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Sepsis is characterized by an overactive, dysregulated inflammatory response that drives
organ dysfunction and often results in death. Mathematical modeling has emerged as an
essential tool for understanding the underlying complex biological processes. A system of
four ordinary differential equations (ODEs) was developed to simulate the dynamics of
bacteria, the pro- and anti-inflammatory responses, and tissue damage (whose molecular
correlate is damage-associated molecular pattern [DAMP] molecules and which integrates
inputs from the other variables, feeds back to drive further inflammation, and serves as a
proxy for whole-organism health status). The ODE model was calibrated to experimental
data from E. coli infection in genetically identical rats and was validated with mortality data
for these animals. The model demonstrated recovery, aseptic death, or septic death
outcomes for a simulated infection while varying the initial inoculum, pathogen growth rate,
strength of the local immune response, and activation of the pro-inflammatory response in
the system. In general, more septic outcomes were encountered when the initial inoculum
of bacteria was increased, the pathogen growth rate was increased, or the host immune
response was decreased. The model demonstrated that small changes in parameter
values, such as those governing the pathogen or the immune response, could explain the
experimentally observed variability in mortality rates among septic rats. A local sensitivity
analysis was conducted to understand the magnitude of such parameter effects on
system dynamics. Despite successful predictions of mortality, simulated trajectories of
bacteria, inflammatory responses, and damage were closely clustered during the initial
stages of infection, suggesting that uncertainty in initial conditions could lead to difficulty in
predicting outcomes of sepsis by using inflammation biomarker levels.
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INTRODUCTION

Sepsis is defined as life-threatening organ dysfunction caused by an overwhelming immune response
to an infection (Singer et al., 2016). Sepsis and septic shock often lead to organ failure and are leading
causes of morbidity and mortality (Singer et al., 2016; Lelubre and Vincent, 2018). In the course of
a typical infection, pathogens (e.g., Gram-negative bacteria) infect the host, triggering a
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pro-inflammatory innate immune response targeted at
eliminating the pathogen from the system. The body also
mounts an anti-inflammatory response that works to maintain
homeostasis and prevent overwhelming inflammation to the
system. The acute inflammatory response in sepsis becomes
detrimental when it can no longer be contained at the locus of
infection (where innate immune mechanisms can help eliminate
bacteria) and becomes systemic, leading to collateral damage/
dysfunction in the surrounding healthy tissue. Thus, a major goal
in sepsis research is to determine why the host mounts an
overwhelming inflammatory response to infections which leads
to sepsis in some cases but not in others (Horiguchi et al., 2018;
Grondman et al., 2020).

Acute inflammatory responses to infection are further
complicated by additional variations among sepsis patients
(Chen et al., 2011), the complex interplay between pro- and
anti-inflammatory mediators and the innate and adaptive
immune responses (Delano and Ward, 2016), and a triphasic
distribution of patient deaths that occur days, weeks, and years
after initial infection (Delano and Ward, 2016). These variations
have highlighted the need for patient-specific treatments and
novel approaches to sepsis drug design and clinical trials
(Vodovotz et al., 2008; Buchman et al., 2016; Day et al., 2018).

Recent decades have brought about improved sepsis treatment
practices, including the rapid administration of antibiotics,
infection source control, appropriate choice of fluid
(crystalloids) for fluid resuscitation, and administration of
vasopressors (norepinephrine) (Schorr and Dellinger, 2014).
These evolutionary improvements in patient care have reduced
in-hospital mortality but have shifted the mortality distribution
so that most sepsis-related deaths occur months after treatment
(Delano and Ward, 2016). While improved care often allows
patients to overcome initial septic episodes, it has been speculated
that underlying physiologic/biochemical aberrations combined
with sepsis-initiated immune dysfunction place patients at long-
term risk for sepsis mortality (Yende et al., 2008). Secondary
infections occurring during late stages (>15 days) were shown to
correlate with higher levels of opportunistic fungi and bacteria
compared to earlier secondary infections (<6 days) (Otto et al.,
2011), and impairments in immune function and cytokine
secretion were observed in individuals that survived a septic
episode (Arens et al., 2016). Despite evidence of late-stage
complications or mortality from sepsis (Nedeva, 2021),
mortality is still common within a week of sepsis onset;
interventions in those cases rely on early identification of
septic trajectories, which is often difficult.

Given the complexities of infection and inflammation in vivo
and in vitro, mathematical modeling has been used in an attempt
to unravel the complexities of inflammation and the immune
response (Kumar et al., 2004; Reynolds et al., 2006; Vodovotz
et al., 2008; Vodovotz et al., 2009; Day et al., 2018). Multiple
mechanistic computational models have described the dynamics
of the inflammatory response in the context of a variety of
bacterial infections (Clermont et al., 2004; Daun et al., 2008;
Kumar et al., 2008). These include equation-based [ordinary
(Pilyugin and Antia, 2000; Kumar et al., 2004; Chow et al.,
2005; Day et al., 2006; Prince et al., 2006; Reynolds et al.,

2006; Vodovotz et al., 2006; Foteinou et al., 2009; Smith et al.,
2011; Song et al., 2012; Jarrett et al., 2015; Mai et al., 2015; Shi
et al., 2015; Schirm et al., 2016; Brady, 2017; Caudill and Lynch,
2018; Mavroudis et al., 2019) and partial differential equations
(Alt and Lauffenburger, 1987; Barber et al., 2013)], agent-based
(An, 2001; An, 2004; Cockrell and An, 2017), and hybrid models
(Minucci et al., 2020). Although some models are purely
theoretical (Alt and Lauffenburger, 1987; Kumar et al., 2004;
Day et al., 2006; Reynolds et al., 2006; Cockrell and An, 2017),
many were calibrated to experimental data in animals (Chow
et al., 2005; Prince et al., 2006; Vodovotz et al., 2006; Smith et al.,
2011; Schirm et al., 2016; Brady, 2017) or attempted to replicate
clinical outcomes (An, 2001; An, 2004; Foteinou et al., 2009;
McDaniel et al., 2019).

The current study implemented a mechanistic model of the
immune response to an Escherichia coli (E. coli) infection and
aimed to determine whether early data on both the pathogen and
the host response are sufficient to predict a health or disease
outcome. A parsimonious system of four ordinary differential
equations (ODEs) was used to track changes in bacteria, tissue
damage, a pro-inflammatory response, and an anti-inflammatory
response following the administration of escalating inoculums of
E. coli encapsulated in a fibrin clot (an experimental model of
Gram-negative peritonitis (Ahrenholz and Simmons, 1980)) in
rats. Ultimately, the mathematical model defined in this study
was used to evaluate and predict the time dynamics of the
bacterial infection, which were observed to vary depending on
the initial bacterial dose. The model demonstrated that small
changes in the pathogen growth rate or characteristics of the
immune response could lead to significantly different mortality
times despite identical initial bacterial loads.

MATERIALS AND METHODS

Experimental Method
Preparation and Dose Estimation of
E. coli-Impregnated Fibrin Clot
All animal studies were carried out following approval by the
University of Pittsburgh Institutional Animal Use and Care
Committee (IACUC approval #0807947) and complied with
the NIH Guide for the Care and Use of Laboratory Animals.
In this study, experimental data were obtained from rats with
peritonitis induced by an E. coli-impregnated fibrin clot, similar
to the methods established by Ahrenholz and Simmons (1980)
and modified by Namas et al. (2012). In brief, the animals were
subjected to a varying dose of E. coli (strain ATCC 25922;
American Type Culture Collection, Manassas, VA,
United States) inoculum in a fibrin clot introduced into the
peritoneum via laparotomy. The E. coli colonies were grown
to a specified optical density using a spectrophotometer (DU 530
UV/VIS; Beckman Coulter, Brea, CA, United States) equivalent to
a concentration ranging between 1 × 108 to 5 × 108 colony-
forming units [CFUs]/clot on the day of bacterial fibrin clot
implantation. After the addition of fibrinogen (1%) and
Thrombin (15u), the clot was placed in the peritoneum via
laparotomy, as described previously (Namas et al., 2012). Since
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quantification of bacteria at the time of implantation of the fibrin
clot via optical density is imprecise, bacteria were quantified after
each implantation by limiting dilution plating to obtain a count of
implanted E. coli in a given rat (Namas et al., 2012).

We determined that rats that received a fibrin clot inoculum of
1 × 108–2.0 × 108 CFUs/clot had amortality rate of ∼40–45% after
48 h of clot implantation while rats that received inocula higher
than 2.0 × 108 CFUs/clot had a mortality rate of 80% during the
first 24 h of implantation (data not shown). All rats in these
experiments exhibited signs of septicemia in the form of lethargy,
hypothermia, reluctance to feed, tachycardia, and tachypnea after
24 h of E. coli fibrin clot impregnation into the peritoneum. After
closing the abdomen, a topical anesthetic was applied over the
surgical wound, and the rats were returned to their cages and
allowed food and water ad libitum.

Model Calibration and Validation
The experimental studies detailed above generated one
experimental data set that was used to calibrate the model and
consisted of measurements of bacterial levels at different
timepoints in 31 rats injected with increasing doses of bacteria
(1.28, 2.48 and 5.05 × 108 bacteria with standard error of the
mean of 1.5 × 107, 2.8 × 107, and 1.2 × 108, respectively). A second
(separate) experimental data set was used to validate the model
and consisted of time to death (mortality; 24, 48, 72, or 96 h) for
27 rats injected with varying doses of bacteria (1–5 × 108

bacteria). We detail the process of model calibration and
validation below.

Bacterial levels in the peritoneal cavity measured in individual
septic rats, each euthanized at a distinct time point from 24 to
96 h after being impregnated with ≈1 × 108–5 × 108 colony-
forming units of E. coli,were used to calibrate themodel (“calibration

data set”, see Figure 1A; Supplementary Table S1). Observed times
to mortality for rats injected with ≈1.4 × 108–4.8 × 108 colony-
forming units of E. coli were used to evaluate the predictive
capabilities of the ODE model (“validation data set,” see
Figure 1B; Supplementary Table S2). These two data sets were
derived from two different rat populations.

The calibration data set (Figure 1A; Supplementary Table S1)
was produced using several experiments involving multiple rats
in each experiment and three different bacterial levels with mean
values of 1.28 × 108, 2.48 × 108, and 5.05 × 108 bacteria. A
peritoneal lavage was used to assess the number of bacteria in the
peritoneal cavity in each individual animal euthanized at one of
the time points indicated in Supplementary Table S1, as detailed
in (Namas et al., 2012). This produced an estimate for the
expected bacterial levels over time in a rat subject to one of
the targeted loads, as seen in Figure 1A. The time points were
chosen to be closer together for rats injected with higher bacterial
loads, since these animals were more likely to die earlier than
animals receiving a lower bacterial inoculum.

In the validation data set (Figure 1B; Supplementary Table
S2), the rats were monitored continuously until 96 h, at which
time surviving rats were euthanized. If a rat was observed to be
dead at a 24-h checkpoint (24, 48, 72, or 96 h), that time point was
noted as the “observed mortality time” (OMT) for that rat and the
rat was removed from the study. Rats labeled with an OMT � 24,
48, or 72 h either died within the 24 h before their OMT or were
euthanized at their OMT (in accordance with IACUC and NIH
guidelines) due to being severely unhealthy. Rats labeled with a 96
OMT either died between 72 and 96 h, were severely unhealthy at
96 h, or were relatively healthy at 96 h. Given these distinctions, it
is possible that some of the 96 h OMT rats would have survived
longer.

FIGURE 1 | Experimental data sets used for model calibration and validation. (A) The calibration data set is depicted using closed circles (C) for each measured
bacterial level. Bacterial measurements were obtained for the following three initial bacterial loads: 1.28 × 108 bacteria (cyan), 2.48 × 108 bacteria (blue), and 5.05 × 108

bacteria (red). Lines connect the geometric means of the measurements at each time point. (B) The validation data set includes the observed mortality time for twenty-
seven rats injected with varying levels of bacteria via an E. coli-impregnated fibrin clot (each measurement is represented with a C). The bottoms and tops of the
boxes in the box-and-whiskers plot indicate the edges of the first and third quartiles, respectively, and the whiskers extend to the smallest and largest values in each
group that are less than 2.7 within-group standard deviations from the mean. The data points for Rat 11 and Rat 20 (Comparison of model simulations and experimental
data suggest a high mortality) are denoted by a red and cyan C, respectively.
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Figure 1B depicts the mortality data set (closed circles, •)
collected for 27 rats with the observed mortality time on the
x-axis and the initial bacterial load on the y-axis. A Bartlett test
revealed that the variances of the four groups (OMT � 24, 48, 72,
96 h) were not significantly different (p-value � 0.689) while ten
out of ten normality tests (Öner and Deveci Kocakoç, 2017) on
the deviations in the data from their respective group norms were
passed, suggesting that the data in each group are approximately
normally distributed. Analysis of variance (ANOVA), which
assumes normally distributed data with equal variances across
groups, was then performed to show that the initial bacteria levels
for the three OMT � 48-, 72-, and 96-h groups with OMT >24 h
were not significantly different from each other (p-value � 0.251).
More specific delineation of the health and disease status of the
rats in the 96-h group may have led to more variance between the
OMT � 48-, 72-, and 96-h groups, but those data were not
available at the time of this study. ANOVA on all four groups and
use of Tukey’s procedure with 95% confidence intervals suggested
that the OMT � 24-h group had significantly different levels of
initial bacterial load compared to the OMT � 48-, 72-, and 96-h
groups (p-value < 0.0051). The analysis was performed with
Matlab (normalitytest (Öner and Deveci Kocakoç, 2017) and
Matlab’s vartestn, anova1, and multcompare; Matlab code
available via Github, see Supplementary Information), and
the resulting conclusions regarding the differences between the
groups were consistent with the relationships suggested by the
box and whiskers plot shown in Figure 1B. The analysis
suggested that there were effectively only two different
experimental groups: rats with OMT � 24 h and rats with
OMT >24 h. These two categories were therefore used when
assessing the predictive capabilities of the model.

Model and Simulations
Model Variables and Interactions
The mathematical model developed in this sepsis study was based
on previous models of the immune response (Day et al., 2006;
Reynolds et al., 2006; Arciero et al., 2010; Arciero et al., 2013a;
Barber et al., 2013). It was used to predict the dependence of
health or disease outcomes on pathogen properties and the
immune response. Following the administration of E. coli into
the peritoneum, the model was used to predict changes in the
number of bacteria in the peritoneal cavity of the animal (B), the
level of tissue damage (ε), a pro-inflammatory response (M), and
an anti-inflammatory response (A). Tissue damage serves as a
proxy for whole-organism health status. In vivo, the molecular
correlates to tissue damage are damage-associated molecular
pattern [DAMP] molecules such as high-mobility group box 1
(HMGB1) (Wang et al., 2004; Lotze and Tracey, 2005). Due to
limited calibrating data and a desire for model simplicity, the
numerous cells and cytokines that generate the pro- and anti-
inflammatory responses were grouped into two general
populations, as in previous models (Reynolds et al., 2006;
Arciero et al., 2010; Arciero et al., 2013b). Specifically, tissue-
specific effects of bacterial infection were assumed to be driven by
both resident tissue macrophages and inflammatory cells such as
neutrophils and macrophages that infiltrate the tissue from the
blood (Cavaillon and Annane, 2006; Remick, 2007; Qiu et al.,

2019; Kumar, 2020). Nominally pro-inflammatory cytokines
(e.g., TNF, IL-1b, IFN-γ, IL-17A) and anti-inflammatory
cytokines (e.g., TGF-β1, IL-10, IL-4, IL-13) were not measured
in these experiments, and therefore these cytokines (along with a
multitude of chemokines and DAMPs) were grouped into general
populations whose effects were assumed independent of
inflammatory mediator type.

Figure 2 provides a schematic of the assumed interactions
(Remick, 2007) among model populations (schematic adapted
from (Reynolds et al., 2006)). A time-dependent dosing function,
D(t), defines the release of bacteria from the clot into the
surrounding tissue. In response, pro-inflammatory cells
activate and begin to destroy the bacteria while also causing
collateral tissue damage and promoting self-recruitment. Both
pro-inflammatory cells and tissue damage trigger an anti-
inflammatory response, which in turn inhibits the growth of
the pro-inflammatory response and damage levels. These
interactions are labeled in Figure 2 with arrow heads
indicating upregulation and blunted ends indicating
downregulation.

Although it is nearly impossible to state that no other model
could account for the variables and interactions depicted in
Figure 2 (Ganusov, 2016), the approach utilized in this study
adapted previous models (Reynolds et al., 2006; Arciero et al.,
2010) of bacterial infection that were successful at reproducing
multiple pathophysiological behaviors. The current model was
based on clear assumptions, including ones that stemmed from
the experimental technique for bacterial administration into the
rats. More specifically, Ahrenholz and Simmons (Ahrenholz and
Simmons, 1980) originally used the experimental method
implemented in this study to consider the theory that

FIGURE 2 | Schematic illustrating bacteria-immune interactions among
the four model populations. The model schematic shows the interactions
between bacteria (B), pro-inflammatory response (M), anti-inflammatory
response (A), and damage levels (ε). The external infection is denoted by
D(t). The arrow heads correspond to upregulation, and blunted (flat) arrow
heads indicate downregulation. This figure was adapted from (Reynolds et al.,
2006).
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increased fibrin levels decrease the severity of infections during
E. coli peritonitis. Namas et al. (2012) used the same procedure to
explore the effectiveness of hemadsorption techniques on treating
septic peritonitis. They performed several initial experiments in
which they injected rats with fibrin clots containing varying levels
of bacteria. The rats usually died or resolved in a relatively short
amount of time, so only the acute immune response was assumed
to play a significant role in infection dynamics. Additionally, the
experimental technique for bacterial administration introduced
bacteria more gradually into the system than instantaneous
bacterial injection into the blood. Both observations played a
significant role in the modeling choices employed here.

Model Equations
The rate of change of the number of bacteria in an animal is
governed by Eq. 1:

dB

dt
� D(t) + k1B(1 − B

B∞/Bs
) − k2slB

μl + k3BsB
− k5BM

1 + kAA
(1)

The first term, D(t), defines the release of bacteria from the fibrin
clot as an exponentially decaying dosing function given by D(t) �
D1exp(-kDt). The second term corresponds to logistic growth of
bacteria with growth rate k1. The third term corresponds to a
non-specific, local, innate immune response that is assumed to
eliminate a small amount of pathogen without activating a full
systemic inflammatory response (Reynolds et al., 2006). The
details of the parameter value derivation for this term are
given in (Reynolds et al., 2006). The final term defines the
elimination of bacteria by the systemic pro-inflammatory
response, which is inhibited by systemic anti-inflammation.

As a first-order approximation, all bacteria initially in the clot
were assumed to empty into the surrounding tissue without
reproducing or dying, which is equivalent to ∫∞

0
D(t)dt �∫∞

0
D1 exp(−kDt)dt � Bsource, where Bsource is the initial

amount of bacteria in the fibrin clot (Bsource � 128 × 106,
248 × 106, or 505 × 106 bacteria in the calibration data set).
To satisfy this condition for the conservation of clot bacteria, D1

must equal kDBsource. B was also scaled by a factor Bs (Parameter
Values) to account for the difference in bacterial levels between
the rat experiments described in this study and the bacteria levels
considered in the previous (human) models (Reynolds et al.,
2006). This factor also converts number of bacteria to
concentration of bacteria (bacteria/cm3) and allows previous
parameter values (Reynolds et al., 2006; Arciero et al., 2010) to
be used here.

We note that multiple dosing functions were considered
before choosing the exponential decay model. For example, an
additional variable tracking the bacterial levels inside the clot was
introduced and allowed to experience growth and/or transfer
between the clot and surrounding tissue. Despite providing three
additional degrees of freedom, this alternate approach did not
yield model fits that were significantly better than using a simple
exponential function to define the rate at which bacteria emptied
into the surrounding tissue. We also explored making parameter
kd a saturating sigmoidal function of Bsource, since experimental
observations suggested that a clot with a small number of bacteria

had a slower release rate than a clot containing a large inoculum
of bacteria. This assumption, however, also did not lead to
improved model fits. Thus, an exponential function with
constant rate of decay, kd, was implemented in the model and
yielded reasonable fits to the data.

Equation 2 defines the rate of change of the systemic pro-
inflammatory response (M):

dM

dt
� ]1f(M, B, ϵ)(]2 + f(M,B, ϵ))(1 + kAA) − μMM. (2)

where, f(M,B, ϵ) � kMM + kBBsB + kεϵ. The pro-inflammatory
response is increased by pro-inflammatory cells, bacteria, and
damage and is inhibited by the systemic anti-inflammatory
response. Natural decay of the response occurs at rate µM.
Recruitment of inactive pro-inflammatory cells occurs at a rate
proportional to ]1, as given in (Day et al., 2006; Reynolds et al.,
2006). The possible effect of LPS inflicting toxicity (without any
bacteria present) has been subsumed into the parameter values
for the onset and persistence of inflammation as a consequence of
bacterial infection. T helper one cells (Th1) and T helper 17 cells
(Th17) are also assumed to be included in model population M.

The rate of change of the anti-inflammatory response (A) is
defined in Eq. 3:

dA

dt
� sA + ]3(M + k4ε)

(]4 +M + k4ϵ)(1 + kAA) − μAA. (3)

The first term accounts for the nonzero background level (sA) of
anti-inflammatory mediators that resides in the body. In the
second term, the pro-inflammatory response and damage activate
the anti-inflammatory response. The anti-inflammatory response
also self-regulates, which is modeled using the (1 + kAA) term in
the denominator. Natural decay of the response occurs at rate µA.

The final model equation (Eq. 4) gives the rate of change of
tissue damage levels (ε):

dε

dt
� −ε

τ
+ [fM − T]+

1 + kAA
. (4)

In the first term, damage is repaired at rate 1/τ. In the second
term, similar to (Arciero et al., 2010), it was assumed that the
system can tolerate a certain level of inflammation before pro-
inflammatory cells begin causing damage. This assumption is
represented using a threshold function:

[fM − T]+ � {fM − T (fM − T)> 0
0 otherwise

. (5)

T gives the threshold above which immune cells begin to cause
damage in the nearby tissue, and f gives the rate at which the cells
cause damage.

Initial Conditions
At the onset of each simulation, the rats were assumed to be
healthy, corresponding to initial conditions of B(0) � 0,M(0) � 0,
A(0) � sA/µA, and ε(0) � 0. Since animals exhibit background
levels of anti-inflammatory mediators (e.g., transforming growth
factor-β1 (Morikawa et al., 2016)), nonzero initial background
levels of anti-inflammatory response mediators were assumed.
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Parameter Bsource corresponds to the number of bacteria inserted
into the clot for each experiment and controls the magnitude of
the dosing function, D(t). Thus, Bsource was changed in each
simulation (i.e., for each rat) to correspond to the experiment
being modeled.

For a sufficiently high Bsource, it was observed that the clots
were highly saturated to the point that bacteria left the clot
nearly instantaneously. To model this, B(0) was set to
Bsource–Bc, where Bc is a fitted parameter thought of as the
“clot capacity.” This assumes the number of bacteria that
exceed Bc instantaneously enter the surrounding tissue.
With only Bc bacteria assumed to remain in the clot after
the initial injection, the dosing function is adjusted to depend
only on those bacteria (Bc) remaining in the clot: D(t) �
kDBcexp(-kDt).

Parameter Values
Table 1 provides the values, units, and sources for all twenty-six
model parameters. Because of the lumped nature of variables M,
A, and ε, general units (“M-units”, “A-units”, and “ε-units”) were
used to describe these populations, as treated previously
(Reynolds et al., 2006; Arciero et al., 2010; Barber et al., 2013).
To be consistent with experimental measures, the units for
bacteria were given as 106 bacteria. Several parameter
estimation techniques were utilized to yield maximum

parameter estimation efficiency and physiologically realistic
results.

The unknown parameter space dimension was decreased by
estimating several parameter values using previous studies.
Following Reynolds et al. (Reynolds et al., 2006), kA was chosen
so that anti-inflammatory inhibition is at most 75% (Isler et al.,
1999), and μA was chosen to be significantly smaller than
typical cytokine decay rates (Bacon et al., 1973; Bocci, 1991;
Fuchs et al., 1996; Huhn et al., 1997) because these cytokines
have longer lasting downstream effects in the anti-
inflammatory cascade. The quality of the parameter fit
varied relatively little (<0.1%) when parameter T was
allowed to vary. Choosing T too large made [fM ‒ T]+ � 0
for all simulations while choosing T too small made [fM ‒ T]+
≈ fM, which violates the assumption that the system can
tolerate a certain significant level of inflammation (Arciero
et al., 2010). Setting T to one avoided both extremes without
affecting fit quality.

Seven parameters remained that still had relatively high levels
of uncertainty regarding their values. Those parameters (B∞, f,
kD, Bs, ]4, Bc, and k1) were estimated using a constrained least
squares optimization on log-transformed data. The model fit and
corresponding data is shown in Figure 3A. The fit was
constrained based on qualitative observations regarding the
general inflammation paradigm where typically one of three

TABLE 1 | Model parameter values, units, definitions, and sources.

Parameter Value Unit Description Source

k1 1–1.5 1/h pathogen growth rate, 1.27 fitted/default estimated
B∞ 0.737 106 cells/cm3 pathogen carrying capacity estimated
Bs 0.00083 1/cm3 rescaling factor for bacterial levels estimated
k2 0.4-0.7 1/M-units/h rate at which non-specific local response eliminates pathogen, 0.6 default Reynolds et al. (2006)
sl 0.005 M-units/h source of non-specific local response Reynolds et al. (2006)
μl 0.002 1/h decay of non-specific local response Reynolds et al. (2006)
k3 0.01 1/(106 cells/

cm3)/h
rate at which the non-specific local response is exhausted by pathogen Reynolds et al. (2006)

k5 1.8 1/M-units/h rate at which pro-inflammatory response consumes pathogen Reynolds et al. (2006)
kA 7.08 1/A-units inhibition rate of the anti-inflammatory response Adapted from (Day et al., 2006; Reynolds

et al., 2006)
]1 0-0.16 M-units/h maximum activation rate of pro-inflammatory response, 0.08 default (Day et al., 2006; Reynolds et al., 2006)
]2 0.12 1/h half-saturation of pro-inflammatory response (Day et al., 2006; Reynolds et al., 2006)
kM 0.01 1/M-units/h self-activation of pro-inflammatory response (Day et al., 2006; Reynolds et al., 2006)
kB 0.1 1/(106 cells/

cm3)/h
activation of pro-inflammatory response by pathogen Adapted from (Day et al., 2006; Reynolds

et al., 2006)
kε 0.02 1/ε-units/h activation of pro-inflammatory response by damage (Day et al., 2006; Reynolds et al., 2006)
μM 0.05 1/h decay of pro-inflammatory response (Day et al., 2006; Reynolds et al., 2006)
sA 0.0125 A-units/h source of anti-inflammatory response (Day et al., 2006; Reynolds et al., 2006)
]3 0.04 A-units/h maximum production rate of anti-inflammatory response (Day et al., 2006; Reynolds et al., 2006)
]4 3,640 M-units Half-saturation of anti-inflammatory response estimated
k4 48 M-units/ε-units relative effectiveness of pro-inflammatory response and damage inducing the

anti-inflammatory response
(Day et al., 2006; Reynolds et al., 2006)

μA 0.05 1/h decay of the anti-inflammatory response Comment in (Day et al., 2006; Reynolds
et al., 2006)

τ 24 h rate of recovery from damage Arciero et al. (2010)
f 213 ε-units/

M-units/h
maximum rate of damage produced by the pro-inflammatory response estimated

T 1 ε-units/h threshold for damage Comment in (Arciero et al., 2010)
kD 0.0344 1/h decay of bacterial population in the clot (released into body) estimated
BC 407 106 cells Number of bacteria a clot can hold estimated
εcrit 53 ε-units critical damage level estimated

Frontiers in Systems Biology | www.frontiersin.org November 2021 | Volume 1 | Article 7559136

Barber et al. Mathematical Model of Acute Inflammation

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


qualitative outcomes occur (Remick, 2007). In the first type of
outcome, termed “healthy recovery,” individuals are affected by
an infection, but their inflammatory response is quick and
successfully eliminates the infection. In the second type of
outcome, termed “aseptic death,” the inflammatory response
eliminates many of the bacteria but overwhelms surrounding
healthy tissue until death occurs. In the third type, termed “septic
death,” large numbers of bacteria survive alongside a mounting
inflammatory response and death results. Typical dynamics in
other studies (Kumar at al., 2004; Clermont et al., 2004; Reynolds
et al., 2006; Day et al., 2006) suggest that lower initial pathogen
levels often produce healthy recovery outcomes, mid-level initial
pathogen levels often produce aseptic outcomes, and high levels
produce septic outcomes. To produce a model capable of similar
behavior, the optimization process was constrained so that
simulated rats injected with 128 × 106 bacteria experienced
healthy recovery outcomes, simulated rats injected with
248 × 106 bacteria experienced aseptic outcomes, and
simulated rats injected with 505 × 106 bacteria experienced
septic outcomes. Such an approach is supported by the
following assumptions: 1) the relatively good fit to the data
(R2 � 0.70); 2) relatively low levels of bacteria [O(106)]in the
248 × 106 initial bacterial load calibration experiments after
72 h (i.e., probably not septic); 3) persisting high levels of
bacteria [O(107)] in the 505 × 106 initial bacterial load
calibration experiments after 48 h (i.e., probably septic); and
4) high mortality rates for loads above 200 × 106 bacteria
(Namas et al., 2012). The large range of measured bacterial
levels suggested that log-transforming the data was also
reasonable. Importantly, the standardized residuals
associated with the log-transformed measurements and
simulated data (Figure 3B) passed ten out of ten
normality tests (Öner and Deveci Kocakoç, 2017). Similar
outcomes were not possible for data that were not log-
transformed.

In the optimization procedure, the following squared residuals
of the log-transformed data were minimized:

∑
i�1

Nm (log(yi) − log(ŷi))2 (6)

where yi corresponds to all experimentally measured bacterial
levels at the time points and initial bacterial loads listed in
Supplementary Table S1, ŷi corresponds to the model-
predicted bacterial levels at the same time points and initial
bacterial loads, and Nm � 31 is the total number of
measurements. Although a range of values for k2 and ν1 are
later used to assess their effects on system dynamics (seeOutcome
Dependence on Parameter Values), during the optimization, and
by default unless otherwise stated, k2 and ν1 were set to 0.6 1/
M-units/h and 0.08M-units/h, respectively, to be consistent with
the values used in Reynolds et al. (2006). Parameter k1 was fit
during the optimization procedure to yield its default value of k1 �
1.27/h; this value was used throughout the study except when
assessing the impact of varying this parameter (Outcome
Dependence on Parameter Values). Multiple standard
optimization techniques were used during the process to
ensure the finding of a reasonable optimum, including the
Nelder-Mead simplex method, the steepest descent algorithm,
and random restarts (Matlab code available via Github, see
Supplementary Information). The resulting parameter
estimates are given in Table 1.

Sensitivity Calculation
Due to the high dimensionality of parameter space (26
parameters) and the relatively small amount of data (18
independent time points), only a small subset of the
parameters should be optimized at any given time to avoid
excessive computations and identifiability issues. Identifiability
is discussed later in this section but briefly, the larger the number
of fitted parameters, the more likely we will encounter an

FIGURE 3 | Validity of fitting the mathematical model to log-transformed data. (A)Calibrating data set (C) plotted with model-predicted bacterial dynamics over the
experimental times considered (solid curves). The following three initial bacterial loads were provided in the data set: 128 × 106 bacteria (cyan), 248 × 106 bacteria (blue),
and 505 × 106 bacteria (red). (B) Plot of the standardized residuals for the given fit to log-transformed data. These plots demonstrate the validity of using log-
transformation and fitting via least squares.

Frontiers in Systems Biology | www.frontiersin.org November 2021 | Volume 1 | Article 7559137

Barber et al. Mathematical Model of Acute Inflammation

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


unidentifiable parameter set where multiple sets of parameter
values can be used to produce the exact same optimal fit quality.
Having no unique optimal parameter set can cause traditional
optimization techniques to fail. Here, seven parameters were
chosen to be fit based on their associated levels of uncertainty.
It is possible that improved fits could be obtained by choosing a
different parameter set [e.g., by fixing some of the fit parameters
to other estimates found in the literature (Reynolds et al., 2006)].
In addition, while calibrating the model to a given data set will
limit the general dynamics that a model may exhibit, it is possible
that multiple optimal parameter sets exist whose dynamics
significantly differ.

To explore 1) the suitability of the current model, 2) the set of
fit parameters, and 3) the possible effects of varying other
parameters, a local sensitivity analysis around the current best
fit was performed. The relative sensitivities, sij, of the i

th simulated
measurement (ŷi) with respect to the jth parameter (pj) were
estimated using the relative change in ŷi divided by the relative
change in the parameter value:

sij �
⎛⎝ŷi(pj+pjδj)−ŷi(pj)

ŷi(pj) ⎞⎠
((pj+pjδj)−pjpj

) � ⎛⎝ŷi(pj + pjδj) − ŷi(pj)
δjŷi(pj) ⎞⎠ (7)

In Eq. 7, the magnitude of δj is chosen to be the square root of
machine epsilon. For some parameters, differently signed δj’s
would alter the original simulation outcomes (healthy recovery,
aseptic, septic). While such changes can happen in reality, this
results in significant jumps in simulated measurement values and
complicates the analysis. A complete analysis should consider
behavior both when such jumps occur and when they do not
and average the results. To include all parameters in the jump data
analysis, δj would need to be altered so that all parameters
experience such jumps. Since the jumps are typically of
approximately the same size, an alternate strategy would need
to be developed to compare these similarly sized jumps. Because of
such complications, only sensitivities with no outcome behavior
changes were considered here. At the same time, we note that larger
calculated values of |sij| (calculated in the absence of outcome
changes) correlate well with increased likelihood of these more
significant outcome changes. To gauge the general sensitivity of all
measurements to particular parameters and to understand how
much a given parameter may affect outcomes, the root mean
squared sensitivity (RMSS, Si) was calculated:

Si �
����������
1
Nm

∑
i�1
Nm

s2ij

√
(8)

where Nm � 31 gives the number of measurements made in the
calibrating data set. This sensitivity value (Si) is provided in
Supplementary Table S3 and provides an estimate for the
relative importance of each parameter in the model fitting
process with higher sensitivities corresponding to parameters
that affect the fit and corresponding dynamics more. Better
and quicker fits tend to result when parameters are more
sensitive. For any given set of parameters, a sum of their

RMSSs can give an estimate to how sensitive the
measurements are to that specific parameter set.

Identifiability is another important consideration when
assessing how parameter values affect system dynamics. As
an example, model parameters k2 and sl are not identifiable
from the data because increasing k2 by 1% will produce the exact
same change in the variable outputs as increasing sl by 1%. This
is because they only appear in the model as (k2sl), never
separately elsewhere. In such scenarios, it is impossible to
identify the values of such parameters without additional
outside information, as was the case in (Reynolds et al.,
2006). Studying the identifiability of a large set of parameters
with an associated nonlinear system can be difficult. While
standard linear algebra methods can be used for linear systems
(Cobelli and Distefano, 1980; Meshkat et al., 2009), nonlinear
systems require more specialized and often more
computationally and theoretically intensive approaches such
as methods utilizing rational functions (Karlsson et al., 2012),
methods focusing on local expansions or transformations
(Meshkat et al., 2009), and methods centering on
observability (Villaverde et al., 2016). Here we employed a
local analysis, including linearization about the current
model’s parameter values, to consider the issue of
identifiability. In the local analysis, identifiability is
investigated by considering the collinearity of the parameters,
where the effects of changing one parameter can be reproduced
by a linear combination of changes in the other parameters. In
such cases, parameters can be redundant, with their variations
capable of being reproduced by changing the other parameters.
The idea of collinearity can be written in terms of the previously
mentioned sensitivities: sik � ∑j≠k αjsij ∀i. A corresponding
collinearity index can be defined as: CIk � 1/σmin where σmin

is the smallest singular value of the associated sensitivity matrix
defined by components sij (Brun et al., 2001). Lower collinearity
indices indicate more weakly correlated parameters that better
describe the local parameter space and typically produce better
overall fits and corresponding calibrated models. Such analysis
identifies parameters sets that should not be used for fitting
(high CIk values) because of the possible presence of redundant
parameters. The index can also be used to identify sets of
parameters that may produce better fits.

RESULTS

Bacterial Infection Model Dynamics
Reproduce Key Sepsis Outcomes
The bacterial infections simulated in this study led to three
possible outcomes: healthy recovery, aseptic death, or septic
death (Reynolds et al., 2006). In this model, a healthy recovery
outcome corresponds to a return to a steady state where
pathogenic bacteria are fully eliminated (B � 0) and tissue
damage levels return to baseline pre-infection levels (ε � 0).
Aseptic death occurs when the bacteria are cleared (B � 0) but
damage levels remain elevated (ε > 0). Septic death results
when bacteria levels (B > 0) and damage (ε > 0) remain
elevated at steady state.
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In Figure 4, all three outcomes were predicted to occur given
the same level of initial bacterial dose (Bsource � 128 × 106

bacteria) but for three different levels of pathogen growth rate,
k1. For a low pathogen growth rate (k1 � 1.2/h), the pro-
inflammatory response eliminated the bacteria, and healthy
recovery (B/Bmax,M/Mmax, (A-Ahealthy)/Amax, and ε/εmax all less
than 1%) was predicted to be restored by 37 h (cyan curve). For
a slightly higher pathogen growth rate (k1 � 1.3/h), the pro-
inflammatory response also eliminated the bacteria, but caused an
elevated and sustained inflammatory response corresponding to
aseptic death (blue curve) due to a forward-feedback loop of
inflammation → damage → inflammation (Namas et al., 2012).
For a high pathogen growth rate (k1� 1.4/h), the pro-inflammatory
response was incapable of eliminating the bacteria, so bacterial
levels, damage, and the anti-inflammatory response all remained
elevated at the steady state (corresponding to septic death, red
curve).

Sensitivity Analysis Supports Choice of
Initial Model Parameters
Calculating local collinearities and sensitivities allowed for the
identification of other parameter sets that are better (from a
sensitivity and collinearity point of view) than the best fit
identified in this paper. As an example, kD, Bs, Bc, k1, k2, μl, and
sA have a sum of RMSSs of 137 and a collinearity index of 17
while the fit used in this paper has a sum of RMSSs of 62 and a
collinearity of 55 (less sensitive and more collinear). Despite
worse metrics, optimization of this alternative parameter set
(originally suggested by our local sensitivity and collinearity
analyses) did not significantly improve the overall parameter
fit (R2 still approximately 0.70). This suggests that the
parameters currently chosen for the model fitting are
reasonable despite lower sensitivities and higher
collinearities compared to other parameter sets.

The values of RMSS (Supplementary Table S3) showed
that the model results are most sensitive to local immune
response parameters (i.e., sl, k2, μl and k3) and second-most
sensitive to pathogen and dosing related parameters (i.e., k1,
kD, Bs, Binf). The other parameters affecting the inflammatory
response and damage displayed lower sensitivities.

Comparison of Model Simulations and
Experimental Data Suggest a High Mortality
Prediction Capacity
Prior studies utilizing reduced models of sepsis-induced
inflammation were not docked to data, especially with regard
to the level or trajectory of the damage variable that equated with
death (Kumar et al., 2004; Day et al., 2006; Reynolds et al., 2006).
To address this shortcoming, we compared the behavior of the
damage variable in our model to mortality observations in an
experimental model of Gram-negative bacterial sepsis.

In Figure 5A, the ability of the model to use damage levels to
predict deaths occurring within 24 h (OMT � 24 h) and deaths
occurring after 24 h (OMT >24 h) was quantified by comparing
damage-based predictions of the mathematical model with the

experimental observations in the validation data set. Using the
mathematical model, the time of death (i.e., mortality time), tc, for
a simulated rat was assumed to be the model-predicted time at
which the value of the damage variable, ε, reached a critical
damage level (εcrit). If tc ≤ 24 h, the rat was predicted to die within
24 h and to belong to the OMT � 24-h group. Similarly, if 24 < tc ≤
48, the model-predicted value for the OMT was 48 h and the rat
was predicted to belong to the OMT >24-h group. The initial
levels of bacteria given to each rat from the validation data set (27
total) were used as inputs to the calibrated model to yield model
predictions for survival time (OMT � 24 h or OMT >24 h) for
each rat in the study. Model accuracy was defined as the ratio of
correct predictions to total number of predictions. Both the
predictions and model accuracy are functions of εcrit, as shown
in Figure 5A. A relatively high level of accuracy (>80%) was
found for a wide range of critical damage levels (49.2 ≤ εcrit ≤
123.4 ε-units). A maximum accuracy of 96% was attained for εcrit
values between 49.8 and 55 ε-units.

As an additional assessment tool of the predictive capability of
the model, an area under the curve-receiver operating
characteristics (AUC-ROC) curve was constructed (Figure 5B).
In this figure, a positive outcome or identification corresponds to
death occurring within 24 h. As such, ‘true positive’ corresponds to
a model prediction agreeing with an experimental observation of a
rat that dies within 24 h, while ‘false positive’ corresponds to a
model prediction of a rat dying within 24 h when the experiment
indicated that the rat did not die within 24 h. The recall/sensitivity/
true positive rate � (number of true positives)/(number of correct
predictions) and the false positive rate � (number of false
positives)/(number of correct predictions). These rates are
calculated for 0 ≤ εcrit ≤ 200 ε-units to produce the AUC-ROC
curve in Figure 5B. An area under this curve that is close to one
indicates a model that can classify outcomes correctly. Here, the
area under the curve was 0.98.

Since the experimental data in this study suggest
significant differences between the OMT � 24-h and the
OMT >24-h groups, simulations were conducted to
determine whether the model could reveal additional
differences that may exist between these two groups. In
Figure 6, a simulation was run for each of the 27
different bacterial loads (Bsource) administered to the rats
in the validation data set (Figure 1B) assuming that εcrit �
53 ε-units (corresponding to the maximum accuracy
determined in Figure 5A). Simulations that correspond to
a predicted OMT � 24 h are shown in blue and those
corresponding to an OMT >24 h are shown in red. As
observed in Figure 6, the OMT 24-h group was predicted
to have significantly higher bacteria, inflammatory, and
damage levels. While there was a notable divide between
model-predicted septic and aseptic cases in terms of bacterial
levels (high vs near zero levels) after approximately 36 h,
there was no particularly notable divide between the
predicted OMT � 24-h (blue) and the septic members of
the OMT >24-h (red) groups.

The model was also used to give possible explanations for
the lack of statistical difference among the three OMT >24-h
groups. As shown in Figure 1B and Supplementary Table S2,
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FIGURE 4 | Predicteddynamics for healthy recovery, septic, and aseptic outcomes as pathogen growth rate is varied.Model predictions of bacteria (A), pro-inflammatory (B), anti-
inflammatory (C), and damage (D) levels as pathogen growth rate (k1) was varied. Three different outcomes were predicted for an initial bacterial infection ofBsource � 128 × 106 bacteria:
healthy recovery (k1 � 1.2/h, cyan), asepsis (k1 � 1.3/h, blue), and sepsis (k1 � 1.4/h, red).

FIGURE 5 | Demonstrated accuracy of model predictions of health or disease outcomes. (A)Model prediction accuracy. The number of correct model predictions
divided by the total number of predictions (i.e., model prediction accuracy) is shown as a function of the critical damage level (εcrit). Relatively high levels of accuracy are
attained for a large range of critical damage levels. (B) Area under the curve-receiver operator characteristics curve. An area under this curve close to one indicates the
model is capable of classifying outcomes correctly. The area under the curve is 0.98.
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some rats with similar levels of initial bacterial loads exhibited
significantly different outcomes. For instance, Rats 11 and 20
received similar initial bacterial loads, but Rat 11 died within
48 h while Rat 20 lived until 96 h. The model was used to
investigate these large discrepancies by varying model
parameters and evaluating their impact on system
outcomes. For instance, these investigations showed that
small changes in pathogen growth rate (k1) had a
substantial effect on the predicted outcomes of the system.
Figure 7 shows the model-predicted impact of decreasing this
parameter slightly, given similar initial bacterial loads of 163 ×
106 bacteria in Rat 11 (red) and 172 × 106 bacteria in Rat 20
(cyan). Specifically, k1 � 1.27/h for Rat 11, and k1 � 1.2/h for
Rat 20. With these parameter values, the model predicted that
Rat 11 died (i.e., its damage levels crossed the critical damage
threshold of εcrit � 53 ε-units) at approximately 34 h
(corresponding to OMT � 48 h). Rat 20, however, was
predicted to be healthy at 96 h (OMT � 96 h) with a low

steady state value of bacteria and zero steady state value of
damage (since pro-inflammatory levels never rise high enough
to cause damage to the surrounding tissue). Similar changes in
model predicted outcomes were observed when other
parameters, such as those governing the immune response,
were varied (Outcome Dependence on Parameter Values and
Figure 8).

OutcomeDependence on Parameter Values
Figure 8 summarizes the dependence of stable outcomes (health
is cyan, asepsis is blue, and sepsis is red) on the number of
bacteria in the fibrin clot (Bsource), pathogen growth rate (k1),
strength of the local immune response (k2), and pro-
inflammatory activation rate (]1). As k1 was increased or as k2
was decreased, the number of bacteria that the system could
handle and still recover decreased (Figures 8A,B). The dashed
lines in the figures indicate the three levels of Bsource that were
administered to the rats in the calibration data set. These multiple

FIGURE 6 | Similarities in time dynamics predicted despite varying bacterial loads and mortality data for 27 rats. The model-predicted dynamics of the bacteria (A),
pro-inflammatory (B), anti-inflammatory (C), and damage (D) levels are shown for each of the rats from the validation data set. Blue curves correspond to rats that had a
predicted observed mortality time of 24 h, and red curves correspond to rats that were predicted to survive for more than 24 h. The clustering of many of the trajectories
suggests that small uncertainties in the initial state of the system could lead to significantly different systemic predictions.
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parameter bifurcation plots suggest that a healthy recovery
outcome was not possible for many (high) levels of Bsource. For
lower levels of Bsource, the model predicted that regions of healthy
recovery become aseptic and then septic as the pathogen growth
rate was increased (Figure 8A) or the strength of the local
immune response was decreased (Figure 8B). As Bsource was
decreased, the width of the aseptic region decreased and
completely disappeared when Bsource � 6 × 106 bacteria. This
suggests that, regardless of the value of k1 or k2, an aseptic
outcome is not possible for a small enough initial bacterial load.

Parameter ]1 is the maximum activation rate of the pro-
inflammatory response. As shown in Figure 8C, there was a
very narrow region (199 × 106 bacteria < Bsource < 201 × 106

bacteria) in which the model predicted that increasing ]1 causes a
change in stable outcome from septic death to healthy recovery
and then to aseptic death. This suggests that increasing the
recruitment of pro-inflammatory cells and mediators first
helps then overwhelms the system. For higher levels of Bsource
(Bsource > 258 × 106 bacteria), a moderate activation rate (]1 �

0.08M-units/h) divides the septic region (]1 < 0.08M-units/h)
from the aseptic region (ν1 > 0.08M-units/h), suggesting that a
highly responsive pro-inflammatory activation rate leads to
aseptic outcomes.

The nearly equal split between septic and aseptic cases shown
in Figure 8C for Bsource > 258 × 106 can be explained by the
interactions between the bacteria and inflammatory response.
The interaction term involving BM in the bacteria equation (Eq.
1) was initially very small since not enoughM had been recruited.
Thus, early dynamics for the bacteria equation were governed
primarily by the remaining non-interaction terms (which are
almost entirely unrelated to ]1). If B values increased above a
(relatively low) threshold, the non-interaction terms became large
(and positive) enough to outweigh any of the mounting
contributions from the interaction term. This means that
resulting high values of B depended on initial dynamics when
M values were low and ]1 had only a minor impact. In addition, if
Bsource > 258 × 106 bacteria, bacterial levels approached a high
steady state level, regardless of the size of the interaction term. So,

FIGURE 7 | Small variations in system parameters produce significantly different outcomes consistent with experimental measurements. Comparison of the
predicted dynamics for the bacteria (A), pro-inflammatory (B), anti-inflammatory (C), and damage (D) dynamics for Rat 11 (red) and Rat 20 (cyan) using different
parameter values. Parameters for Rat 11: Bsource � 163 × 106 bacteria, k1 � 1.27/h. Parameters for Rat 20: Bsource � 172 × 106 bacteria, k1 � 1.2/h. Despite similar
parameter values, themodel predicts significantly different OMTs for Rat 11 (OMT � 48 h) and Rat 20 (OMT � 96 h). These OMTs are the same as those observed in
the validation data set (Figure 1B). A horizontal dashed line is included in panel D and corresponds to the critical damage level, εcrit � 53 ε-units.
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FIGURE 8 | Varying bacterial and immune response parameters significantly impacts model predicted outcomes. (A) Increasing the pathogen growth rate (k1) turns
healthy (cyan) outcomes into aseptic (blue) and then septic (red) outcomes. (B) Increasing the strength of the local immune response (k2) turns septic outcomes into
aseptic then healthy outcomes. (C) Increasing the pro-inflammatory activation rate contributes to more aseptic outcomes and lowers the probability of a healthy
outcome. Dashed lines correspond to initial bacterial levels that were used in the experiments. The three yellow ◊‘s in panel A indicate the three values of k1 (1.2, 1.3,
1.4/h) that were simulated in Figure 4. The two yellow ○‘s in panel A indicate the two values of k1 (1.27 and 1.2/h) that were simulated in Figure 7 for Rats 11 and 20.
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if ]1 < 0.08M-units/h (right boundary of septic region in
Figure 8C), the pro-inflammatory levels never grew large
enough to outweigh the non-interaction terms in Eq. 1. If ]1
> 0.08M-units/h, however, then the pro-inflammatory levels
caused the interaction term in Eq. 1 eventually to outweigh
the non-interaction terms, and the bacteria were eliminated.
This elimination took place after the system attained high
bacterial levels and was independent of Bsource so long as
Bsource > 258 × 106 bacteria.

DISCUSSION

In this study, a mathematical model of the immune response to a
bacterial infection was developed from previous inflammation
models (Reynolds et al., 2006; Arciero et al., 2010; Barber et al.,
2013) and applied to an experimental study in which variable
doses of E. coli were administered to rats. The model was
calibrated to bacterial levels in the rats at multiple time points
following implantation of the E. coli fibrin clot. The model
successfully predicted outcomes of observed mortality times in
27 rats given several different initial bacterial loads. The
differences in model-predicted levels of bacteria, pro-
inflammatory response, anti-inflammatory response, and
damage for rats with OMT � 24 h and rats with OMT >24 h,
however, were not as large as expected. Thus, the model
accurately predicts observed outcomes when initial conditions
are well-known, but predicting final outcomes based on data at
early time points is challenging when large uncertainty surrounds
the appropriate initial conditions to use for model or statistics-
based predictions. The model also showed that variability in
experimental outcomes can result from variability in the
pathogen growth rate, strength of the local immune response,
or maximum activation rate of the pro-inflammatory response,
since small changes in these parameter values generated large
changes in system outcomes.

An important goal for mathematical models of disease is to
yield accurate patient-specific outcomes. Ideally, given early time
course data on bacterial levels and cytokine levels in a patient, a
model could be used to predict whether that patient will follow a
healthy recovery (resolving), septic, or aseptic outcome. Then,
depending on the forecasted outcome, appropriate
countermeasures could be prescribed, allowing for an efficient
and accurate use of resources. In many studies, pure statistics are
used to predict the likely status or outcome of a given patient.
Applying pure statistics to the validation data set in this study
(e.g., using a predictor that predicts death within 24 h if the initial
bacterial load exceeds a certain amount) would produce similar
successful predictions but would not be able to predict septic vs
aseptic outcomes, explain failed predictions, or reveal the
underlying system dynamics. While more complex statistics
using more data per patient can help to improve the accuracy
of statistical methods, ultimately such methods still do not
identify the mechanisms leading to observed outcomes as
mechanistic mathematical models do. An optimal theoretical
approach for understanding disease should include a
combination of mathematical modeling and statistical methods

(Albers et al., 2018; Baker et al., 2018). The study presented here
provides an example of such a combined mathematical and
statistical approach.

Mathematical and Statistical Predictions
Statistical analyses applied to the validation data set suggested
no significant difference between the bacterial levels in rats
with observed mortality times of 48, 72, and 96 h. Therefore,
this study considered only two groups from the data set: rats
that died before 24 h (OMT � 24 h) and rats that died after 24 h
(OMT >24 h).

No clear separation among bacteria, inflammatory, or damage
levels was predicted by the model for the OMT � 24-h and OMT
>24-h groups. Interestingly, the model predicted very similar
trajectories for the pro- and anti-inflammatory response. For
example, there was a tight grouping of the pro- and anti-
inflammatory response in the OMT � 24-h group. As a result,
statistical models for this system would have difficulty predicting
whether a septic or aseptic outcome should be expected, especially
due to the uncertainty associated with detecting when the
infection begins to take hold. These model predictions imply
that pro-inflammatory, anti-inflammatory, or bacterial levels at
early time points (e.g., 8 h) cannot be used to predict outcomes
from a statistical perspective, thereby motivating the need for a
combined statistical and mechanistic modeling approach.

Modeling helps to determine the relative importance (and
validity) of proposed mechanisms and potential targets for
successful interventions. For instance, the sensitivity analysis in
this study showed that the local immune response is important.
Obtaining patient specific parameters for the local immune
response using well-designed measurements could improve
parameter estimation, mitigate uncertainty in initial conditions,
and enable more accurate patient-specific model-generated
predictions regarding potential septic outcomes, corresponding
dynamics, and proposed treatments. Such measurement
planning and usage rely on well-chosen statistical techniques
and could include both patient-specific measurements and/or
general population measurements. In the case of the latter,
maps of parameter spaces for general populations could be
generated and then a few well-chosen measurements could be
used to estimate the location of a specific patient in that space and
their patient-specific corresponding parameter values. In addition,
future models could make similar improvements in predictions by
including mechanisms that involve specific (rather than general)
cytokines (Chow et al., 2005) or those involving spatial
organization of the system (Barber et al., 2013).

The validation data set showed that similar bacterial loads led (in
some cases) to significantly different mortality times in rats. Just as
previous models have demonstrated the impact of stochasticity on
model outcomes (Cockrell andAn, 2017;Mavroudis et al., 2019), the
current model demonstrated that experimental or clinical variability
in sepsis outcomes can be explained by very small differences in
parameters governing bacteria or the host response. Additionally, the
different outcomes in two rats with nearly identical bacterial loads
could result from small differences in initial conditions due to
underlying stressors at the beginning of the experiment. As a
result, in order to enable patient-specific care, different parameter
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sets and/or initial conditionsmust be used for different individuals to
capture variability among patients.

Comparison to Prior Mathematical
Modeling Studies of Sepsis
Several sepsis modeling studies have been described previously.
Kumar et al. (2004) used a model similar to the model developed
in the current study to predict that sepsis may have multiple negative
outcomes (e.g., septic and aseptic death) that may require different
treatment approaches. However, their study did not explicitly
incorporate any experimental data. Yamanaka et al. (2019) created
a model founded on clinical data focused solely on septic shock, an
important subset of sepsis. McDaniel et al. (2019) introduced a
“whole-body” sepsis model (via the BioGears Physiology Engine)
to be used as an in silico septic simulator. While these and several
other sepsis models (An, 2001; An, 2004; Chow et al., 2005; Day et al.,
2006; Prince et al., 2006; Vodovotz et al., 2006; Zuev et al., 2006; Song
et al., 2012; Shi et al., 2015; Cockrell andAn, 2017) have offeredmany
useful insights, the present study emphasized the acute inflammatory
dynamics that take place during early sepsis development using a
relatively simple and novel modeling framework that can be used to
identify the mechanisms that underly vastly different outcomes
despite nearly identical initial conditions. Notably, our results
using experimental sepsis induced in genetically identical rats
support those of Cockrell and An (2017), who used an agent-
based model of human sepsis to suggest that mortality could
occur under diverse conditions and influences which in turn
would defy stratification based on inflammation biomarkers.

Limitations
As is necessary in theoretical modeling, the model presented in this
study applies simplifying assumptions to make predictions about the
average health status in a system. For example, several immune
system mediators are grouped together into two general populations
for the pro- and anti-inflammatory responses. Also, the model
considered only virulent bacteria; non-virulent (e.g., probiotic)
bacteria (Arciero et al., 2010) were not included. Although
additional model components could improve predictions, the
simplicity of this model allows for very useful analysis of the
impact of parameters and interactions on the health of a rat. The
simplicity of the model, however, does limit the ability to capture
more complicated underlying dynamics. For instance, a single
variable, ϵcrit, is used to predict outcomes based on system
damage when outcomes likely depend on additional factors.
Similarly, differences between species are subsumed into a single
parameter (Bs) when converting bacteria-associated quantities from
the human system developed by Reynolds et al. (2006) to the rat
system considered in this study.

The model was calibrated using both quantitative data (bacterial
levels at multiple time points) and qualitative observations
(coexistence of healthy recovery/septic/aseptic steady states for
some parameter values). The data used in this study did not
include measurements of cytokine levels, and thus using data sets
with both bacterial and cytokine levels could help to improve model
calibration and design. In addition, the validation data only included
time points of 24, 48, 72, and 96 h. There is probably a more

continuous change in mortality outcomes, and thus a more accurate
threshold for death could be obtained given additional time point
data. Finally, the model has been calibrated to peritoneal injections
that cause sepsis in rats. More experimental data would allow for
more general insights.

Concluding Remarks
With complicated processes such as inflammationwhere hundreds of
molecules, cells, and other factors play roles,mathematicalmodels are
essential for providing a mechanistic understanding of the system, as
in the current sepsis study. This is especially true when very small
differences in initial conditions or parameter values in complex
systems can have a major impact on outcome, as illustrated in
this study. Thus, model reduction is needed to facilitate analysis
and interpretation. The parsimonious model of sepsis presented here,
after calibration, reproduced experimental results, identified an
inherent level of uncertainty associated with experimental data
and associated predictions, predicted trends as bacterial load,
pathogen growth rate, strength of the local immune response, and
activation rate of the pro-inflammatory response were varied, and
provided a simplifying paradigm that can be used to understand the
life vs death outcomes for septic individuals. As recent studies in blunt
trauma (Abboud et al., 2016a), traumatic brain injury (Abboud et al.,
2016b), and pediatric acute liver failure (Zamora et al., 2016; Zamora
et al., 2019) have shown, a dichotomy in patient outcomes was
observed as soon as measurements were taken, suggesting that
inflammation, regardless if it results from trauma, disease, or
sepsis, exhibits the same features illustrated in this work. Using
mathematical modeling provides an understanding of possible
mechanisms that could explain such dichotomies in outcomes, in
contrast to methods solely based on statistical assessments of clusters
or outcomes.
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