieve the best recognition rate of the fertilizer group, a proper model 
needed to be used. To achieve that, we set up an extensive Machine Learning process. 
Using an expanded cluster of multiple AI machines we were able to choose the best CNN 
model. During that process, we tested multiple models' designs (test results in Table 1). As 
a result of this process, the best model was selected. The selected classifier CNN model has 
a total of 14 layers and 3 convolutional layers. It has a total of 8,978,181 neurons. As an 
input, it has a 280 x 280 pixels image and as an output, it has 5 fertilizer groups.

Table 1. Testing of different Neural Network models with corresponding recognition ratio.

#. Model Id Recognition % Number of Neurons Model Type

1 model-cnn-raw-109-1-100-0.83-0.86.hdf5 86.15% 8,978,181 CNN_CLASS

2 model-cnn-raw-103-1-97-0.66-0.77.hdf5 76.62 7,134,597 CNN_CLASS

3 model-cnn-morph-01-211-10-0.97-0.97.hdf5 67.05 448,693 CNN_CLASS

4 model-cnn-morph-01-343-08-0.95-0.98.hdf5 65.09 230,597 CNN_CLASS

5 model-cnn-morph-01-319-10-0.96-0.97.hdf5 64.34 184,485 CNN_CLASS

6 model-cnn-morph-01-121-09-0.95-0.98.hdf5 63.81 74,293 CNN_CLASS

7 model-cnn-morph-01-207-10-0.99-1.00.hdf5 63.26 816,009 CNN_CLASS

8 model-cnn-morph-01-176-07-0.95-0.98.hdf5 63.2 284,933 CNN_CLASS

9 model-cnn-raw-01-26-19-0.97-0.98.hdf5 62.88 245,269 CNN_CLASS

10 model-cnn-raw-01-109-15-0.97-0.98.hdf5 62.76 67,365 CNN_CLASS

3.3. Final Test

The final test was conducted on the greenhouse-grown cauliflower crops. Measure
ments were conducted with the use of the Agroscanner on fully grown plants in 5- to 14 
day-long intervals. On each measurement day, a sample of a green part of each fertilizer 
class was taken for the chemical analysis. During the test, the previously trained final 
model showed recognition accuracy of 86.93% of a single recognition sample (Table 2).

Table 2. Fertilizer group recognition broken down by measurement day and analytical method. 
'MATCHED AI'— AI approach, 'MATCHED STAT'— a statistical approach.

CLASS. MATCHED
AI

MATCHED
STAT

SAMPLES
No.

Plant Part N P K Ca Mg

measurem ent day: 45 94.23% 74.42% 1421 % mg/kg- 1 DM

Variant A — full fertilization N  +
P + K 94.25% 78.89% 348 m iddle leaves 2.27 3810 11,000 20,100 2720

Variant B— fertilization N  + P 
(w ithout K) 95.57% 68.57% 203 m iddle leaves 2.78 5640 11,400 24,800 3260

Variant C— fertilization N  + K 
(w ithout P)

94.64% 66.67% 261 m iddle leaves 2.60 2530 7370 23,600 2980

Variant D— fertilization K + P 
(w ithout N ) 94.14% 74.00% 290 m iddle leaves 1.81 4210 13,600 15,900 2210

Variant E— w ithout fertilization 

measurem ent day: 58

93.10%

76.60%

81.18%

59.22%

319

406

m iddle leaves 1.47 2980 5950 13,600 1960



Table 2. Cont.

CLASS.
MATCHED

AI
MATCHED

STAT
SAMPLES

No. Plant Part N P K Ca Mg

Variant A — full fertilization N  + 
P+K

65.52% 57.78% 87 m iddle leaves 1.76 2970.00 8820.00 17,200.00 2780.00

Variant B— fertilization N  + P 
(without K) 77.01% 41.11% 87 m iddle leaves 2.20 5000.00 7430.00 20,200.00 3040.00

Variant C— fertilization N  + K 
(without P)

84.48% 72.39% 116 m iddle leaves 2.68 1960.00 6040.00 24,400.00 3960.00

Variant D— fertilization K + P 
(without N) 72.41% 59.18% 58 m iddle leaves 1.17 3090 9490 15,200 2100

Variant E— w ithout fertilization 81.03% 65.52% 58 m iddle leaves 1 1820 6090 11,200 1850

m easurement day: 65 82.51% 80.71% 406

Variant A — standard m edium  
N  + P+K

83.91% 80.00% 87 m iddle leaves 1.95 3350.00 7160.00 25,900.00 3460.00

Variant B— fertilization N  + P 
(without K) 81.61% 87.78% 87 m iddle leaves 1.83 4640.00 4960.00 24,000.00 3180.00

Variant C— fertilization N  + K 
(without P)

81.03% 73.33% 58 m iddle leaves 2.24 1340 5180 26,600 4290

Variant D— fertilization K + P 
(without N)

82.76% 68.89% 87 m iddle leaves 1.05 2400 9660 16,600 2100

Variant E— w ithout fertilization 82.76% 91.11% 87 m iddle leaves 0.91 1480 5870 8550 2010

m easurement day: 71 85.15% 69.33% 377

Variant A — full fertilization N  + 
P+K 89.66% 68.97% 58 m iddle leaves 1.51 2580 5860 23,000 3170

Variant B— fertilization N  + P 
(without K) 89.66% 87.78% 87 m iddle leaves 2.01 4940 7160 25,400 3800

Variant C— fertilization N  + K 
(without P)

74.14% 28.33% 58 m iddle leaves 2.18 1050 4910 24,800 4120

Variant D— fertilization K + P 
(without N) 83.91% 62.22% 87 m iddle leaves 0.94 2130 11,200 17,300 2130

Variant E— w ithout fertilization 86.21% 85.56% 87 m iddle leaves 0.88 1230 6870 14,900 2330

m easurem ent day: 77 84.08% 56.92% 377

Variant A — full fertilization N  + 
P + K

77.59% 43.33% 58 m iddle leaves 1.53 2590 5890 23,600 3110

Variant B— fertilization N  + P 
(without K)

88.51% 55.56% 87 m iddle leaves 2.07 5160 7920 26,400 4290

Variant C— fertilization N  + K 
(without P) 79.31% 73.33% 58 m iddle leaves 2.48 1130 6940 31,000 5740

Variant D— fertilization K + P 
(without N) 86.21% 43.33% 87 m iddle leaves 0.8 1980 12,500 21,300 2640

Variant E— w ithout fertilization 85.06% 70.00% 87 m iddle leaves 0.96 1320 7050 19,100 2910

m easurement day: 90 84.62% 73.85% 377

Variant A — full fertilization N  + 
P+K 77.01% 73.33% 87 m iddle leaves 1.5 2670 12,500 29,900 5280

Variant B— fertilization N  + P 
(without K)

90.80% 70.00% 87 m iddle leaves 2.4 6220 13,300 29,100 5210

Variant C— fertilization N  + K 
(without P)

77.59% 60.00% 58 m iddle leaves 2.35 1190 8040 29,700 5950

Variant D— fertilization K + P 
(without N) 87.93% 85.00% 58 m iddle leaves 1.01 2450 24,000 29,000 4250

Variant E— w ithout fertilization 88.51% 80.00% 87 m iddle leaves 0.87 1300 9960 22,200 3810

m easurement day: 95 81.90% 78.06% 348

Variant A — full fertilization N  + 
P+K 77.01% 81.11% 87 m iddle leaves 1.29 2300 8950 30,900 5000

Variant B— fertilization N  + P 
(without K)

81.61% 81.11% 87 m iddle leaves 2.04 6180 7840 35,400 6050

Variant C— fertilization N  + K 
(without P) 63.79% 45.00% 58 m iddle leaves 1.85 728 4780 35,100 6160

Variant D— fertilization K + P 
(without N)

94.83% 98.33% 58 m iddle leaves 0.83 1920 16,400 26,500 3570



Table 2. Cont.

CLASS.
MATCHED

AI
MATCHED

STAT
SAMPLES

No. Plant Part N P K Ca M g

Variant E— w ithout fertilization 94.83% 81.67% 58 m iddle leaves 0.83 1040 6210 23,800 3570

TOTAL: 86.93% 71.47% 3712

To increase the recognition ratio, we can assume that plants on neighboring measure
ments belong to a similar fertilizer group. We predict that by using such an assumption 
we can increase the outcome by 5%. However, due to too small reference crop fields, 
calculations necessary to check the accuracy of this procedure were not possible.

4. Discussion

The unique construction of the Agroscanner allows measurements of plant tissues 
based on light transmittance and absorbance (multispectral measurements) with a high- 
accuracy assessment of their physiological condition. The novelty of the technology de
veloped by Active Text in the course of R&D works is based on multispectral, macro-scale 
analysis [1] of individual plant leaves, rather than entire fields (even when scanning from 
the air), which makes the method much more sensitive and precise.

One of the biggest challenges for measurements performed on an arable field is the 
calibration of measurements. It enables a comparative analysis between values of indices 
calculated from the measurements collected at different periods, times of the day or in 
different locations. The lack of universal calibration methods is one of the most important 
barriers to the development of multispectral measurements in agriculture. Therefore, the 
measurements and their automatic calibration performed in the fields were so important 
for the project. As a result, a procedure for performing measurements and a calibration 
method that allows for leveling the measuring factor related to the variability of external 
measurement conditions (in particular lighting conditions) were developed. This method 
consists of the following elements: appropriate design of the optical module that allows 
recording of spectral images with high sensitivity and speed (key for measurements taken 
from a short distance), an analytical system based on computer image analysis that detects 
leaf elements, and a system for physiological comparative analysis of leaf element indices.

Two analytical approaches were tested: a statistical method and an AI-based method. 
The statistical approach to analyze indexes in a comparative way within the elements of 
a particular leaf of a given plant is innovative. This approach has not yet been used in 
the agricultural industry because it reverses the way of thinking about indices. Instead of 
focusing on calibrating spectral images to enable their comparison, we constructed new 
indices based on a comparison of the values measured within one measurement. Our 
research has shown that examining the ratio of indices calculated on the area of veins and 
the rest of the leaf gives important information about the physiological state of the plant. 
The AI-based approach is particularly innovative because it does not focus on calculating 
indexes, but leaves whole calculations to the Deep Neural Network.

Considering that the method is to be used on large-scale field crops it is important that 
the analytical algorithm can cope with very different lighting conditions. Our research has 
shown that the approach using Convolutional Neural Networks has a higher recognition 
quality. This is not surprising, since Convolutional Neural Networks can learn more 
complex relationships than computing indices. These Neural Networks may pay attention 
to more than just the level of transmittance and absorbance of light (in terms of value), but 
also more subtle features such as leaf or vein shape. On the other hand, using the Neural 
Network approach has all the problems associated with the Machine Learning process. It 
requires a large number of statistically representative learning bases, and also debugging is 
very difficult. Nevertheless, data are the key.



5. Conclusions

The conducted research allowed the development of a technology that, with around 
80% efficiency, determines the basic physiological deficiencies of crops. Such knowledge 
allows the use of precision farming on a much larger scale. W hat is more, because the 
constructed Agroscanner is based on relatively cheap components, the cost of using the 
technology itself is small compared to the benefits.

In future, this macro multispectral analysis will allow automatic detection of lesions, 
parasites, pests and other stress factors at an early stage of their occurrence, which grants 
the possibility to remove the causes of plant stress when it is still possible.
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