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Simple Summary: Glioblastoma is the most common malignant primary brain tumor. Despite
technological advancements and modern therapeutic agents used for treatment, the prognosis remains
extremely poor. One unique characteristic of glioblastoma is its highly vascularized nature, enabling
the tumors to grow and invade the surrounding brain tissue. This process is known as “angiogenesis”
which is critical for growth of glioblastoma cells and has been a topic of interest for scientists.
A critical protein that facilitates new blood vessel formation is vascular endothelial growth factor-A
(VEGF-A), therefore, bevacizumab, a medication that specifically targets VEGF-A has been approved
for treatment of recurrent glioblastoma. However, despite its theoretical potential, bevacizumab
has failed to offer significant survival improvement. Furthermore, other agents with mechanisms of
action comparable to that of bevacizumab have also not been able to demonstrate favorable results.
Herein, we review the current state of anti-vascularization therapeutic agents, and the future of this
therapeutic approach.

Abstract: Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malignant
tumors of the central nervous system. Despite technological advancements and aggressive multi-
modal treatment, prognosis remains dismal. The highly vascularized nature of glioblastoma enables
the tumor cells to grow and invade the surrounding tissue, and vascular endothelial growth factor-A
(VEGF-A) is a critical mediator of this process. Therefore, over the past decade, angiogenesis, and
more specifically, the VEGF signaling pathway, has emerged as a therapeutic target for glioblastoma
therapy. This led to the FDA approval of bevacizumab, a monoclonal antibody designed against
VEGF-A, for treatment of recurrent glioblastoma. Despite the promising preclinical data and its
theoretical effectiveness, bevacizumab has failed to improve patients’ overall survival. Furthermore,
several other anti-angiogenic agents that target the VEGF signaling pathway have also not demon-
strated survival improvement. This suggests the presence of other compensatory angiogenic signaling
pathways that surpass the anti-angiogenic effects of these agents and facilitate vascularization despite
ongoing VEGF signaling inhibition. Herein, we review the current state of anti-angiogenic agents,
discuss potential mechanisms of anti-angiogenic resistance, and suggest potential avenues to increase
the efficacy of this therapeutic approach.

Keywords: angiogenesis; glioblastoma; tumor microenvironment

1. Introduction

Glioblastoma, a WHO grade IV astrocytoma, constitutes approximately half of malig-
nant tumors of the central nervous system (CNS) [1]. Despite technological advancements
and aggressive multimodal treatment, prognosis remains dismal. Currently, the median
overall survival is 15 months [2], with a five-year survival rate of 6.8% [3]. Although the
clinical presentation can vary depending on tumor size and location, patients typically
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experience headache, nausea/vomiting, seizures, and focal neurological symptoms [2,4].
The characteristics of glioblastoma on magnetic resonance imaging (MRI) have been well-
described. A poorly circumscribed tumor, glioblastoma comprises heterogenous intra-
parenchymal lesions and displays contrast enhancement at the margin, indicative of dis-
ruption of the blood–brain barrier [5]. Diagnosis is made on surgical resection or biopsy [5].
Traditionally, the standard of care for glioblastoma includes surgical resection, following by
adjuvant radiation therapy and chemotherapy with temozolomide [4].

Over the past decade, angiogenesis, a feature hallmark of this highly vascularized
tumor, has emerged as an important target for glioblastoma therapy [6,7]. This review will
provide an overview of the current state of anti-angiogenic therapy for glioblastoma and
discuss potential avenues for future exploration.

2. Angiogenesis

Recognized as one of the most common hallmarks responsible for glioblastoma ma-
lignancy, angiogenesis is a mechanism that permits tumor vascularization and infiltration
into nearby tissues by endothelial cells, which make up the lining of blood vessels [8].
In response to hypoxia, expression of vascular endothelial growth factor (VEGF) and its
receptor (VEGFR) are upregulated, leading to angiogenesis and survival of tumor cells [9].
Moreover, the critical role of microvasculature has been demonstrated in the tumor mi-
croenvironment, with findings of cancer stem cells directly participating in vessel formation
in glioblastoma by differentiating into endothelial cells or pericytes [10]. As a result, numer-
ous efforts to develop therapy have targeted the VEGF/VEGFR signaling cascade. Most
notably, bevacizumab was the first anti-angiogenic agent to be approved for the treatment
of several malignancies, including advanced colorectal cancer, advanced non-small-cell
lung cancer, and more recently, recurrent glioblastoma [11].

2.1. Biology of Angiogenesis in Glioblastoma

In several tumors, including glioblastoma, the high metabolic demand of tumor cells
for oxygen and nutrients often exceeds the supply, leading to the presence of hypoxia [12].
Under these conditions, hypoxia-inducible factor (HIF) binds to response elements in
the VEGF gene and initiates transcription of VEGF protein [12]. The receptors for VEGF
are expressed on the surface of endothelial cells and play a crucial role in angiogenesis
by promoting cell proliferation of endothelial cells and tumor cells [12]. In addition to
members of the VEGF family, which constitute the most potent pro-angiogenic factors, other
key inducers of angiogenesis including fibroblast growth factors and membrane-bound
integrins have also been identified [13,14].

VEGF Signaling Pathway

A soluble protein, VEGF induces a cellular response by binding to its cell-surface
receptor, causing receptor dimerization and transphosphorylation [15]. Activation of
downstream tyrosine kinase pathway signaling promotes angiogenesis, increased cell
motility, and proliferation [15–18]. During embryonic development, wound healing, and
in collateral circulation, VEGF signaling is critical for angiogenesis [19]. In glioblastoma,
VEGF maintains this critical proangiogenic role, maintaining the vascular supply that
promotes tumor-cell survival [19]. Several anti-angiogenic agents have been designed to
target various steps of the VEGF pathway [16,17,20–22], thereby inhibiting angiogenesis.
These agents have the potential to be incorporated into routine treatment regimen of
glioblastoma patients, as studies of pre-clinical models have noted synergistic therapeutic
effects when combining anti-VEGF agents with temozolomide, the most commonly used
chemotherapeutic agent [23].

Furthermore, elevated levels of VEGF activity in glioblastoma can, in turn, lead to
abnormal angiogenesis characterized by disorganized and leaky blood vessels [10]. Under
physiologic conditions, astrocytes, endothelial cells, and pericytes form a cohesive unit that
maintains the integrity of the blood–brain barrier (BBB) [24]. However, the abnormally high
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VEGF-A expression induces pericyte detachment from the vasculature and results in greatly
dilated and enlarged vessels [25]. These pathologic blood vessels provoke disruption of the
BBB and are susceptible to microhemorrhages [24]. In glioblastoma, the tumor cells disturb
the non-cancerous astrocytes, which in combination with the pathologic vasculature, leads
to a disruption in BBB function [26]. This causes an increase in vessel permeability and
allows an influx of plasma and fluid into the tumor tissue, causing cerebral edema [26].

The following section will focus on the outcomes of anti-angiogenic agents that were
proposed for, or are currently being evaluated in, the treatment of glioblastoma and intro-
duce potential emerging anti-angiogenic therapeutic targets.

3. Anti-Angiogenic Therapy in Glioblastoma

Various anti-angiogenic agents are either currently being used for treatment of glioblas-
toma or are currently approved for use in other malignancies and are being explored for
use in glioblastoma. At the time of writing, there are more than forty ongoing clinical
trials in the United States (clinicaltrials.gov, accessed on 23 September 2022) at various
stages that are exploring the use of anti-angiogenic agents in glioblastoma. These agents
include monoclonal antibodies, receptor fusions proteins, tyrosine kinase inhibitors, and
proteasome inhibitors. A summary of the anti-angiogenic agents proposed for treatment of
glioblastoma, and a visual illustration of where several of these anti-VEGFR inhibitors act
on the VEGF signaling pathway are shown in Table 1 and Figure 1, respectively.
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Figure 1. Visual demonstration of the VEGF signaling pathway and various anti-angiogenic agents
discussed in this review. Soluble VEGF binds to its receptors located on the cell surface. This
interaction leads to receptor dimerization and phosphorylation of tyrosine residues, activating the
downstream signaling cascade such as Src, Raf, and PI3K. This eventually causes increased cell
motility, cell proliferation, and vascular permeability. This figure was created with Biorender.com.
VEGF: vascular endothelial growth factor, VEGFR: vascular endothelial growth factor receptor, PlGF:
placental growth factor, TKI: tyrosine kinase inhibitor.

clinicaltrials.gov


Cancers 2023, 15, 830 4 of 14

3.1. Anti-VEGF Inhibitors
3.1.1. Bevacizumab

In 2009, the FDA granted accelerated approval for bevacizumab, a humanized anti-
VEGF monoclonal antibody, for use in patients with recurrent glioblastoma [27]. This
was in response to initial phase II studies exploring the efficacy of bevacizumab in this
patient population, which showed a reduction in tumor size, prolongation of progression-
free survival, decreased cerebral edema, and improved neurological symptoms [28,29].
Following the results of the phase III, multicenter, randomized study conducted by the
European Organization for Research and Treatment of Cancer (EORTC 26101), the FDA
granted full approval for treatment of recurrent glioblastoma in 2017.

While this study failed to show a significant increase in overall survival with a
bevacizumab-based treatment, progression-free survival was prolonged compared to
chemotherapy alone, and bevacizumab promoted a reduced need for corticosteroids [27].

As an anti-angiogenic agent, bevacizumab works by specifically binding to circulating
VEGF-A ligand and consequently inhibiting its binding to cell-surface receptors [12,30].
In response, there is a decrease in the growth of microvasculature and blood supply to
the tumor, and down-regulation of angiogenesis [12,30]. Given the highly vascularized
nature of glioblastoma, bevacizumab is theoretically a suitable agent for these tumors, and
it remains the most commonly used anti-angiogenic agent in the treatment of recurrent
glioblastoma [31,32], despite no significant improve in overall survival [33] due to its role in
reducing brain edema [34]. The most common adverse events associated with bevacizumab
are gastrointestinal perforations, hemorrhage, and arterial thromboembolism [31].

Intriguingly, bevacizumab did not demonstrate an overall survival advantage as part
of the first-line treatment for newly diagnosed glioblastoma patients [33,35]. As it stands,
the standard of care for this patient population continues to be maximal surgical resection
followed by adjuvant radiation and concurrent treatment with temozolomide [35].

3.1.2. Aflibercept

Aflibercept is a human recombinant fusion protein with anti-angiogenic properties
that serves as a decoy receptor by binding to VEGF-A, VEGF-B, and placental growth
factor (P1GF), thus acting as a “VEGF trap” [36]. Structurally, this protein is composed of
the second immunoglobulin (Ig) domain of VEGFR-1 and the third domain of VEGFR-2,
fused to the constant region (Fc) of human IgG1 [36]. Mechanistically, it has a higher
affinity than both VEGFR and bevacizumab for VEGF-A [36]. Furthermore, PlGF has
been shown to enhance VEGF signaling activity and mediate angiogenic escape [37], as
Batchelor et al. found, levels of P1GF were increased in recurrent glioblastoma patients
following treatment with cediranib monotherapy, a VEGFR tyrosine kinase inhibitor [38].
Conceptually, aflibercept should demonstrate increased efficacy in comparison to other
anti-angiogenic drugs due to the dual inhibition of both VEGF and P1GF [36,37]. However,
phase II clinical trials did not find meaningful improvements in survival of patients with
recurrent malignant glioma [37]. The most common adverse events associated with this
agent are proteinuria, fatigue, injection-site reactions, and hypertension [36].

3.1.3. Ramucirumab

Whereas the aforementioned agents targeted VEGF, ramucirumab is a human mon-
oclonal antibody that exerts its effect through its high affinity for the extracellular do-
main of VEGFR-2, blocking its binding to natural ligands [39]. In 2014, ramucirumab
received FDA approval as a single-agent treatment for advanced gastric cancer following
prior chemotherapy [39]. In a recent non-randomized phase II clinical trial of recurrent
glioblastoma patients, ramucirumab was compared to an anti-platelet-derived growth fac-
tor receptor (PDGFR) monoclonal antibody, and offered slightly improved progression-free
survival and overall survival, with a similar adverse-event profile [40]. Side effects include
hypertension, venous thrombosis, diarrhea, and epistaxis [41].
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3.1.4. Dovitinib

In addition to inhibiting VEGFR, dovitinib is also a potent inhibitor of basic fibroblast
growth factor (bFGF), another pro-angiogenic growth factor that has been shown to be in-
creased in glioblastoma [42,43]. Binding of bFGF to its receptor activates the protein kinase
Cα pathway and extracellular signal-regulated kinase (ERK) pathway [43]. In addition,
due to the role that bFGF plays in angiogenic escape and bevacizumab resistance in glioblas-
toma, dovitinib was theorized to offer promise as an anti-angiogenic agent for recurrent
glioblastoma [43]. However, the results from a recently published two-arm, phase II clinical
trial, compared anti-angiogenic naïve patients with recurrent glioblastoma to patients with
glioblastoma progression after prior anti-angiogenic treatment, and dovitinib failed to
demonstrate improvements in survival outcomes [43]. Common adverse effects that were
reported included appendicitis, fatigue, and thrombocytopenia [43].

3.2. Small Molecular Tyrosine Kinase Inhibitors (TKIs)
3.2.1. Sunitinib

Beyond targeting the VEGF pathway extracellularly, interference of downstream sig-
naling molecules has also been examined [44,45]. Small-molecule TKIs act by reversible,
competitive inhibition of adenosine triphosphate (ATP) binding to the tyrosine domain
of VEGFRs [41]. Sunitinib is an oral kinase inhibitor of VEGFR, PDGFR, stem-cell-factor
receptor (c-KIT), RET oncogene tyrosine kinase, FMS-like tyrosine kinase, and colony-
stimulating factor-1 receptor [46]. Approved by the FDA as the first anti-VEGF therapy to
treat a subset of pancreatic neuroendocrine tumors, this multi-targeted anti-angiogenic TKI
blocks downstream signal transduction, thus affecting tumor angiogenesis and growth [47].
The most common adverse reactions include fatigue, diarrhea, nausea, anorexia, vomiting,
abdominal pain, hypertension, and thrombocytopenia [47]. Due to its multi-targeted inhi-
bition of angiogenic pathways, sunitinib held promise in glioblastoma therapy. Previously,
a phase II study found that single-agent sunitinib therapy in continuous daily dose did
not prolong progression-free survival in recurrent glioblastoma [46]. Nevertheless, the
STELLAR study, an ongoing multi-center randomized clinical trial, is currently evaluating
the efficacy of high-dose, intermittent sunitinib in the treatment of recurrent glioblastoma,
compared to lomustine, an alkylating agent of the nitrosourea family capable of permeating
the blood–brain barrier [48] (NCT03025893; Table 2).

3.2.2. Sorafenib

Similar to sunitinib, sorafenib is another small-molecule TKI with multiple targets
including VEGF, PDGFR, and the RAS/RAF/MEK signaling pathways. In a recently
published meta-analysis comparing the efficacy and safety between sorafenib and sunitinib
as first-line therapy for metastatic renal-cell carcinoma, Deng et al. found that sorafenib
did not prolong overall survival as effectively as sunitinib; however, it conferred a lower
toxicity [49]. In earlier orthotopic glioblastoma models [50], sorafenib was found to reduce
angiogenesis. Following this, a phase II study was conducted to evaluate the efficacy of
dual anti-angiogenic therapy with bevacizumab and sorafenib in the treatment of recurrent
glioblastoma [51]. While this particular combination did not improve patient outcomes
compared to bevacizumab treatment alone, the potential synergistic effect of dual anti-
angiogenic therapy simultaneously targeting multiple angiogenic pathways continues
to warrant further investigation, as this approach may yield higher clinical efficacy [51].
Common adverse effects of sorafenib therapy include diarrhea, nausea and vomiting,
fatigue, rash, and hypertension [49].

3.2.3. Cediranib

Another multi-kinase inhibitor capable of simultaneously targeting several angiogenic
growth factor pathways is cedirnaib, an orally available VEGFR TKI that also targets c-KIT
and to a lesser degree, PDGFR [52]. In pre-clinical trials, this small-molecule receptor
TKI has shown promising results by reducing microvessel density and metastasis [53].
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Additionally, it can be taken orally and is compatible with once-daily dosing due to is
half-life of 22 h [45]. However, in a phase III randomized controlled trial, cediranib did
not yield any significant improvement in progression-free survival whether in the form
of monotherapy or in combination with the chemotherapy agent lomustine, in recurrent
glioblastoma patients [45]. Lomustine has been increasingly used as a control arm in clinical
trials, in part due to its reputation as the main standard of care for recurrent glioblastoma
in Europe where bevacizumab has not been approved, and as such, it remains one of the
most widely used drugs, second only to temozolomide, in the treatment of gliomas. [48].
The most commonly reported adverse events include hypertension, dysphonia, fatigue,
and diarrhea [53].

3.2.4. Imatinib

A highly selective inhibitor of the tyrosine kinase family, PDGFR, and c-KIT, ima-
tinib has previously been shown to exert anti-angiogenic effects through inhibition of
PDGFR [54]. An earlier phase II study evaluating the efficacy and safety of imatinib in
combination with hydroxyurea in patients with recurrent meningioma was one of the
first to examine combination therapy [55]. This study found that this combination was
well-tolerated among patients, and survival outcomes were significantly improved in re-
current meningioma patients with lower-grade tumors. However, recent results published
from an open-label, non-randomized phase II trial evaluating imatinib with and without
radiotherapy in newly diagnosed or recurrent glioblastoma failed to show an effect [56].
The differences between these two trials may stem from the inherent differences between
the tumors which may impact response to treatment. Notably, unlike slow-growing lower-
grade meningiomas, glioblastomas represent the most aggressive adult primary brain
tumor [55,56]. Common adverse effects that were reported included constipation, fatigue,
nausea, and thrombocytopenia [55].

3.2.5. Pazopanib

Pazopanib is another multitargeted TKI of VEGFR, PDGFR, and c-KIT. Due to its
ability to target multiple angiogenic pathways, pazopanib was reasoned to exert strong
anti-tumor activity [57]. When the efficacy of pazopanib as a single agent in the treatment
of recurrent glioblastoma was evaluated in a phase II single-arm study, progression-free
survival was not found to be prolonged at a clinically tolerated dose [57]. Previous clinical
trials have also evaluated pazopanib in combination with laptinib, a dual TKI of EGFR and
HER-2 receptors, in patients with recurrent glioblastoma [58]. While this drug combination
was well-tolerated, there was limited evidence of anti-tumor activity [58]. More recently, a
phase II trial of oral pazopanib in combination with metronomic topotecan anti-angiogenic
therapy for recurrent glioblastoma patients (NCT01931098; Table 2) was completed, which
may be able to provide further insight into the value of simultaneously inhibiting several
angiogenic pathways in glioblastoma.

3.3. Other Anti-Angiogenic Therapies
3.3.1. Cilengitide

In preclinical models, integrins αvβ3 and αvβ5, were identified to be implicated
in angiogenic pathways and in glioblastoma blood vessels and tumor cells [59,60]. This
was the rationale behind using cilengitide, a pentapeptide integrin inhibitor. While early
results from phase I and II trials evaluating cilengitide in recurrent glioblastoma were
promising and suggested improvement in survival compared to historical controls [61,62],
findings from the phase III tCENTRIC trial failed to show improvements in outcome when
cilengitide was added to temozolomide, in comparison to the control group [62]. Despite
the disappointing outcome, integrins remain a potential valuable target for further review
in glioblastoma therapy due to their role in invasion and angiogenesis.
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3.3.2. Marizomib

A recently developed small-molecule proteasome inhibitor, marizomib has been
shown to perform a multitude of activities, including induction of apoptosis and down-
regulation of cell growth and survival signaling pathways including angiogenesis by inter-
fering with VEGF-dependent migration [63,64]. Compared to other proteasome inhibitors,
this irreversible inhibitor is unique in that it has been shown to cross the blood–brain barrier,
making it a suitable and attractive agent for brain tumors [65]. Most recently, the results
from a phase I/II trial in patients evaluating marizomib alone or in combination with
bevacizumab in patients with recurrent glioblastoma were published [65]. Both marizomib
monotherapy and dual anti-angiogenic treatment in combination with bevacizumab failed
to demonstrate a meaningful benefit. Commonly reported adverse effects include hyper-
tension, confusion, headache, and fatigue [66]. As a relatively new therapeutic agent, more
research into marizomib is highly warranted, and there are currently two ongoing clinical
trials evaluating marizomib in glioblastoma—a phase II study (NCT03463265; Table 2) and
MIRAGE, an international phase III study (NCT03345095; Table 2).

3.4. Discovery of Novel Anti-Angiogenic Therapy Targets

Despite the theoretically suitable mechanism of anti-VEGF therapy and promising
preclinical results [7,12,67], these therapeutic agents have failed to produce definitively
favorable outcomes in glioblastoma patients [33,37,40,45]. The constantly evolving genetic
composition of glioblastoma leads to high rates of intratumor heterogeneity, which subse-
quently facilitates anti-angiogenic therapy resistance [68,69]. Knowing this, it is evident
that targeting the VEGF pathway in glioblastoma via monotherapy is insufficient, and
therefore there is an urgent need to discover novel targets that can be used in concert to
improve patient survival [32].

Anti-angiogenic therapy can be broken down to two approaches: (1) reducing pro-
angiogenic gene expression, and (2) increasing anti-angiogenic gene expression [70]. Apart
from VEGF, reduction of other pro-angiogenic factors has also been evaluated [71,72]. For
instance, IL-8, a pro-inflammatory cytokine, is involved in increased VEGF expression and
signaling [10,70]. Yamanaka et al. reported that retroviral-mediated transfer of antisense
IL-8 led to reduced tumor growth, suggesting its potential as a therapeutic target [73]. Con-
versely, brain angiogenesis inhibitor 1 (BAI1) is an anti-angiogenic protein whose reduced
expression has been noted in several malignancies such as colorectal cancer, renal-cell carci-
noma, and glioblastoma [70]. Increased expression of BAI1 via recombinant adenovirus
in xenograft models led to reduced tumor vasculature [74]. Other notable targets of this
category include angiostatin [75,76], endostatin [77,78], and thrombospondin [79,80]. Al-
though the preliminary results have been encouraging, the clinical efficacy of these targets
is yet to be determined.

A recent anti-angiogenic target of interest is epithelial membrane protein-2 (EMP2), a
cell-surface protein encoded by growth-arrest-specific 3 (GAS3)/peripheral myelin protein
22 kDa (PMP22) gene family that localizes within the lipid raft domains [80–83]. Under
physiologic conditions, EMP2 appears to stabilize select integrins and modulates their
adhesion onto various extracellular matrices [84]. Its expression has been investigated in a
number of neoplasms including endometrial carcinoma, breast cancer, and primary brain
tumors [32,85,86].

As EMP2 is involved in a variety of pathologies including non-cancerous diseases [87–89],
its signaling mechanism needs further elucidation. Using endometrial cancer xenografts,
Gordon et al. demonstrated that modulation of EMP2 expression profoundly changed
tumor microvasculature [90]. Under hypoxic conditions, up-regulation of EMP2 promoted
VEGF expression through an HIF1α-dependent pathway whereas reduction of EMP2 di-
rectly correlated with reduced HIF1α and VEGF expression, supporting its involvement
in angiogenesis [90]. More recently, Patel et al. investigated the potential impact of beva-
cizumab treatment on EMP2 levels in a cohort of 12 glioblastoma patients. In paired analysis,
EMP2 histological scores were significantly higher following bevacizumab treatment, and
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this increase was proportional to the length of treatment [32]. More importantly, patients
with higher levels of EMP2 had significantly shorter time to repeat surgery, progression-free
survival, and overall survival [32]. Such findings underscore the potential to investigate
the clinical implications of EMP2 in glioblastoma. Concurrent evaluation of these proteins
along with hypoxia-inducible factors such as HIF1α, or potentially HIF2a, may provide
insightful information to better understanding EMP2′s involvement in angiogenesis and
designing future therapeutic agents.

Table 1. List of current anti-angiogenic drugs for the treatment of various cancers and their respective
study findings in the treatment of glioblastoma.

Anti-Angiogenic Agent Main Target(s) FDA-Approved Indications Findings in Treatment of Glioblastoma References

A
nt

i-
V

EG
F

In
hi

bi
to

rs

Bevacizumab VEGF-A
Advanced metastatic cancers
(lung, colorectal, breast, renal,
and recurrent glioblastoma)

Reduction in tumor size, prolongation of PFS,
decreased cerebral edema, and improved
neurological symptoms in rGBM

[24–26]

Aflibercept VEGF-A, P1GF Metastatic colorectal cancer
Phase II clinical trials did not find
meaningful improvements in survival of
patients with recurrent malignant glioma

[33,34]

Ramucirumab VEGFR2

Metastatic NSCLC, gastric
cancer, gastroesophageal
junction adenocarcinoma,
hepatocellular carcinoma

Phase II clinical trial in rGBM showed
slightly improved PFS and OS [36,37]

Dovitinib VEGFR, bFGF - Phase II clinical trials failed to demonstrate
improves in survival in rGBM [39,40]

Sm
al

lM
ol

ec
ul

ar
T

K
Is

Sunitinib Multiple RTKs
(VEGFR, PDGFR) GIST, advanced RCC, pNET

Phase II clinical trial found that single-agent
sunitinib therapy in continuous daily dose
did not prolong PFS
Ongoing Phase II/III clinical trial
(NCT03025893)

[43,44]

Sorafenib Multiple RTKs
(VEGFR, PDFGR)

Hepatocellular carcinoma,
advanced RCC, thyroid carcinoma

Phase II clinical trial in combination with
bevacizumab in rGBM did not improve
patient outcomes

[46,48]

Cediranib VEGFR2 -

Phase III clinical trial found no significant
improvement in PFS whether in form of
monotherapy or in combination with the
lomustine in rGBM

[42,49,50]

Imatinib PDGFR
Ph+ CML, Ph+ ALL, MDS/MPD,
ASM, recurrent or metastatic
DFSP, GIST

Phase II trial evaluating imatinib with and
without RT in newly diagnosed or recurrent
glioblastoma failed to show an effect

[51–53]

Pazopanib Multiple RTKs
(VEGFR, PDGFR, c-Kit)

Advanced RCC, advanced soft
tissue sarcoma

Limited evidence of anti-tumor activity in
combination with laptnib
Recently completed Phase II clinical trial
(NCT01931098)—awaiting results

[54,55]

In
te

gr
in

In
hi

bi
to

r

Cilengitide Integrins αvβ3
and αvβ5 -

Phase III clinical trial found to show
improvements in outcome when cilengitide
was added to temozolomide, in comparison
to the control group

[56–60]

Pr
ot

ea
so

m
e

In
hi

bi
to

r

Marizomib 20S
proteasome

-
Phase I/II clinical trial in rGBM failed to
demonstrate meaningful benefit
Ongoing Phase II and III clinical trials
(NCT03463265, NCT03345095)

[61–63,91]

VEGF/R, vascular endothelial growth factor/receptor; P1GF, placental growth factor; bFGF, basic fibroblast
growth factor; RTK, receptor tyrosine kinase; c-Kit, stem-cell-factor receptor; NSCLC, non-small-cell lung cancer;
GIST, gastrointestinal stromal tumor; RCC, renal-cell carcinoma; pNET, progressive, well-differentiated pancreatic
neuroendocrine tumors; Ph+ CML, Philadelphia-chromosome-positive chronic myeloid leukemia; Ph+ ALL,
Philadelphia-chromosome-positive chronic myeloid leukemia; MDS/MPD, myelodysplastic/ myeloproliferative
diseases; DFSP, dermatofibrosarcoma protuberans; PFS, progression-free survival; rGBM, recurrent glioblastoma;
OS, overall survival; RT, radiotherapy. Italics denote ongoing or recently completed clinical trials.

Table 2. Ongoing clinical trials evaluating anti-angiogenic therapies in glioblastoma.

Clinical Trial
Identifier Treatment Comparison Study Type Study

Phase Study Status * Primary
Endpoints

Estimated Enrolment
Number of Patients Study Start Date Study Completion Date

NCT01931098 Pazopanib +
Topotecan -

Non-randomized,
parallel assignment
(open label)

II Completed 6-month PFS,
OS, safety 35 29 August 2013 12 September 2019

NCT03345095
(MIRAGE)

Marizomib +
Temozolomide-RT Temozolomide-RT Randomized, parallel

assignment (open label) III Active, not
recruiting OS, PFS 749 17 November 2017 -

NCT03463265 Marizomib +
ABI-009 ABI-009

Non-randomized,
sequential assignment
(open label)

II Active, not
recruiting

Overall response
rate, 12-month
PFS, OS

56 1 August 2018 -

NCT03025893
(STELLAR) Sunitinib Lomustine Randomized, parallel

assignment (open label) II/III Recruiting 6-month PFS 100 31 August 2018 -

* Status based on https://clinicaltrials.gov/, accessed on 23 September 2022. RT, radiotherapy; PFS, progression-
free survival; OS, overall survival; rGBM, recurrent glioblastoma.

https://clinicaltrials.gov/
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4. Anti-VEGF-Therapy Resistance

The highly vascularized nature of glioblastoma led to consideration of anti-angiogenic
therapeutic agents for this tumor. A number of such agents have been investigated, and
despite promising preclinical data, several clinical trials have thus far failed to demon-
strate meaningful improvements in survival [33,37,40,45,92]. Furthermore, a recent meta-
analysis noted prolonged progression-free survival but not overall survival with anti-
angiogenic therapy in newly diagnosed or recurrent glioblastoma, with or without concur-
rent chemotherapy [93]. The initial improvement in progression-free survival, particularly
with bevacizumab [94] suggests initial susceptibility of glioblastoma tumor cells to anti-
VEGF treatment. However, it is highly plausible that over time, other compensatory
pathways develop to surpass the effects of anti-VEGF therapy, thus leading to no difference
in overall survival [33,94].

Other important aspects to consider are the radiographic features, as presence of radi-
ation necrosis has been associated with increased VEGF expression [95]. Furthermore, the
“pseudoresponse” phenomenon has been well-described with anti-VEGF agents, as they
cause “normalization” of the BBB, reducing the surrounding edema by the tumor. However,
this needs to be interpreted with caution as such radiographic changes are likely due to
changes in vascular permeability, while true tumor improvement is only marginal [96]. To
better design future therapeutic agents, it is crucial to gain a comprehensive understanding
of the vascular changes and the molecular mechanisms that drive anti-angiogenic resistance
in glioblastoma. One such method involves the analysis of tumor genomics before and
after anti-VEGF treatment. Given its frequent use and greatest efficacy amongst anti-VEGF
agents, much of the data come from studies that evaluated bevacizumab [94,97]. The inten-
tion behind bevacizumab treatment is to starve the cancer cells of VEGF, and subsequently
create a hypoxic and unfavorable environment for the tumor [94]. In glioblastoma in vitro
models, bevacizumab led to a subsequent up-regulation of proangiogenic factors such as
angiogenin and bFGF, both transcriptionally and at the protein level [98]. The same study
later analyzed microvasculature density in xenograft mice models which suggested its
restoration despite long-term bevacizumab treatment [98]. Such results suggested that
glioblastoma tumors do in fact reactivate angiogenesis, likely via up-regulation of other
proangiogenic factors such as bFGF, even in the setting of VEGF inhibition.

As our knowledge of oncogenesis advances, we recognize neoplasms as systemic
diseases rather than localized pathologies of organs. Interestingly, the hypoxic environment
created as a consequence of anti-angiogenic therapy not only leads to pro-angiogenic factors
within the tumor, but also the recruitment of bone-marrow-derived cells (BMDCs) that
elicit neo-angiogenesis [97,99]. For example, pro-angiogenic monocytes, including tumor-
associated macrophages produce a myriad of proangiogenic cytokines and growth factors
that facilitate neo-angiogenesis [100,101]. HIF1α, a transcription factor in the VEGF signal-
ing pathway appears to be an integral component of this recruitment as HIF1α-deficient
glioblastoma tumors displayed low BMDCs and severely impaired angiogenesis [101].
The aforementioned studies [94,98,100,101] highlight the complex angiogenic pathway
and the intricate molecular signals that drive anti-angiogenic treatment, both locally
and systematically.

Undoubtedly, elucidating the mechanisms of anti-angiogenic resistance in glioblas-
toma remains a critical challenge and a much-needed endeavor [97]. However, our current
understanding has proven that anti-angiogenic evasion is different from classic drug resis-
tance seen in traditional therapy. In contrast to chemotherapy resistance, in which there
is acquisition or selection of gene mutation in the drug target, bevacizumab evasion con-
sists of adaptive changes that upregulate other angiogenic markers [98,100,101], despite
continued inhibition of VEGF [97].

5. Future Directions and the Role of Combination Therapy

Given the convincing evidence that anti-VEGF monotherapy does not effectively
improve survival in glioblastoma patients [22,93], it is imperative to assess the efficacy of



Cancers 2023, 15, 830 10 of 14

multimodal anti-angiogenic therapies. Peterson et al. demonstrated improved survival
of murine glioblastoma models when utilizing dual anti-angiogenic therapy by targeting
VEGFR and angiopoietin-2 (Ang-2) [17]. Such an approach is also a work in progress in
other malignancies [102,103]. There is compelling evidence that EMP2 is a suitable target
to antagonize [32,104] in combination with bevacizumab, or other anti-angiogenic agents.
However, other proteins in the VEGF pathway including VEGFR tyrosine kinases may
be reasonable options as well. In the same vein as this line of exploratory research for
glioblastoma, combination therapy with anti-angiogenic therapy and immunotherapy,
which has proven successful in renal-cell carcinoma [13] and non-small-cell lung cancer,
may be a viable option [105]. Regardless, the future of anti-angiogenic therapy needs to
focus on interfering with this signaling pathway from two or more angles, as monotherapy
will likely not result in substantial improvements in survival outcomes.

6. Conclusions

Glioblastoma is the most common malignant primary brain tumor. Despite advances
in therapeutics, prognosis remains extremely poor. A characteristic hallmark of this highly
vascular tumor, angiogenesis, has increasingly become an important target for therapy.
Nevertheless, current literature suggests that anti-angiogenic monotherapy with beva-
cizumab and other agents does not produce favorable results. Therefore, it is imperative
to delineate the molecular mechanisms of anti-angiogenic resistance and the interplay be-
tween these agents, the tumor cell microenvironment, and angiogenic signaling pathways.
Going forward, the goal remains to identify novel targets that can be effectively utilized in
dual or multimodal anti-angiogenic therapy to ultimately improve clinical outcomes and
patient survival for this highly aggressive tumor.
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