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Abstract. Numerical solutions of Partial Differential Equations with Finite Element Method
have multiple applications in science and engineering. Several challenging problems require
special stabilization methods to deliver accurate results of the numerical simulations. The
advection-dominated diffusion problem is an example of such problems. They are employed to
model pollution propagation in the atmosphere. Unstable numerical methods generate unphys-
ical oscillations, and they make no physical sense. Obtaining accurate and stable numerical
simulations is difficult, and the method of stabilization depends on the parameters of the partial
differential equations. They require a deep knowledge of an expert in the field of numerical
analysis. We propose a method to construct and train an artificial expert in stabilizing nu-
merical simulations based on partial differential equations. We create a neural network-driven
artificial intelligence that makes decisions about the method of stabilizing computer simulations.
It will automatically stabilize difficult numerical simulations in a linear computational cost by
generating the optimal test functions. These test functions can be utilized for building an un-
conditionally stable system of linear equations. The optimal test functions proposed by artificial
intelligence will not depend on the right-hand side, and thus they may be utilized in a large class
of PDE-based simulations with different forcing and boundary conditions. We test our method
on the model one-dimensional advection-dominated diffusion problem.

1 INTRODUCTION

The finite element method utilizes high-order basis functions, e.g., Lagrange polynomials in
the classical finite element method (FEM) [5] or B-spline basis functions in isogeometric analysis
(IGA) [2]. There are several challenging problems solved by FEM and IGA, such as analysis of
the construction of civil engineering structures, cars or airplanes [7], geophysical applications like
identification of oil and gas bearing formations [12], bioengineering simulations like modeling
of cancer growth [8], blood flow simulations [14], wind turbine aerodynamics [4] or modeling
of propagation of acoustic and electromagnetic waves over the human head [3]. They require
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special stabilization methods to deliver high accuracy numerical solution.
The Deep Neural Networks (DNN) can be modeled as a sequence of layers, represented by

linear operators and non-linear activation functions between them

yout = ANN(xin) =

θnσ(...σ(θ2σ(θ1xin + ϕ1) + ϕ2) + ...) + ϕn (1)

where {θj}j=1...n are matrices of different sizes, and {ϕj}j=1...n are different length vectors, and
both vectors and matrices coefficients are obtained by the training procedure. The sparsity and
the number of the matrices depends on the selected deep neural network kind. There are several
choices possible for the non-linear activation function (sigmoid, rectified linear unit (ReLU) or
leaky ReLU [1, 15]), and the classical choice is the sigmoid function σ(x) = 1

1+e−x . In the end,
the result of the approximation with the DNN is a composition of the activation functions and
linear operators.

We plan to train the neural network to find the optimal test functions stabilizing the PDE
solvers. The simulations of difficult, unstable time-dependent problems, like advection-dominated
diffusion or Navier-Stokes problems [9, 10] have several important applications in science and en-
gineering. There are several stabilization methods, such as Streamline-Petrov Upwind Galerkin
method (SUPG) [6], discontinuous Galerkin method (DG) [11, 13], as well as residual minimiza-
tion (RM) method [9, 10].

We will use the Petrov-Galerkin formulation with the optimal test functions. It can be derived
directly from the RM method. The RM for a given trial space it uses the larger test space, while
for the Petrov-Galerkin formulation, we can compute the optimal test functions living in the
subspace of the test space. The number of the optimal test functions is equal to the dimension
of the trial space. The Petrov-Galerkin formulation, used for stabilization, enables interfacing
with DNN. The DNN can be trained by running several simulations and using the computations
of the optimal test functions. The test functions will be parameterized using the B-spline basis.
The input to the DNN will be the problem parameters and the trial space. The output from the
DNN will be the optimal test functions coefficients. Later, by running the simulations in every
time step, using the actual configuration of parameters from the current time step, we can ask
the DNN to provide the optimal test functions that will stabilize the computations for a given
trial space.

2 EXEMPLARY ONE-DIMENSIONAL ADVECTION-DOMINATED DIFFUSION
PROBLEM

Let us introduce a one-dimensional advection-dominated diffusion problem

ϵu′′(x) − u′(x) = −1 x ∈ [0, 1]; u(0) = u(1) = 0 (2)

The exact solution to this problem is

y(x) = ((e1/ϵ − 1)x + 1 − ex/ϵ)/(e1/ϵ − 1) (3)

The problem in a weak form is given by:
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Figure 1: Space of linear B-splines, and space of quadratic B-splines defined over elements [0,0.8],
[0.8,0.9] and [0.9,1].

find u ∈ U = H1
0 (0, 1) such that

b(u, v) = l(v) ∀v ∈ V = H1
0 (0, 1) (4)

b(u, v) = ϵ
(
u′(x), v′(x)

)
L2(0,1)

+
(
u′(x), v(x)

)
L2(0,1)

=

ϵ

∫ 1

0
u′(x), v′(x)dx +

∫ 1

0
u′(x), v(x)dx (5)

l(v) = (1, v(x))L2(0,1) =

∫ 1

0
v(x)dx (6)

When the parameter ϵ gets small, the problem becomes numerically unstable.
To illustrate the stabilization issue, we will start with a mesh already refined towards the

right endpoint, the gradient of the solution is large.
Let us introduce the knot vector [0 0 0.8 0.9 1 1] defining four linear B-splines over three

elements [0, 0.8], [0.8, 0.9] (how to translate the knot vector into B-splines is defined here
https://epodreczniki.open.agh.edu.pl/handbook/1088/module/ 1098/reader and in the next sec-
tions there) and [0.9, 1] defining the trial space Uh = span{B1,1, B2,1, B3,1, B4,1} as presented in
left-panel in Figure 1.

Let us also introduce the knot vector [0 0 0 0.8 0.8 0.9 0.9 1 1 1] defining seven quadratic
B-spline basis functions with C0 separators spanning the test space presented in right-panel in
Figure 1, Vh = span{B1,2, B2,2, B3,2, B4,2, B5,2, B6,2, B7,2}.

3 GALERKIN FORMULATION

The discrete Galerkin form is given by: find uh(x) =
∑

i=1,...,7 uiBi,1 (quadratic B-splines)
such that

b(uh, vh) = l(vh)

∀vh ∈ Vh = span{B1,2, B2,2, B3,2, B4,2, B5,2, B6,2, B7,2} (7)

We can also enforce zero Dirichlet b.c. be setting the first and the last row in the system,
corresponding to the first and the last trial function, to zero, with 1 on diagonal and 0 on the
right-hand side. The Galerkin formulation:

Au = F (8)
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Figure 2: Comparison of Galerkin method with trial=test=quadratic B-splines with C0 separators
(defined by knot vector [0 0 0 0.8 0.8 0.9 0.9 1 1 1]), the residual minimization with linear B-splines for
trial (defined by knot vector [0 0 0.8 0.9 1 1]) and quadratic B-splines with C0 separators for test (defined
by knot vector [0 0 0 0.8 0.8 0.9 0.9 1 1 1]) for ϵ = 0.1, and the exact solution for ϵ = 0.1.

A =


1.0 0.0 · · · 0.0

b(B1,1, B2,2) b(B2,1, B2,2) · · · b(B7,1, B2,2)
· · · · · · · · · · · ·

b(B1,1, B6,2) b(B2,1, B6,2) · · · b(B7,1, B6,2)
0.0 0.0 · · · 1.0

u =


u1
u2
· · ·
u6
u7

 F = −


l(B1,2)
l(B2,2)
· · ·

l(B7,2)

 (9)

where by red color we denote basis functions from the test space, and by blue color we denote
basis functions from the trial space, and trial = test = quadratic B-splines with C0 sepparators.

The Galerkin formulation of the standard finite element method with the space of quadratic
B-splines for small ϵ = 0.1 parameter results in some oscillations and large numerical error see
Figure 2. To obtain a high quality numerical solution to this problem, a special stabilization
method is required.

4 PETROV-GALERKIN FORMULATION

The discrete Petrov-Galerkin form is given by: find uh(x) =
∑

i=1,...,4 uiBi,1 such that

b(uh, vh) = l(vh)

∀vh ∈ Vh = span{B1,2, B2,2, B3,2, B4,2, B5,2, B6,2, B7,2} (10)

B =


b(B1,1, B1,2) b(B2,1, B1,2) · · · b(B4,1, B1,2)
b(B1,1, B2,2) b(B2,1, B2,2) · · · b(B4,1, B2,2)

· · · · · · · · · · · ·
b(B1,1, B7,2) b(B2,1, B7,2) · · · b(B4,1, B7,2)

u =


u1
u2
u3
u4

 F =


l(B1,2)
l(B2,2)
· · ·

l(B4,2)

 (11)

The Petrov-Galerkin formulation here (with different trial and test spaces) requires some
transformation, since we have different number of unknowns and equations, and it is not possible
to solve in this form.

5 RESIDUAL MINIMIZATION FORMULATION

The residual minimization method requires:
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Figure 3: Comparison of the solution computed with the optimal test functions found by the solver,
the solution computed with quasi-optimal test functions found by the artificial neural network, and the
exact solution for ϵ = 0.1.

• Selection of the trial space.

• Selection of the test space.

• Selection of the inner product for minimization of the residual, that will form the Gram
matrix.

In our simple representative example, we will take smaller trial space (approximating the
solution) Uh defined with linear B-splines, and larger test space, namely the quadratic B-splines
with C0 separators. In the residual minimization method, we also prescribe the norm (and the
scalar product) that is supposed to minimize the residual of the solution (minimize the numerical
error). We select the H1 scalar product g(u, v) =

∫ 1
0 (uv + u′v′)dx, so the residual minimization

stabilization of (10) is [
G −B
BT 0

] [
r
u

]
=

[
F
0

]
(12)

where G stands for the Gram matrix, expressing the scalar product selected for the residual
minimization procedure

G =


g(B1,2, B1,2) g(B1,2, B2,2) · · · g(B1,2, B7,2)
g(B2,2, B1,2) g(B2,2, B2,2) · · · g(B2,2, B7,2)

· · · · · · · · · · · ·
g(B7,2, B1,2) g(B7,2, B2,2) · · · g(B7,2, B7,2)

 , (13)

B =


b(B1,1, B1,2) b(B2,1, B1,2) · · · b(B4,1, B1,2)
b(B1,1, B2,2) b(B2,1, B2,2) · · · b(B4,1, B2,2)

· · · · · · · · · · · ·
b(B1,1, B7,2) b(B2,1, B7,2) · · · b(B4,1, B7,2)

u =


u1
u2
u3
u4

 r =


r1
r2
· · ·
r7

 F = −


l(B1,2)
l(B2,2)
· · ·

l(B7,2)


where by red color we denote basis functions from the test space, and by blue color we denote ba-
sis functions from the trial space. Here (u1, u2, u3, u4) is the solution, and (r1, r2, r3, r4, r5, r6, r7)
stands for the residual (representing the local error).
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6 OPTIMAL TEST FUNCTIONS

This solution with the residual minimization (RM) method is equivalent to the Petrov-
Galerkin (PG) formulation with the optimal test functions. We can either solve RM formulation,
or compute the optimal test functions and solve PG formulation with the optimal test functions.

W can compute the optimal test functions to provide the results equivalent to the residual
minimization method with a given trial and test spaces. We will later train an artificial neural
network to tell us the formulas for the optimal test functions.

For the basis of the trial space {z1, z2, z3, z4} = {


1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1

} the optimal test func-

tions {w1, w2, w3, w4} are obtained by wk = G−1Bzk. where G is the Gram matrix, and B is
the matrix correspondig to the weak form (10). We have to solve the system of linear equations
for each optimal test function

Gwk = Bzk (14)

These optimal test functions V opt
h = span{w1, w2, w3, w4} they form a subspace V opt

h ⊂ Vh such
that the Petrov-Galerkin formulation with the optimal test functions gives the best possible (up
to the trial space used) solution to the advection-dominated diffusion problem. Namely, we get
this solution by solving

b(B1,1, w
1) b(B2,1, w

1) b(B3,1, w
1) b(B4,1, w

1)
b(B1,1, w

2) b(B2,1, w
2) b(B3,1, w

2) b(B4,1, w
2)

b(B1,1, w
3) b(B2,1, w

3) b(B3,1, w
3) b(B4,1, w

3)
b(B1,1, w

4) b(B2,1, w
4) b(B3,1, w

4) b(B4,1, w
4)



uopt1

uopt2

uopt3

uopt4

 =


l(w1)
l(w2)
l(w3)
l(w4)

 (15)

where (uopt1 , uopt2 , uopt3 , uopt4 ) is the optimal solution.
This formulation gives a possibility of finding the optimal test functions for a given PDE

parameters (in our case ϵ) and the given trial space Uh. We can employ the artificial neural
network (ANN) and train it to provide the optimal test functions for given ϵ and for a given
trial space. These optimal test functions are independent on the right-hand side and boundary
condition, thus the ANN can be applied for stabilization of a large class of problems.

7 ARTIFICIAL NEURAL NETWORK FINDING THE OPTIMAL TEST FUNC-
TIONS

All tables should be numbered consecutively and captioned, theIn this section, we illustrate on
a very simple example the idea of constructing and training the artificial neural network (ANN)
finding the optimal test functions for stabilization of our exemplary model advection-dominated
diffusion problem.

For given trial and test spaces, let us introduce the family of simple artificial neural network
(ANN)

ANNk
i (ϵ) = wk

i (16)

Given ϵ parameter it returns the optimal test functions coordinate wk
i k = 1, 2, 3, 4, i = 1, ..., 7. In

this simple example we create one single layer ANN for each coefficient. In the more complicated
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Figure 4: Convergence of the ANN training for a single weight (convergence of aki , b
k
i , c

k
i , d

k
i approxi-

mating wk
i = ANN(ϵ) = cki σ

(
aki ϵ + bki

)
+ dki ).

cases, we should construct one DNN for the entire problem, and the input and output of the
DNN will depend on the model parameters and the trial and test spaces assumed. We create a
simple one-layer neural network,

ANNk
i (n) = cki σ

(
aki ϵ + bki

)
+ dki = wk

i (17)

for each coefficients wk
i , where the activation function is sigmoid

σ(x) =
1

1 + e−x
(18)

The goal of the training is to find values of the weights aki , b
k
i , c

k
i , d

k
i . For selected trial Uh

and test Vh spaces, as presented in Figure 1, we prepare a set of samples

• We randomly select ϵ ∈ (0, 1)

• We find the optimal test functions coefficients wk
i by solving (14) (removing the first and

last rows and columns due to zero Dirichlet b.c.)
g(B2,2, B2,2) · · · g(B2,2, B6,2)
g(B3,2, B2,2) · · · g(B3,2, B6,2)

· · · · · · · · ·
g(B6,2, B2,2) · · · g(B6,2, B6,2)



wk
2

wk
3

· · ·
wk
6

 =


b(B2,1, B2,2) b(B3,1, B2,2)
b(B2,1, B3,2) b(B3,1, B3,2)

· · ·
b(B2,1, B6,2) b(B3,1, B6,2)

[
δ1k
δ2k

]
(19)

In other words, we train the neural network based on ϵ parameter samples to find the optimal
test functions. How to train the artificial neural network? We define the error function

eki (ϵ) = 0.5
(
ANNk

i (ϵ) − wk
i (ϵ)

)2
= 0.5

(
cki σ

(
aki ϵ + bki

)
+ dki − wk

i (ϵ)
)2

(20)
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Now, we compute the derivatives

∂eki (ϵ)

∂aki
=

cki ϵ exp(−aki ϵ− bki )(ANNk
i (ϵ) − wk

i (ϵ))

(exp(−aki ϵ− bki ) + 1)2

∂eki (ϵ)

∂bki
=

cki exp(−aki ϵ− bki )(ANNk
i (ϵ) − wk

i (ϵ))

(exp(−aki ϵ− bki ) + 1)2

∂eki (ϵ)

∂cki
=

(ANNk
i (ϵ) − wk

i (ϵ))

(exp(−aki ϵ− bki ) + 1)

∂eki (ϵ)

∂dki
= (ANNk

i (ϵ) − wk
i (ϵ)) (21)

which say “how fast the error is changing if I modify a given coefficient”. We loop through the
data set {ϵ, (wk

i (ϵ))}ϵ∈A where A is the set of selected points from (0, 1), and we train each of
the ANNk

i .

1. Select (ϵ, (wk
i ))

2. Compute wk
i = ANNk

i (ϵ) = cki σ
(
aki ϵ + bki

)
+dki , compute eki (ϵ), and

∂eki (ϵ)

∂aki
,
∂eki (ϵ)

∂bki
,
∂eki (ϵ)

∂cki
,
∂eki (ϵ)

∂dki

3. Correct aki = aki − η
∂eki (ϵ)

∂aki
, bki = bki − η ∗ ∂eki (ϵ)

∂bki
, cki = cki − η ∗ ∂eki (ϵ)

∂cki
, dki = dki − η ∗ ∂eki (ϵ)

∂dki
,

η ∈ (0, 1). This is like one step of a local gradient method.

The training for a single weight can be implemented in MATLAB function, called for data
generated in the training set (dataset in(i), dataset w(k, i)), generated for a weight wm

n of the
optimal test function, where where k = 5 ∗ (m− 1) + n and i represents the dataset index.

% Training of ANN approximating a single weight

a(k)=1.0; b(k)=1.0; c(k)=1.0; d(k)=1.0; eta(k)=0.1;

for i=1:ndataset

eval(k) = c(k)* 1.0/(1.0+exp(-(a(k)*DS in(i)+b(k))))+d(k);

error(k) = 0.5*(eval(k)-DS w(k,i))2;

derrorda = c(k)*DS in(i)*exp(-a(k)*DS in(i)-b(k))*(eval(k)-DS w(k,i))/

(exp(-a(k)*DS in(i)-b(k))+1)2; a(k)-=eta(k)* derrorda;

derrordb = c(k)*exp(-a(k)*DS in(i)-b(k))*(eval(k)-DS w(k,i))/(exp(-a(k)*DS in(i)-b(k));

b(k)-=eta(k)* derrordb;

derrordc = (eval(k)-DS w(k,i))/(exp(-a(k)*DS in(i)-b(k))+1); c(k)-=eta(k)*derrordc;

derrordd = (eval(k)-DS w(k,i));d(k)-=eta(k)*derrordd;

The weight value as approximated by the trained ANN can be computed using the following
procedure

% evaluation of ANN approximation of weights for a given ϵ
for m=2,3

for n=2,6

k=5*(m-1)+n;eval(k)=c(k)*1.0/(1.0+exp(-(a(k)*epsilon+b(k))))+d(k);

8
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Due to zero Dirichlet b.c., the optimal test functions are given by the knot vector [0 0 0 0.8
0.8 0.9 0.9 1 1 1] and weights [0 eval(1) eval(2) eval(3) eval(4) eval(5) 0] and [0 eval(6) eval(7)
eval(8) eval(9) eval(10) 0].

The convergence of the training procedure for a single weight (the errors of evaluating aki , bki ,
cki , and dki ) are presented in right panel in Figure 3. Once we have the optimal test functions,
we can use them to compute the solution from the Petrov-Galerkin formulation (15). They give
quite similar results, presented in Figure 3. To improve the quality of the optimal test functions
and the quality of the numerical result, we can replace the several simple one layered ANN
trained one for each parameter by more complex DNN.

8 CONCLUSIONS

- We presented a method for stabilization of a class of advection-diffusion problems with
different right-hand sides.

- Our method precomputes the optimal test functions for the Petrov-Galerkin formulation
using artificial neural networks.

- We tested our method on a model advection-dominated problem in one dimension.

- Future work will involve generalization of the method into two- or three-dimensional prob-
lems, including advection-dominated diffusion and Navier-Stokes equations.

- Future work will also involve the development of fast solvers for the stabilized Petrov-
Galerkin formulations.

9 APPENDIX A: RESIDUAL MINIMIZATION METHOD

We employ the residual minimization method for stabilization. It can be derived as follows.
For a general weak problem: Find u ∈ U such as

b(u, v) = l(v) ∀v ∈ V (22)

we define the operator B : U → V ′ such as ⟨Bu, v⟩V ′×V = b (u, v). so we can reformulate the
problem as

Bu− l = 0 (23)

We wish to minimize the residual

uh =wh∈Uh

1

2
∥Bwh − l∥2V ′ (24)

We introduce the Riesz operator RV : V ∋ v → (v, .) ∈ V ′ being the isometric isomorphism to
project the problem back to V

uh =wh∈Uh

1

2
∥R−1

V (Bwh − l)∥2V (25)

The minimum is attained at uh when the Gâteaux derivative is equal to 0 in all directions

(R−1
V (Buh − l), R−1

V (Bwh))V = 0 ∀wh ∈ Uh (26)

9
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We define the residual r = R−1
V (Buh − l) and we get

(r,R−1
V (Bwh)) = 0 ∀wh ∈ Uh (27)

From the definition of RV for all functionals f ∈ V ′

(v,R−1
V f)V = ⟨f, v⟩ (= f(v) from definition of ⟨·, ·⟩) (28)

so in particular for f = Bwh and v = r we get

⟨Bwh, r⟩ = 0 ∀wh ∈ Uh (29)

From the definition of the residual we have

(r, v)V = ⟨Buh − l, v⟩, ∀v ∈ V. (30)

Thus, from (29) and (30), our problem reduces to the following semi-infinite problem: Find
(r, uh) ∈ V × Uh such as

(r, v)V −⟨Buh, v⟩ = −⟨l, v⟩, ∀v ∈ V,

⟨Bwh, r⟩ = 0, ∀wh ∈ Uh.
(31)

We discretize the test space Vh ∈ V to get the discrete problem: Find (rh, uh) ∈ Vh×Uh such as

(rh, vh)Vh
−⟨Buh, vh⟩ = −⟨l, vh⟩, ∀v ∈ Vh,

⟨Bwh, rh⟩ = 0, ∀wh ∈ Uh,
(32)

where (·, ·)Vh
is an inner product in Vh, ⟨Buh, vh⟩ = b (uh, vh), and ⟨Bwh, rh⟩ = b (wh, rh). We

select the discrete test space Vh large enough to present the optimal test functions’ subspace.
In the residual minimization method, we gain stability by enriching the test space Vh without
changing the trial space Uh.

10 APPENDIX B: EQUIVALENCE OF THE RESIDUAL MINIMIZATION METHOD
AND PETROV-GALERKIN FORMULATION

Having the residual minimization problem

(rh, vh)Vh
−⟨Buh, vh⟩ = −⟨l, vh⟩, ∀v ∈ Vh,

⟨Bwh, rh⟩ = 0, ∀wh ∈ Uh,
(33)

with the test space Vh sufficiently large to stabilize the simulation, we can transform this for-
mulation into Petrov-Galerkin one in the following way. We recall the Riesz operator

RVh
: Vh → V ′

h (34)

defined as
⟨RVh

rh, vh⟩ = (rh, vh)Vh
∈ V ′

h × Vh (35)

10
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and the residuum
rh = R−1

Vh
(Buh − l) (36)

We can substitute the residuum into the second equation in (33) to obtain

⟨Bwh, R
−1
Vh

(Buh − l)⟩ = 0 ∀wh ∈ Uh, (37)

From the properties of the Riesz operator we have

⟨f, vh⟩ = (R−1
Vh

f, vh)Vh
(38)

for f ∈ V ′
h, where we can represent f = RVh

a for a ∈ Vh. Using this property for f = RVh
rh we

obtain

(R−1
Vh

Bwh, R
−1
Vh

(Buh − l))Vh
= 0 ∀wh ∈ Uh (39)

Using this property once again, and from the symmetry of the scalar product we have

⟨Buh − l, R−1
Vh

Bwh⟩ = 0 ∀wh ∈ Uh (40)

which is equivallent to

⟨Buh, R
−1
Vh

Bwh⟩ = ⟨l, R−1
Vh

Bwh⟩ ∀wh ∈ Uh (41)

and

b(uh, R
−1
Vh

Bwh) = l(R−1
Vh

Bwh) ∀wh ∈ Uh (42)

which is the Petrov-Galerkin formulation with the optimal test functions.
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