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ABSTRACT

The subthalamic nucleus (STN) has an important role in the pathophysiology of the basal ganglia in Parkinson’s disease. The ability of
STN cells to generate bursting rhythms under either transient or sustained hyperpolarization may underlie the excessively synchronous beta
rhythms observed in Parkinson’s disease. In this study, we developed a conductance-based single compartment model of an STN neuron,
which is able to generate characteristic activity patterns observed in experiments including hyperpolarization-induced bursts and post-
inhibitory rebound bursts. This study focused on the role of three currents in rhythm generation: T-type calcium (CaT) current, L-type
calcium (CaL) current, and hyperpolarization-activated cyclic nucleotide-gated (HCN) current. To investigate the effects of these currents in
rhythm generation, we performed a bifurcation analysis using slow variables in these currents. Bifurcation analysis showed that the HCN cur-
rent promotes single-spike activity patterns rather than bursting in agreement with experimental results. It also showed that the CaT current
is necessary for characteristic bursting activity patterns. In particular, the CaT current enables STN neurons to generate these activity patterns
under hyperpolarizing stimuli. The CaL current enriches and reinforces these characteristic activity patterns. In hyperpolarization-induced
bursts or post-inhibitory rebound bursts, the CaL current allows STN neurons to generate long bursting patterns. Thus, the bifurcation anal-
ysis explained the synergistic interaction of the CaT and CaL currents, which enables STN neurons to respond to hyperpolarizing stimuli
in a salient way. The results of this study implicate the importance of CaT and CaL currents in the pathophysiology of the basal ganglia in
Parkinson’s disease.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059773

The subthalamic nucleus is an important part of the brain due
to its involvement in motor behavior and other brain functions.
Pathological activity in subthalamic neurons contributes to the
motor symptoms of Parkinson’s disease. Therefore, it is impor-
tant to understand the mechanistic basis of electrical activity in
subthalamic neurons. These neurons are known to exhibit sev-
eral distinct patterns of activity: tonic spikes (action potentials),
hyperpolarization-induced bursts of spikes, and post-inhibitory
rebound bursts of spikes. This study explores how different mem-
brane channels interact with each other to give rise to various
activity patterns in a single cell within the framework of a one-
compartment (i.e., no spatial extent) model. Bifurcation analysis

using slow variables in membrane currents showed how cal-
cium currents can promote different types of bursting, especially
in response to an inhibitory input. The study also emphasizes
the importance of slow calcium currents in subthalamic cells in
Parkinson’s disease known for its bursting electrical activity in
the basal ganglia.

I. INTRODUCTION

The basal ganglia (BG) is a group of interconnected subcor-
tical nuclei, which is involved in the generation of movement,
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cognition, and emotion. It is known to be impacted in Parkin-
son’s disease (PD). Excessively synchronized beta-frequency band
rhythms (13–30 Hz) within the BG have been reported in parkin-
sonian patients and in parkinsonian animal models (Brown, 2003;
Hammond et al., 2007; Mallet et al., 2008; Park et al., 2010; Oswal
et al., 2013; Stein and Bar-Gad, 2013; Ahn et al., 2015). These
rhythms have been implicated in the motor symptoms of Parkin-
son’s disease (PD), such as slowness and rigidity of movements
(Hutchison et al., 2004; Kühn et al., 2004; Brown, 2007; Ray et al.,
2008; Eusebio and Brown, 2009; Kühn et al., 2009). As the only exci-
tatory nucleus in the BG, the subthalamic nucleus (STN) plays an
important role in the dynamics and functions of the BG (Bevan et al.,
2002b; Kühn et al., 2009; Hirschmann et al., 2011; Tachibana et al.,
2011; Pavlides et al., 2015; Ahn et al., 2016; Rubin, 2017). The STN
is also a standard target for electrical deep brain stimulation (DBS),
a commonly used treatment for advanced PD patients (Wingeier
et al., 2006; Kühn et al., 2008; Eusebio et al., 2011).

In vitro, the STN neuron fires single spikes in a slow rhythmic
manner at 5–20 Hz during the absence of an external input, which
may underlie the tonic firing patterns observed in vivo in resting
animals (Beurrier et al., 1999; Bevan and Wilson, 1999). STN firing
frequency increases almost linearly with the magnitude of injected
depolarizing current pulses (Hallworth et al., 2003; Wilson et al.,
2004). Bevan et al. showed that a majority of STN neurons elicit a
calcium-dependent post-inhibitory rebound (PIR) burst of spikes
when the neurons are released from an inhibitory synaptic input
(Bevan et al., 2002a). PIR bursts can be either long or short depend-
ing on the level and duration of inhibition received by the neuron.
On the other hand, some STN neurons under hyperpolarized condi-
tions switched from a spontaneously discharging single-spike mode
to a pure burst-firing mode (consisting of long-lasting bursts of con-
stant duration) or a mixed burst-firing mode (alternating short and
long bursts) (Beurrier et al., 1999). It was argued that slow rhythmic
bursting results from T-type calcium currents and L-type calcium
currents (Beurrier et al., 1999; Bevan and Wilson, 1999).

Since the STN receives the inhibitory input from the external
globus pallidus (GPe), these characteristic activity patterns may be
essential ingredients in the normal and abnormal functioning of
the system. For example, STN neurons are able to transform the
sustained inhibitory synaptic input into rhythmic bursts of spikes.
Hence, their resting activities can transition from tonic spiking
discharge to burst-firing patterns. Therefore, hyperpolarization-
induced bursting in STN neurons may play crucial roles in the
generation of excessively synchronized rhythmic bursting patterns
observed in parkinsonian BG (see references above).

The goal of this study is to develop a relatively simple STN neu-
ron model that exhibits several activity patterns as described above
and to understand the dynamic mechanisms of these patterns by
studying the interactions of membrane currents and the bifurcation
diagrams underlying transitions between different activity modes. A
model, which is able to generate all types of activities, was devel-
oped earlier (Gillies and Willshaw, 2006), but it is a complicated
multi-compartmental model where the interaction of compartments
appears to be essential for its dynamical regimes. While this model is
able to generate the activity patterns described above, the mathemat-
ical analysis of the underlying mechanisms is very challenging due
to the complexity of the multi-compartmental model. In addition,

the model’s complexity makes it hard to use in the construction of
a large model network, such as the cortex–BG network to study
the mathematical mechanisms of synchronized beta rhythms in
networks.

In our current study, we developed a conductance-based sin-
gle compartment model of the STN neuron and showed how
this model captures the characteristic activity patterns, especially
hyperpolarization-induced bursting and post-inhibitory rebound
(PIR) bursting. Using this model, we performed a bifurcation analy-
sis to study the roles and effects of three currents (T-type calcium
current, L-type calcium current, and hyperpolarization-activated
cyclic nucleotide-gated current) in the rhythm generation mech-
anisms under inhibition (Beurrier et al., 1999; Atherton et al.,
2010).

II. MATHEMATICAL MODEL

A conductance-based single compartment model of the STN
neuron includes spike-generating potassium and sodium currents
(IK and INa), a leak current (IL), a persistent sodium current (INaP),
a calcium-dependent potassium current (IAHP), hyperpolarization-
activated cyclic nucleotide-gated (HCN) current (IHCN), an A-type
potassium current (IA), a T-type low-threshold calcium (CaT) cur-
rent (ICaT), and an L-type high-threshold calcium (CaL) current
(ICaL). For basic currents (spike-generating currents, leak currents,
and AHP currents), we used the equations in the Terman model
(Terman et al., 2002; Best et al., 2007). The forms of A-type calcium
current, CaT current, and CaL current were adopted from the Hahn
and McIntyre (2010) model. The form of the HCN current was based
on the Gillies and Willshaw (2006) model. The dynamics of the
membrane potential (V) is described by the following differential
equations:

C
dV

dt
= −IL − IK − INa − INaP − IAHP − IHCN − IA − ICaT

− ICaL − Iapp0 − Iapp, (1)

dx

dt
=

x∞(V) − x

τx(V)
, x ∈ {m, h, n, f, a, b, p, q, c, d1}, (2)

dx

dt
=

x∞([Ca]) − x

τx(V)
, x ∈ {r, d2}, (3)

d[Ca]

dt
=

ε

2F
(−IT − ICaL) − KCa [Ca], (4)

where IL = gL(V − VL), IK = gKn4(V − VK), INa = gNa m3

h(V − VNa), INaP = gNaP(V − VNa), IAHP = gAHP r2(V − VK), IHCN

= gHCN f(V − VHCN), IA = gA a2 b (V − VK), ICaT = gCaT p2 q
(V − VCa), and ICaL = gCaL c2 d1 d2 (V − VCa). The units for ionic
currents are mA/cm2. In the first equation, Iapp0 is the baseline
external input, and Iapp represents an injected applied current. In
the last equation, [Ca] is the calcium concentration in mM, F
is Faraday’s constant, and KCa 0.2/ms is the calcium pump rate.
Voltage-dependent activation and inactivation steady states and
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time constants are given as follows:

x∞(V) =

[

1 + exp

(

V − θ∞,x

σ∞,x

)]−1

,

x ∈ {m, h, n, f, a, b, p, q, c, d1}, (5)

x∞([Ca]) =

[

1 + exp

(

[Ca] − θ∞,x

σ∞,x

)]−1

, x ∈ {r, d2}, (6)

τx(V) = τ0,x + τ1,x

[

1 + exp

(

−
V − θ1,x

σ1,x

)]−1

+ τ2,x exp

(

−
V − θ2,x

σ2,x

)

, (7)

x ∈ {m, h, n, r, a, b, p, q, c, d1, d2}, (8)

τf(V) = τ0,f + τ1,f[exp(θ1,f + σ1,fV) + exp(θ2,f + σ2,fV)]−1. (9)

The values of maximal conductances are as follows:
gL = 0.9 S/cm2, gK = 57 S/cm2, gNa = 49 S/cm2, gNaP = 0.003 S/cm2,
gAHP = 1 S/cm2, gHCN = 2 S/cm2, gA = 5 S/cm2, gCaT = 20 S/cm2,
and gCaL = 5 S/cm2. The values of reversal potentials are as follows:
VL = −60 mV, VK = −80 mV, VNa = 55 mV, VHCN = −43 mV,
and VCa = 120 mV. Kinetic parameter values were obtained from
the Hahn and McIntyre (2010) model and the Gillies and Willshaw
(2006) model and then tuned to capture the characteristic activ-
ity patterns, especially hyperpolarization-induced bursts and PIR
bursts. Table I lists the resulting values of the kinetic parameters.

In Secs. III–V, we will focus on CaT, CaL, and HCN cur-
rents and study the effects and interactions of these currents on
hyperpolarization-induced rhythms. In Sec. III, we begin with the
spontaneous tonic firing activity. Although spontaneous tonic spik-
ing is not induced by hyperpolarization, the results in that section
will be used to explain the effect and interaction of CaT and CaL
currents on hyperpolarization-induced rhythms. Note that in the
rest of the article, we will omit the unit of each parameter for the
sake of brevity and simplicity. Bifurcation parameters in Secs. III–V

are formed by multiplying maximal conductances and dimension-
less gating variables; thus they follow the same units as the maximal
conductances used therein.

III. SPONTANEOUS TONIC FIRING ACTIVITY

The model exhibits spontaneous tonic firing activity (∼10 Hz),
which depends on sodium, potassium, and persistent sodium cur-
rents. Figure 1 shows the dependence of these rhythms on the
following four intrinsic parameters: the magnitude of the injected
depolarization current (Iapp), the maximal conductance of the CaT
current (gCaT), the maximal conductance of the HCN current (gHCN),
and the maximal conductance of the CaL current (gCaL). Default
parameter values are gCaT = 20, gCaL = 5, gHCN = 2, and Iapp = 0.

As observed in experiments and discussed in other stud-
ies (Hallworth et al., 2003; Wilson et al., 2004), firing frequency
increases almost linearly as the magnitude of injected depolarizing
current increases [Fig. 1(a)] or as gCaT increases [Fig. 1(b)]. There
is only a slight change in frequency when gHCN increases [Fig. 1(c)].
In the case of CaL current variation, however, the frequency shows
an abrupt jump around gCaL = 17, while the frequencies are almost
constants for small or large values of gCaL [Fig. 1(d)]. In Sec. III B,
we will explore how the CaL current and other currents interact to
generate these firing patterns through a bifurcation analysis. Note
that when we increased the timescale of the HCN gating variable
f dynamics by 50% (that is, the value of τf was multiplied by 1.5.
Note that τ0,f = 0.) in Fig. 1(d), there is almost no change in fre-
quency for a wide range of gCaL values. In Sec. III B, we will discuss
this observation in detail.

The mechanism underlying the effect of applied current on
spontaneous tonic firing activity has been extensively studied in
different types of neuron models (Terman, 1992; Ermentrout and
Terman, 2010; Park and Rubin, 2013). The response of these neu-
ron models and the model considered here to the constant applied
current are similar and have been considered in the studies men-
tioned above. Therefore, we will focus on the effect of the three
currents considered here (CaT, CaL, and HCN currents) on sponta-
neous tonic firing activity. In Secs. III A and III B, we study how the

TABLE I. Values of kinetic parameters. Units for each parameter values are shown in the first row except θ∞,r , θ∞,d2, σ∞,r , and σ∞,d2 whose units are mM.

θ∞,x (mV) σ∞,x (mV) τ0,x (ms) τ1,x(ms) τ2,x (ms) θ1,x (mV) σ1,x(mV) θ2,x (mV) σ2,x(mV)

m −40 −8 0.2 3 0 −53 −0.7
h −45.5 6.4 0 24.5 1 −50 −10 −50 20
n −41.5 −14 0 11 1 −40 −40 −40 50
r 0.17 (mM) −0.08 (mM) 2 0 0
f −75 5.5 0 1 1 −14.59 −0.086 −1.87 0.08
a −45 −14.7 1 1 0 −40 −0.5
b −90 7.5 0 200 1 −60 −30 −40 10
p −56 −6.7 1 0.33 200 −27 −10 −102 15
q −85 5.8 0 400 100 −50 −15 −50 16
c −30.6 −5 45 10 15 −27 −20 −50 15
d1 −60 7.5 400 500 1 −40 −15 −20 20
d2 0.2(mM) 0.02(mM) 3000 0 0
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FIG. 1. Dependence of spontaneous tonic firing frequency on intrinsic parameters. We present the effects of (a) external constant input (Iapp), (b) the CaT current (gCaT),
(c) the HCN current (gHCN), and (d) the CaL current (gCaL). In all four cases, the frequency increases as the current strength increases. In (d), there is an abrupt increase in
the frequency. Red plot in the same figure shows the result when the timescale of the dynamics of gating variable for the HCN current (f) was increased by 50%.

role and mechanisms of these currents interplay in each character-
istic firing pattern using the bifurcation analysis. We will utilize the
separation of timescales technique and slow variables to construct
bifurcation diagrams (the fast-slow analysis).

A. Effect of CaT and HCN currents on spontaneous

tonic firing rhythm. Bifurcation analysis

To study the effects of the CaT current and the HCN current on
spontaneous tonic firing rhythms, we used a fast-slow analysis with
gCaL fixed at 5. In the standard fast-slow analysis, we consider slow
variables as bifurcation parameters and derive a bifurcation diagram
of the fast subsystem. During spontaneous tonic firing activity in
the model, the level of [Ca] is very low and changes slowly, which
is due to the slow timescale of [Ca] and low spiking frequency.
Hence, we may disregard the effect of [Ca] and the CaL current

in this case. Note that the gating variables of the CaT current and
the HCN current do not depend on [Ca]. On the other hand, it
is known that the HCN current promotes a single-spike activity
(Atherton et al., 2010). For this reason, we used the following
slow variables ghcnc = gHCN × f and gtc = gCaT × q for the analysis,
where f and q are the gating variables in HCN and CaT currents,
respectively. In summary, f and q (or ghcnc and gtc) are slow vari-
ables and the remaining variables are then fast variables. The system
of governing equations of the fast variables forms a fast subsystem.

Figure 2(a) shows one example of a bifurcation diagram of the
fast subsystem, which was projected onto the (gtc, V)-space. Here,
we treated gtc as a bifurcation parameter and fixed ghcnc at 0.01. The
set of fixed points of the fast subsystem forms an S-shaped curve, S,
in the (gtc, V)-space, and this structure persists over a certain range
of ghcnc values of interest. The lower branch of S at the lower left
corner (black solid) consists of stable fixed points and the middle
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FIG. 2. (a) Bifurcation diagram of fast subsystem, which was projected onto (gtc, V)-space, with a bifurcation parameter gtc when gCaL = 5. Also, the gtc-nullcline (green)
and the projection of the spontaneous tonic firing solution (blue) of the full model are shown for gCaT = 20. (b) Bifurcation surface projected onto (gtc, ghcnc,V)-space with
projection of a tonic firing solution trajectory when gCaT = 20 (blue). (c) Two-parameter bifurcation diagram with RK (right knee) line (black slant line in the middle) and

projection of four tonic firing solution trajectories (closed curves) when gCaT = 15 (black), 20 (blue), 25 (red), and 40 (magenta). (d) Averaged gtc (gtc) over gtc values within

the periodic orbit regime for gCaT = 20 (blue), 30 (red), and 40 (magenta). Diagonal black line is gtc = gtc line. Here, ghcnc = 0.01.

branch of S unstable saddle points (black dashed). The lower branch
and middle branch coalesce at a fold bifurcation, which we call the
right knee (RK) of S. Similarly, this middle branch turns around
at another fold bifurcation point. We call this upper fold bifurca-
tion point the left knee (LK) of S. As gtc increases from LK, the
fast subsystem undergoes an Andronov–Hopf (AH) bifurcation at a
value of gtc that we denote by gtcAH, and above this, the fixed points
become stable. A family of stable periodic orbits (P) emerges from
S at the AH-point. The two black curves from the AH-point show
the minimum and maximum V along the family of periodic orbits.
Finally, the family of stable periodic orbits (P) terminates in a saddle-
node on invariant circle (SNIC) bifurcation. Figure 2(a) also shows
the projection of the spontaneous tonic firing solution (blue) of the
full model onto the bifurcation diagram when gCaT = 20, along with
the corresponding gtc-nullcline (green). To the right (above) of the
gtc-nullcline, gtc′ < 0; hence, gtc decreases over that region as a
dynamic variable. Similarly, gtc′ > 0 to the left (below) of the gtc-
nullcline. Note that gtc-nullcline lies above the lower branch of
S in the diagram. As will be explained later in this section, two

characteristics of the bifurcation diagram—(1) the family of sta-
ble periodic orbits terminates at the SNIC and (2) the gtc-nullcline
lies above the lower branch of S—are crucial for the generation of
tonic spiking solutions. For this reason, this type of bifurcation has
been frequently associated with tonic spiking solutions. As will be
explained in Sec. IV (cf. Figs. 4 and 5), if the stable periodic orbits
terminate in a homoclinic orbit, then a square-wave bursting in the
neural model is more likely to occur (Rinzel, 1987; Best et al., 2005;
Butera et al., 2005; Bertram and Rubin, 2017).

Now treating gtc and ghcnc as bifurcation parameters, a bifur-
cation diagram in Fig. 2(a) forms a bifurcation surface in the
(gtc, ghcnc, V)-space [Fig. 2(b)]. The black surfaces on the top and
bottom of the right side of the figure are surfaces formed by maxi-
mum and minimum values of V along the families of stable periodic
orbits [cf. Fig. 2(a)]. Let 6 denote the surface formed by the S-
shaped curve S from Fig. 2(a). Part of the surface 6 is also shown
between the surfaces of stable periodic orbits. More specifically, the
black surface that crosses the figure horizontally in the middle is the
surface of unstable fixed points. The folded surface corresponds to
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the lower and middle branches of 6. This surface is folded at the line
of RK points, separating stable and unstable points. Figure 2(b) also
shows the projection of the spontaneous tonic firing solution when
gCaT = 20 (blue), the same solution as used in Fig. 2(a). The gtc-
nullsurface is also shown in green. This gtc-nullsurface divides the
phase space into two parts. In the region below the gtc-nullsurface,
gtc′ > 0, hence gtc increases. On the other hand, in the region above
the surface, gtc′ < 0 and gtc decreases.

The projection of tonic spiking solution sweeps both regions.
Figure 2(b) shows that the projected trajectory jumps down to the
lower part of 6. Consider a projected trajectory that lies in a small
neighborhood of the lower part of 6 (surface of stable fixed points).
Because the lower part of 6 lies below the gtc-nullsurface (gtc′ > 0),
gtc increases along the surface. In this case, ghcnc also increases, and
as a result, the trajectory traverses the lower part of 6. Once the
trajectory reaches the line of RK points (the boundary between the
lower and middle parts of 6), then the trajectory jumps up into the
regime of stable periodic orbits of a fast subsystem. While staying
in the regime of stable periodic orbits, both gtc and ghcnc decrease;
hence, the trajectory moves away from the regime of stable peri-
odic orbits, and then it jumps down to the lower part of 6, which
completes one cycle of action potential.

We note that the existence of spontaneous tonic firing solutions
depends on the following two facts: (1) the family of stable periodic
orbits of the fast subsystem terminates in a saddle-node on invari-
ant circle (SNIC) bifurcation and (2) gtc-nullsurface lies above the
lower part of 6. If gCaT is decreased, then the gtc-nullsurface moves
downward and intersects with the lower part of 6, while the family
of stable periodic orbits still terminates in an SNIC. The resulting
intersection curve is the curve of globally stable fixed points. Hence,
the trajectory approaches this curve and cannot enter the regime of
stable periodic orbits. As a result, there are no spontaneous tonic
firing solutions for small gCaT values.

Two-parameter bifurcation diagram is given in Fig. 2(c), which
shows the RK line (black slant line) with the projection of four
spiking solutions for gCaT = 15 (black), 20 (blue), 25 (red), and 40
(magenta). At the upper right turning point, trajectory turns coun-
terclockwise. Figure 2(c) shows that the projection of tonic spiking
solution becomes flat and moves rightward as gCaT increases. Based
on these two observations, we can provide a heuristic explanation
for why the frequency of spiking solution increases as gCaT increases
as follows. First, note that gtc increases faster for larger gCaT values
because gCaT controls the dynamics of gtc = gCaT × q. On the other
hand, we may assume that the dynamics of ghcnc is similar in these
four examples because gHCN is fixed for all cases (gHCN = 2). Thus,
the period of spontaneous tonic firing solution may be estimated
by the range of ghcnc in the trajectory. Thus, we can expect that
the frequency tends to increase and to level off eventually as gCaT

increases. Second, recall that, once the trajectory jumps down, then
it approaches the lower part of 6, moves slowly along it, and then
eventually crosses the RK line to jump up. In the two-parameter
bifurcation diagram, this corresponds to the portion of the trajec-
tory from the lower turning point to the upper turning point. In
fact, trajectory spends most of time near the lower part of 6. Now,
as gCaT increases, the projected trajectory moves rightward; hence, it
spends less time near the lower part of 6 due to the proximity to the
RK line. In summary, as gCaT increases, trajectory spends less time

near the lower part of 6 with slower dynamics, which results in the
increase in the spiking frequency.

Now, we investigate why the projection of tonic spiking solu-
tion moves rightward as gCaT increases. First, recall that (gtc, ghcnc,
V) phase space is divided into two subregions by gtc-nullsurface
[Fig. 2(b)]. The place where spiking solution is found seems to be
determined by the balance between the times that trajectory spends
in these two regions while traversing the phase space. Here, we note
that the position of gtc-nullsurface in Fig. 2(b) depends on gCaT value.
In fact, numerical simulation shows that gtc-nullsurface moves up
as gCaT value increases. Thus, the increase in gCaT value affects the
position of spontaneous tonic firing solution near RK.

Since gtc = gCaT × q, the position of the spiking solution might
be determined by the dynamics of slow variable q in the active
phase. Averaging method is frequently used to obtain the reduced
autonomous equation that governs the evolution of the slow variable
in the active phase. Formally, if dx

dt
= f(x, t) is the system for the evo-

lution of slow variable x and f(x, t) is of period T, then the associated
autonomous averaged system in the active phase is given by

˙̄x =
1

T

∫ T

0

f(x̄, t) dt := f(x̄),

which describes the dynamics of the slow variable in the active

phase. Now, dq

dt
=

q∞(V)−q

τq(V)
; hence, the position of the spiking solu-

tion might be determined by the averaged value of q∞(V). In this
case, since the time constant τq(V) also depends on the voltage, we
used a weighted averaging method for q∞(V) in the regime of stable
periodic orbits. More precisely, we computed the following averaged
value of q∞(V) in a periodic regime as

q∞ =

∫ T

0

q∞(V)

τq(V)
dt/

∫ T

0

1

τq(V)
dt,

where T is the period of a stable periodic orbit. That is, for a fixed
ghcnc value, we draw a bifurcation diagram and find gtc value for
SNIC, say gtcSNIC. From gtcSNIC, we consider 30 points of gtc with
a step size of 0.001. Here, each fixed gtc value corresponds to a
periodic orbit. Now we computed averaged q∞ over this periodic
orbit, and Fig. 2(d) shows the averaged gtc (gtc = gCaT × q∞), when
ghcnc = 0.01. The results for other ghcnc values show qualitatively
similar patterns. We checked three gCaT values, 20 (blue), 30 (red),
and 40 (magenta). Diagonal solid line is the line of identity. Since gtc
denotes an equilibrium value of gtc over a spiking solution, if gtc line
lies above (below, respectively) the line of identity, then gtc is forced
to increase (decrease, respectively). Thus, the intersection between
the line of identity and gtc curve denotes the gtc value where sponta-
neous tonic firing solution tends to reside. As shown in Fig. 2(d), the
intersection point moves rightward as gCaT increases, and this result
explains why the projected trajectory in Fig. 2(c) moves rightward
as gCaT increases. We also note that when gCaT = 40 in Fig. 2(d), the
intersection point is around 0.125 and Fig. 2(c) shows that the value
lies on the right side of the RK line. This suggests that the sponta-
neous tonic firing solution in this case may lie inside the regime of
stable periodic orbits, and the trajectory spends almost no time on
the lower surface of 6 that results in a higher frequency.

Chaos 31, 113121 (2021); doi: 10.1063/5.0059773 31, 113121-6

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

B. Effect of the CaL current on spontaneous tonic

firing: Bifurcation analysis

In this section, we present the effect of the CaL current on
spontaneous tonic firing by varying gCaL values (default value is 5)
with fixed gCaT and gHCN values. We tested six different gCaL values
(5, 10, 15, 20, 30, and 40). Over these gCaL values, we found that
the model yields low-frequency spiking solutions when gCaL ≤ 15
and high-frequency spiking solutions when gCaL ≥ 20 [Fig. 1(d)].
As seen in Fig. 1(d), the frequency of the spiking solution was not
affected by the HCN current even if the timescale of the dynamics
of the HCN current is substantially increased. That is, the timescale
of kinetics of the HCN current may not play a significant role
when the CaL current is not negligible anymore. For this reason,
we utilized the following slow variables for the bifurcation analysis:
gtc = gCaT × q, gcalc = gCaL × d1 × d2, and [Ca] , where d1 and d2

are slowly activating/de-activating gating variables in the CaL cur-
rent, and [Ca] is the calcium concentration. We would like to
note that the numerical simulation shows that the average calcium
level [Ca] is around 0.05 in low-frequency spiking solutions and is
around 0.18 in high-frequency spiking solutions.

Figures 3(a) and 3(b) show bifurcation diagrams of the fast sub-
system in (gtc, V)-space with the bifurcation parameter gtc for fixed
gcalc and [Ca] values. Here, [Ca] value is 0.05 in Fig. 3(a) and
0.18 in Fig. 3(b). In each figure, gcalc values are 2 (black), 6 (blue),
and 10 (red). Green curves are gtc-nullcline when gCaT = 20. There
are several things to note on these bifurcation diagrams. First, we
see that the lower and middle parts of the S-shaped curve of fixed
points (S) remain almost the same over various gcalc values. Specif-
ically, the dependence of the gtc value of the right knee (RK) of S
(gtcRK) on gcalc values is negligible. This is clearly shown in Fig. 3(c),
where the vertical lines denote the RK lines for [Ca] = 0.05 (black)
and [Ca] = 0.18 (blue). Second, there are two different termination
mechanisms of stable periodic orbits depending on the gcalc values.
As shown in Sec. III A, the family of stable periodic orbits emanates
from S at the AH-point. For smaller gcalc values such as 2, stable
periodic orbits terminate in a saddle-node on an invariant circle
(SNIC) bifurcation. On the other hand, for larger gcalc values such
as 6 and 10, the stable periodic orbits turn around at saddle-node
bifurcation of periodic orbits (SNPO) to become unstable periodic
orbits. The third thing to note is the relative position of gtc-nullcline
with respect to S, especially with respect to the RK of S. As seen
in the figure, gtc-nullcline lies above the RK for smaller [Ca] val-
ues [Fig. 3(a)]. But gtc-nullcline intersects at the middle and lower
parts of S for larger [Ca] values [Fig. 3(b)].

The former case is similar to the one in Sec. III A, which implies
that there will be a spontaneous tonic spiking solution near the RK
for smaller [Ca] values. For larger [Ca] values, on the other hand, a
different mechanism comes in. Note that the intersection between
gtc-nullcline and the S-shaped curve on the lower branch of stable
fixed points is a globally stable fixed point. Hence, if a trajectory
jumps down to the lower branch of S, then it will approach this glob-
ally stable fixed point along the lower branch and remains there.
Thus, there is no spiking solution near the RK. The other possi-
ble way to obtain a spiking solution is inside the regime of stable
periodic orbits if the averaged gtc value (gtc) is somewhere between
the SNPO and the RK. Since the trajectory does not lie on the

lower stable fixed points and does not stay in the periodic orbit, the
frequency is higher than ones near RK [Fig. 3(a)].

Figure 3(c) shows a two-parameter bifurcation diagram with
the projection of full model spiking solutions. The two vertical lines
in the figure are the lines of the RK for [Ca] = 0.05 (black) and 0.18
(blue). As shown in Figs. 3(a)–3(b), these lines are almost indepen-
dent of gcalc values. Dotted lines that emanate from the RK lines are
SNPO lines. To obtain these SNPO lines, we checked the gtc values
of SNPO for gcalc = 1, 2, 3, . . . ,10, and then connected these points.
Thus, the SNPO curves are not smooth enough at some places. Black
horizontal lines on the black SNPO line denote the projection of
full model spiking solutions for gCaL = 5, 10, and 15 (from bottom
to top). The short horizontal lines at the upper left part denote the
projection of full model spiking solutions for gCaL = 20 (black), 30
(blue), and 40 (red). We can see that the spiking solution resides
near the RK for small gCaL values and occurs away from the RK line
for large gCaL values. This suggests that for small gCaL values, the tra-
jectory jumps down to the lower branches of the stable fixed points
and approaches to the RK line, while for large gCaL, the trajectory
does not jump down to the lower branches of the stable fixed points.

Figure 3(d) shows a bifurcation surface in (gtc, gcalc, V)-space
when [Ca] = 0.18 with the projection of tonic spiking solutions for
gCaL = 20 (black), 30 (blue), and 40 (red). Minimum and maximum
values of V along the family of periodic orbits form black surfaces
in the figure, which are folded at the SNPO lines. Inner parts corre-
spond to stable periodic orbits and outer parts to unstable periodic
orbits. The S-shaped surface of fixed points (6) is shown in cyan.
Figure 3(d) shows that spiking solutions exist inside the regime
of stable periodic orbits. Since slow variables (gtc, gcalc) are not
slow enough, spiking solutions are not confined inside the region
between two surfaces of stable periodic orbits. As gCaL decreases,
spiking solution approaches the SNPO line.

Figure 3(e) shows the averaged gtc value (gtc) for various [Ca]
and gcalc values. Recall that the intersection between the averaged
gtc and the line of identity is where the spiking solution tends to
reside. The upper two curves are for gcalc = 2 and 4 when [Ca]
= 0.05. These cases are similar to those in Sec. III A so that a
spiking solution tends to reside near the RK. The lower two horizon-
tal curves are for gcalc = 8 and 10 when [Ca] = 0.18. This result
shows that the spiking solution tends to reside inside a periodic
regime. Since [Ca] increases while the voltage goes up, the over-
all level of [Ca] depends on the frequency of the spiking solution.
When the spiking solution is near the RK, the spiking frequency is
low; hence, the overall level of [Ca] is low too. Therefore, when [Ca]
= 0.05 [Fig. 3(a)], gtc values at upper right corner have values close
to what is expected [Fig. 3(e)]. On the other hand, when [Ca] = 0.18
[Fig. 3(b)], gtc have values at lower left corner [Fig. 3(e)].

In summary, when gCaL is relatively small, the model yields a
spontaneous tonic spiking solution, which is similar to those shown
in Sec. III A and is facilitated by the CaT current. But, when gCaL

is sufficiently large, then the CaL current pushes the trajectory into
the regime of stable periodic orbits; hence there is an abrupt jump in
the frequency during this transition and we obtain higher frequency
spiking solutions. In terms of a bifurcation diagram, the availability
of the CaL current pushes a bifurcation diagram upward; hence, the
RK of S-shaped curve S lies above the gtc-nullcline. This change does
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Short horizontal lines denote the projection of full model solutions. For smaller gCaL values, the projection of full model solutions lies on black RK lines (from bottom to top,
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(red)]. (D) Bifurcation surface in (gtc, gcalc, V)-space when [Ca] = 0.18 with the projection of spiking solutions for gCaL = 20 (black), 30 (blue), and 40 (red), which are also

shown in (c). The S-shaped surface of fixed points (6) is shown in cyan. (e) Averaged gtc (gtc) values over various [Ca] and gcalc values: ([Ca], gcalc) is (0.05, 2) for a

black line, (0.05, 4) for a magenta line, (0.18, 8) for a brown line, and (0.18, 10) for a red line. Diagonal black line is gtc = gtc line.

not allow for a spontaneous tonic spiking solution near the RK but
creates a solution inside the regime of stable periodic orbits.

IV. HYPERPOLARIZATION-INDUCED BURSTING

RHYTHMS

Experimental and computational studies point to the
importance of CaT and CaL currents for the generation of

hyperpolarization-induced bursting rhythms in STN. Beurrier et al.
(1999) showed that some STN neurons can switch from the sponta-
neous tonic firing to slow bursting rhythms or mixed burst-firing
patterns under a sustained hyperpolarizing current application.
They argued that CaT and CaL currents underlie the generation of
the slow rhythmic bursting. Gillies and Willshaw (2006) showed that
their multi-compartment model generates a slow rhythmic bursting
in the presence of a uniform reduction in the Ca-dependent SK
conductance (simulating the application of apamin) and constant
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hyperpolarizing current injection. They argued that the interaction
of CaT and CaL currents determines the presence and nature of the
rhythmic bursting. They also argued that a sufficiently strong CaT
current was necessary for the generation of individual bursts. Our
model is also able to generate bursting rhythms under sustained
hyperpolarization. Similar to the model in Gillies and Willshaw
(2006), it was necessary to reduce the AHP current conductance and
increase the CaT current conductance to generate bursting rhythms.
In this section, we study the effect of CaT and CaL currents and
the HCN current on hyperpolarization-induced bursting rhythms
via the bifurcation analysis.

A. Effect of CaT and HCN currents on

hyperpolarization-induced bursting rhythms:

Bifurcation analysis

First, we will explore how CaT and HCN currents in an STN
neuron under hyperpolarization generate bursting rhythms with-
out the CaL current. The default parameter values in this case are
gCaT = 25, gAHP = 0.2, gCaL = 0, gHCN = 2, and Iapp = −16. Note
that Iapp is a large (in terms of the magnitude) negative number to
generate hyperpolarization-induced bursting rhythms.

Figures 4(a)–4(b) show bursting rhythms for different values of
gCaT with fixed gHCN [Fig. 4(a)] and for different values of gHCN with
fixed gCaT [Fig. 4(b)]. As gCaT increases, the period decreases while
the burst duration and the number of spikes within a burst increase
[Fig. 4(c)]. Thus, the inter-burst interval decreases too. On the other
hand, as gHCN increases, we observed that period, burst duration,
and the number of spikes within a burst decrease at the same time
[Fig. 4(c)]. Note that the checkerboard pattern shown in the middle
figure (burst duration) is due to the typical spike-adding procedure
that is frequently found in the bursting regime with a small number
of spikes within a burst.

To explore the underlying mechanisms of these results, we per-
formed a bifurcation analysis using gtc and ghcnc (as defined in
Sec. III: gtc = gCaT × q and ghcnc = gHCN × f). Figure 4(d) shows
bifurcation diagrams of the fast subsystem projected onto (gtc, V)-
space with a bifurcation parameter gtc for ghcnc = 0.1 (black) and
0.2 (red). Green curve is the gtc-nullcline for gCaT = 25. While bifur-
cation structures are qualitatively similar to those shown in Sec. III,
there are some important characteristic differences compared to
those in Sec. III. First, the family of stable periodic orbits lies above
gtc-nullcline. This holds true for all reasonable ghcnc values. Hence,
when the projection of a full model solution is in a bursting mode, or
in other words, when the projected trajectory is inside the regime of
stable periodic orbits, the trajectory moves leftward and eventually
jumps down to the lower branch of the S-shaped curve of the stable
fixed points (S) at the homoclinic (HC) point. Second, bifurcation
diagrams show that middle and lower parts of S move leftward (to
the lower values of gtc) as ghcnc increases. When ghcnc is small,
there is an intersection point between gtc-nullcline and the lower
branch of S, which is globally stable. As ghcnc increases, this inter-
section point approaches RK of S. Hence, when ghcnc is small, if
the trajectory is in the small neighborhood of the lower branch of S,
then it moves along the lower branch of S to approach this intersec-
tion point. On the other hand, while approaching, the ghcnc value
increases, which results in the loss of this globally stable fixed point.

Then, the trajectory is able to jump up into the stable periodic orbit
regime and spiking within a burst begins.

Figure 4(e) shows bifurcation surfaces in (gtc, ghcnc, V)-space
with bifurcation parameters gtc and ghcnc. The projection of burst-
ing solution for gCaT = 25 and gHCN = 2 is also shown (red). The
gtc-nullsurface is omitted and the S-shaped surface of fixed points
(6) is shown in cyan for the clarity of the figure. The projection
of the bursting solution is not confined inside the regime of stable
periodic orbits since slow variables (gtc, ghcnc) are not sufficiently
slow. If we make gtc and ghcnc slower, then we can obtain burst-
ing solutions with a longer burst duration and a larger number of
spikes, which are confined inside the regime of stable periodic orbits.
However, current bifurcation diagrams are sufficient to analyze
hyperpolarization-induced bursting mechanisms. Figure 4(e) shows
that the projected trajectory moves along the lower part of 6; both
gtc and ghcnc values increase. Once the trajectory crosses the RK line,
it jumps up into the regime of stable periodic solutions. Since the
family of stable periodic orbits lies above the gtc-nullsurface, gtc and
ghcnc keep decreasing while the trajectory is inside the stable peri-
odic orbit regime. The trajectory eventually jumps down to the lower
part of 6, which completes one cycle of a bursting solution.

Figure 4(f) shows a two-parameter bifurcation diagram with
projection of full model bursting solutions for different values of gCaT

with fixed ghcnc [all values are the same as in the Fig. 4(a) with time-
series]. Recall that both gtc and ghcnc increase over the silent phase
of the bursting solution, and this corresponds to the almost straight,
increasing part of the projected trajectory. Once it passes the RK line,
the trajectory turns around counterclockwise to start spiking. Wig-
gles of the projected trajectory near its lower left part correspond to
the active phase of a burst. If the trajectory crosses the HC line, it
jumps down to the lower branch of stable fixed points and the active
phase of a burst is terminated. Note that the active phases of burst
in all three trajectories terminate at similar places [cf. Fig. 4(f)]. As
gCaT increases, the projected trajectory is stretched horizontally and
it moves down rightward; hence, the range of gtc increases, whereas
the range of ghcnc decreases. We may assume that ghcnc evolves on
similar timescales in all three bursting solutions when gHCN is fixed.
Thus, the period and the interburst interval of the bursting solu-
tion can be estimated by the range of ghcnc. More specifically, they
can be estimated by the maximum value of ghcnc where the trajec-
tory turns around to begin the active phase of a burst in the figure.
Since this maximum value of ghcnc decreases as gCaT increases, we
expect that the period and the interburst interval also decrease as
gCaT increases.

A similar argument can be applied to the bifurcation diagram
in Fig. 4(g), which shows the projection of full model bursting solu-
tions for different values of gHCN and fixed gCaT [all values are the
same as in Fig. 4(b) with time-series]. In this case, as gHCN increases,
the projected trajectory is stretched vertically and moves up left-
ward. Thus, the range of gtc decreases, whereas the range of ghcnc
increases. When gCaT is fixed, the interburst interval and the period
can be estimated by the range of gtc since we may assume that
gtc evolves on similar timescales in all three bursting solutions.
Therefore, the interburst interval and the period decrease as ghcnc
increases because the range of gtc decreases as ghcnc increases.

The burst duration and the number of spikes within a burst are
determined by the proximity of the trajectory to the AH line. Note
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FIG. 4. (a) Bursting rhythms for gCaT = 25 (black), 35 (blue), and 45 (red) with a fixed gHCN = 2. (b) Bursting rhythms for gHCN = 1 (black), 2 (blue), and 3 (red) with a fixed
gCaT = 25. (c) Period, burst duration, and number of spikes within a burst in dependence on gCaT and gHCN conductances. (d) Bifurcation diagrams with bifurcation parameter
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that proximity to the AH line means there is a higher chance to fire
because all trajectories terminate at similar places for different values
of gCaT and gHCN [Figs. 4(d)–4(g)]. As a result, the burst duration and
the number of spikes within a burst increase in both cases when the

trajectory moves rightward or, more precisely, as gCaT increases with
fixed ghcnc and as ghcnc decreases with fixed gCaT.

Figures 4(f) and 4(g) also tell us about the role of the HCN cur-
rent. Without the HCN current (ghcnc = 0), the CaT current-driven
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bursting solution is not possible. Recall that the active phase of a
burst is initiated when the trajectory crosses the RK line. Without
the HCN current, the projection of solution trajectory approaches
the globally stable fixed point on the lower branch of the fixed points
[Fig. 4(d)]; hence, the trajectory cannot cross the RK line to initi-
ate a burst. In two-parameter bifurcation diagrams, the lack of the
HCN current means that the projected trajectory lies on the hori-
zontal axis [Figs. 4(f)–4(g)]. Similarly, we can argue that small HCN
current means a very long interburst interval. Also, note that the
number of spikes within a burst is determined by the proximity to
the AH line. Consequently, due to the shape of the AH line, the
number of spikes within a burst will be capped. Large HCN currents
would result in high-frequency spiking since the interburst interval
and the number of spikes within a burst decrease at the same time.
This result concurs with the experimental observations showing that
HCN channels promote single-spike activity rather than bursting
rhythms (Atherton et al., 2010).

B. Effect of the CaL current on

hyperpolarization-induced bursting rhythms:

Bifurcation analysis

In this section, we studied the effect of the CaL current on
the hyperpolarization-induced bursting rhythms. Default param-
eter values are gCaT = 25, gAHP = 0.2, gCaL = 15, Iapp = −22, and
gHCN = 2. Figure 5(a) shows voltage profiles of bursting solutions
for different values of gCaL. Here, we found that the burst duration
increases substantially as gCaL increases, while the interburst interval
increases slightly. These results are summarized in Fig. 5(b), which
shows period (solid line), interburst interval (dashed line), and burst
duration (dotted line) as a function of gCaL. While both burst dura-
tion and interburst interval increase with gCaL, the increase in burst
duration is more significant and so is the period. As compared to
CaT current bursting solutions considered in Sec. IV A, the burst
duration and the number of spikes within a burst are substantially
increased when the CaL current is turned on. Figures 5(c) and 5(d)
show the period and the burst duration over two-parameter space
for gCaL = 5, 15, and 25. As shown in Fig. 5(c), the region for large
periods increases as gCaL increases.

To explore the underlying mechanisms that result in these
differences, we performed the bifurcation analysis using gcalc
= gCaL × d1 × d2, gtc = gCaT × q, and [Ca]. We did not choose ghcnc
as a slow variable although ghcnc is slow over a silent phase of the
bursting solution. In fact, if we increase the timescale of the HCN
current, we still obtain qualitatively similar results. This may be
because the HCN current is mostly involved in transition from the
silent phase to the active phase of bursting solution, while the CaL
current affects the active phase of the bursting solution more signif-
icantly. Figure 5(e) shows two exemplary bifurcation diagrams with
bifurcation parameter gtc for [Ca] = 0.4 and gcalc = 5 (dotted) and
[Ca] = 0.4 and gcalc = 10 (solid). The green curve is a gtc-nullcline
for gCaT = 25. Similar to the bifurcation diagrams shown in Fig. 3,
we observed that (1) the lower and middle parts of the S-shaped
curve of fixed points (S) remain almost the same over various gcalc
values, (2) the AH-point moves leftward as gcalc increases, and (3)
the stable periodic orbits turn around at saddle-node bifurcation
of periodic orbits (SNPO) to become unstable periodic orbits. On

the other hand, there are two important differences to note between
these diagrams and the ones in Fig. 3. First difference is the relative
position of gtc-nullcline with respect to the stable periodic orbits.
Bifurcation diagrams in this section show that the branches of sta-
ble periodic orbits lie above gtc-nullcline for small gcalc values. In
this case, bursting solution keeps moving leftward over the active
phase of a bursting solution. For large gcalc values, the stable peri-
odic orbits intersect with gtc-nullcline and the averaged gtc (gtc) will
have a value close to the gtc value at SNPO (cf. Fig. 3). The second
difference is the proximity of SNPO to gtc-nullcline for large gcalc
values. This proximity forces the bursting solution to slow down
while approaching SNPO over the active phase of the bursting solu-
tion. These two facts imply that the bursting solution slows down
while approaching the gtc value near SNPO and contribute to longer
active phase of bursting for large gcalc values.

Figure 5(f) shows the SNPO surface (left), the AH surface (mid-
dle slant), and the RK surface (right) in (gtc, gcalc, [Ca])-space.
The same figure also shows projections of the three bursting solu-
tions for different values of gCaL. Note that large gCaL values mean
there is an elevated range of gcalc values. Over the silent phase of
a burst, gtc and gcalc increase while [Ca] decreases. In this model,
[Ca] decreases sufficiently fast so that the RK line when [Ca] = 0
roughly determines when the cell crosses the RK line and enters the
regime of stable periodic orbits. Similar to the bifurcation diagrams
in Sec. III B, we see that the RK surface is almost vertical with the
fixed [Ca] value, in other words, almost independent of gcalc values.
This fact implies that the bursting solution is facilitated by the CaT
current. Once the cell enters the regime of stable periodic orbits, gtc
and gcalc begin to decrease while [Ca] begins to increase initially and
then decrease over an active phase of burst. Spiking within a burst is
terminated once trajectory crosses the surface of SNPO. Since burst
duration is determined by the distance between the RK surface and
the SNPO surface, burst duration increases as gCaL increases. Specif-
ically because, as evidenced in Fig. 5(e), the bursting solution spends
longer time near the SNPO before jumping down for larger gcalc val-
ues; thus, there is even longer bursting duration and large number
of spikes within a burst for large gcalc values.

V. POST-INHIBITORY REBOUND BURST

In this section, we study calcium-dependent post-inhibitory
rebound (PIR) bursts of spikes when the model neuron is released
from the application of inhibitory current. This section will cover
(1) the general mechanism underlying PIR, (2) the effect of mag-
nitude and duration of inhibitory current application, and (3) the
effect of CaT and CaL currents on PIR. The default parameter val-
ues for this section are gCaT = 20, gAHP = 1, gCaL = 5, and gHCN = 2.
For the simulation of inhibitory input, we used the parameter Iapp

in the differential equation of membrane potential V [Eq. (1)]. The
default magnitude and the duration of applied inhibitory current are
−20 (that is Iapp = −20) and 500 ms.

A. Mechanisms underlying PIRs: Bifurcation analysis

Figure 6(a) shows an example of PIR. Before a cell is given an
inhibitory input, the cell exhibits a spontaneous tonic firing with a
frequency of around 10 Hz. At t = 500 ms, Iapp was changed from
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FIG. 6. (a) An example of post-inhibitory rebound (PIR) burst. At t= 500 ms, Iapp was changed from 0 to−20 for 500ms. (b)–(d) Bifurcation surfaces in (gtc, ghcnc, V)-space
with the projection of full model PIR solution (blue) shown in (a). Green surface denotes gtc-nullsurface for gCaT = 20. (b) Spontaneous tonic spiking solution (from t= 0ms
to t= 500ms). (c) The behavior of the trajectory under applied inhibitory current (from t= 500ms to t= 1000ms). The red curve on the lower surface of stable fixed points
(6) is the intersection curve between this surface and gtc-nullsurface (0). (d) Activity pattern once the cell is released from inhibition. The cell jumps into the regime of
stable periodic orbits. (e) Two-parameter bifurcation diagram with the projection of the PIR solution (blue) near RK line (black). When inhibition is turned on, the trajectory
was pushed away from the RK line. (f) Activity patterns during and after the inhibition. Once the inhibition is turned on, RK line is shifted right upward (black dotted line on
the upper right corner). The red line denotes 0. Plot (e) is a magnification of the lower left corner of plot (f).
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0 to −20 for 500 ms and then the cell was hyperpolarized over this
period. Once the inhibitory input was removed at t = 1000 ms, the
cell exhibited a burst where the frequency decreased over time while
the magnitude increased. Although there is no clear way to define
the duration of PIR, we can loosely define it as the time from the
removal of inhibition to the moment when the trajectory returns to
its original tonic firing solution [Figs. 6(e)–6(f)]. In terms of inter-
spike intervals, this means that the inter-spike interval returns to its
original value in spontaneous tonic firing solution. In Fig. 6(a), the
trajectory returned to its original spontaneous tonic firing around
t = 1600 ms, and thus, the duration of PIR is around 600 ms in this
example.

In Secs. III–IV, we observed that bursting solutions and spik-
ing solutions are facilitated by the CaT current and modulated by
the HCN-current when the CaL current is less significant. There-
fore, we chose gtc and ghcnc as bifurcation parameters and studied
the underlying mechanism of PIRs. Figures 6(b)–6(d) show bifurca-
tion surfaces in (gtc, ghcnc, V) space with the projection of full model
PIR solution shown in Fig. 6(a). As before, green surface denotes
gtc-nullsurface for gCaT = 20. Figure 6(b) shows the spontaneous
tonic spiking solution until t = 500 ms, which is similar to the one
in Fig. 2(b). Figure 6(c) illustrates what happens during the constant
inhibitory input. Under inhibition, the surface of fixed points (6)
moves rightward, and as a result, the RK line of 6 is also shifted
rightward. Then, the trajectory jumps down to the lower part of 6

(lower white surface with black grid lines in the figure) and moves
along the surface. Recall that gtc and ghcnc increase at the same time
along the surface. Let 0 denote the intersection curve of lower part of
6 and gtc-nullsurface. This curve 0 is the set of globally stable fixed
points and shown in the figure as a red line on the lower part of 6.
Since 0 lies on the lower surface of 6, the trajectory (blue) moves
along the lower surface of 6 to approach 0 and stays there until
the inhibition is removed. In other words, this intersection curve
0 holds the trajectory until the removal of inhibition and delimits
the maximum level of gtc and ghcnc during inhibition. Hence, PIR
duration is also delimited by this curve 0. Once the inhibition is
removed, the RK line goes back to its original place, the trajectory
jumps up into the regime of stable periodic orbits, and a burst begins
[Fig. 6(d)]. While spiking within a burst, both gtc and ghcnc decrease,
but ghcnc decreases faster at the beginning of the burst. When the
cell is released from inhibition, trajectory is close to the AH point
so that the burst frequency is high. As the trajectory traverses the
regime of stable periodic orbits toward the end of the regime (SNIC)
on the left, the frequency of PIR decreases. After crossing the RK
line, which is identical to the SNIC line (cf. Fig. 2), the trajectory
approaches tonic spiking solution [Fig. 6(b)].

Figure 6(e) shows a two-parameter bifurcation diagram with
the projection of the PIR solution (blue). The RK line is also shown
as a black slant line. Thick blue curves near the RK line correspond
to spontaneous tonic spiking before the inhibition and after PIR.
Once the inhibition is turned on, gtc and ghcnc begin to increase
(blue diagonal line). Figure 6(f) shows what happens during and
after inhibition. Figure 6(e) corresponds to the lower left corner of
Fig. 6(f). Once the inhibition is turned on, the RK line is shifted
right upward [black dotted line on the upper right corner; the red
line denotes 0; cf. Fig. 6(c)]. Now the trajectory approaches 0. Once
the inhibition is removed, the RK line goes back to its original place

(black solid line on the left side) and the trajectory jumps up into
the regime of stable periodic orbits and a burst begins [cf. Fig. 6(d)].
While spiking within a burst, the trajectory approaches the sponta-
neous tonic firing solution [cf. Figs. 6(b) and 6(e)].

B. Effect of magnitude and duration of inhibitory

input on PIRs: Bifurcation analysis

In this section, we studied the effect of magnitude and dura-
tion of inhibitory input on PIRs using a two-parameter bifurcation
diagram. Figure 7(a) shows voltage profiles for progressively larger
values of negative Iapp (Iapp = −5, −10, −20, and −30 from the top
to the bottom). The duration of the inhibitory input is 500 ms for all
four cases. As the magnitude of the inhibitory input increases (the
input is more hyperpolarizing), the duration of PIR also increases.
For more hyperpolarizing inputs such as Iapp = −30, PIR shows
an initially high-frequency response, and then the frequency of
spiking slowly goes down to its base value. Figure 7(b) shows a two-
parameter diagram with the projection of solutions for the same
values of Iapp as the time-series in Fig. 7(a). The black curve at the
lower left corner is the RK line for Iapp = 0. The remaining thin
curves are intersection curves (0s) described in Sec. V A. These
intersection curves (0s) follow the same color code as the projected
trajectories. As the magnitude of the inhibitory input increases, 0

shifts to the upper right corner. When Iapp = −5 or −10, the input
duration of 500 ms was long enough so that trajectory reached 0

and stayed there. When Iapp = −20 or −30, on the other hand, the
inhibitory input is effectively removed while the trajectory is still
approaching 0. Although there are two different scenarios, depend-
ing on the magnitude and the duration of the inhibitory input, we
see that, as the magnitude of the inhibitory input increases, trajec-
tory traverses farther away from the RK line (when Iapp = 0) and the
duration of PIR increases as a result. This fact also implies that for
a large magnitude inhibitory input, a trajectory is closer to the AH
point when it is released from inhibition. In other words, a large
magnitude inhibitory input means a proximity to the AH point.
Thus, we observe high-frequency spiking at the beginning of PIR
for a large magnitude inhibitory input.

Figure 7(c) shows voltage profiles with four different input
durations. Here, Iapp is fixed at −20. As the input duration increases,
the duration of PIR increases. We also observe that two PIRs for an
input duration of 500 and 750 ms look similar. Figure 7(d) shows a
two-parameter diagram with the projection of solutions when input
durations are the same as for the time-series in Fig. 7(c). Termina-
tion (removal) of the inhibitory input is denoted by a dot in each
trajectory. In all cases, trajectories approach the intersection curve
0 (thin magenta) over inhibition. When the duration is 750 ms,
the trajectory crosses 0, but it is trapped by that curve while ghcnc
increases. Hence, trajectories move along 0 until inhibition is ter-
minated. Figure 7(d) illustrates that PIR durations for the input
duration of 500 and 750 ms are similar because gtc values at release
are similar.

C. Effect of CaT and CaL currents on PIRs: Bifurcation

analysis

Figure 8(a) shows the effect of gCaT on PIRs using three gCaT

values, 15, 20, and 30 (from the top to the bottom) with fixed
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FIG. 7. The effect of magnitude and duration of inhibitory input on PIRs. (a) PIRs for Iapp = −5, −10, −20, and −30 from top to bottom. (b) Two-parameter diagram with
the projection of solutions (thick closed curves) for Iapp = −5 (blue), −10 (red), −20 (magenta), and −30 (cyan). Black curve at lower left corner is the RK line for Iapp = 0.
Remaining thin curves are intersection curves of the lower surface of stable fixed points and gtc-nullsurface (0s) introduced in Sec. V A for each value of Iapp. Trajectory
moves along the lower part of 6 to approach 0 under inhibition. These curves (0s) use the same color code with the projection of full model solutions. (c) PIRs with four
different input durations (100, 250, 500, and 750ms from top to bottom). (d) Two-parameter diagram with the projection of solutions (thick closed curves) when input durations
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Termination of the inhibitory input is denoted by dot in each trajectory.

gCaL = 5, the input duration of 500 ms, and Iapp = −20. As shown
in Fig. 1, the frequency of spontaneous tonic firing increases as gCaT

increases. The burst duration in PIR shows a slight but not sig-
nificant increase as gCaT increases. In the two-parameter diagram
[Fig. 8(b)], the increase in gCaT results in the horizontal stretch of the
projected trajectories. The intersection curves (0s) are also shifted

to the right. This figure shows that the maximum levels of ghcnc val-
ues are similar in all cases. Since the PIR duration can be estimated
by the maximum level of ghcnc when gHCN is fixed, this explains
why there is only a minor change in PIRs as gCaT increases. When
gCaT = 30, the trajectory is close to the AH point when it is released
from inhibition. Due to this proximity to the AH point, PIR shows
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high-frequency and small-magnitude spiking at the beginning of
PIR (cf. Fig. 6).

Now, we consider the effect of the CaL current on PIRs.
Figure 8(c) shows PIRs for gCaL = 5, 10, and 15 (from top to bottom)
with fixed gCaT = 20, the input duration of 500 ms, and Iapp = −20.
As gCaL increases, we observe that the duration of PIR increases sub-
stantially. Note that the dynamics of the trajectory until jumping up
into the regime of stable periodic orbits is facilitated by the CaT cur-
rent and the HCN-current as discussed in Secs. III and IV. In fact,
when a cell is either in spontaneous tonic firing or hyperpolarized
by the inhibitory input, [Ca] is almost constant at a very low level.
Consequently, the activity patterns of these two states (either spon-
taneous tonic firing state before the inhibitory input or the silent
state under the hyperpolarizing input) can be explained by two slow
variables gtc and ghcnc as before. This is confirmed by Fig. 8(d),
which shows the projection of three solutions (for different gCaL val-
ues) and the corresponding intersection curves in (gtc, ghcnc)-plane
when the cell is hyperpolarized. Both the projected trajectories and
intersection curves for different values of gCaL (gCaL = 5, 10, and 15)
are not distinguishable. In other words, either the spontaneous tonic
firing state before the inhibitory input or the silent state under the
hyperpolarizing input do not depend on gCaL values when gCaL is
small.

However, when a cell is released from inhibition and jumps
into the regime of stable periodic orbits, the CaL current begins
to play an important role in PIR. We can explain the dynamics of
trajectory over PIR using [Ca], gcalc, and gtc. Figure 8(e) shows
the projection of trajectories in (gtc, gcalc, [Ca])-space for gCaL = 5
(blue), 10 (red), and 15 (magenta). We omitted the RK surface and
the AH surface and plotted the SNPO/SNIC surface only in the
middle for clarity [cf. Fig. 5(f)]. Figure 8(f) shows the same tra-
jectories with a SNPO/SNIC curve when [Ca] = 0.05. Once a cell
is released from the inhibitory input, [Ca] initially increases, and
then the overall level of [Ca] decreases over spiking within a burst.
The overall decrease in [Ca] level is due to the decrease in spiking
frequency over the time course of the active phase of burst. The
values of gtc and gcalc also decrease over spiking within a burst.
For small gCaL values, for example, gCaL = 5 (red) and 10 (blue),
gcalc values are also relatively small (around 2.5 when gCaL = 5 and
around 5 when gCaL = 10). In these two cases, the active phase of
the burst is terminated when the trajectory crosses the SNPO sur-
face [Fig. 8(f)]. Recall that in Fig. 5, we showed that the branches
of stable periodic orbits lie above the gtc-nullcline; hence, the burst-
ing solution moves leftward and jumps down to the lower branch
of the S-shaped curve of fixed points S. After jumping down, in
this case, trajectory approaches the spontaneous tonic firing solu-
tion [Fig. 8(f)]. On the other hand, if gCaL is sufficiently large, the
bursting solution is not terminated by the SNPO because the SNPO
has a negative gtc value over large gcalc values [Fig. 8(f)]. As shown
in Fig. 3, since the lower end part of the branch of stable periodic
orbits including the SNPO lies below gtc-nullcline, averaged gtc (gtc)
is between 0 and RK. Thus, bursting solution moves leftward to
approach gtc. And while doing so, the [Ca] level keeps decreasing
and gtc increases slowly [Fig. 3(e)]. Figure 8(f) shows that the tra-
jectory for gCaL = 15 (magenta) turns around while spiking. Now
the [Ca] level becomes sufficiently low and the gcalc value is suffi-
ciently small. Then, the PIR dynamics undergoes a transition to the

dynamics of spontaneous tonic firing, which is driven by the CaT
current and the HCN-current.

VI. DISCUSSION

In this study, we presented a conductance-based single-
compartment model of an STN neuron, which plays an important
role in the pathophysiology of the basal ganglia in Parkinson’s dis-
ease. STN neurons exhibit characteristic activity patterns such as
a slow rhythmic firing (Beurrier et al., 1999; Bevan and Wilson,
1999), a calcium-dependent post-inhibitory rebound (PIR) bursts
(Bevan et al., 2002a), and slow rhythmic bursting under sus-
tained hyperpolarization (Beurrier et al., 1999). Recent experiments
showed that the interaction between the T-type calcium (CaT) cur-
rent and the L-type calcium (CaL) current plays an important role in
the generation of STN activity patterns (Beurrier et al., 1999; Bevan
and Wilson, 1999; Bevan et al., 2002a).

The first single-compartment model of an STN neuron was
developed by Terman et al. (2002), and this model was able to gen-
erate PIR bursts with the CaT current. Gillies and Willshaw (2006)
developed a multi-compartment model, which contained the CaT
current, the CaL current, and the HCN current and was able to gen-
erate characteristic activity patterns as stated above. However, the
interaction of compartments in the model appears to be essential
for its dynamical regimes. On the other hand, Hahn and McIntyre
(2010) developed a single-compartment model that contained the
CaT current and the CaL current, but this model does not exhibit
PIR burst nor slow rhythmic bursting under sustained hyperpolar-
ization.

The STN model in this study is, to the best of our knowledge,
the first single-compartment STN model that is able to generate
characteristic activity patterns of STN neurons, especially activ-
ity patterns under hyperpolarization (hyperpolarization-induced
bursts and PIR bursts). To investigate the roles and effects of these
currents in rhythm generation, we performed a bifurcation analysis
using slow variables. We found that (1) the HCN current promotes
single-spike activity patterns rather than bursting rhythms nonethe-
less being an essential component for the bursting rhythms, (2) the
CaT current enables STN cells to display characteristic firing pat-
terns under hyperpolarization (hyperpolarization-induced bursts
and PIR bursts), and (3) the CaL current enriches and reinforces
these bursting rhythms under hyperpolarization and PIR.

A. Roles of HCN, CaT, and CaL currents

Experimental results showed that the HCN current pro-
motes single-spike activity patterns rather than bursting rhythms
(Atherton et al., 2010). The bifurcation analysis of our model
showed that the increase in maximal conductance gHCN (making the
HCN current stronger) tends to yield a higher chance for spiking
solution [Fig. 4(g)]. This fact resulted from the proximity of a trajec-
tory (projection of a full model solution onto a bifurcation diagram)
to the RK line in the bifurcation diagram [cf. Figs. 2(a), 2(c), 4(f),
and 4(g)]. The RK line is the set of fold bifurcation points where the
lower branch of stable fixed points turns around to become the mid-
dle branch of the unstable fixed points in the bifurcation diagram.
Easier access to the RK line yields a higher chance for obtaining

Chaos 31, 113121 (2021); doi: 10.1063/5.0059773 31, 113121-17

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

spiking solution in general. In a spontaneous tonic spiking solution,
for example, the proximity of the trajectory to the RK line results
in shorter inter-spike intervals and a higher frequency of spiking
solution [Fig. 2(c)]. Similarly, in a hyperpolarization-induced burst-
ing solution, this results in a higher frequency of bursting solution
with fewer spikes within a burst [Figs. 4(b) and 4(g)]. In conclu-
sion, the larger availability of the HCN current renders means there
is an easier access to the RK line, which facilitates a tonic spiking
solution.

Our model showed that the CaT current is necessary for activity
patterns under hyperpolarization [hyperpolarization-induced burst
or post-inhibitory rebound (PIR) burst]. This fact, in turn, indicates
that the CaT current enables STN cells to generate various firing
patterns under hyperpolarizing stimuli within the basal ganglia. The
blocking or disrupting the CaT current may mute the emergence of
rebound responses and hyperpolarization-induced rhythmic burst-
ing solution. Our model also shows that the addition of the CaL
current makes the response of an STN cell to inhibitory stimuli
more prominent. In spontaneous tonic spiking solution, there is an
abrupt jump in frequency when the conductance of the CaL cur-
rent becomes large enough. In hyperpolarization-induced bursting
rhythms or PIR bursts, the CaL current allows the cell to generate
substantially longer bursting responses. To summarize, the syner-
gistic interaction of the CaT current and the CaL current enables an
STN cell to respond to hyperpolarizing stimuli in a salient way, and
this fact may implicate the important roles of the CaT current and
the CaL current in the pathophysiology of the basal ganglia in disor-
ders, such as in Parkinson’s disease, noted for elevated burstiness of
STN neurons.

B. Bifurcation analysis and dynamical mechanisms of

firing patterns

The bifurcation analysis allowed us to understand the effect
of three currents (CaT, CaL, and HCN) considered in this study
on activity patterns of an STN cell under specific conditions. The
availability of a current affects the structure of the bifurcation dia-
gram of the fast subsystem, and the dynamics of slow variables
with respect to the resulting bifurcation diagram yields an explana-
tion of the mechanism underlying a specific activity pattern. More
specifically, we found that the generation of various activity pat-
terns depends on several factors: the relative position of the S-shaped
curve of fixed points with respect to stable periodic orbits and gtc-
nullcline, the place where the branches of stable periodic orbits
terminate, and the existence of saddle-node bifurcation of periodic
orbits (SNPO).

In this study, we utilized four slow variables (ghcnc, gtc, gcalc,
and [Ca]) for the bifurcation analysis. Here, [Ca] is the calcium
concentration, ghcnc = gHCN × f, gtc = gCaT × q, and gcalc = gCaL

× d1 × d2, where f, q, and d1,2 are gating variables and gHCN, gCaT,
and gCaL are maximal conductances for the HCN current, the CaT
current, and the CaL current, respectively. In fact, these four slow
variables are not sufficiently slow, so sometimes the projection of
the full model solution onto a bifurcation diagram shows some mis-
match. In Fig. 3(d), for example, the projection of spiking solutions
is not confined to the region inside two stable surfaces of stable
orbits. If we make the four slow variables much slower, then we

can resolve this mismatch, but the resulting activity patterns might
not be physiologically realistic. Slow variables that were used in this
study, however, were sufficiently slow so that we were able to obtain
an insight into the underlying mechanism through the bifurcation
analysis.

Biophysically, the limit of very slow variables will lead to
extremes in the firing patterns of a neuron (such as extremely
long burst duration, etc.). While one may argue that there is no
sharp boundary between spiking and bursting activity, our results
indicate that in the physiologically relevant regimes, the activ-
ity patterns exhibit specific bursting (which, if pushed to a limit
in a mathematical consideration, leads to a coherent bifurcation
structure).

C. Concluding remarks

As the only excitatory nucleus within the basal ganglia with
strong pallidal and other inhibitory inputs, the fact that the STN
is able to generate various bursting rhythms under hyperpolariza-
tion has an important implication in the pathophysiology of the
basal ganglia. Synchronous beta oscillations within the basal gan-
glia is a hallmark of Parkinson’s disease and has been associated
with pathological symptoms related to the movement (Brown, 2003;
Hutchison et al., 2004; Kühn et al., 2004; Brown, 2007; Hammond
et al., 2007; Mallet et al., 2008; Ray et al., 2008; Eusebio and Brown,
2009; Kühn et al., 2009; Park et al., 2010; Oswal et al., 2013; Stein
and Bar-Gad, 2013; Ahn et al., 2015). Over the past decades, many
theories have been developed with respect to the origin of the
excessive beta rhythms within the basal ganglia (see Introduction).
Two types of these theories focus on the role of the STN-GPe net-
work and have been at the center of attention. In the first case,
beta oscillations are generated in the cortex, and the STN-GPe
network in the basal ganglia has an ability to resonate or other-
wise respond with oscillations at this frequency (see, for example,
discussion in Stein and Bar-Gad, 2013). In the second case, the
STN-GPe network by itself has an ability to generate beta oscilla-
tions and plays an important role in maintaining the beta rhythms
independently or via thalamus to the cortex connection (Bevan
et al., 2002b; Mallet et al., 2008; Merrison-Hort and Borisyuk, 2013).
There are also studies suggesting that these situations are not mutu-
ally exclusive (Tachibana et al., 2011; Pavlides et al., 2015; Ahn
et al., 2016). Although whether the STN-GPe network generates
the excessive beta rhythms in vivo in Parkinsonian brain or not is
still uncertain, these two theories demonstrate the important role
of the STN-GPe network in the excessive beta rhythmicity. In this
context, the presently investigated dynamical mechanisms promot-
ing the ability of an STN cell to generate bursting rhythms under
either transient or sustained hyperpolarization may underlie exces-
sively synchronous beta rhythms observed in Parkinsonian basal
ganglia.

Finally, we would like to note the growing interest in the adap-
tive deep brain stimulation (DBS) of the STN in Parkinson’s disease.
The development of an effective control of the beta-band activity
may benefit from the availability of a relatively simple STN model
like the one considered here, which captures the major dynamical
characteristics of the STN activity.
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