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We study multipole expansion of the momentum currents in hadrons with three series SðJÞ, T̃ðJÞ, and TðJÞ

in connection with the gravitational fields generated nearby. The momentum currents are related to their
energy-momentum form factors, which in principle can be probed through processes like the deeply virtual
Compton scattering currently studied at the Jefferson Lab 12 GeV facility and future Electron-Ion Collider.
We define the leading momentum-current multipoles [the “tensor monopole” τ (T0) and “scalar
quadrupole” σ̂ij (S2) moments], relating the former to the so-called D term in the literature. We calculate
the momentum-current distribution in the hydrogen atom and its monopole moment in the basic unit of
τ0 ¼ ℏ2=4me, showing that the sign of the D term has little to do with mechanical stability. The
momentum-current distribution also strongly modifies the static gravitational field inside hadrons.
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I. INTRODUCTION

The energy-momentum tensor (EMT) distribution in a
closed system is an important measure of the underlying
dynamics; and according to Einstein’s general relativity, it
is responsible for the space-time geometry nearby. For a
stable nuclear system, such as the proton, deeply virtual
Compton scattering [1–5] and similar processes discussed
in Refs. [6–10] allow one to measure the EMT form factors,
which in the static limit (or disregarding the Compton
wavelength) can be interpreted in terms of the EMT spatial
distributions. The EMT effects from long-range forces on
the space-time perturbations have been studied in pertur-
bative quantum field theories [11,12]. Here, we are inter-
ested in bound-state systems.
In this paper, we perform the static multipole expansion

[13–16] of the mass, momentum, and momentum-current
(MC) densities in the hadrons of various spins, trying to
understand their physical significance. We relate the
hadrons’ gravitational form factors to the gravitational
multipoles. We find, in particular, that the tensor-monopole

moment T0 is related to the EMT Cðq2Þ form factor (the D
term in [17]). As a concrete example of MC distribution, we
calculate the Cðq2Þ form factor in the hydrogen atom and
find that the monopole moment is ℏ2=4me up to the
fractional correction of order α ¼ 1=137 (fine structure
constant), where me is the electron mass. We find its sign
different from the so-called “mechanical stability” con-
dition [18,19]. We also remark that the physical signifi-
cance of “pressure” and “shear pressure” [18,20–22] from
the momentum-current density is only limited to the sense
of radiation pressure (see, for example, [23]).
Note that the EMT cannot be uniquely derived from the

translational symmetry in the flat space-time. Thus, we
always consider matter fields (electrons, photons, quarks,
gluons, etc.) minimally coupled to a curved space-time with
metric gμν, and we derive the energy-momentum tensor
through variation [24],

Tμν ∼
δSmatter

δgμν
; ð1Þ

where Smatter is the matter field action in the curved space-
time. The flat space-time limit is taken after the functional
derivative.

II. STATIC ENERGY-MOMENTUM TENSOR
MULTIPOLE EXPANSION

In this section, we consider multipole expansion of the
static EMTdistributionTμνðr⃗Þ in a finite system: particularly,
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the momentum current Tijðr⃗Þ. Multipole expansion for
electromagnetic systems is well known [25], and we repeat
it in the first subsection for the energy current or momentum
density T0i, which defines twomoment series corresponding
to two degrees of freedom of the conserved current. The
multipole expansion for gravitational systems has also been
worked out in the literature to considerable detail [15,16].
However, most of the studies in gravitational systems focus
on generation of gravitational waves. Our interest is in static
systems,which only involve time-independentmoments.We
study the moments of Tij in the second subsection that have
three independent series corresponding to three degrees of
freedom in the momentum currents. Even though most of
the results in this section are not new, they help us to
understand the physical significance of the EMT distribu-
tions in quantum-mechanical bound-state systems such as
hadrons or atoms.
We study the physics of the EMTmoments in the context

of the linearized Einstein equation in the weak gravitational
limit, in which the symmetric metric tensor gμν can be
approximated by the flat spacemetric ημν ¼ ð1;−1;−1;−1Þ
(this choice is opposite to the standard convention in the
gravitation literature) plus a small perturbation hμν,

gμν ¼ ημν − hμν: ð2Þ

The rank-2 tensor hμν has 10 independent components.
Using the coordinates’ reparametrization invariance hμν →
hμν þ ∂μζν þ ∂νζμ − ημν∂

ρζρ, where ζμ is an arbitrary vector
field, only six components are independent. It is common to
define the trace-reversed metric perturbation

h̄μν ¼ hμν −
ημν

2
hρρ; ð3Þ

and a convenient gauge choice is then the harmonic or
Lorenz gauge defined by four conditions [16],

∂μh̄μν ¼ 0; ð4Þ

which are manifestly consistent with the conservation of
the EMT.
An important reason to introduce the harmonic gauge is

that the trace-reversed metric perturbation satisfies the
linearized Einstein equation:

□h̄μν ¼ 16πG
c4

Tμν; ð5Þ

where □ ¼ ∂
μ
∂μ, G is Newton’s constant, c is the speed of

light, and Tμν is the EMT of matter fields. Because Eq. (5)
is just the standard wave equation, it can be solved as [16]

h̄μνðt; r⃗Þ ¼ 4G
c4

Z
d3r⃗0

1

jr⃗ − r⃗0jT
μν

�
t −

jr⃗ − r⃗0j
c

; r⃗0
�
: ð6Þ

For a time-dependent source, the above will lead to the
generation of gravitational waves ð∼1=rÞ in regions far
away from the source. Among the six independent physical
components of the metric, only two correspond to gravi-
tational waves. In the harmonic gauge, they are defined
by the transverse-traceless condition [16]. For example, if
the wave vector is along the z direction, then the two
independent components are h̄xy ¼ h̄yx and h̄xx ¼ −h̄yy.
We will not consider the moment series for the energy/

mass density T00, which defines

Mi1…il ¼
Z

d3r⃗rði1…rilÞT
00ðr⃗Þ; ð7Þ

where ð…Þ are symmetric and trace-free parts of the tensor.
The generation of gravity by mass multipoles is well known
[13–16].

A. Multipole expansion for energy current

Consider the conserved energy current or momentum
density T0μ in a static system. Here, for simplicity, we use
notation similar to electromagnetism, with jμ standing for
T0μ. The static conservation law becomes

∂ijiðr⃗Þ ¼ 0; ð8Þ

where j⃗ðr⃗Þ is a static current distribution. Given the vector
current, the vector field A⃗ [standing for h̄i0c4=ð4GÞ], which
satisfies the Laplace equation

∇2A⃗ðr⃗Þ ¼ −4πj⃗ðr⃗Þ; ð9Þ

can be solved as

Aiðr⃗Þ ¼
Z

jiðr⃗0Þd3r⃗0
jr⃗ − r⃗0j : ð10Þ

At the large distance of r ≫ r0, Ai allows the following
multipole expansion:

Aiðr⃗Þ ¼
X∞
l¼0

X
i1;…il

ð−1Þl
l!

ji;i1…il∂i1…∂il

1

r
; ð11Þ

where the moments of the vector current

ji;i1…il ¼
Z

d3r⃗rði1…rilÞjiðr⃗Þ; ð12Þ

and the symbol ð…Þ will again be used to denote the
symmetric and traceless part between tensor indices i1 to il.
Clearly, the subtraction of the trace removes all the
moments weighted with r2, r4, etc., which do not yield
any new tensor structure or contribute to the vector field at
large distances.
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From a group-theoretic point of view, the moments
ji;i1…il form a tensor product of spin-1 and spin-l irreduc-
ible representations of the three-dimensional rotation group
and can be decomposed into a direct sum of spin-(l − 1), l,
and lþ 1 representations,

½1� ⊗ ½l� ¼ ½l − 1� ⊕ ½l� ⊕ ½lþ 1�: ð13Þ

In terms of tensor notation, the above decomposition can be
written as [15,16]

ji;i1…il ¼ Uðlþ1Þ
ii1…il

þ ṼðlÞ
ii1i2;…;il

þ δiði1V
ðl−1Þ
i2…ilÞ; ð14Þ

The spin-lþ 1, l, and l − 1 parts Uðlþ1Þ, ṼðlÞ, and Vðl−1Þ
read explicitly as

Uðlþ1Þ
ii1…il

≡ jði;i1…ilÞ; ð15Þ

ṼðlÞ
ii1…il

≡ l
lþ 1

j½i;i1�…il ; ð16Þ

Vðl−1Þ
i2…il

≡ 2l − 1

2lþ 1
ji;ii2;…il : ð17Þ

where indices between ½…� are antisymmetrized. The
above decomposition applies for a generic vector current
j⃗ not necessarily conserved.
For a conserved current, it is easy to show that the totally

symmetric (lþ 1)-multipole always vanishes,

Uðlþ1Þ
ii1…il

≡ 0; ð18Þ

or

Z
d3r⃗rði1…riljiÞðr⃗Þ ¼ 0; ð19Þ

which holds with and without trace subtraction. It generates
a large number of identities among the moments after some
contractions of indices; for example,

2

Z
d3r⃗r⃗·j⃗ri1…ril−1¼−ðl−1Þ

Z
d3r⃗r2jði1ri2…ril−1Þ: ð20Þ

For l ¼ 1, it simply reduces to

Z
d3r⃗ r⃗ ·j⃗ ¼ 0; ð21Þ

and for l ¼ 2, the identity reads

2

Z
d3r⃗ r⃗ ·j⃗ri ¼ −

Z
d3r⃗r2ji: ð22Þ

These identities will be useful later.

The contribution of the Vðl−1Þ
i2…il

multipoles to the vector
potential is

AVðl−1Þ
i ¼ ð−1Þl

l!
Vðl−1Þ
i2…il

∂i∂i2…∂il

1

r
ð23Þ

and can be gauged away by the gauge transformation

Ai → Ai − ∂i

�ð−1Þl
l!

Vðl−1Þ
i2…il

∂i2…∂il

1

r

�
: ð24Þ

Therefore, they do not produce a physical effect in static
gauge theories. However, the time-varying V multipoles
are important for time-dependent effects such as radiation,
and they form a useful series for describing the current
distribution. The first such a moment is

Vð0Þ ¼
Z

d3r⃗ r⃗ ·j⃗ðrÞ ¼ 0 ð25Þ

as a consequence of identity [Eq. (21)]. Thus, the first
nonvanishing moment appears at

Vð1Þ
i ¼ 3

5

Z
d3r⃗

�
rir⃗ · j⃗ðrÞ −

1

3
r2ji

�

¼ −
1

2

Z
d3r⃗r2jiðr⃗Þ: ð26Þ

In the second equality, we have used identity [Eq. (22)].
Clearly, this is not independent and relates to the current
radius. The independent V-moment series starts from Vð2Þ

ij ,
and they can all be related to moments of r⃗ · j⃗.
The physically interesting moment series in the static

case are

ṼðlÞ
ii1…il

∼
Z

d3r⃗miðr⃗Þrði1…ril−1Þ ; ð27Þ

where mi is the well-known “magnetization density” [25]
in the case of the electric current or “angular-momentum
density” in case of the energy current Ti ¼ T0i,

m⃗ðr⃗Þ ¼ r⃗ × j⃗ðr⃗Þ; ð28Þ

J⃗ðr⃗Þ ¼ r⃗ × T⃗ðr⃗Þ: ð29Þ

Ṽð1Þ is just the magnetic moment in the electromagnetic and
total angular-momentum vector S⃗ for the energy current.

B. Multipole expansion for momentum currents

The momentum current Tij can be decomposed into the
three-dimensional trace and traceless parts, calling them
tensor and scalar parts, respectively. The scalar multipole
expansion defines
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SðlÞi1…il
¼

Z
d3r⃗rði1…rilÞTkkðr⃗Þ; ð30Þ

which is similar to the multipoles of the energy/mass
density.
For the tensor part, we can make the following multipole

decomposition [15,16,26]:

½2�⊗ ½l� ¼ ½l−2�⊕ ½l−1�⊕ ½l�⊕ ½lþ1�⊕ ½lþ2�: ð31Þ

In terms of tensor notation, we first define the moments
Tij;i1…:il similar to Eq. (12),

Tij;i1…:il ¼
Z

d3r⃗Tijðr⃗Þrði1…rlÞ ð32Þ

where ði1…ilÞ again denotes the traceless and symmetric
parts. The tensor decomposition then reads [15,16,26]

Tij;i1…:il ¼ Uðlþ2Þ
iji1…il

þ Ũðlþ1Þ
iji1…:il

þ δii1 S̄
ðlÞ
ji2…il

þ δii1 T̃
ðl−1Þ
ji2…il

þ δii1δji2T
ðl−2Þ
i3…il

; ð33Þ

where traceless and symmetric subtractions in ij and in
i1…:il are always assumed. The multipole series denote
[15,16,26]

Uðlþ2Þ
iji1…il

≡ Tðij;i1…ilÞ; ð34Þ

Ũðlþ1Þ
iji1…il

≡ 2l
lþ 2

Ti½j;i1�…il ; ð35Þ

S̄ðlÞi1…il
≡ 6lð2l − 1Þ

ðlþ 1Þð2lþ 3ÞTiði1;i2…:ilÞi; ð36Þ

T̃ðl−1Þ
i1…il

≡ 2ðl − 1Þð2l − 1Þ
ðlþ 1Þð2lþ 1Þ Tið½i1;i2�i3…ilÞi; ð37Þ

Tðl−2Þ
i1…:il−2

≡ 2l − 3

2lþ 1
Tij;iji1…il−2 : ð38Þ

wherewe have included certain coefficients in the definition.
Due to momentum-current conservation ∂iTij ¼ 0 in a

static system, not all the multipoles above are nonvanish-
ing. One can show that the following general identities
are true:

1

k!

X
P

Z
d3r⃗TiiPð1ÞriPð2Þ…:riPðkÞ ¼ 0; ð39Þ

where P runs over all permutations Pð1Þ;…:PðkÞ of 1;…k.
From the above, one can show that the lþ 2 and lþ 1
moments all vanish;

Ulþ2
iji1…il

≡ 0; Ũlþ1
iji1…il

≡ 0: ð40Þ

One can form more identities from Eq. (39) by performing
contractions or symmetrization/antisymmetrizations. For
example, by contracting i with one of the other indices
under permutation, one has

Z
d3r⃗Tiirði1…rikÞ ¼ −k

Z
d3r⃗riTiði1ri2…:rikÞ: ð41Þ

By contracting two of the indices under permutation,
one has

2

Z
d3r⃗Tijrjri1…:rik−2 ¼ −ðk − 2Þ

Z
d3r⃗r2Tiði1ri2…rik−2Þ;

ð42Þ

and so on. For k ¼ 2 and k ¼ 3, the above reduces to
Z

d3r⃗riTiði1ri2Þ ¼ −
1

2

Z
d3r⃗Tiirði1ri2Þ ð43Þ

and
Z

d3x⃗r2Tði1i2Þ ¼ −2
Z

d3r⃗riTiði1ri2Þ ¼
Z

d3r⃗Tiirði1ri2Þ:

ð44Þ

Notice that the preceding holds without trace subtraction
as well.
Moreover, by performing antisymmetrization of i with

one of the indices under permutation in Eq. (39), one obtains

Z
d3r⃗Ti½jrk� ¼ 0; ð45Þ

Z
d3r⃗ðr½jTk�i1ri2 þ r½jTk�i2ri1Þ ¼ 0; ð46Þ

and so on.
Given these relations, we can re-express the tensor

momentum-current multipole S̄ðlÞi1…il
in terms of that of

the scalar momentum-current multipoles. First, let us
consider l ¼ 2; in this case, the above reduces to

S̄ð2Þi1i2
¼ 12

7

Z
d3r⃗

×

�
riTiði1ri2Þ −

1

3
r2Tði1i2Þ −

1

3
Tiirði1ri2Þ

�
ð47Þ

that, by using Eqs. (43) and (44), reduces to

S̄ð2Þi1i2
¼ −2

Z
d3r⃗rði1ri2ÞTiiðr⃗Þ≡ −2σi1i2 ; ð48Þ

where the quadrupole of the scalar momentum current σi1i2
or scalar quadrupole S2 is defined as
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σij ≡ Sð2Þij ¼
Z

d3r⃗Tkkðr⃗ÞrðirjÞ: ð49Þ

In fact, for general l, one can show that the above relation
remains valid [15],

S̄ðlÞi1i2;…:il
¼ −2SðlÞi1…il

; ð50Þ

therefore, at given order l, there is only one series of
linearly independent spin-l multipoles SðlÞi1…il

.
Given the moments, one can study their contribution to

h̄ij. By standard methods, the contribution of S̄ and S reads
[15,16]

h̄Slij ¼
4Gð−1Þl

l!

�
δij
3
ðSðlÞi1…il

− S̄ðlÞi1…il
Þ∂i1…∂il

1

r

þ S̄ðlÞi1…il−1i
∂j∂i1…∂il−1

1

r

�
; ð51Þ

where symmetrization between i and j is assumed. Using
the relation [Eq. (50)], the above can be written in the form

h̄Slij ¼ δij∂kζk − ∂iζj − ∂jζj; ð52Þ

where

ζSli ¼ 4Gð−1Þl
l!

SðlÞkk;ii1…:il−1
∂i1…∂il−1

1

r
; ð53Þ

therefore, after a gauge transformation of

h̄μν → h̄μν þ ∂μζν þ ∂μζν − ημν∂
αζα; ð54Þ

we are left only with the contribution in h̄00 [15,16],

h̄Sl00 ¼
4Gð−1Þl

l!
SðlÞi1…il

∂i1…∂il

1

r
; ð55Þ

which is just the standard scalar multipole expansion with
Tkkðr⃗Þ as the scalar density, similar to the energy density
multipoles. The leading contribution comes from the scalar
quadrupole S2 moment.
Finally, we come to the other two T̃ðl−1Þ and Tðl−2Þ

multipole series. Their contributions to the trace-reversed
metric perturbation h̄ij read [15,16]

h̄T̃ðl−1Þij ¼ 2Gð−1Þl
l!

T̃ðl−1Þ
i1ii2…il−1

∂j∂i1…∂il−1

1

r
þ ði → jÞ ð56Þ

and

h̄Tðl−2Þij ¼ 4Gð−1Þl
l!

Tðl−2Þ
i2…il

∂i∂j∂i2…∂il

1

r
: ð57Þ

Similar to the case of the vector current, they can all be
gauged away through gauge transformations

ζT̃ðl−1Þi ¼ 2Gð−1Þl
l!

T̃ðl−1Þ
i1ii2…il−1

∂i1…∂il−1

1

r
; ð58Þ

and

ζTðl−2Þi ¼ 2Gð−1Þl
l!

Tðl−2Þ
i2…il

∂i∂i2…∂il

1

r
: ð59Þ

Because ∂
iζT̃ðl−1Þi ¼ ∂

iζTðl−2Þi ¼ 0 due to antisymmetriza-
tion in Tðl−2Þ and ∂

2 1
r ¼ 0 at a large distance, the gauge

transformationwill not produce new terms in h̄00. Therefore,
both series T̃ðl−1Þ and Tðl−2Þ have no physical effect at a large
distance in the static case.
However, moment series T̃ðl−1Þ and Tðl−2Þ still provide

useful characterization of the momentum-current distribu-
tion (and do have physical effects in time-varying systems).
At l ¼ 1, the T̃ð0Þ vanishes. At l ¼ 2, the nonvanishing
moment is related to the tensor momentum-current monop-
ole or tensor monopole T0 for short:

Tð0Þ ¼ 1

5

Z
d3r⃗Tijðr⃗Þ

�
rirj −

δij
3
r2
�

≡ 2

15

Z
d3r⃗r2sðrÞ; ð60Þ

where the second line serves as a definition for sðrÞ (shear
pressure). Using Eq. (43), it is related to the “scalar
momentum-current radius,”

Tð0Þ ¼ −
1

6

Z
d3r⃗r2Tiiðr⃗Þ

¼ −
1

2

Z
d3r⃗r2pðr⃗Þ; ð61Þ

where Tii is proportional to the so-called pressure pðrÞ in
the other literature [18,20–22]. We choose to define the
tensor-MC monopole moment of a system as

τ ¼ −Tð0Þ=2; ð62Þ

which relates to the “D term” Dð0Þ [17] as τ ¼ Dð0Þ
4M , where

M is the mass of the whole system.
We next come to the T̃1 dipole T̃ð1Þ

ij . It is antisymmetric
in ij and can be written as

T̃ð1Þ
ij ¼ 2

5

Z
d3r⃗rkTk½iðr⃗Þrj�: ð63Þ

If one defines the dilatation current at t ¼ 0,

jiD ¼ rkTki; ð64Þ
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then T̃ð1Þ can be conveniently expressed as the “magnetic
moment” of the dilatation current. Due to Eq. (46), T̃ð1Þ

ij ¼ 0
identically.
To summarize, there are three series of multipoles for the

momentum current: SðlÞ, T̃ðl−1Þ, and Tðl−2Þ. The leading-
order moments are the tensor monopole T0 τ ¼ −Tð0Þ=2
and the scalar quadrupole S2 σij ¼ Sð2Þij , with the vanishing
tensor dipole T̃1. To the next order, one has the scalar
octupole S3, tensor quadrupoles T̃2 and T2, the tensor
dipole T1, and so on.

III. EMT FORM FACTORS OF HADRONS
AND GRAVITATIONAL MULTIPOLES

In this section, we consider examples of the gravitational
multipoles in hadrons of different spins. Not all hadrons are
capable of generating all types of gravitation multipoles.
For the spin-0 particle such as the pion or 4He nucleus, only
two multipoles can be generated: one corresponds to the
total mass M (mass monopole M0), and the other to the
momentum-current tensor monopole τ (T0). For a spin-1=2
hadron such as the proton and neutron, one can generate in
addition the angular-momentum dipole (Ṽ1). For a spin-1
resonance, such as a ρ meson, one can generate the mass
quadrupole M2, the scalar quadrupole S2, and the tensor
quadrupole T2. In the following, we will discuss each of
them in turn.
We work in the limit in which the hadron masses are

large so that their Compton wavelength is negligible [27].
This is true in the large Nc limit for baryons (and certainly
not true for a pion). In this case, one can directly Fourier
transform the form factors to the position space to obtain
the space density distributions. For particles for which the
Compton wavelength is not small as compared to its size,
an option is to go to the infinite momentum frame [28–30]
where one has to be content with a two-dimensional
interpretation. In practice, we adopt the standard Breit
frame approach as the definition of a spatial density. When
studying the gravitational perturbation at the distance r
much larger than the Compton wavelength, the formula in
terms of the form factors is accurate: independent of the
density interpretation.

A. Spin-0 case

Let us first consider a scalar system. The EMT matrix
element between the plane wave states jPμi and jPμ0 i
defines the gravitational form factors A and C [11,18]:

hP0jTμνjPi ¼ 2PμPνAðq2Þ þ 2ðqμqν − gμνq2ÞCðq2Þ; ð65Þ

where qμ ¼ P0μ − Pμ is the momentum transfer. The
momentum conservation requires Að0Þ ¼ 1. In the Breit
frame where P⃗þ P⃗0 ¼ 0, the Fourier transformation of
MAðqÞ corresponds to a part of the mass density ρmðr⃗Þ.

The form factor Cðq2Þ is related to the tensor-MC
monopole distribution in the system, besides contributing
to the mass density ρmðr⃗Þ. In fact, if we Fourier transform
Tij to the coordinate space, it has the form

Tijðr⃗Þ ¼ ð∇2δij −∇i∇jÞCðrÞ
M

; ð66Þ

where CðrÞ is the Fourier version of Cðq2Þ; and we have
divided a factor 2M from the relativistic normalization
(hPjP0i ¼ ð2πÞ32P0δ3ðP⃗ − P⃗0Þ). A simple calculation
shows that the MC monopole moment T0 is just

τ ¼ Cðq ¼ 0Þ
M

; ð67Þ

which relates to theD term [17] as τ ¼ Dð0Þ
4M . For a free spin-

0 boson [11],

τboson ¼ −
ℏ2

4M
ð68Þ

when the proper SI unit of kg · m4 · s−2 is restored.
We define a fundamental unit of τ0 ¼ ℏ2

4M, we write
τboson ¼ gbτ0, and then gb ¼ −1. For a minimally coupled
interacting theory, the monopole moment remains the same
[24]. For more complicated examples including nonmini-
mal coupling, QCD pseudo-Goldstone bosons, as well as
large nuclei, see Refs. [18,24,31] for extensive discussions.
Monopole density distribution is related to sðrÞ defined
in Eq. (60).
For a system with long-range force, such as a charged

particle, it can be shown thatCðq⃗ → 0Þ is infrared divergent
[11,32–36]:

Cðq⃗Þ
2M

→
απ

16jq⃗j þ
α

6πM
ln

q⃗2

M2
: ð69Þ

The first term is due to the large r asymptotic decay of the
Coulomb potential and is classical in nature [11,34],
whereas the second term is quantum in nature. It can be
shown [11] that a divergent monopole moment Cð0Þ
(τeff ¼ þ∞) will generate 1=r2 correction to the space-
time metric

h̄ijðr⃗Þ ¼ Gαr̂ir̂j
r2

þ 4Gα
3πMr3

ðr̂ir̂j − δijÞ; ð70Þ

where the first term comes form the linearly divergent part
πα
16jqj of CðqÞ, whereas the second term is due to the
logarithmic divergent term α

6πM ln q⃗2

M2.

B. Cðq2Þ contribution to gravitational potential

According to Sec. II, it appears that the tensor monopole
τ does not contribute to the long-distance properties of the
gravity: other than it produces a pure gauge contribution.
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However, form factor Cðq2Þ does generate a short-distance
static gravitational potential h00 through its contribution to
the energy density.
It can be shown by solving the linearized Einstein

equation that

h00C ðr⃗Þ ¼ −
8πG
c4M

CðrÞ; ð71Þ

hijCðr⃗Þ ¼
8πG
c4M

CðrÞδij; ð72Þ

thus CðrÞ contributes a part of the gravitational potential at
a short distance. The total static potential will be added by
the form factor Aðq2Þ contribution

h00A ðr⃗Þ ¼ 2

c4
VðrÞ; ð73Þ

hijA ðr⃗Þ ¼
2

c4
VðrÞδij; ð74Þ

where

VðrÞ ¼
Z

d3r⃗0
GM

jr⃗ − r⃗0jAðr⃗
0Þ: ð75Þ

At large r, hμνC decays exponentially, whereas hμνA reduces to
a point-mass Newton potential. For a nonrelativistic probe,
only h00 matters.

C. Spin-1=2 case

For a spin-1=2 system, the matrix element of the EMT
is [37–39]

hP0jTμνjPi ¼ ūðP0S0Þ
�
Aðq2ÞγðμP̄νÞ þ Bðq2Þ P̄

ðμiσνÞαqα
2M

þ Cðq2Þ q
μqν − gμνq2

M

�
uðPSÞ; ð76Þ

where P̄μ ¼ ðPþ P0Þμ=2. There are now three dimension-
less gravitational form factors :Aðq2Þ, Bðq2Þ, and Cðq2Þ.
The physics of Aðq2Þ is the same as that for the spin-0 case.
The form factor Bðq2Þ is related to the angular-

momentum distribution in the system. Indeed, the momen-
tum density T0i is

T⃗ðr⃗Þ ¼ −
1

2
S⃗ ×∇ðAðrÞ þ BðrÞÞ: ð77Þ

where AðrÞ and BðrÞ are Fourier transformations of A and
B form factors, which generate the new h̄i0 perturbation
through the angular-momentum density S⃗ðr⃗Þ ¼ r⃗ × T⃗ðr⃗Þ.
The Ṽ1 moment of the momentum density yields total

angular momentum S⃗. Angular-momentum conservation
requires Bðq2 ¼ 0Þ ¼ 0.
The MC monopole moment is zero for a free fermion

[40]. In general, a spin-1=2 system has

τ ¼ Cð0Þ
M

: ð78Þ

There have been extensive studies in the literature about
Cð0Þ for the nucleon [18,41]. In particular, lattice QCD
calculations have been made for the separate contributions
from quarks and gluons [22,42]. It appears that τN is
negative from various nucleon models as well as the
preliminary lattice result.

D. Spin-1 case

Unlike the spin-0 and spin-1=2 cases, a spin-1 hadron
has six independent gravitational form factors [12,43,44],

hP0;ϵfjTμνð0ÞjP;ϵii

¼−2P̄μP̄ν

�
ðϵ⋆f ·ϵiÞAðq2ÞþEαβqαqβ

Ãðq2Þ
M2

�

þJðq2ÞiP̄
ðμSνÞαqα
M

−2ðqμqν−gμνq2Þ
�
ðϵ⋆f ·ϵiÞCðq2ÞþEαβqαqβ

C̃ðq2Þ
M2

�

− ½ðEμνq2−Eμαqνqα−EανqμqαþgμνEαβqαqβ�Dðq2Þ:
ð79Þ

where ϵi and ϵ�f are polarization four vectors of the initial
and final hadrons, satisfying ϵi · P ¼ ϵf · P0 ¼ 0. To sim-
plify the expression, we also use symmetric polarization
density matrix

Eμν ¼ 1

2
ðϵ�μf ϵνi þ ϵ�νf ϵμi Þ; ð80Þ

and the antisymmetric polarization tensor

Sμν ¼ iðϵ�μf ϵνi − ϵ�νf ϵμi Þ: ð81Þ

For the convenience of calculating multipoles, the above
definition of the dimensionless form factors is slightly
different from other conventions. An example of ρ meson
EMT form factors can be found in [45] using chiral
perturbation theory and in [46] from Nambu–Jona–
Lasinio model calculation.
To relate the above form factors to gravitational multi-

poles, we consider the static limit where initial and final
states have small momenta, and ϵ0 ¼ 0 and ϵ⃗i ¼ ϵ⃗f ¼ ϵ⃗ are
arbitrary. Looking at T00, Aðq2 ¼ 0Þ ¼ 1 gives rise to the
mass-monopole contribution, whereas Ãðq2 ¼ 0Þ contrib-
utes to the mass quadrupole M2,
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Mij ¼
Z

d3r⃗

�
rirj −

1

3
δijr2

�
ρmðr⃗Þ ¼

2Ãð0Þ
M

Êij ð82Þ

where Êij is the traceless part of Eij. The mass quadrupole
generates 1=r3 perturbation in h̄00 in the following form:

h̄00 ¼ 2GMij

r3
ð3r̂ir̂j − δijÞ: ð83Þ

The momentum density T0i in Fourier space is

T0i ¼ i
2
SijqjJðq2Þ ¼

i
2
ðS⃗ × qÞiJðq2Þ; ð84Þ

where the axial vector S⃗ ¼ Reðiϵ⃗⋆ × ϵ⃗Þ, from which one
identifies Jðr⃗Þ as the angular-momentum dipole density.
Angular-momentum conservation constraints Jðq2¼0Þ¼1.
From the expression for Tij, one reads off the tensor-MC

monopole T0 moment

τ ¼ Cð0Þ
M

; ð85Þ

which is zero for a free photon. The monopole moment of
the ρ meson appears close to that of the pion. For other
spin-1 systems including deuterons, see Ref. [18].
There is also a new tensor-MC quadrupole T2 moment

Tð2Þ
ij ¼ −

C̃ð0Þ
48M2

Êij ð86Þ

where the multipole series Tð2Þ
ij is defined in Eq. (38). The

contribution C̃ð0Þ to the scalar momentum current is new
for spin-1 systems.
Finally, the scalar-MC quadrupole moment S2 can be

calculated as

σij ¼
Dðq2 ¼ 0Þ

M
Êij; ð87Þ

Thus, the tensor quadrupole is proportional to the Dð0Þ
form factor defined above. After gauge transformation, it
will generate a contribution to h̄00 as

h̄τ;00 ¼ 2Gσij
r3

ð3r̂ir̂j − δijÞ; ð88Þ

which can be combined with the one from the mass
quadruple into the form

h̄00 ¼ 2GðMij þ σijÞ
r3

ð3r̂ir̂j − δijÞ; ð89Þ

in agreement with the general results in Refs. [15,16].

IV. SCALAR MOMENTUM-CURRENT
DISTRIBUTION AND T0 MOMENT

IN HYDROGEN ATOM

In this section, we study the EMT of the hydrogenlike
atom. Contrary to the single charged electron, hydrogenlike
atoms are charge neutral and are expected to have a finite
scalar-MC monopole moment τ. We first show that, in the
quantum mechanics, it is possible to construct a conserved
EMTusing quantum-mechanical wave functions. However,
it still has a long-range Coulomb tail due to the interaction
between the electron and the proton. We then show that the
above conserved EMT can be justified in the field theoretic
framework and identified as the leading-order electron
kinetic contribution plus the leading-order Coulomb pho-
ton exchange contribution. By adding the single electron
and single proton contributions, the Coulomb tail gets
removed; and the resulting monopole moment τ is equal to
the basic unit τ0 ¼ ℏ2=4me and positive. We argue that the
result is accurate to the leading order in α.
Here, we should emphasize that instead of the so-called

D term, it is the tensor-monopole moment with the mass
dimension of −1 that is additive for composite systems. For
the hydrogen atom, this means that the proton’s tensor-
monopole moment due to strong interaction can simply be
added to the quantum electrodynamics (QED) contribution.
The strong interaction part of the proton’s tensor-monopole
moment, being proportional to the proton’s mass inverse 1

M,
is three orders of magnitude smaller as compared with
the QED contribution that is of order 1

me
. This is similar to

the electron magnetic moment ∼ 1
me

vs proton magnetic

moment ∼ 1
Mp
. In particular, in the infinite heavy proton

limit, the tensor-monopole moment of the hydrogen atom
remains finite and is purely of QED origin, which will be
calculated in this section. Because it is well known that the
bound state in QED due to the Coulomb force is stable
without strong interaction (e.g., the famous “stability of
matter”), this example shows that the sign of the EMT has
little to do with the mechanical stability.

A. Hydrogen atom: quantum mechanics

The electron wave function ϕ of an hydrogen atom
satisfies the Schrödinger equation

�
−

1

2m
∇2 − eVpðrÞ

�
ϕðr⃗Þ ¼ Eϕðr⃗Þ; ð90Þ

where (e is the proton charge and positive)

∇2VpðrÞ ¼ −eδ3ðr⃗Þ ð91Þ

is the potential of the static charge of the proton, and
Vp ¼ e=ð4πrÞ. For convenience, we chose me ¼ 1. One
further defines the static potential Ve for the electron as
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∇2VeðrÞ ¼ ejϕðr⃗Þj2; ð92Þ

which can be solved for the ground state as

VeðrÞ ¼
ee−2αrð1þ αr − e2αrÞ

4πr
; ð93Þ

where α ¼ e2=4π.
By nonrelativistic reduction of the Dirac equation, one

can construct the following EMT Tij
QM, which consists of a

kinetic term

Tij
K ¼ −

1

4me
ðϕ†

∂
i
∂
jϕ − ∂

iϕ†
∂
jϕþ c:c:Þ ð94Þ

plus a potential term made of interacting electric fields of
the proton and electron:

Tij
V ¼ δij∇Vp ·∇Ve − ∂

iVe∂
jVp − ∂

iVp∂
jVe: ð95Þ

The trace of Tij
QM ¼ Tij

V þ Tij
K can be calculated as

Tii
QM¼jϕj2ð2EþeVpÞþ∇ ·ðVp∇VeÞþ

1

4me
∇2jϕj2: ð96Þ

It is easy to show that Tij
QM is conserved for the ground

state: ∂iT
ij
QM ¼ 0.

Therefore, it can be written in a normalized state as

Tij
QMðr⃗Þ ¼ ðδij∇2 −∇i∇jÞCQMðrÞ

me
; ð97Þ

Tii
QMðrÞ ¼ 2∇2

CQMðrÞ
me

; ð98Þ

from which the CQM can be calculated as

CQMðrÞ
me

¼ 1

2∇2
Tii
QM ¼ e−2αrαð2αrþ 1Þ

16πr2
−

α

16πr2
: ð99Þ

Notice that in the infinite heavy proton limit, it is natural to
have the electron mass me in the denominator. Clearly, the
Coulomb tail of −α=16πr2 prevents a finite Cðq ¼ 0Þ.
Physically, the self-energies of the proton and electron will
generate opposite contributions, which cancel the Coulomb
tail from the above expression (the EMTs of the electron
and proton are separately conserved). However, this piece
of physics is outside the usual nonrelativistic quantum
mechanics.
For the time being, we can subtract this Coulomb tail and

define an effective CeffðrÞ in the infrared region where
r ∼ 1

α ,

CeffðrÞ
me

¼ e−2αrαð2αrþ 1Þ
16πr2

; ð100Þ

which is of order one when the momentum transfer is of the
order of the inverse Bohr radius. In particular, the scalar-MC
monopole moment of τ ¼ Cð0Þ

me
for the hydrogen atom reads

τ ¼ Ceffðq ¼ 0Þ
me

¼ τ0½1þOðα ln αÞ�; ð101Þ

where τ0 ¼ ℏ2
4me

is the basic unit defined before. Below, we
show that in quantum field theory, the long-range Coulomb
tail is indeed removed and Eq. (101) is the correct MC
monopole moment.

B. Hydrogen atom: Field theory

The above calculation can in fact be justified in the field
theoretical framework. Let us consider the bound state in
quantum electrodynamics between two types of fermions:
the standard negative charged electron with mass me and
the positive charged “proton” with mass M. At an energy
scale much smaller than the proton massM, the proton can
be approximated by an infinitely heavy static source N
represented by an auxiliary fieldN. The Lagrangian density
of the system reads

L ¼ iN̄v ·DN þ LQED; ð102Þ

where N represents the infinitely heavy proton moving
along the vμ ¼ ð1; 0; 0; 0Þ direction. The Lagrangian pre-
serves Lorentz invariance if vμ is also treated as an auxiliary
field. The EMT of the above system can be shown as

Tμν ¼ i
4
N̄ivðμDνÞN þ Tμν

QED: ð103Þ

More precisely, the heavy source only contributes to the T0i

part of the EMT. To proceed, we fix the Coulomb gauge as
∇ · A⃗ ¼ 0 [47], in which the static potential A0 can be
solved as

A0ðt; x⃗Þ ¼ −
e
∇2

ðψ†ψ − N̄NÞðt; x⃗Þ: ð104Þ

By using E⃗ ¼ −∂tA⃗T −∇A0 and the explicit solution of A0,
the transverse and longitudinal parts of the electric field
decouple from each other; and the Hamiltonian reads

H¼1

2

Z
d3x⃗ðE⃗2

Tþ B⃗2
TÞþ

Z
d3x⃗ψ†ð−iα⃗ ·D⃗Tþmγ0Þψ

þe2

2

Z
d3x⃗d3y⃗

ðψ†ψ−N̄NÞðx⃗Þðψ†ψ−N̄NÞðy⃗Þ
4πjx⃗− y⃗j ; ð105Þ

where the last term represents the Coulomb interaction.
We now consider the bound state formed by a pair of

electrons and the heavy proton. The leading wave function
reads
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jp⃗i ¼
Z

d3k⃗
ð2πÞ3

ϕðk⃗Þ
2Ek

jk⃗iej − k⃗þ p⃗iN; ð106Þ

where to the leading order in α, ϕðk⃗Þ satisfies the Bethe–
Salpeter equation [48] induced by Coulomb-photon
exchanges; see Fig. 1 for a depiction of the equation. It
can be verified that it is nothing but the standard
Schrödinger equation [Eq. (90)] in nonrelativistic limit
jk⃗j ≪ me, and it is characterized by two scales: the binding
energy α2me, and the inverse Bohr radius αme.
Given the above wave function, one can calculate the

matrix element of Tiiðr⃗Þ. At tree level, there is only one
diagram: the electron kinetic contribution shown in Fig. 2.
One can show that this contribution is exactlyTij

K in Eq. (94).
We then consider radiative corrections starting from

OðαÞ. Due to the fact that the velocities are of order α,
only the Coulomb-photon contribution needs to be
included. Furthermore, the one-loop contributions can be
classified into interference and single electron/single proton
diagrams; see Figs. 2 and 3 for a depiction. The interference
diagram can be calculated as

Tiiðq⃗Þ¼−e2
Z

d3kd3k0

ð2πÞ6 ϕ†ðk0Þϕðk−k0Þ k⃗ ·ðk⃗− q⃗Þ
k⃗2ðk⃗− q⃗Þ2

; ð107Þ

which is equivalent to

Tii
V ¼ ∇Ve ·∇Vp: ð108Þ

Therefore, we found that the leading-order electron kinetic
and interference contributions in Fig. 2 will exactly lead to
the conserved Tii

QM in Eq. (96) with a Coulomb tail πα
8jqj.

Clearly, in order to cancel the Coulomb tail, one must
add the electron and proton self-energy contributions. The
electron contribution is also shown in Fig. 2 and can be
calculated in the region q ∼OðαmeÞ as

CeðqÞ
me

¼ απ

16jqj ×
16α4

ðq2m2
e
þ 4α2Þ2

; ð109Þ

where the first factor απ
16jqj is just the standard Coulomb tail,

and the second factor comes from the dressing in the bound-
state wave function. Similarly, the proton contribution is of
the form in the M ≫ me limit,

CpðpÞ
me

¼ απ

16jqj ×
16α4

ð q2M2 þ 4α2Þ2
; ð110Þ

and can be approximated simply by the Coulomb tail when
q ∼ αme. Clearly, the above formulas can be justified only
when the momentum transfer is small and are invalid in the
ultraviolet region when q is comparable with the particle
masses.
In conclusion, in the region jqj ≤ OðαmeÞ, the C form

factor of the hydrogen atom reads

FIG. 1. Bethe–Salpeter equation for wave function ϕ denoted
by oval blob. Double line represents propagator of proton field,
and single line represents electron propagator. Dashed line
represents exchange of a Coulomb photon.

FIG. 2. Order-Oð1Þ electron kinetic contribution (top), Cou-
lomb photon interference (middle), and single electron (bottom)
contributions to Tij. Dashed lines represent Coulomb photons,
and crossed circles denote operator insertions. Notice infrared
divergences for CðqÞ at q ¼ 0 are cancelled between interference
and single electron and proton (not shown) contributions.

FIG. 3. Mixed contributions between radiative (wavy line) and
Coulomb photons. IR divergences regulated by binding energy
differences.
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CHðqÞ
me

¼ 1

2með q2

α2m2
e
þ 4Þ

−
α

4jqj
�
π

2
− Arctan

q
2αme

�

þ απ

jqj
1

ð q2

α2m2
e
þ 4Þ2

þ απ

jqj
1

ð q2

α2M2 þ 4Þ2
: ð111Þ

From these, the monopole moment for the hydrogen atom is

τH ¼ CHð0Þ
me

¼ τ0½1þOðα ln αÞ�: ð112Þ

The gH ¼ 1 except for a small correction of order α, which is
a result with the opposite sign from a pointlike boson.
Given the form factor Cðq2Þ, we can obtain the scalar

momentum current or pressure [18,19],

pðrÞ ¼ 1

3
Tii ¼ 2

3me

1

r2
d
dr

r2
dCðrÞ
dr

; ð113Þ

which can be shown to be positive for small r and negative
for large r. On the other hand, the momentum-current
monopole density distribution

τðrÞ¼−
2π

5
r2
�
rirj−

1

3
r2δij

�
TijðrÞ¼−

4π

15
r4sðrÞ; ð114Þ

where

sðrÞ ¼ −
r
me

d
dr

�
1

r
dCðrÞ
dr

�
;

has been called shear pressure. Unfortunately, there is no
simple expression for it in positional space without using
the Meijer G function. A numerical result for τðrÞ is shown
in Fig. 4, which is positive definite at all r and finite at
r ¼ 0. A plot of CðrÞ is shown in Fig. 5.

We also show a plot of the momentum flow Tix in
3-dimensional space in Fig. 6. Any surface integral of the
vector field yields the flux of the x-component momentum
through the surface or force along the x direction, which
would produce a pressure in this direction if the momentum
current gets totally absorbed. Any closed surface integral
yields zero, indicating momentum conservation or net null
force through any size volume. Before ending the section,
we add one brief comment on theOðαÞ corrections to Cð0Þ.
By including radiative photons, the degree of infrared
divergences is reduced due to the fact that the radiative
photon couples to the three-velocity v⃗ of the electron in the
Coulomb gauge. Therefore, the mixing diagram where
Coulomb and radiative photons couple to each other can
be logarithmically divergent, which is confirmed by the
single electron calculation [11,32,33,35,36]. However, the

FIG. 4. Tensor momentum-current monopole density τðrÞ in
Eq. (114) as function of r in hydrogen atom, where r is in a unit of
the Bohr radius a0 ¼ ℏ

αmec
and τðrÞ is in a unit of ℏ2

4me

1
a0
with the SI

dimension of kg·m3

s2 . It is positive and finite as r → 0. Proton mass
M approximated by ∞.

FIG. 5. The 4πr2 CðrÞ
me

as a function of r in the hydrogen atom,

where r is in a unit of the Bohr radius a0 ¼ ℏ
αmec

and 4πr2 CðrÞ
me

is in a

unit of ℏ2
4me

1
a0
. It has the same SI dimension of kg·m

3

s2 . as that of τðrÞ. It
is positive and finite as r → 0. According to Eq. (71), it contributes
to a part of gravitational potential inside the hydrogen atom.

FIG. 6. Conserved x-component-momentum-current distribu-
tion Tixðr⃗Þ as a vector field in i, with arrows indicating directions
of current flow; x direction points to right in horizontal direction.
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divergence is expected to be regulated by the binding
energy differences in a way similar to the famous Lamb
shift, leading to finite Cð0Þ at order OðαÞ. See Fig. 3 for a
depiction. We will leave the calculation of order α correc-
tions in a separate publication [49].

V. COMMENTS ON MECHANICAL STABILITY
AND CONCLUSIONS

The QCD EMT of a hadron has often been related to the
stress tensor of a continuous medium [50]. If this analogy is
of value, one can introduce the concept of pressure, shear
pressure, mechanical stability, etc. [18,19,51,52], and try to
understand a bound state in quantum theory using the terms
of classical mechanics. However, this analogy is of limited
use and can even be misleading at times.
The scalar momentum-current TiiðrÞ has been identified

as the pressure pðrÞ, which is true in some models of
continuous media. However, the two concepts have differ-
ent physical significance and are not interchangeable in
general. The concept of pressure normally stands for an
isotropic force from random microscopic motions in all
possible directions and is a positive quantity for stable
systems. However, TiiðrÞ is not positive definite and carries
with it the sense of a directional flow, analogous to
“acroscopic motion” in a fluid.
The proper analog of the momentum currents Tij may be

the radiation pressure [23,25]: Assuming a directional
momentum current gets absorbed on a surface, the surface
experiences a force or a pressure that can be measured by
the momentum passing through the surface per unit time. In
this case, the pressure is not a scalar as in thermal systems;
rather, it depends on the directions of the momentum flow
as well as the surface area. Thus, a negative pressure only
means the momentum flow is negative with respect to a
reference direction. The Laue condition

Z
drr2pðrÞ ¼ 0 ð115Þ

is trivially related to the conservation of the momentum
current [18,53]. Using pressure or “force” to characterize
the momentum current may generate confusion because
they are not acting on any part of the system itself but on
some fictitious surfaces that would absorb the current
entirely through some interactions. In our view, the most
interesting way to characterize Tii is by its multipoles
generating characteristic space-time perturbation. This is
similar to using the magnetic moment, etc., to describe a
current distribution, which generates a particular type of
magnetic field.

Further mechanical stability conditions on Tij derive
from comparing it the pressure and shear pressure distri-
butions with a mechanical system. For example, it has been
speculated that a negative D term [Cðq ¼ 0Þ] is needed for
mechanical stability [51]. However, the sign of the scalar-
MC monopole moment depends on the flow pattern of the
momentum currents. Reversing the direction of the
momentum currents at every point in space in classical
physics will reverse the D term but should lead to another
stable flow pattern. Thus, the sign of the D term cannot be
related to mechanical stability. In fact, in the example of the
hydrogen atom, the force from the momentum flow is
directed toward the center [using the CeffðrÞ defined in
Eq. (100)]; and the D term is positive. On the other hand,
we know perfectly well that the hydrogen atom is stable due
to quantum physics, which already has a well-defined sense
of stability. Thus, using the momentum-current flow to
judge the stability of a quantum system appears to not be
useful, and is furthermore unnecessary.
To summarize, we have revisited the gravitational fields

generated by a static source by performing the multipole
expansion [15,16] of the corresponding energy, energy
current, and momentum-current densities. For a static and
conserved EMT, there are six series of nonvanishing
multipoles: one series for T00, two series for T0i, and three
series for Tij. They are important characterizations of
spatial distribution of the corresponding energy and
momentum-current distributions; although, at large distan-
ces, only three series will contribute to the physical metric
perturbation in the static case.
In particular, the Cðq2Þ form factor or the D term is

related to the tensor-MC monopole moment T0, which has
a basic unit of τ0 ¼ ℏ2=4M. As a concrete example, we
have calculated the Cðq2Þ form factor for the hydrogen
atom at the small q region and found that the MCmonopole
moment is positive, which is opposite to that of a pointlike
boson. Moreover, we argue that the notion of mechanical
stability or pressure is of limited significance when applied
to bound states in quantum field theories.
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