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Characteristics of Distributions of Sets
and Their (R)- and (N)-Denseness

Piotr Miska and János T. Tóth

Abstract. Let 0 ≤ q ≤ 1 and N denotes the set of all positive integers.
In this paper we will deal with it too the family U(xq) of all regularly
distributed set X = {x1 < x2 < · · · < xn < · · · } ⊂ N whose ratio block
sequence
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is asymptotically distributed with distribution function g(x) = xq; x ∈
(0, 1], and we will show that the regular distributed set, regular sequences,
regular variation at infinity are equivalent notations. In this paper also
we discuss the relationship between notations as (N)-denseness, directions
sets, generalized ratio sets, dispersion and exponent of convergence.
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1. Introduction

In the whole paper we assume X = {x1 < x2 < · · · < xn < · · · } ⊂ N where N

denotes the set of all positive integers.
The following sequence derived from X
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is called the ratio block sequence of the set X. It is formed by the blocks
X1,X2, . . . , Xn, . . . where

Xn =
(

x1

xn
,
x2

xn
, . . . ,

xn

xn

)
, n = 1, 2, . . .

is called the n-th block. This kind of block sequences was introduced by Strauch
and Tóth [17] and they studied the set G(Xn) of its distribution functions.
Further, we will be interested in ratio block sequences of type (1) possessing
an asymptotic distribution function, i.e. G(Xn) is a singleton (see definitions
in the next section).

By means of these distribution functions in [22] there was defined some
families of subsets of N. For 0 ≤ q ≤ 1 we denote by U(xq) the family of all sets
X ⊂ N whose ratio block sequence is asymptotically distributed with distri-
bution function g(x) = xq; x ∈ (0, 1]. Further in [22] the following interesting
results can be seen, that the exponent of convergence λ is closely related to
distributional properties of sets of positive integers. More precisely, for each
q ∈ [0, 1] the family I≤q of all sets A ⊂ N such that λ(A) ≤ q is identical
with the family I(xq) of all sets A ⊂ N which are covered by some regularly
distributed set X ∈ U(xq).
The exponent of convergence of a set A ⊂ N is defined by

λ(A) = inf

{
s ∈ (0,∞) :

∑
n∈N

a−s
n < ∞

}
,

where A = {a1 < a2 < · · · } ⊂ N.
In this paper we will show that the regular distributed set, regular se-

quences, and regular variation at infinity are equivalent notations and also we
discuss the relationship between notations as (N)-denseness, directions sets,
generalized ratio sets, dispersion of sequence (1) and exponent of convergence.
The rest of our paper is organized as follows. In Sects. 2 and 3 we recall some
known definitions, notations and theorems, which will be used and extended.
In Sect. 4 our new results are presented. Section 5 summarizes the results in
chains of implications.

2. Definitions

The following basic definitions are from papers [12,14,17–19,21,22].

• 1 ≤ x1 < x2 < · · · denotes a sequence of positive integers.
• For each n ∈ N consider the step distribution function

F (Xn, x) =
#{i ≤ n : xi

xn
< x}

n
,

for x ∈ [0, 1), and for x = 1 we define F (Xn, 1) = 1.
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• A non-decreasing function g : [0, 1] → [0, 1], satisfying conditions g(0) =
0, and g(1) = 1 is called a distribution function (abbreviated d.f.). We
shall identify any two d.f.s coinciding at common points of continuity.

• A d.f. g(x) is a d.f. of the sequence of blocks Xn, n = 1, 2, . . ., if there
exists an increasing sequence n1 < n2 < . . . of positive integers such that

lim
k→∞

F (Xnk
, x) = g(x)

a.e. on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding
limit holds for every point x ∈ [0, 1] of continuity of g(x).

• Denote by G(Xn) the set of all d.f.s of Xn, n = 1, 2, . . .. The set of
distribution functions of ratio block sequences was studied in [1–7,9–
13,15,16].
If G(Xn) = {g(x)} is a singleton, the d.f. g(x) is also called the asymptotic
distribution function (abbreviated a.d.f.) of Xn.
Especially, if G(Xn) = {x}, then we say that the sequence of blocks Xn

is uniformly distributed (abbreviated as u.d.) in [0, 1].
• The function λ : 2N → [0, 1] defined by

λ(A) = inf

{
t > 0 :

∑
a∈A

1
at

< ∞
}

is called the exponent of convergence of a set A ⊂ N.
If q > λ(A), then

∑
a∈A

1
aq < ∞ and if q < λ(A), then

∑
a∈A

1
aq =

∞. In the case when q = λ(A), the series
∑

a∈A
1
aq can be either conver-

gent or divergent.
From ([12, p.26, Exercises 113, 114]) it follows that the set of all possible
values of λ forms the whole interval [0, 1], i.e. {λ(A) : A ⊂ N} = [0, 1]
and if A = {a1 < a2 < · · · < an < · · · } then λ(A) can be calculated by

λ(A) = lim sup
n→∞

log n

log an
.

Here and in the whole paper we use log for the natural logarithm.
Evidently the exponent of convergence λ is a monotone set function, i.e.
λ(A) ≤ λ(B) for A ⊂ B ⊂ N and also λ(A ∪ B) = max{λ(A), λ(B)}
holds for all A,B ⊂ N.

• For every f : N → [0,∞) such that
∑∞

n=1 f(n) = ∞ we define a summable
ideal generated by the function f by

If =

{
B ⊂ N :

∑
n∈B

f(n) < ∞
}

.

In particular, if f(n) = 1/nq with 0 ≤ q ≤ 1 we obtain the ideal

I1/nq =

{
B ⊂ N :

∑
n∈B

1
nq

< ∞
}

,



   54 Page 4 of 33 p. Miska and J. T. Tóth Results Math

where I1/n0 = Fin = {A ⊂ N : A is finite}.
By means of λ we define the following ideals (see [21]):

I<q = {A ⊂ N : λ(A) < q} for 0 < q ≤ 1,
I≤q = {A ⊂ N : λ(A) ≤ q} for 0 ≤ q ≤ 1 and
I0 = {A ⊂ N : λ(A) = 0}.
Obviously I≤0 = I0 and I≤1 = 2N. Moreover, we introduce the following
families of subsets of N (see [22]):

U(c0(x)) = {X ⊂ N : G(Xn) = {c0(x)}},

I(c0(x)) = {A ⊂ N : ∃X ∈ U(c0(x)), A ⊂ X},

and for 0 < q ≤ 1

U(xq) = {X ⊂ N : G(Xn) = {xq}},

I(xq) = {A ⊂ N : ∃X ∈ U(xq), A ⊂ X},

where

c0(x) =

{
0 if x = 0,

1 if 0 < x ≤ 1.

Obviously,

U(c0(x)) � I(c0(x)), U(xq) � I(xq).

For a finite set A ⊂ N we have λ(A) = 0. Consequently, Fin ⊂ I0.
The families I<q, I≤q and the well known family I1/nq are related for
0 < q < q′ < 1 by following inclusions (see [21], Th.1.)

Fin � I0 � I<q � I1/nq � I≤q � I<q′ � I<1, (2)

and the difference of successive sets is infinite, so equality does not hold
in any of the inclusions.
In this paper we deal with such sets Y which are from some family U(xq)
for 0 < q < 1, so the asymptotic density of the set Y is zero (d(Y ) = 0),
since

U(xq) � I(xq) = I≤q ⊂ I<1 ⊂ I1/n1 ⊂ Id = {A ⊂ N : d(A) = 0} .

The standard way to evaluate the size of sets of real numbers is to take
their Lebesgue measure. In this theory sets of Lebesgue measure zero
are the smallest ones and often considered as negligible. Sometimes it is
important to distinguish also among these sets. To do so, the best way is
to use the Hausdorff dimension. The most frequently used characteristics
to evaluate the size of sets of positive integers is the (upper or lower)
asymptotic density. Here again, sets of asymptotic density zero are some-
times considered as negligible. In this case, to distinguish among them,
the best way is to use the exponent of convergence, or equivalently, the
exponential density.
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• Let I ⊂ 2N. Then I is called an admissible ideal of subsets of positive
integers, if I is additive (if A,B ∈ I then A ∪ B ∈ I), hereditary (if
A ∈ I and B ⊂ A then B ∈ I), containing all finite subsets of N and it
does not contain N.

• Suppose f(x) is eventually defined on (1,∞) and eventually positive.
Given α ∈ R, f(x) has regular variation at infinity of index α, abbreviated
as f(x) ∈ RVα, if

lim
x→∞

f(cx)
f(x)

= cα, for every c > 0.

(see [5], p. 136). If f(x) ∈ RV0 then f(x) is also said to be slowly varying
at infinity.

• Let A ⊂ N. Define the counting function of the set A as A(x) = {a ∈ A :
a ≤ x}, x ≥ 1. If

A(x) ∼ xqφ(x),

where φ(x) ∈ RV0 and 0 < q ≤ 1, then A will be called a regular set
with exponent q (see [12], Exerc. 153, p. 86).

• The concept of a ratio set has been introduced in the papers [18,19].
If A ⊂ N, B ⊂ N, then we put R(A,B) = {a

b ; a ∈ A, b ∈ B}. The
set R(A,B) is said to be the ratio set of A and B. In particular, for
A = B we put R(A,A) = R(A). The symbol Xd will stand for the set
of all accumulation points of X ⊂ [0,∞]. It is easy to see that for any
infinite subsets A, B of positive integers we have {0,+∞} ⊂ R(A,B)d.
The set R(A,B) is dense in (0,∞) if R(A,B)d = [0,+∞]. Note here that
R(A,B) �= R(B,A) in general, however R(A,B) is dense in (0,∞) if and
only if R(B,A) is dense in (0,∞).
We say that the set A ⊂ N is (N)-dense set if R(A,B) is a dense set in
(0,∞) for arbitrary infinite set B ⊂ N and A is (R)-dense set if R(A) is
a dense set in (0,∞). Therefore (N)-denseness implies (R)-denseness.

• Let us denote

R+ = (0,∞),

S
k =

{
(x1, . . . , xk, xk+1) ∈ R

k+1 :
k+1∑
i=1

x2
i = 1

}
,

S
k
+ = S

k ∩ R
k+1
+

for each k ∈ N. Then, for each k ∈ N, k ≥ 2, we define k − 1-dimensional
ratio set of given sets A1, . . . , Ak−1, B ⊂ N as

Rk(A1, . . . , Ak−1;B)

=
{(a1

b
, . . . ,

ak−1

b

)
: a1 ∈ A1, . . . , ak−1 ∈ Ak−1, b ∈ B

}
.

If A1 = . . . = Ak−1 = A, then we will write Rk(A;B) instead of
Rk(A, . . . , A;B). Similarly, if A1 = . . . = Ak−1 = B = A, then we
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shall write Rk(A) instead of Rk(A;A). Of course, R2(A;B) = R(A,B)
is the well known ratio set of A and B. In particular, R2(A) = R(A).
Moreover, let us introduce for each k ∈ N, k ≥ 2, the k-th directions set
of sets A1, . . . , Ak−1, B ⊂ N as

Dk(A1, . . . , Ak−1;B)

=

⎧⎨
⎩
⎛
⎝ a1√∑k

i=1 a
2
i

, . . . ,
ak√∑k
i=1 a

2
i

⎞
⎠ : a1 ∈ A1, . . . , ak−1 ∈ Ak−1, ak ∈ B

⎫⎬
⎭ .

If A1 = . . . = Ak−1 = A, then we will write Dk(A;B) instead of
Dk(A, . . . , A;B). Similarly, if A1 = . . . = Ak−1 = B = A, then we shall
write Dk(A) instead of Dk(A;A). The concept of directions sets Dk(A)
as generalizations of ratio sets was introduced and studied by Leonetti
and Sanna in [11].

• Let us define dispersion of an infinite set A = {a1 < a2 < a3 < . . .} ⊂ N

as

D(A) = lim inf
n→∞

1
an

max{a1, ai+1 − ai : i ∈ {1, . . . , n − 1}}.

Let us notice that dispersion is an non-increasing function on the set
2N\Fin of all infinite subsets of N, i.e. if A ⊂ B ⊂ N are infinite, then
D(A) ≥ D(B). Moreover, D(N) = 0 and every value from the interval
[0, 1] is attained as dispersion of some subset of N (see [20]).

3. Overview of the Known Results

In this section we mention well known results related to the topic of this paper
and some other ones we use in the proofs of our theorems. In the whole section
in (A1)–(A8) we assume X = {x1 < x2 < · · · < xn < · · · } ⊂ N.
(A1) Assume that G(Xn) is singleton, i.e., G(Xn) = {g(x)}. Then either

g(x) = c0(x) for x ∈ [0, 1]; or g(x) = xq for x ∈ [0, 1] and some fixed
0 < q ≤ 1 [17, Th. 8.2].

The sets X = {x1 < x2 < · · · } from U(c0(x)) are characterized by (A4)
and these ones belonging to U(xq) are characterized by (A2) and (A6). In
([22, Theorem 1 and Example 1]) there is proved that the family U(c0(x)) is
additive, i.e. it is closed with respect to finite unions and does not form an
ideal as it is not hereditary, i.e. there exists sets C ∈ U(c0(x)) and B ⊂ C such
that B /∈ U(c0(x)). On the other hand the family I(c0(x)) is an ideal ([22],
Theorem 2). For these families the following statements hold.
(A2) Let 0 < q ≤ 1 be a real number. Then

X ∈ U(xq) ⇐⇒ ∀ k ∈ N : lim
n→∞

xkn

xn
= k

1
q .

[8, Th. 1]
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(A3) Let 0 < q ≤ 1 be a real number. If X ∈ U(xq), then

lim
n→∞

xn+1

xn
= 1.

[6, Remark 3]
(A4) We have

X ∈ U(c0(x)) ⇐⇒ lim
n→∞

1
nxn

n∑
i=1

xi = 0.

[17, Th. 7.1]
(A5) We have

c0(x) ∈ G(Xn) ⇐⇒ lim inf
n→∞

1
nxn

n∑
i=1

xi = 0.

[6, Th. 4]
(A6) Let 0 < q ≤ 1 be a real number. Then

X ∈ U(xq) ⇐⇒ lim
n→∞

1
nxn

n∑
i=1

xi =
q

q + 1
.

[3, Th. 1]
(A7) Let X ∈ U(c0(x)). Then

lim
n→∞

log n

log xn
= 0 (i.e. λ(X) = 0).

[3, Th. 2]
(A8) Let 0 < q ≤ 1 be a real number. If X ∈ U(xq) then

lim
n→∞

log n

log xn
= q (therefore λ(X) = q).

[3, Th. 3]
(A9) Let 0 < q ≤ 1. Then each of the families I0, I<q and I≤q forms an

admissible ideal, except for I≤1 [21, Th. 1].
(A10) Let 0 < q ≤ 1. Then each of the families I(c0(x)), I(xq) forms an

admissible ideal except for I≤1, and I(c0(x)) = I0, I(xq) = I≤q [22,
Th. 5 and Th. 7].

In (A10) there are characterized sets A ⊂ N belonging to ideals I(c0(x)) or
I(xq) by means of their exponent of convergence, i.e. λ(A) = 0 or λ(A) ≤
q, which means that A ∈ I0 or A ∈ I≤q. From (A8) and (A10) we obtain
also the following interesting inclusion holding for studied families of sets (for
characterization of I≤q and I<q see (A11) and (A12)):

U(xq) ⊂ I≤q\I<q, which implies I<q ⊂ I(xq)\U(xq).
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(A11) Let 0 ≤ q < 1 be real and define the counting function of A ⊂ N as
A(x) = #{a ≤ x : a ∈ A} for x ≥ 1. Then

A ∈ I≤q ⇐⇒ ∀ δ > 0 : lim
x→∞

A(x)
xq+δ

= 0 .

[21, Th. 3]
(A12) Let 0 < q ≤ 1 be a real number and A ⊂ N. Then

A ∈ I<q ⇐⇒ ∃ δ > 0 : lim
x→∞

A(x)
xq−δ

= 0.

[21, Th. 4]
(A13) Let 0 < q ≤ 1, X = {x1 < x2 < · · · } ⊂ N, Y = {y1 < y2 < · · · } ⊂ N,

let g(x) ∈ {c0(x), xq} be fixed and assume that

Y ∈ U(g(x)) and lim
t→∞

X(t)
Y (t)

= 0.

Then

X ∪ Y ∈ U(g(x)).

[22, Th. 4]
(A14) Let f(x) and g(x) are eventually defined on R, and eventually positive.

Then, for α, β ∈ R we have:
i)

f(x) ∈ RVα ⇐⇒ f(x)
xα

∈ RV0 .

([5], Prop. 7. 20, p. 136)
ii) (a) if f(x) ∼ g(x) ∈ RVα, then f(x) ∈ RVα,

(b) if f(x) ∈ RVα and g(x) ∈ RVβ , then the reciprocal 1
f(x) ∈

RV−α , and the product f(x)g(x) ∈ RVα+β ,
(c) RV0 is closed under multiplication, division, and asymptotic
equality.
([5], Prop. 7. 21, p. 137)

(A15) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N. Then

λ(A) = lim sup
n→∞

log n

log an
= lim sup

x→∞
log A(x)

log x

and

lim inf
n→∞

log n

log an
= lim inf

x→∞
log A(x)

log x
.

[12, Ex. 148, 149, p. 85]
(A16) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N. If A is a regular set with

exponent q > 0, then λ(A) = q. [12, Ex. 153, p. 86]
(A17) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N. If A is a regular set with

exponent q > 0, then A(x) ∈ RVq i.e. limx→∞
A(cx)
A(x) = cq for every

c > 0. [12, Ex. 154, p. 86]
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(A18) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N be a regular set with exponent
q > 0 and let α > 0. Then

lim
t→∞

1
A(t)

∑
ai≤t

(ai

t

)α−q

=
∫ 1

0

x
α−q

q dx =
q

α
.

Therefore, as α = q + 1 we have

lim
n→∞

1
nan

n∑
i=1

ai =
q

q + 1
.

[12, Ex. 157, p. 86]
(A19) Let α ∈ [0,∞). Suppose f(x) ∈ RVα is eventually nondecreasing and

diverges (to infinity). Then

α = lim
n→∞

log f(n)
log n

.

[5, Prop. 7.23., p. 138]
(A20) Let A ⊂ N be a set such that

lim inf
t→∞

A(ct)
A(t)

> 1 for every c > 1 ,

then A is (N)-dense set. [19, Satz 3]
(A21) If a set A = {a1 < a2 < · · · < an < · · · } ⊂ N satisfies

lim
n→∞

an+1

an
= 1 ,

then A is (N)-dense set. [4, Th. 2]
(A22) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N. Then

lim
n→∞

an+1

an
= 1 =⇒ D(A) = 0 =⇒ A is an (R) − dense set

=⇒ D(A) ≤ 1
2

.

[20, Th. 2, Th. 3]
(A23) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N and k, l ∈ N, 2 ≤ k < l. Then

Dl(A) is dense in S
l−1
+ =⇒ Dk(A) is dense in S

k−1
+ .

Moreover, there exists a set A ⊂ N such that Dk(A) is dense in R
k
+ but

Dl(A) is not dense in R
l
+ [11, Th. 1.4].

(A24) Let A = {a1 < a2 < · · · < an < · · · } ⊂ N. Then

lim
n→∞

an+1

an
= 1 =⇒ ∀ k ≥ 2 : Dk(A) is dense in S

k−1
+ .

[11, Th. 1.5]
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4. Results

Lemma 1. Let A = {a1 < a2 < · · · } ⊂ N. Then, for every c > 0 we have

lim sup
t→∞

A(ct)
A(t)

= lim sup
n→∞

A(an)
A
(
1
can

) , (3)

lim inf
t→∞

A(ct)
A(t)

= lim inf
n→∞

A(an)
A
(
1
can

) . (4)

Proof. Let c > 0 be a fixed and denote l = lim supn→∞
A(an)

A
(

1
c an

) . Then, for

ε > 0 there exists an n0 ∈ N such that for each n ≥ n0 we have

A(an)
A
(
1
can

) < l + ε.

For sufficiently large t there exists n ≥ n0 such that 1
can < t ≤ 1

can+1.
Therefore

A(ct)
A(t)

≤ A(an+1)
A
(
1
can

) =
A(an+1)
A(an)

A(an)
A
(
1
can

) <
n + 1

n
(l + ε).

From this we get (since n → ∞ if t → ∞) that lim supt→∞
A(ct)
A(t) ≤ l + ε

for arbitrary ε > 0. Thus

lim sup
t→∞

A(ct)
A(t)

≤ l.

Since on the other hand we obtain (by putting t = 1
can) that

lim sup
t→∞

A(ct)
A(t)

≥ l,

then there holds equality (3). The proof of (4) is similar. �

Theorem 1. Let A = {a1 < a2 < · · · } ⊂ N and g : [0, 1] → [0, 1] be a distribu-
tion function of the sequence of blocks An. Then:

i) lim inft→∞
A(ct)
A(t) ≤ 1

g
(

1
c

) ≤ lim supt→∞
A(ct)
A(t) for each c > 1 such that 1

c

is a point of continuity of g,
ii) ∀ 0 < c < 1 : lim inft→∞

A(ct)
A(t) ≤ g(c) ≤ lim supt→∞

A(ct)
A(t) for each

c ∈ (0, 1) being a point of continuity of g.
Moreover, the conditions i) and ii) are equivalent.

Proof. Let us start with the proof of i). Let g(x) ∈ G(An) and c > 1 be its
point of continuity. Thus, there exists a sequence (nk) of positive integers such
that

g
(1

c

)
= lim

k→∞
F
(
Ank

,
1
c

)
= lim

k→∞

#
{
i ≤ nk : ai

ank
< 1

c

}
nk

= lim
k→∞

A
(
1
cank

)
A(ank

)
.
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Then

lim inf
n→∞

A
(
1
can

)
A(an)

≤ g
(1

c

)
≤ lim sup

n→∞

A
(
1
can

)
A(an)

i.e. lim inf
n→∞

A(an)

A
(

1
can

) ≤ 1
g
(
1
c

)

≤ lim sup
n→∞

A(an)

A
(

1
can

) .

From above and Lemma 1 we have

lim inf
t→∞

A(ct)
A(t)

≤ 1
g
(
1
c

) ≤ lim sup
t→∞

A(ct)
A(t)

.

The proof of implication i)⇒ ii) is following. By i) we have

lim inf
t→∞

A
(
1
c t
)

A(t)
≤ 1

g(c)
≤ lim sup

t→∞

A
(
1
c t
)

A(t)

for each c ∈ (0, 1). Thus

lim inf
t→∞

A(t)
A
(
1
c t
) ≤ g(c) ≤ lim sup

t→∞
A(t)

A
(
1
c t
) ,

and substituting ct in the place of t we get

lim inf
t→∞

A(ct)
A(t)

≤ g(c) ≤ lim sup
t→∞

A(ct)
A(t)

,

which was to show. The proof of implication ii)⇒ i) is analogous, thus we omit
it. �

Remark 1. Let us notice that if a distribution function g : [0, 1] → [0, 1] ful-
fils the conditions i) and ii) in the above theorem, then it need not to be a
distribution function of the sequence of blocks An.
Let A = N ∩ ⋃∞

k=1((2k)!, (2k + 1)!]. Then for each c ∈ (0, 1) we have
lim inft→∞

A(ct)
A(t) = limk→∞

A((2k)!)

A( 1
c (2k)!) = 0 and lim supt→∞

A(ct)
A(t) = limk→∞

A((2k+1)!)

A( 1
c (2k+1)!) = 1. Hence, the function g(x) = min{2x, 1} satisfies lim inft→∞

A(ct)
A(t)

≤ g(c) ≤ lim supt→∞
A(ct)
A(t) for c ∈ (0, 1). Assume by contrary that there is a

subsequence (nj) such that g(x) = limj→∞ F (Anj
, x) for each x ∈ [0, 1]. In

particular, limj→∞ F
(
Anj

, 1
4

)
= 1

2 and limj→∞ F
(
Anj

, 1
2

)
= 1. Let anj

∈
((2k)!, (2k+1)!], where k is sufficiently large, be such that F

(
Anj

, 1
4

)
< 5

8 and
F

(
Anj

, 1
2

)
> 7

8 . Then 1
2anj

≤ (2k)!. Otherwise, we would have anj
> 2 · (2k)!

and
7
8

< F

(
Anj

,
1
2

)
=

1
nj

#
{

i ≤ nj :
ai

anj

<
1
2

}
=

1
nj

#
{

i ≤ nj : ai <
1
2
anj

}

<
(2k − 1)! + 1

2anj
− (2k)!

(2k − 1)! − (2k − 2)! + anj
− (2k)!

=
1
2k + 1

2

anj

(2k)! − 1
2k−2

2k(2k−1) +
anj

(2k)! − 1
<

1
2
,
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which is impossible. Thus 1
2anj

≤ (2k)! and

7
8

< F

(
Anj

,
1
2

)
=

1
nj

#
{

i ≤ nj : ai <
1
2
anj

}

<
(2k − 1)!

(2k − 1)! − (2k − 2)! + anj
− (2k)!

.

Hence, anj
< (2k)! + 1

7 (2k − 1)! + (2k − 2)!. On the other hand,

5
8

> F

(
Anj

,
1
4

)
=

1
nj

#
{

i ≤ nj : ai <
1
4
anj

}
>

(2k − 1)! − (2k − 2)!
(2k − 1)! + anj

− (2k)!
.

Hence, anj
> (2k)! + 3

5 (2k − 1)! − 8
5 (2k − 2)!. Finally, we obtain

(2k)! +
1
7
(2k − 1)! + (2k − 2)! > (2k)! +

3
5
(2k − 1)! − 8

5
(2k − 2)!,

which holds only if 2k − 1 < 91
16 , i.e. k < 107

32 . This stays in contradiction with
the fact that k can be sufficiently large.

The above remark shows that not always there exists a distribution func-
tion g(x) of (An) such that g(c) = γ and g(d) = δ for some c, d, γ, δ ∈ [0, 1] sat-
isfying lim inft→∞

A(ct)
A(t) ≤ γ ≤ lim supt→∞

A(ct)
A(t) and lim inft→∞

A(dt)
A(t) ≤ δ ≤

lim supt→∞
A(dt)
A(t) . Despite this, for any c, γ ∈ [0, 1] satisfying lim inft→∞

A(ct)
A(t) ≤

γ ≤ lim supt→∞
A(ct)
A(t) there exists a distribution function g(x) of (An) such that

g(c) = γ. In order to prove this fact, we will need the following lemma.

Lemma 2. Let c ∈ (0, 1) and γ ∈
[
lim inft→∞

A(ct)
A(t) , lim supt→∞

A(ct)
A(t)

]
. Then

there exists an increasing sequence (nk) of positive integers such that

limk→∞
A(cank)

nk
= γ.

Proof. Every value from the interval
[
lim inft→∞

A(ct)
A(t) , lim supt→∞

A(ct)
A(t)

]
is

attained as a limit limk→∞
A(ctk)
A(tk)

for some sequence (tk) of real numbers in-

creasing to infinity. This holds because the function [a1,∞) � t �→ A(ct)
A(t) ∈

[0,∞) is a piecewise constant function with the points of discontinuity of the
form an and 1

can, where n ∈ N, and variations at these points not greater
than 1

n . Moreover, if A(ct)
A(t) < lims→t−

A(cs)
A(s) , then t = an for some n ∈ N.

Hence every value from the interval
[
lim inft→∞

A(ct)
A(t) , lim supt→∞

A(ct)
A(t)

]
can

be attained as limk→∞
A(cank)

nk
for some increasing sequence (nk) of positive

integers. �

At this moment we are ready to state and prove the aforementioned result.
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Theorem 2. Let c0 ∈ (0, 1) and γ ∈
[
lim inft→∞

A(c0t)
A(t) , lim supt→∞

A(c0t)
A(t)

]
.

Then there exists g(x) ∈ G(An) such that g(c0) = γ.

Proof. By Lemma 2 there exists an increasing sequence (n(0)
k )k∈N of posi-

tive integers such that limk→∞ F
(
A

n
(0)
k

, c0

)
= limk→∞

A(cank)
n
(0)
k

= γ. Let

(Q ∩ (0, 1))\{c0} = {cl : l ∈ N}. Since the interval [0, 1] is compact (with
respect to the natural topology on R), for each l ∈ N we can choose a
subsequence (n(l)

k )k∈N of the sequence (n(l−1)
k )k∈N such that the sequence(

F
(
A

n
(l)
k

, cl

))
k∈N

is convergent. From the construction of sequences (n(l)
k )k∈N,

l ∈ N, it follows that the sequence
(
F

(
A

n
(l)
k

, cj

))
k∈N

is convergent for each

j ∈ {0, 1, . . . , l}. Thus, the sequence
(
F

(
A

n
(k)
k

, cj

))
k∈N

is convergent for each

j ∈ N. Define g(x) = lim supk→∞ F
(
A

n
(k)
k

, cj

)
for x ∈ [0, 1]. g is a non-

decreasing function. In particular, g has at most countably many points of
discontinuity. Let x ∈ (0, 1) be a point of continuity of g. Then

lim
Q�q→x−

lim
k→∞

F
(
A

n
(k)
k

, q
)

= lim
Q�q→x−

g(q) = g(x)

= lim
Q�q→x+

g(q) = lim
Q�q→x+

lim
k→∞

F
(
A

n
(k)
k

, q
)

.

On the other hand,

lim
Q�q→x−

lim
k→∞

F
(
A

n
(k)
k

, q
)

≤ lim inf
k→∞

F
(
A

n
(k)
k

, x
)

≤ lim sup
k→∞

F
(
A

n
(k)
k

, x
)

≤ lim
Q�q→x+

lim
k→∞

F
(
A

n
(k)
k

, q
)

.

Hence, g(x) = limk→∞ F
(
A

n
(k)
k

, x
)

for every x ∈ [0, 1] with at most countably
many exceptions. This means, that g(x) ∈ G(An). �

Now we give a series of corollaries following from Theorem 2.

Corollary 1. If G(An) is not a singleton, then #G(An) = c.

Proof. Since distribution functions are non-decreasing and we identify two of
them if they coincide on their common points of continuity, we can assume
that all the elements of G(An) are right-continuous functions. Assume that
1 < #G(An) < c. Then we consider the set

D = {b ∈ [0, 1] : b is a point of discontinuity of some g(x) ∈ G(An)}.

Then #D ≤ max{ℵ0,#G(An)} < c. Thus (0, 1)\D is dense in [0, 1].
We claim that there exist g1(x), g2(x) ∈ G(An) and c0 ∈ (0, 1)\D such that
g1(c0) < g2(c0). Indeed, if any two functions from G(An) (that are monotone
and right-continuous) coincide on (0, 1)\D (which is dense in [0, 1]), then they
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are equal. This means that #G(An) = 1, contradicting our assumption on
cardinality of G(An). Let c0 ∈ (0, 1)\D be such that g1(c0) < g2(c0). By
Theorem 1 we have

lim inf
n→∞ F (An, c) ≤ g1(c) < g2(c) ≤ lim sup

n→∞
F (An, c),

meanwhile by Theorem 2 we conclude that for each γ ∈ [lim infn→∞ F (An, c),
lim supn→∞ F (An, c)] there exists g(x) ∈ G(An) such that g(c) = γ. Since
c is a point of continuity of any function from G(An), we obtain c pairwise
distinct functions from G(An), once again contradicting the assumption on
cardinality of G(An). Finally, we get that if G(An) is not a singleton, then
#G(An) ≥ c. On the other hand, the cardinality of G(An) does not exceed c
as the cardinality of the set of all functions mapping the interval [0, 1] to itself
and having at most countably many points of discontinuity. �

Remark 2. The fact #G(An) ∈ {1, c} was proved implicitly in [17, Theorem
5.1] under additional condition on distribution of elements of A. To be more
precise, the connectedness of G(An) with respect to weak topology was showed
in this case.

Let us also note that Corollary 1 follows directly from Theorem 2 if we
distinguish any two functions that differ at at least one point. However, we
identify two functions in G(An) if they differ on at most countably many
points. This is the purpose that the proof of Corollary 1 becomes more subtle.

Corollary 2. Let A = {a1 < a2 < · · · } ⊂ N. Then, the following conditions
are equivalent:

(i) G(An) = {g(x)},
(ii) ∀ c > 0 : lim

t→∞
A(ct)
A(t) exists,

(iii) ∀ c > 1 : lim
t→∞

A(ct)
A(t) = 1

g
(

1
c

) ,
(iv) ∀ 0 < c < 1 : lim

t→∞
A(ct)
A(t) = g(c).

Proof. According to Theorem 1, it suffices to prove the equvalence i) ⇔ ii). For
the proof of ii) ⇒ i) assume that limt→∞

A(ct)
A(t) exists for each c > 0. By The-

orem 1, each distribution fuction for (An) is of the form g(x) = limt→∞
A(xt)
A(t) ,

x ∈ (0, 1).
We prove the implication i)⇒ii) by contrary. If ii) does not hold, i.e.

lim inft→∞
A(ct)
A(t) �= lim supt→∞

A(ct)
A(t) for some c ∈ (0, 1), then the set G(An) contains

functions g1(x) and g2(x) such that g1(c) = lim inft→∞
A(ct)
A(t) and g2(c) =

lim supt→∞
A(ct)
A(t) . However, we assume i), i.e. G(An) = {g(x)}. Thus, g(x) ∈

{c0(x), xq : q ∈ (0, 1]} in virtue of (A1). Since g1, g2 and g are non-decreasing
and g|(0,1) is continuous, then there exists i ∈ {1, 2} and ε > 0 such that
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gi(x) �= g(x) for each x ∈ (c−ε, c+ε). Hence G(An) has at least two elements,
contradicting i). �
Corollary 3. Let A = {a1 < a2 < · · · } ⊂ N and 0 < q ≤ 1. Then, we have

(i) A ∈ U(c0(x)) ⇐⇒ ∀ c > 0 : limt→∞
A(ct)
A(t) = 1, i.e. A(x) ∈ RV0.

(ii) A ∈ U(xq) ⇐⇒ ∀ c > 0 : limt→∞
A(ct)
A(t) = cq , i.e. A(x) ∈ RVq.

Proof. This is a direct corollary of Corollary 2 and (A1). �
Corollary 4. Let A = {a1 < a2 < · · · } ⊂ N. Then, the following conditions
are equivalent:

(i) ∀ c > 1 : limt→∞
A(ct)
A(t) exists,

(ii) ∃q ∈ [0, 1] : A(x) ∈ RVq.

Proof. For the proof of the implication i)⇒ ii) denote g
(
1
c

)
= limt→∞

A(t)
A(ct)

for each c ≥ 1. By Corollary 2 we have G(An) = {g(x)}, which means that
A ∈ U(g(x)). Hence, by (A1) we have g(x) ∈ {c0(x), xq : q ∈ (0, 1]} and by
Corollary 3 we conclude that A(x) ∈ RVq for some q ∈ [0, 1].
The implication ii)⇒ i) is obvious. �
From Corollary 3, (A7) and (A8) we obtain the following.

Corollary 5. Let A = {a1 < a2 < · · · } ⊂ N and 0 < q ≤ 1. Then we have the
following.

(i) If limt→∞
A(ct)
A(t) = 1 for every c > 0, then limn→∞ log n

log an
= 0, i.e. λ(A) =

0.
(ii) If limt→∞

A(ct)
A(t) = cq for every c > 0, then limn→∞ log n

log an
= q (and then

λ(A) = q).

Remark 3. Of course, the condition limt→∞
A(ct)
A(t) = 1 for each c > 1 im-

plies that λ(A) = 0. The inverse implication does not hold as U(c0(x)) �

I(c0(x)) [22, Example 1]. This means that there exist sets B ⊂ A ⊂ N such
that A ∈ U(c0(x)) but B �∈ U(c0(x)). By Corollary 3 we thus have that
B(x) �∈ RV0. However, since A(x) ∈ RV0, by Corollary 4 we conclude that
limn→∞

log A(n)
log n = λ(A) = 0. Hence, limn→∞

log B(n)
log n = λ(B) = 0 as B ⊂ A

and the exponent of convergence is a monotone set function.

Remark 4. Let us note that the condition lim inft→∞
A(ct)
A(t) > 1 for each c > 1

does not imply that limt→∞
A(ct)
A(t) exists. Let

A = N ∩
∞⋃

k=1

(((2k − 1)!, (2k)!] ∪ {2j : (2k)! < 2j ≤ (2k + 1)!}) .

Fix arbitrary c > 1. Then

lim inf
t→∞

A(ct)
A(t)

= lim
k→∞

A(c · (2k)!)
A((2k)!)

= 1 + lim
k→∞

A(c · (2k)!) − A((2k)!)
A((2k)!)
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= 1 + lim
k→∞

(c−1)·(2k)!
2

(2k)!

= 1 +
c − 1

2
=

c + 1
2

> 1

and

lim sup
t→∞

A(ct)
A(t)

= lim
k→∞

A(c · (2k − 1)!)
A((2k − 1)!)

= 1 + lim
k→∞

A(c · (2k − 1)!) − A((2k − 1)!)
A((2k − 1)!)

= 1 + lim
k→∞

(c − 1) · (2k − 1)!
(2k−1)!

2

= 1 + 2(c − 1) = 2c − 1 >
c + 1

2
.

The example below shows that for each q ∈ (0, 1] there exists a set A ⊂ N

such that the limit limn→∞
log A(n)
log n does not exist and λ(A) = q.

Example 1. Let 0 ≤ p < q ≤ 1 be fixed. Let (pk) be a non-increasing sequence
of positive numbers convregent to p and (bk) be a strictly increasing sequence
of positive integers such that

bq
1

bp
2

< 1,
bq
k

b
p�k/2�
k+1

↓ 0 as k → ∞ and lim
k→∞

log k

log bk
= 0 .

For k ∈ N we define sets

A2k−1 =
{⌈

j
1

pk

⌉
: j ∈ N and b2k−1 < j

1
pk ≤ b2k

}
,

A2k =
{⌈

j
1
q

⌉
: j ∈ N and b2k < j

1
q ≤ b2k+1

}
.

Choose the set

A =
∞⋃

k=1

Ak .

Then,

lim
k→∞

log A(b2k+1)
log b2k+1

≥ lim
k→∞

log #A2k

log b2k+1
≥ lim

k→∞
log(bq

2k+1 − bq
2k − 1)

log b2k+1

= lim
k→∞

log bq
2k+1 + log

(
1 − bq

2k

bq
2k+1

− 1
bq
2k+1

)
log b2k+1

= lim
k→∞

log bq
2k+1

log b2k+1
= q

(because the second equality in the second line holds due to the fact that
limk→∞

bq
2k

bq
2k+1

= 0) and

lim
k→∞

log A(b2k)
log b2k

= lim
k→∞

log(#A2k−1 +
∑k−1

j=1 (#A2j−1 + #A2j))
log b2k
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≤ lim
k→∞

log(bpk

2k − bpk

2k−1 +
∑k−1

j=1 (bpj

2j − b
pj

2j−1 + bq
2j+1 − bq

2j))
log b2k

≤ lim
k→∞

log(2k − 1)(bpk

2k − bpk

2k−1)
log b2k

= lim
k→∞

log(2k − 1) + log bpk

2k + log
(
1 − b

pk
2k−1

b
pk
2k

)
log b2k

= lim
k→∞

log bpk

2k

log b2k
= p

(because the second inequality follows from the fact that b
pj

2j − b
pj

2j−1 ≤ bq
2j −

bq
2j−1 ≤ bpk

2k − bpk

2k−1 and bq
2j+1 − bq

2j ≤ bpk

2k − bpk

2k−1 for every j = 1, 2, . . . , k − 1,

since
bq
2k−1

b
pk
2k

↓ 0 as k → ∞, and the second equality comes from the facts that

limk→∞
b

pk
2k−1

b
pk
2k

= 0 and limk→∞
log(2k−1)
log b2k

= 0). Hence,

lim inf
n→∞

log A(n)
log n

≤ p < q ≤ lim sup
n→∞

log A(n)
log n

.

On the other hand,

lim sup
n→∞

log A(n)
log n

≤ lim
n→∞

log #{j ∈ N : j
1
q ≤ n}

log n
≤ lim

n→∞
log nq

log n
= q

and

lim inf
n→∞

log A(n)
log n

≥ lim
n→∞

log #{j ∈ N : j
1
p ≤ n}

log n
≥ lim

n→∞
log np

log n
= p .

for p > 0 (if p = 0, then obviously lim infn→∞
log A(n)
log n ≥ p). Hence,

p ≤ lim inf
n→∞

log A(n)
log n

≤ lim sup
n→∞

log A(n)
log n

≤ q .

From (A15) we have, as a result, λ(A) = lim supn→∞
log A(n)
log n = q and

lim infn→∞
log A(n)
log n = p.

We start our reasonings on directions sets and multidimensional ratio
sets. The following lemma shows that there is a strong connection between
their topological properties.

Lemma 3. Let k ∈ N and A1, . . . , Ak−1, B ⊂ N. Then, the following conditions
are equivalent:

(i) Dk(A1, . . . , Ak−1;B) is dense in S
k−1
+ ;

(ii) Rk(A1, . . . , Ak−1;B) is dense in R
k−1
+ .

If additionally A1 = · · · = Ak−1 = B = A, then the above conditions are
equivalent to the following one:
(iii) Rk(A) is dense in (0, 1)k−1.
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Proof. We start with the proof of the equivalence i)⇔ ii). Consider the map-
pings

F : S
k−1
+ � (x1, . . . , xk) �→

(
x1

xk
, . . . ,

xk−1

xk

)
∈ R

k−1
+ ,

G : R
k−1
+ � (y1, . . . , yk−1) �→

(
y1√

y2
1 + . . . + y2

k + 1
, . . . ,

yk−1√
y2
1 + . . . + y2

k + 1
,

1√
y2
1 + . . . + y2

k + 1

)
∈ S

k−1
+ .

These mappings are continuous and inverse to each other. Indeed, let us
compute (G ◦ F )(x1, . . . , xk):

(G ◦ F )(x1, . . . , xk) = G

(
x1

xk

, . . . ,
xk−1

xk

)

=

⎛
⎜⎜⎝

x1
xk√

x2
1

x2
k
+ . . . +

x2
k−1
x2

k
+ 1

, . . . ,

xk−1
xk√

x2
1

x2
k
+ . . . +

x2
k−1
x2

k
+ 1

,
1√

x2
1

x2
k
+ . . . +

x2
k−1
x2

k
+ 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝ x1

xk

√
x2

1
x2

k
+ . . . +

x2
k−1
x2

k
+ 1

, . . . ,
xk−1

xk

√
x2

1
x2

k
+ . . . +

x2
k−1
x2

k
+ 1

,
xk

xk

√
x2

1
x2

k
+ . . . +

x2
k−1
x2

k
+ 1

⎞
⎟⎟⎠

=

⎛
⎝ x1√

x2
1 + . . . + x2

k−1 + x2
k

, . . . ,
xk−1√

x2
1 + . . . + x2

k−1 + x2
k

,
xk√

x2
1 + . . . + x2

k−1 + x2
k

⎞
⎠

= (x1, . . . , xk−1, xk),

where in the last equality we use the fact, that (x1, . . . , xk) ∈ S
k−1. Now, we

compute (F ◦ G)(y1, . . . , yk−1):

(F ◦ G)(y1, . . . , yk−1)

= F

⎛
⎝ y1√

y2
1 + . . . + y2

k−1 + 1
, . . . ,

yk−1√
y2
1 + . . . + y2

k−1 + 1
,

1√
y2
1 + . . . + y2

k−1 + 1

⎞
⎠

= (y1, . . . , yk−1).

Let a1 ∈ A1, . . . , ak−1 ∈ Ak−1, b ∈ B. Then,

F

⎛
⎝ a1√

a2
1 + . . . + a2

k−1 + b2
, . . . ,

ak−1√
a2
1 + . . . + a2

k−1 + b2
,

b√
a2
1 + . . . + a2

k−1 + b2

⎞
⎠

=
(a1

b
, . . . ,

ak−1

b

)
.

Hence, F : S
k−1
+ → R

k−1
+ is a homeomorphism such that

F (Dk(A1, . . . , Ak−1;B)) = Rk(A1, . . . , Ak−1;B).

Thus, the denseness of Dk(A1, . . . , Ak−1;B) in S
k−1
+ is equivalent to the

denseness of Rk(A1, . . . , Ak−1;B) in R
k−1
+ .
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From now on we assume that A1 = . . . = Ak−1 = B = A. Then, the implication
ii)⇒ iii) is obvious. It remains to prove iii)⇒ ii). Let us consider the sets
Xj = {(x1, . . . , xk−1) ∈ R

k−1
+ : xj > 1,∀i	=j xi < xj}, where j ∈ {1, . . . , k −1}.

Then, the mapping

Hj : R
k−1
+ � (x1, . . . , xk−1)

�→ (x1x
−1
j , . . . , xj−1x

−1
j , x−1

j , xj+1x
−1
j , . . . , xk−1x

−1
j ) ∈ R

k−1
+

is continuous and involutive. Moreover, Hj((0, 1)k−1) = Xj and Hj(Rk(A)) =
Rk(A), as

Hj

(
a1

ak
. . . ,

ak−1

ak

)
=

(
a1

aj
. . . ,

aj−1

aj
,
ak

aj
,
aj+1

aj
, . . . ,

ak−1

aj

)
.

Consequently, if Rk(A) is dense in (0, 1)k−1, then Rk(A) is dense in Xj

for each j ∈ {1, . . . , k − 1}. This, combined with the facts that (0, 1)k−1 is
dense in (0, 1]k−1, Xj is dense in the set Yj = {(x1, . . . , xk−1) ∈ R

k−1
+ : xj ≥

1,∀i	=j xi ≤ xj}, j ∈ {1, . . . , k − 1}, and (0, 1]k−1 ∪⋃k−1
j=1 Yj = R

k−1
+ , gives the

denseness of Rk(A) in R
k−1
+ . �

Now, we give a list of equivalent conditions to the (N)-denseness of a given
subset of N.

Theorem 3. Let A = {a1 < a2 < · · · } ⊂ N. Then, the following conditions are
equivalent:

i) ∀ c > 1 : A(ct) > A(t) for t � 0;
ii) ∀ c > 1 : limt→∞(A(ct) − A(t)) = ∞;
iii) ∀ k ≥ 2 ∀ B ⊂ N infinite: Rk(A;B) is dense in R

k−1
+ ;

iv) ∀ k ≥ 2 ∀ B ⊂ N infinite: Dk(A;B) is dense in S
k−1
+ ;

v) ∃ k ≥ 2 ∀ B ⊂ N infinite: Rk(A;B) is dense in R
k−1
+ ;

vi) ∃ k ≥ 2 ∀ B ⊂ N infinite: Dk(A;B) is dense in S
k−1
+ ;

vii) ∀ B ⊂ N infinite ∃ k ≥ 2 : Rk(A;B) is dense in R
k−1
+ ;

viii) ∀ B ⊂ N infinite ∃ k ≥ 2 : Dk(A;B) is dense in S
k−1
+ ;

ix) A is (N) − dense;
x) limn→∞

an+1
an

= 1;
xi) limn→∞ 1

an
max{a1, ai+1 − ai : i ∈ {1, . . . , n − 1}} = 0.

Proof. In order to show the implication i)⇒ ii) it suffices to show that for each
c > 1 and k ∈ N there exists tc,k such that A(ct) − A(t) ≥ k for each t ≥ tc,k.
Indeed, let tc,k be such that A( k

√
ct) > A(t) for t ≥ tc,k. Then

A(ct) − A(t) =
k∑

j=1

(
A
(

k
√

c
j
t
)

− A
(

k
√

c
j−1

t
))

≥ k,

which was to prove.
The implication ii)⇒ i) is trivial.
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For the proof of the implication i)⇒ iii) let us fix k ≥ 2, an infinite subset B of
N and α1, β1 . . . , αk−1, βk−1 ∈ R+ such that αj < βj for each j ∈ {1, . . . , k−1}.
By i), for sufficiently large t > 0 we have A(βjt) > A(αjt) for each j ∈
{1, . . . , k − 1}. Since B ⊂ N is infinite, we can choose b ∈ B so large that
A(βjb) > A(αjb) for each j ∈ {1, . . . , k − 1}. This means that for each j ∈
{1, . . . , k − 1} there exists an aj ∈ A such that αjb < aj ≤ βjb, equivalently
αj <

aj

b ≤ βj . Hence,
(

a1
b , . . . , ak−1

b

) ∈ Rk(A;B)∩(α1, β1]× . . .×(αk−1, βk−1].
Because α1, β1 . . . , αk−1, βk−1 are chosen arbitrarily, we conclude that the set
Rk(A;B) is dense in R

k−1
+ .

The equivalences iii)⇔ iv), v)⇔ vi) and vii)⇔ viii) follow directly from Lemma
3.
The implications iii)⇒ v) and v)⇒ vii) are obvious.

The implication vii)⇒ ix) follows from the facts that R(A,B) is an image
of Rk(A;B) via the projection R

k−1
+ � (x1, . . . , xk−1) �→ x1 ∈ R+ and an image

of a dense subset via continuous surjection is a dense subset of a codomain.
We prove the implication ix)⇒ i) by contraposition. Assume that there exist
a c0 > 1 and a sequence (xn)n∈N of positive numbers strictly increasing to
infinity such that A(c0xn) = A(xn) for each n ∈ N. Then, take N ∈ N such
that xN

xN −1 < c0 and put c1 = xN

xN −1 . Thus, for each n ≥ N we have xn

xn−1 ≤ c1.
This means that

xn ≤ c1(xn − 1) < c1�xn� < c0�xn� ≤ c0xn, n ≥ N.

Hence, A(c1�xn�) = A(c0�xn�) for n ≥ N . Let us consider the set B =
{�xn� : n ≥ N}. If R(A,B) ∩ (c1, c0) �= ∅, then there are some a ∈ A and
n ≥ N such that c1 < a


xn� < c0, or equivalently c1�xn� < a < c0�xn� -
this contradicts with the fact that A(c1�xn�) = A(c0�xn�) for n ≥ N . Hence,
R(A,B) is not dense in R+ and, as a result, A is not (N)-dense.
The implication x)⇒ ix) is exactly the fact (A21).

For the proof of the implication i)⇒ x) it suffices to show that for each
ε > 0 and sufficiently large n ∈ N we have an+1

an
≤ 1 + ε. Let us fix ε > 0.

By i), there exists a constant M > 0 such that A((1 + ε)t) > A(t) holds for
every t ≥ M . As a consequence, if an ≥ M , then A((1 + ε)an) > A(an), which
means that an+1 ≤ (1 + ε)an, equivalently an+1

an
≤ 1 + ε. This was to prove.

We show the implication x)⇒ xi). For the convenience of notation we put
a0 = 0. Then, for each n ∈ N there exists i(n) ∈ {0, 1, . . . , n − 1} such that
max{ai+1−ai : i ∈ {0, 1, . . . , n−1}} = ai(n)+1−ai(n). If the sequence (i(n))n∈N

is bounded, then the value of ai(n)+1 − ai(n) is bounded and

lim
n→∞

1
an

max{a1, ai+1 − ai : i ∈ {1, . . . , n − 1}} = lim
n→∞

ai(n)+1 − ai(n)

an
= 0

as limn→∞ an = ∞. If the sequence (i(n))n∈N is unbounded, then we write the
following chain of inequalities.

0 <
1
an

max{ai+1 − ai : i ∈ {0, . . . , n − 1}} =
ai(n)+1 − ai(n)

an
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=
ai(n)+1 − ai(n)

ai(n)

ai(n)

an
<

ai(n)+1

ai(n)
− 1,

where a0 = 0. By x), the right-most expression in the above chain tends to
0 as n → ∞. Therefore, 1

an
max{a1, ai+1 − ai : i ∈ {1, . . . , n − 1}} → 0 as

n → ∞.
We are left with the proof of the implication xi)⇒ x). We write

0 <
an − an−1

an
≤ 1

an
max{a1, ai+1 − ai : i ∈ {1, . . . , n − 1}}.

By x), the right-most expression in the above double inequality tends to 0 as
n → ∞. Thus, an−an−1

an
= 1 − an−1

an
→ 0 as n → ∞. Hence, limn→∞

an−1
an

= 1,
which is equivalent to the limit limn→∞

an+1
an

= 1. �

Remark 5. The reasoning like in the proof of the implication vii)=⇒ ix), in
view of Lemma 3, gives another proof of the fact that if k < l, then the
denseness of Dl(A) in S

l−1
+ implies the denseness of Dk(A) in S

k−1
+ .

At this moment we give a generalization of the last implication in (A22).

Theorem 4. Let k ∈ N, k ≥ 2, and A ⊂ N. Assume that the set Rk(A) is dense
in R

k−1
+ . Then, D(A) ≤ 1

k .

Proof. Let us write A = {a1 < a2 < · · · }. Since Rk(A) is dense in R
k−1
+ ,

there exists a sequence ((a(n)
1 , . . . , a

(n)
k ))n∈N such that a

(n)
j ∈ A for each j ∈

{1, . . . , k} and n ∈ N, and limn→∞
a
(n)
j

a
(n)
k

= j
k for every j ∈ {1, . . . , k−1}. Then,

max
t∈N:at≤a

(n)
k

at − at−1

a
(n)
k

≤ max
1≤j≤k

a
(n)
j − a

(n)
j−1

a
(n)
k

→ 1
k

, n → ∞,

where we put a0 = 0 and a
(n)
0 = 0, n ∈ N. As a result,

D(A) = lim inf
s→∞ max

1≤t≤s

at − at−1

as
≤ 1

k
.

�

With the use of the above theorem and Lemma 3 we are able to give a topo-
logical characterization of having dispersion equal to zero.

Theorem 5. Let A ⊂ N. Then, D(A) = 0 if and only if for each positive integer
k ≥ 2 the set Rk(A) is dense in R

k−1
+ .

Proof. Firstly, we assume that D(A) = 0. For the proof of the implication
⇒, by Lemma 3 it suffices to prove that for each positive integer k ≥ 2 the
set Rk(A) is dense in (0, 1)k−1. Let A = {a1 < a2 < · · · } and put a0 = 0.
Choose any x1, . . . , xk−1 ∈ (0, 1) and ε > 0. Since D(A) = 0, we can choose
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an n ∈ N such that max1≤t≤n
at−at−1

an
< ε. Then, there exist t1, . . . , tk−1 such

that
∣∣∣atj

an
− xj

∣∣∣ < ε for each j ∈ {1, . . . , k − 1}, which ends the proof.

The proof of the implication ⇐ follows directly from Theorem 4. �

Remark 6. The equivalence x)⇔ xi) in Theorem 3 combined with the impli-
cation ⇒ in Theorem 5 gives another proof of (A24).

Remark 7. Let us notice that the implication in (A24) cannot be inversed. It
suffices to construct a set A = {a1 < a2 < · · · } ⊂ N such that D(A) = 0 but
the lim supn→∞

an+1
an

> 1. Then, by Theorem 5 the set Dk(A) is dense in S
k−1
+

for each k ≥ 2.
Let us consider the set A = N ∩ ⋃∞

k=1[(2k)!, (2k + 1)!]. Then,

D(A) = lim
k→∞

(2k)! − (2k − 1)!)
(2k + 1)!

= lim
k→∞

1
2k + 1

− 1
2k(2k + 1)

= 0.

On the other hand,

lim sup
n→∞

an+1

an
= lim

k→∞
(2k)!

(2k − 1)!
= lim

k→∞
2k = ∞.

Our next result shows that Theorems 4 and 5 are the only dependences
between the denseness of generalized ratio sets of a given subset of N and
dispersion of this subset. Moreover, we can construct a subset A of positive
integers with Rk(A) dense in R

k−1
+ , Rk+1(A) not dense in R

k
+ and arbitrarily

prescribed dispersion d ∈ (
0, 1

k

]
and the value of limt→∞

log A(t)
log t ∈ [0, 1].

Theorem 6. For each positive integer k ∈ N and real numbers d ∈ (
0, 1

k

]
and

λ ∈ [0, 1] there exists a set A ⊂ N such that Rk(A) is dense in R
k−1
+ , Rk+1(A)

is not dense in R
k
+, D(A) = d and limt→∞

log A(t)
log t = λ (in case of k = 1 we

understand the condition ”Rk(A) is dense in R
k−1
+ ” as an empty fulfilled one).

Proof. Let us fix k ∈ N, k ≥ 2, d ∈ (
0, 1

k

]
and λ ∈ [0, 1]. Enumerate all the

elements of the set {(x1, . . . , xk−1) ∈ (0, 1) ∩ Q
k−1 : x1 < x2 < . . . < xk−1} =

{(q(n)1 , . . . , q
(n)
k−1) : n ∈ N} such that for each l ∈ {1, . . . , k − 1} the value of

(4n−1)! · q(n)l is an integer at least equal to (4n−2)!. Construct three families
of subsets of N:

Bn =
{⌈

j
1
λ

⌉
: j ∈ N

}
∩
(

max{(4n − 4)!, d · (4n − 3)!},
2d

2 − d
· (4n − 3)!

]
,

Cn = {(4n − 1)! · q
(n)
1 , . . . , (4n − 1)! · q

(n)
k−1, (4n − 1)!},

Dn =
{⌈

(4n − 1)!
(1 − d)j

⌉
: j ∈ N

}
∩ ((4n − 1)!, (4n)!],
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where n ∈ N (if d = 1, then we take Dn = ∅; if λ = 0, then we put Bn = ∅).
Then we define

A =
⋃
n∈N

(Bn ∪ Cn ∪ Dn).

From the very definition of Cn we know that (q(n)1 , . . . , q
(n)
k−1) ∈ Rk(A).

Additionally, each (k−1)-tuple of rational numbers from the interval (0, 1) can
be attained as (q(n)σ(1), . . . , q

(n)
σ(k−1)) for some σ : {1, . . . , k − 1} → {1, . . . , k − 1}

(not necessarily bijective). Thus Rk(A) is dense in (0, 1)k−1. By Lemma 3,
Rk(A) is dense in R

k−1
+ .

Assume by contrary that Rk+1(A) is dense in R
k
+. Let 0 < r1 < . . . <

rk < 1 and a
(n)
l ∈ A, n ∈ N, l ∈ {1, . . . , k + 1}, be such that limn→∞

a
(n)
l

a
(n)
k+1

= rl

for each l ∈ {1, . . . , k}. For sufficiently large n ∈ N we have a
(n)
1 < · · · <

a
(n)
k < a

(n)
k+1. If for infinitely many n we have a

(n)
1 , . . . , a

(n)
k , a

(n)
k+1 ∈ Bm for

some m ∈ N, then

rl = lim
n→∞

a
(n)
l

a
(n)
k+1

≥ 1 − d

2
, l ∈ {1, . . . , k}.

Otherwise, by the assumption on enumeration of the k − 1-tuples (q(n)1 ,

. . . , q
(n)
k−1) and from the definition of the sets Dn we have

r1 = lim
n→∞

a
(n)
1

a
(n)
k+1

≤ 1 − d.

This means that all the accumulation points of Rk+1(A) ∩ (0, 1)k have
all the coordinates at least equal to 1 − d

2 or at least one coordinate at most
equal to 1 − d. This means that Rk+1(A) is not dense in (0, 1)k.
At this moment we compute D(A). Write A = {a1 < a2 < a3 < . . .} and set
a0 = 0. Consider several cases for the value of 1

at
max1≤j≤t(aj − aj−1).

• If at ∈ Bn for sufficiently large n ∈ N, then

1
at

max1≤j≤jn
(aj − aj−1) > d·(4n−3)!−(4n−4)!

2d
2−d ·(4n−3)!

= 1 − d
2

− 2−d
2d(4n−3) → 1 − d

2 > d as n → ∞.

• If at = (4n − 1)! · q
(n)
l , n ≥ 2, l ∈ {1, . . . , k − 1}, then

1
at

max
1≤j≤jn+l

(aj − aj−1) ≥ 1
at

max
1≤s≤l

(at−l+s − at−l+s−1) ≥ 1
at

at − at−l

l

>
1

(4n − 1)! · q
(n)
l

(4n − 1)! · q
(n)
l − (4n − 3)!
l
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=
1 − 1

(4n−2)(4n−1)·q(n)
l

l
→ 1

l
>

1
k

as n → ∞,

where the convergence 1

(4n−2)(4n−1)·q(n)
l

→ 0 in the second line follows

from the assumption that (4n − 1)! · q
(n)
l ≥ (4n − 2)!.

• If at = (4n − 1)!, n ∈ N, then

1
at

max
1≤j≤jn+l

(aj − aj−1) ≥ 1
at

max
1≤s≤k

(at−k+s − at−k+s−1) ≥ 1
at

at − at−k

k

>
1

(4n − 1)!
(4n − 1)! − (4n − 3)!

k
=

1 − 1
(4n−2)(4n−1)

k
→ 1

k
as n → ∞.

• If at =
⌈
(4n−1)!
(1−d)j

⌉
∈ Dn, j, n ∈ N, then

1
at

max
1≤j≤t

(aj − aj−1) ≥ 1
at

(at − at−1)

=
1⌈

(4n−1)!
(1−d)j

⌉
(⌈

(4n − 1)!
(1 − d)j

⌉
−

⌈
(4n − 1)!
(1 − d)j−1

⌉)

→ 1 − (1 − d) = d as n → ∞.

Moreover, if at = max Dn, then j =
⌊
− log 4n

log(1−d)

⌋
→ ∞ as n → ∞. As a

result, we have

at − at−1 =
⌈

(4n − 1)!
(1 − d)j

⌉
−

⌈
(4n − 1)!
(1 − d)j−1

⌉

>
(4n − 1)!
(1 − d)j

− (4n − 1)!
(1 − d)j−1

− 1 =
d

(1 − d)j
(4n − 1)! − 1

> max
{

(4n − 1)!,
⌈

(4n − 1)!
(1 − d)s

⌉
−

⌈
(4n − 1)!
(1 − d)s−1

⌉
: s ∈ {1, . . . , j − 1}

}

for sufficiently large n. Hence, 1
at

max1≤j≤t(aj −aj−1) = 1
at

(at −at−1) →
d, n → ∞.

Summing up, D(A) = lim inft→∞ 1
at

max1≤j≤t(aj − aj−1) = d.

We are left with the computation of limt→∞
logA(t)
log t . We do this by esti-

mating the lower and upper limit from below and above, respectively. On one
hand,

lim inf
t→∞

log A(t)
log t

= lim
n→∞

log A(d · (4n + 1)!)
log(d · (4n + 1)!)

≥ lim
n→∞

log(#Bn)
log(d · (4n + 1)!)

= lim
n→∞

log
((

2d
2−d · (4n − 3)!

)λ

− (d · (4n − 3)!)λ

)

log d + (4n + 1) log(4n + 1)
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= lim
n→∞

log
((

2d
2−d

)λ

− dλ

)
+ λ · (4n − 3) log(4n − 3)

log d + (4n + 1) log(4n + 1)
= λ,

where we used the fact that log n!
n log n → 1 as n → ∞. On the other hand,

lim sup
t→∞

log A(t)
log t

= lim
n→∞

log A
(

2d
2−d · (4n − 3)!

)

log
(

2d
2−d · (4n − 3)!

)

≤ lim
n→∞

log
(

2d
2−d · (4n − 3)!

)λ

log
(

2d
2−d · (4n − 3)!

) = λ,

where we used the fact that

#Bn < #
({⌈

j
1
λ

⌉
: j ∈ N

}
∩ ((4n − 4)!, (4n − 3)!]

)
,

#Cn < #
({⌈

j
1
λ

⌉
: j ∈ N

}
∩ ((4n − 3)!, (4n − 1)!]

)
,

#Dn < #
({⌈

j
1
λ

⌉
: j ∈ N

}
∩ ((4n − 1)!, (4n)!]

)

for sufficiently large n. Thus we showed that limt→∞
logA(t)
log t = λ.

Now we consider the case of k = 1 and λ ∈ (0, 1]. Define

dn =

{
d if d ∈ (0, 1),(
1 − 1

n

) 1
λ if d = 1,

n ∈ N,

and

An =
{

�dn · n!�, n!,
⌈
j

1
λ

⌉
: j ∈ N ∩ [(dn · n!)λ, (n!)λ]

}
.

Then we set

A =
⋃
n∈N

An.

We see that R(A) is not dense in (0, 1). Indeed, if a < b are two elements
of A and a, b ∈ An for some n ∈ N, then a

b ≥ dn. If a ∈ Am and b ∈ An for
m < n, then a

b ≤ 1
ndn

.
Now, we compute the dispersion of A. We begin with a remark that

among all the elements of A not exceeding n! the greatest difference between
two consecutive elements is �dn · n!� − (n − 1)! for sufficiently large n ∈ N.
Indeed, we have

�dn · n!� − (n − 1)! ≥ dn · n! − (n − 1)! = (dn · n − 1)(n − 1)! > (n − 1)!

for n > 2
d if d ∈ (0, 1) and n > 21+

1
λ if d = 1. Moreover,⌈

j
1
λ

⌉
−

⌈
(j − 1)

1
λ

⌉
< j

1
λ + 1 − (j − 1)

1
λ
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≤ n! + 1 − (
(n!)λ − 1

) 1
λ = n!(1 − (1 − (n!)−λ)

1
λ ) + 1

≤ n!
(

1 −
(

1 − 1
λ

(n!)−λ

))
+ 1 = n! · 1

λ
(n!)−λ + 1

=
1
λ

(n!)1−λ + 1 < (n − 1)!

for sufficiently large n ∈ N, where the second inequality follows from the
assumption that j ≤ (n!)λ, the third inequality in the second line comes from
Bernoulli inequality and the last inequality holds for n � 0 as λ > 0. As a
result,

D(A) = lim
n→∞

dn · n! − (n − 1)!
n!

= lim
n→∞

(
dn − 1

n

)
= d.

We compute limt→∞
log A(t)
log t by estimating the lower and upper limits

from below and above, respectively.

lim inf
t→∞

log A(t)
log t

= lim
n→∞

log A(dn+1 · (n + 1)!)
log(dn+1 · (n + 1)!)

≥ lim
n→∞

log(#An)
log dn+1 + log(n + 1)!

= lim
n→∞

log((n!)λ − (dn · n!)λ)
log dn+1 + (n + 1) log(n + 1)

= lim
n→∞

log(1 − (dn)λ) + λ log n!
log dn+1 + (n + 1) log(n + 1)

= lim
n→∞

log(1 − (dn)λ) + λ · n log n

log dn+1 + (n + 1) log(n + 1)
= λ.

Next, we estimate the upper limit from above with the use of the fact that
A ⊂

{
�j� 1

λ : j ∈ N

}
.

lim sup
t→∞

log A(t)
log t

= lim
n→∞

log A(n!)
log n!

≤ lim
n→∞

log(n!)λ

log n!
= λ

Summing up our estimations, we get

λ ≤ lim inf
t→∞

log A(t)
log t

≤ lim sup
t→∞

log A(t)
log t

≤ λ,

which means that limt→∞
log A(t)
log t exists and is equal to λ.

We are left with the case of k = 1 and λ = 0. It is quite easy as we may take

A =

{
{�(1 − d)−k� : k ∈ N} for d ∈ (0, 1),
{k! : k ∈ N} for d = 1.

as a required set. The facts that R(A) is not dense in R+, D(A) = d and
limt→∞

log A(t)
log t = 0 are classical ones, so we leave their proof to the reader. �

Remark 8. Replacing some of the sets Bn or An by{⌈
j

1
κ

⌉
: j ∈ N

}
∩
(

max{(4n − 4)!, d · (4n − 3)!},
2d

2 − d
· (4n − 3)!

]
,
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where κ < λ (in case of κ = 0 we only delete some sets Bn or An), we
can even construct a set A ⊂ N with Rk(A) dense in R

k−1
+ , Rk+1(A) not

dense in R
k
+, dispersion equal to d ∈ (

0, 1
k

]
, and lim inft→∞

log A(t)
log t = κ

and lim supt→∞
log A(t)
log t = λ. We decided not to consider distinct values of

lim inft→∞
log A(t)
log t and lim supt→∞

log A(t)
log t in Theorem 6 as it would compli-

cate its proof that is tricky even in the present form.

Remark 9. With the use of Theorem 6 we are able to conclude that the con-
dition
limn→∞

log A(n)
log n = q for arbitrarily fixed q ∈ (0, 1] does not imply that A(x) ∈

RVq. By Theorem 6 we know that there exists an subset A of N such that
limn→∞

log A(n)
log n = q and D(A) > 0. Hence, A is not (N)-dense and, as a result,

A �∈ RVq.

Theorem 6 concerns the case of positive dispersion. Our last theorem
compliments it as it shows that there are (N)-dense sets A ⊂ N (and hence
the sets with dispersion zero) with arbitrary value of limn→∞

log A(n)
log n , and

hence the exponent of convergence.

Theorem 7. For each λ ∈ [0, 1] there exists an (N)-dense set A ⊂ N such that
limn→∞

log A(n)
log n = λ (in particular A has convergence exponent equal to λ).

Proof. If λ > 0, then we put

A =
{

�j� 1
λ : j ∈ N

}
.

Then, of course,

lim
t→∞

log A(t)
log t

= lim
t→∞

log tλ

log t
= λ

and

lim
j→∞

⌈
(j + 1)

1
λ

⌉
⌈
j

1
λ

⌉ = lim
j→∞

(
j + 1

j

) 1
λ

= 1,

so by Theorem 3 we know that A is (N)-dense.
We are left with the case of λ = 0. Define

An = {jn : j ∈ {nn−1, nn−1 + 1, . . . , (n + 1)n+1 − 1, (n + 1)n+1}}, n ∈ N

and

A =
⋃
n∈N

An.

Note that max An = min An+1 = (n + 1)n(n+1).
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We check that
∑

a∈A
1

aα < ∞ for each α > 0.

∑
a∈A

1
aα

=
∞∑

n=1

(n+1)n+1∑
j=nn−1

1
jnα

<

∞∑
n=1

(n + 1)n+1

n(n−1)nα
< ∞,

where the first inequality follows from the facts that

#{nn−1, nn−1, . . . , (n + 1)n+1 − 1, (n + 1)n+1} < (n + 1)n+1

and
1
jn

≤ 1
n(n−1)n

, j ∈ {nn−1, nn−1, . . . , (n + 1)n+1 − 1, (n + 1)n+1}.

The convergence for the last series comes from the root test as

0 <
n

√
(n + 1)n+1

n(n−1)nα
=

(n + 1)1+
1
n

n(n−1)α
<

n4

n(n−1)α
→ 0 as n → ∞,

where the last inequality holds for n ≥ 2 because then we have 1 + 1
n < 2 and

n + 1 < n2.
Now we shall prove that limt→∞

at+1
at

= 1, where A = {a1 < a2 < a3 <

. . .}. Then, by Theorem 3 we will know that A is (N)-dense. Let us take two
consecutive elements at, at+1 ∈ A. Then, there exists an n = n(t) ∈ N such
that at, at+1 ∈ An. This means that at = jn and at+1 = (j + 1)n for some
j ∈ {nn−1, nn−1, . . . , (n + 1)n+1 − 1}. Then,

1 <
at+1

at
=

(j + 1)n

jn
=

(
1 +

1
j

)n

≤
(

1 +
1

nn−1

)n

=

((
1 +

1
nn−1

)nn−1)n2−n

→ 1 as n → ∞,

where the inequality follows from the assumption j ≥ nn−1 and the conver-

gence holds because
(
1 + 1

nn−1

)nn−1

→ e and n2−n → 0 as n → ∞. Thus,
limt→∞

at+1
at

= 1, which ends the proof. �

Remark 10. Intersecting the sets A constructed in the above proof with the
set

⋃∞
k=1[(2k)!, (2k+1)!] we see that for each λ ∈ [0, 1] there exists a set B ∈ N

such that limt→∞
log B(t)
log t = λ, D(B) = 0 but B is not (N)-dense.

Remark 11. The set A from Example 1 in the case of p > 0 is (N)-dense as the
quotient of two consecutive elements of A tends to 1. Hence there exists an (N)-
dense set A ⊂ N such that lim inft→∞

log A(t)
log t = p and lim supt→∞

log A(t)
log t = q,

where 0 < p < q ≤ 1 are arbitrary. Meanwhile the set A′ =
⋃∞

k=1(A4k−1∪A4k),
where Ak are as in the example, has dispersion equal to 0 but is not (N)-dense,
and lim inft→∞

log A′(t)
log t = p and lim supt→∞

log A′(t)
log t = q.
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It is also possible to construct an (N)-dense set B ∈ N such that
lim inft→∞

log B(t)
log t = 0 and limt→∞

log B(t)
log t = q, where q ∈ (0, 1] is arbitrary.

Namely,

B = A ∪
∞⋃

k=1

{⌈
j

1
q

⌉
: bk ≤ j

1
q ≤ ck

}
,

where A is the set from the proof of Theorem 7 in the case of λ = 0 and
(bk)k∈N, (ck)k∈N are appropriately chosen sequences increasing to infinity. Of
course, the set

B′ =
∞⋃

k=1

{⌈
j

1
q

⌉
: bk ≤ j

1
q ≤ ck

}

has dispersion 0, is not (N)-dense, and lim inft→∞
log B′(t)

log t = 0 and

limt→∞
log B′(t)

log t = q.

Remark 12. The set A constructed for λ = d = 0 in the proof of Theorem 7
shows that the condition ∀c > 1 : lim inft→∞

A(ct)
A(t) > 1 is essentially stronger

than ∀c > 1 : A(ct) > A(t) for t � 0. Indeed, let c > 1 be arbitrary. Let
t ∈ R+. Then, there exists a unique k = k(t) such that t ∈ [kk−1, (k + 1)k+1).
Thus, we have

A(t) ≥ #{j ∈ N : jk ≤ t} ≤ k
√

t

and

A(ct) − A(t) ≤ #{j ∈ N : jk ∈ (t, ct]} = #(N ∩ ( k
√

t,
k
√

ct]) ≤ k
√

ct − k
√

t.

Consequently,

lim
t→∞

A(ct)
A(t)

= lim
t→∞

(
1 +

A(ct) − A(t)
A(t)

)
≤ lim

t→∞

(
1 +

k
√

ct − k
√

t
k
√

t

)

= lim
t→∞

k(t)
√

c = 1,

as limt→∞ k(t) = ∞. On the other hand, A is (N)-dense, as we noted in
Remark 10. Hence, by Theorem 3 we know that A(ct) > A(t) for each c > 1
and t � 0.

Moreover, for any nonempty set B ⊂ A and number c > 1 we have
lim inft→∞

B(ct)
B(t) = 1. Assume the contrary. Let B ⊂ A, c, g, h, t0 > 1 be such

that g > h, B(t0) > 0, B(ct)
B(t) ≥ g and A(ct)

A(t) ≤ h for t ≥ t0. Then,

gnB(t0) ≤ B(cnt0) ≤ A(cnt0) ≤ hnA(t0), n ∈ N.

On the other hand, gnB(t0) > hnA(t0) for sufficiently large n ∈ N as
g > h and B(t0) > 0 - a contradiction. Thus, lim inft→∞

B(ct)
B(t) = 1 for each

∅ �= B ⊂ A and q > 1.
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5. Summary of Results

Firstly, we show the relationships between the implications (A16), (A17), (A18)
and the properties (statements) introduced or proved in this paper.
Further let A = {a1 < a2 < · · · } ⊂ N. Then we have first chain of implications
as λ(A) > 0.
A is regul. set with exp. 0 < q ≤ 1

(A18)
=⇒
⇐=

(A14)−i)

lim
n→∞

1

nan

n∑
i=1

ai =
q

q + 1
⇐⇒
(A6)

A ∈ U(xq)

⇐⇒
Corol.3

A(x) ∈ RVq

(A19)
=⇒
�⇐=

Rem.9
lim

n→∞
logA(n)

logn
= q ⇐⇒

(A15)
lim

n→∞
logn

log an
= q

trivially
=⇒
�⇐=
Ex.1

λ(A) = q

⇐⇒
def.

A ∈ I≤q\I<q

(A10)
=⇒
�⇐=

trivially

A ∈ I(xq).

On the other hand we have second chain of implications, where there is λ(A) =
0.

lim
n→∞

1
nan

n∑
i=1

ai = 0 ⇐⇒
(A4)

A ∈ U(c0(x)) ⇐⇒
Corol.3

A(x) ∈ RV0

Corol.5
=⇒	⇐=

Rem.3
λ(A) = 0

⇐⇒
def.

A ∈ I0 ⇐⇒
(A10)

A ∈ I(c0(x)).

The next chain of statements is continuation of the first one and contains
e.g. extension of (A20), equivalent conditions for (N)-denseness and charac-
terization of the condition D(A) = 0.

∃q ∈ (0, 1] : A(x) ∈ RVq ⇐⇒
Corol.4

∀ c > 1 : lim
t→∞

A(ct)

A(t)
> 1

trivially
=⇒
�⇐=

Rem.4
∀ c > 1 : lim inf

t→∞
A(ct)

A(t)
> 1

trivially
=⇒
�⇐=

Rem.12
∀ c > 1 : A(ct) > A(t) for t 
 0

⇐⇒
Thm3

∀ k ≥ 2 ∀ B ⊂ N infinite: Rk(A;B) is dense in R
k−1
+

⇐⇒
Thm3

∀ k ≥ 2 ∀ B ⊂ N infinite: Dk(A;B) is dense in S
k−1
+

⇐⇒
Thm3

∃ k ≥ 2 ∀ B ⊂ N infinite: Rk(A;B) is dense in R
k−1
+

⇐⇒
Thm3

∃ k ≥ 2 ∀ B ⊂ N infinite: Dk(A;B) is dense in S
k−1
+

⇐⇒
Thm3

∀ B ⊂ N infinite ∃ k ≥ 2 : Rk(A;B) is dense in R
k−1
+

⇐⇒
Thm3

∀ B ⊂ N infinite ∃ k ≥ 2 : Dk(A;B) is dense in S
k−1
+

⇐⇒
Thm3

A is (N) − dense ⇐⇒
Thm3

lim
n→∞

an+1

an
= 1

⇐⇒
Thm3

lim
n→∞

1

an
max{a1, ai+1 − ai : i ∈ {1, . . . , n − 1}} = 0

trivially
=⇒
�⇐=

Rem.7
D(A) = 0

⇐⇒
Thm5

∀ k ≥ 2 : Rk(A) is dense in R
k−1
+ ⇐⇒

Lem.3
∀ k ≥ 2 : Dk(A) is dense in Sk−1

+
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trivially
=⇒
�⇐=

Thm6
∃ k ≥ 2 : Dk(A) is dense in Sk−1

+ ⇐⇒
Lem.3

∃ k ≥ 2 : Rk(A) is dense in R
k−1
+

see proof of vi) =⇒ viii) in Thm3
=⇒
�⇐=

Thm6
A is (R)-dense.

The last chain of implications complements the third one as it gives a connec-
tion between denseness of sets Rl(A) in R

l−1
+ and Rk(A) in R

k−1
+ for 2 ≤ k ≤ l

and a necessary condition for denseness of Rk(A) in R
k−1
+ in terms of dispersion

(in fact, this necessary condition is a natural generalization of (A22)).

Rl(A) is dense in R
l−1
+

Lem.3, (A23)
=⇒	⇐=

(A23)

Rk(A) is dense in R
k−1
+

Thm4
=⇒	⇐=

Thm6
D(A) ≤ 1

k
.

The implications in the above chains and these ones derived from them
by transitivity law are the only valid implications between conditions and their
conjunctions presented in the chains.
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[3] Bukor, J., Filip, F., Tóth, J.T.: On properties derived from different types of
asymptotic distribution functions of ratio sequences. Publ. Math. Debr. 95(1–2),
219–230 (2019)
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