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Abstract:  9 

Satellite based remote sensing offers one of the few approaches able to monitor the spatial and 10 

temporal development of regional to continental scale droughts. One of the unique elements of 11 

remote sensing platforms is their multi-sensor capabilities, which enhances the capacity for 12 

characterizing drought from a variety of aspects. Such capabilities include monitoring drought 13 

influences on vegetation and hydrological responses as well as assessing sectoral impacts (e.g., 14 

agriculture). With advances in remote sensing capacity and the increasing range of platforms 15 

available for analysis, this contribution presents a systematic review of multi-sensor remote 16 

sensing drought studies, with a particular focus on drought related datasets, drought related 17 

phenomena and mechanisms, and drought modeling. To explore this topic, we first present a 18 

comprehensive summary of large-scale drought-related remote sensing datasets that can be used 19 

for multi-sensor drought studies. Then we review the role of multi-sensor remote sensing for 20 

important drought related phenomena and mechanisms, including vegetation responses to 21 

drought, land-atmospheric feedbacks during drought, drought-induced tree mortality, drought-22 

related ecosystem fires, post-drought recovery and legacy effects, flash drought, as well as 23 
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drought trends under climate change. We then provide a summary of recent modeling advances 24 

towards developing integrated multi-sensor remote sensing drought indices. We conclude that 25 

leveraging multi-sensor remote sensing provides unique benefits for regional to global drought 26 

studies, particularly in: 1) revealing the complex drought impact mechanisms on various 27 

ecosystem components; 2) providing continuous long-term drought related information at large 28 

scales; 3) presenting real-time drought information with high spatiotemporal resolution; 4) 29 

providing multiple lines of evidence of drought monitoring to improve modeling and prediction 30 

robustness; and 5) improving the accuracy of drought monitoring and assessment efforts. We 31 

specifically highlight that more mechanism-oriented drought studies that leverage a combination 32 

of sensors and techniques (e.g., optical, microwave, hyperspectral, LiDAR, and constellations) 33 

across a range of spatiotemporal scales are needed in order to progress and advance our 34 

understanding, characterization and description of drought in the future. 35 

36 

Keywords: data fusion; drought; drought impact; drought monitoring; ecohydrology; multi-37 

sensor satellite; regional scale drought. 38 

39 
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1. Introduction83 

Drought is routinely described as a naturally occurring phenomena induced by precipitation 84 

deficiency and consequent hydrological imbalance (Pachauri et al., 2014; Trenberth et al., 2014). 85 

Drought can occur over all climatic conditions and has a wide range of damaging impacts (Dai, 86 

2011; Vicente-Serrano et al., 2019). For instance, it can cause crop failures, which may lead to 87 

substantial food security concerns and financial loses (Daryanto et al., 2015; Daryanto et al., 88 

2016; Godfray et al., 2010; Pandey et al., 2007); it can decrease the volumes of source waters 89 

from rivers, lakes, and groundwater, directly impacting water availability, distribution and 90 

energy supply (Van Loon, 2015); it can also amplify tree mortality, trigger ecosystem fires, and 91 

decrease carbon uptake in vegetation (Allen et al., 2010; Ciais et al., 2005; Zhao and Running, 92 

2010), thereby influencing terrestrial carbon storage and sequestration potential. Given the wide-93 

ranging scope of influences and impacts that droughts can have, it is no surprise that it is often 94 

classified quite broadly, based on the different systems affected. These classifications generally 95 

fall into: i) agricultural; ii) hydrological; iii) meteorological, and iv) socioeconomic drought 96 

(Wilhite and Glantz, 1985). Recent research has suggested additional drought types, such as 97 

ecological drought (Crausbay et al., 2017), environmental drought (Vicente-Serrano et al., 2019), 98 

and flash drought (Otkin et al., 2018; Svoboda et al., 2002). With the severity and frequency of 99 

droughts projected to increase under climate change, understanding the interrelated impacts and 100 

influence across and within sectors is an issue of considerable importance (Dai, 2013; Trenberth 101 

et al., 2014; Xu et al., 2019; Zhou et al., 2019). Figure 1 illustrates a number of these drought 102 

impacts on different ecosystem components, together with the feedbacks between drought and 103 

climate.  104 
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Given the spatial and temporal advantage that remote sensing can offer, data from a range 105 

of satellite-based platforms have played an increasingly important role in drought studies over 106 

the last decade (AghaKouchak et al., 2015; West et al., 2019). In addition, advances in algorithm 107 

development and the rise of cloud-based computing and storage capacity have greatly enhanced 108 

the application potential of remote sensing for drought studies (Abdelwahab et al., 2014; 109 

Faghmous and Kumar, 2014; Huntington et al., 2017; Sellars et al., 2013; Zhou et al., 2016). 110 

Apart from offering an independent observational capacity, remote sensing data provides an 111 

opportunity to reduce uncertainty and constrain modelling efforts directed towards drought 112 

prediction (Smith et al., 2016). With all of these advances, there have been an increasing number 113 

of studies on the subject of drought monitoring and impacts (Agutu et al., 2017; Asner et al., 114 

2016; Gonçalves et al., 2020; Hu et al., 2020a; Jiao et al., 2019a; Jiao et al., 2019b; Jiao et al., 115 

2019c; Liu et al., 2017a; Nicolai-Shaw et al., 2017; Park et al., 2017; Schwantes et al., 2016; 116 

Thomas et al., 2017; Zhang et al., 2017b). However, while there has been considerable and 117 

important research reviewing drought monitoring and its various impacts, with a number of these 118 

studies highlighting the importance of integrated drought monitoring (AghaKouchak et al., 2015; 119 

Liu et al., 2016b; Trnka et al., 2018; Van Loon et al., 2016; West et al., 2019; Zhang et al., 120 

2017a), there has been no systematic review focusing on some of the recent advances in multi-121 

sensor remote sensing for drought studies, and how these might further advance the modeling, 122 

assessment and prediction fields.  123 

[Insert Figure 1 here] 124 

In this contribution, we undertake a timely and systematic review of multi-sensor remote 125 

sensing based drought studies, motivated in part by recent and rapid developments in sensing 126 

capability, as well as the significant advantages that can be gained by coupling multi-127 
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platform/multi-sensor approaches to better understand drought phenomena and impacts. For 128 

example, many government agencies have space-based Earth observation programs, including 129 

the United States National Aeronautics and Space Administration (NASA), European Space 130 

Agency (ESA) and Japan Aerospace Exploration Agency (JAXA), all of which present 131 

opportunities for coupling multi-platform/multi-sensor approaches for enhanced monitoring 132 

(McCabe et al., 2008). A recent example is the effort to develop a Harmonized Landsat and 133 

Sentinel-2 (HLS) surface reflectance dataset, which combines United States Geological Survey 134 

(USGS)/NASA Landsat with ESA Sentinel-2 to provide near-daily reflectance observations at 135 

30-meter resolution (Claverie et al., 2018). Such multi-sensor/multi-platform integration presents136 

a number of advantages for the remote sensing of drought compared to single sensor approaches, 137 

including: 138 

1. It is well recognized that drought has complex environmental impacts and can affect139 

numerous ecosystems components in parallel (Vicente-Serrano et al., 2019). Used in140 

isolation, a single drought index is unlikely to capture the complexity of process interactions141 

and diverse impacts of drought, whereas multi-sensor platforms, facilitated by multivariate142 

retrievals, may better reflect the extent and severity of drought conditions (Hao and143 

AghaKouchak, 2013; Hao and Singh, 2015).144 

145 

2. Current remote sensing products already make it possible to observe drought from various146 

perspectives, including through monitoring precipitation, air and land surface temperature,147 

soil moisture, evaporation, total water storage and vegetation health (AghaKouchak et al.,148 

2015; Alizadeh and Nikoo, 2018; Pan et al., 2008). A number of remote sensing platforms149 

provide continuous long-term drought related information for use at large scales, with an150 
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obvious example being the series of National Oceanic and Atmospheric Administration 151 

(NOAA) satellites, which have provided global coverage from the Advanced Very High 152 

Resolution Radiometer (AVHRR) from 1979 to present (Van Leeuwen et al., 2006). Such 153 

long-term coverage is only possible through multi-sensor/multi-platform data fusion. 154 

 155 

3. Up until the recent addition of CubeSat constellations to our Earth observation arsenal 156 

(McCabe et al., 2017a; Rahmat-Samii et al., 2017; Woellert et al., 2011), single satellite 157 

sensors were unable to provide real-time drought information with high spatiotemporal 158 

resolution, as traditional remote sensing approaches generally require a compromise 159 

between spatial resolution and temporal frequency (Price, 1994; Zhu et al., 2010). New 160 

systems, together with the fusion of data from different sensors and platforms, or multi-161 

sensors from satellite constellations, can provide drought information with both high spatial 162 

and temporal resolution (Feng et al., 2006; McCabe et al., 2017b; Pohl and Van Genderen, 163 

1998; Zhu et al., 2010), overcoming this spatiotemporal divide. 164 

 165 

4. Drought studies using multiple sources of data can provide multiple lines of evidence and 166 

improve the robustness of analysis. Sensors from different instruments observe the Earth 167 

independently, thus allowing analysis from a variety of data sources that can provide cross 168 

validation and an improved representation of prediction uncertainty. 169 

 170 

5. Recent advances in both new sensors and improved observational techniques, such as space-171 

borne solar-induced chlorophyll fluorescence (SIF) (Jiao et al., 2019a; Sun et al., 2015), 172 

light detection and ranging (LiDAR) and hyperspectral sensors (Asner et al., 2016; Brodrick 173 
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et al., 2019; Zhu et al., 2019) offer complementary information that can be integrated into 174 

multi-sensor drought studies to better understand the mechanisms of drought development 175 

and impacts (Aubrecht et al., 2016; Smith et al., 2019b; Yang et al., 2018a; Yang et al., 176 

2018b).  177 

To advocate and encourage on-going exploration and integration of multi-sensor remote 178 

sensing for drought studies, we provide an overview of the role of multi-sensor remote sensing 179 

for addressing knowledge gaps and driving advances in drought studies. To this end, we provide 180 

a systematic review of multi-sensor remote sensing drought studies from a number of critical 181 

aspects, including datasets, phenomena, mechanisms, and modeling. We first present a 182 

comprehensive summary of large-scale drought-related remote sensing datasets that could be 183 

used for multi-sensor drought studies (section 2). We then discuss the role of multi-sensor 184 

remote sensing for characterizing important drought related mechanisms, including evaluating 185 

mechanisms of vegetation response to drought (section 3.1) and monitoring land-atmosphere 186 

feedbacks (section 3.2). We follow this with a review of the role of multi-sensor remote sensing 187 

for identifying important drought related phenomena, including drought-induced tree mortality 188 

(section 3.3), ecosystem fires (section 3.4), post-drought recovery and drought legacy effects 189 

(section 3.5), flash drought (section 3.6), and drought trends under global warming (section 3.7). 190 

Recent modeling advances for developing integrated multi-sensor remote sensing drought 191 

indices are reviewed in section 4, followed by a discussion on some of the challenges (section 5) 192 

and a potential road map for the future (section 6).  In combination, we seek to establish the 193 

important role that multi-sensor remote sensing can play in bridging spatiotemporal divides, in 194 

improving our understanding of the underlying mechanisms and processes, as well as in 195 
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advancing our ability to proactively monitor and predict drought events as they occur and 196 

develop.  197 

2. Satellite-based products for multi-sensor drought characterization  198 

Dataset selection is fundamental to multi-sensor remote sensing of drought (Zhang et al., 2017a). 199 

Benefitting from an increasingly wide array of available satellite-based observations, remote 200 

sensing provides a capacity to characterize drought from a range of perspectives, including 201 

precipitation, temperature, soil moisture, terrestrial water storage, evaporation, snow, vegetation 202 

response and plant function. Table 1 collates a comprehensive overview of datasets that could be 203 

incorporated into multi-sensor drought studies. In the following paragraphs, we use this as a 204 

basis to explore the characteristics, strengths and constraints of major drought related remote 205 

sensing datasets.  206 

[Insert Table 1 here] 207 

2.1 Remote sensing based precipitation  208 

Precipitation measurements are perhaps the most fundamental element for calibrating drought 209 

models (Orville, 1990; Wilhite and Glantz, 1985), and most certainly the principal variable in 210 

identifying and defining meteorological drought (Palmer, 1965). The challenges of single-sensor 211 

satellite precipitation data have been well recognized by the community for many years, with 212 

multi-product and multi-sensor ensembles receiving much attention over the last decade (Beck et 213 

al., 2019; Martinaitis et al., 2017; Prakash et al., 2018; Sorooshian et al., 2011; Zhang et al., 214 

2016a). The lack of consistency between different satellite precipitation datasets – even those 215 

from the same sensors – further complicate dataset selection (Tapiador et al., 2017). Table 1 216 

identifies the commonly used large scale satellite based precipitation datasets, with each having 217 

their own spatial, temporal, and regional coverages. A series of studies have attempted to inter-218 
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compare these various precipitation datasets at regional to global scales, with most finding that 219 

multi-sensor/multi-source ensemble products provide the highest quality (Beck et al., 2020; 220 

Derin and Yilmaz, 2014; Gehne et al., 2016; Sun et al., 2014; Sun et al., 2018a; Zeng et al., 2018; 221 

Zhu et al., 2015). Some recent studies have focused inter-comparisons on drought monitoring 222 

using different precipitation products (Zhong et al., 2019), with the authors highlighting the 223 

benefit of integrated precipitation data (e.g., Multi-Satellite Precipitation Analysis, TMPA 224 

3B42V7).  225 

2.2 Remote sensing based land surface temperature  226 

Land surface temperature (LST) is another key parameter for integrated drought monitoring, 227 

since it provides an indirect measure of the surface energy balance (Tomlinson et al., 2011). 228 

Thermal stress (or thermal inertia), which can be obtained from land surface temperature and air 229 

temperature, has also been shown to be a good indicator of drought condition (Anderson et al., 230 

2008; Otkin et al., 2013; Seyednasrollah et al., 2019). Drought monitoring based on thermal 231 

stress has been shown to be capable of monitoring drought at early stages (Seyednasrollah et al., 232 

2019). The combination of LST with vegetation indicators such as NDVI, which can reflect the 233 

vegetation response to drought, provides an excellent example of multi-sensor strategies (Orhan 234 

et al., 2014; Patel et al., 2012; Son et al., 2012; Sruthi and Aslam, 2015). The triangle space 235 

relationship between LST and vegetation index (Ts-VI) (Goward et al., 1985) has been 236 

successfully applied to study soil water content and drought monitoring (Nemani et al., 1993; 237 

Nishida et al., 2003; Running et al., 1994). Various Ts-VI drought indices, including the 238 

Temperature–Vegetation Dryness Index (TVDI) (Sandholt et al., 2002), Vegetation Temperature 239 

Condition Index (VTCI) (McVicar and Bierwirth, 2001), Microwave Temperature Vegetation 240 

Drought Index (MTVDI) (Liu et al., 2017a), and the Temperature Vegetation Precipitation 241 
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Dryness Index (TVPDI) (Wei et al., 2020) have been developed to leverage this relationship. In 242 

addition, the combination of LST with other metrics (e.g. soil moisture; see section 2.3 ) has also 243 

been explored and shown to have potential for improved drought monitoring (Hao et al., 2015; 244 

Jiao et al., 2019b). 245 

There are numerous remote sensing LST datasets from different satellite platforms that 246 

can be used for multi-sensor integrated drought monitoring (see Table 1). The listed datasets 247 

present different observation periods, temporal and spatial resolutions, overpass times, and 248 

accuracies, and as a result, have differing strengths. Several factors, such as difficulties in 249 

atmospheric correction and emissivity estimation, the accessibility of data or having restrictions 250 

on its use (e.g., ASTER LST and other GOES datasets) (Tomlinson et al., 2011), may have 251 

limited wider application of LST data (Gutman, 1999; Li et al., 2014). Although a number of 252 

efforts have sought to overcome these constraints (Pinheiro et al., 2004; Pouliot et al., 2009), 253 

widely used datasets (e.g., MODIS and AVHRR LST datasets) offer a compromise between 254 

regular satellite revisit time and a reasonable spatial resolution. Higher-resolution Landsat data, 255 

as well as the improved spatio-temporal insights of the exploratory ECOSTRESS mission (Fisher 256 

et al., 2020), highlight the added value of thermal data for a range of hydrological studies, 257 

including drought monitoring.  258 

2.3 Remote sensing based soil moisture  259 

Soil moisture is a key variable for agricultural planning and water resources management, and 260 

remote sensing based products have seen extensive application to define and identify agricultural 261 

drought (Keshavarz et al., 2014; Vicente-Serrano et al., 2019; Wang and Qu, 2009). Soil 262 

moisture also plays a key role in the climate system, since its deficit can trigger changes in 263 

precipitation and energy storage within the soil-vegetation-atmosphere system, resulting in local 264 



13 | P a g e  

 

to regional scale impacts (Seneviratne et al., 2010). As such, drought detection using soil 265 

moisture data not only benefits agricultural related systems, but also broadly enhances our 266 

understanding of land-atmosphere interactions for weather and climate predictions. Remotely 267 

sensed datasets can be obtained from at least four different types of sensors, comprising optical, 268 

thermal, passive microwave and active microwave systems (Wang and Qu, 2009), with each type 269 

having its relative advantages and limitations. The most commonly used remote sensing based 270 

soil moisture products are listed in Table 1. Numerous studies have evaluated the utility of 271 

remotely sensed soil moisture products for drought characterization (Bolten et al., 2009; 272 

Martínez-Fernández et al., 2016; Nicolai-Shaw et al., 2017). However, quantitative soil moisture 273 

estimation remains difficult, especially under vegetation cover (Dorigo et al., 2017; Wang and 274 

Qu, 2009). Moreover, any non-linear relationship between soil moisture and drought indices 275 

makes the application of soil moisture data more complicated (Sims et al., 2002). Development 276 

of soil moisture from multi-sensor remote sensing data show clear advantages, especially in 277 

terms of developing long-term datasets. As part of the European Space Agencies (ESA) Climate 278 

Change Initiative (CCI), Gruber et al. (2019) developed one of the longest temporal sequences of 279 

global soil moisture, providing the opportunity to explore a range of related process.  280 

2.4 Remote sensing based groundwater and surface water storage  281 

Groundwater, streamflow and surface water storage are key variables to identify and define 282 

hydrological drought (Tallaksen and Van Lanen, 2004; Van Loon, 2015; West et al., 2019). 283 

Hydrological drought (i.e., deficit of groundwater and/or surface water storage) can have longer 284 

and broader impacts than meteorological and agricultural drought, particularly in terms of 285 

drinking water supply, irrigation, and even electricity production via hydropower (Van Loon, 286 

2015).  Frappart and Ramillien (2018) presented a detailed discussion on the potential for 287 
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groundwater monitoring from satellite remote sensing, highlighting the potential to measure 288 

groundwater potential, storage, and fluxes when combined with numerical modeling and ground-289 

based measurements. A number of recent studies have illustrated that terrestrial water storage 290 

observations derived from NASA's Gravity Recovery and Climate Experiment (GRACE) 291 

satellite can provide important insights into drought behavior (Bhanja et al., 2016; Feng et al., 292 

2013; Thomas et al., 2017). Interferometric Synthetic Aperture Radar (InSAR) sensors have also 293 

been used for groundwater and terrestrial water studies (Bell et al., 2008; Castellazzi et al., 2018; 294 

Normand and Heggy, 2015). These systems are able to precisely determine the magnitude of 295 

surface deformation and subsidence, even under challenging atmospheric conditions, and 296 

represent a cost-efficient approach for large scale monitoring (Galloway and Hoffmann, 2007). 297 

However, both GRACE and InSAR data have their limitations. The coarse spatial resolution (i.e., 298 

pixel sizes of roughly 300-400 km) and post-processing demands of GRACE, present 299 

considerable constraints (Chen et al., 2016). In addition, GRACE based terrestrial water storage 300 

estimates were found to have larger bias in humid regions, due to large seasonal water storage 301 

changes and propagation uncertainty of signal from all hydrological processes (Shamsudduha et 302 

al., 2012). While several novel strategies have been proposed to improve the spatial resolution 303 

(Bruinsma et al., 2010; Save et al., 2012), ongoing research is needed to address the issues, 304 

including algorithmic improvements, noise reduction and signal decomposition. InSAR presents 305 

its own limitations in terms of the signal coherence in areas with dense vegetation or regions 306 

with existing surface disturbance (e.g., agricultural areas) (Castellazzi et al., 2016). Recent 307 

efforts to combine GRACE and InSAR data have illustrated the benefit of multi-sensor 308 

approaches for both resolution improvements and for necessary monitoring of groundwater 309 

depletion (Castellazzi et al., 2018).   310 
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2.5 Remote sensing based snow data 311 

Similar to soil moisture and precipitation data, remote sensing of snow can be broadly classified 312 

into optical and microwave approaches, and those that combine the two (Frei et al., 2012).  313 

Monitoring changes in snow coverage, depth, and duration are important for characterizing 314 

drought in areas where snow provides a substantial contribution to the hydrological cycle (Chang 315 

et al., 2019; Mote et al., 2005; Pederson et al., 2011; Stewart, 2009). It is worth noting that 316 

drought events (e.g., 2014/15 drought event in the state of Washington in the United States (Fosu 317 

et al., 2016)) can occur under normal precipitation, but deficiency of the winter snowpack. 318 

Deficit of snow cover in winter can cause severe hydrological and agricultural drought in 319 

summer, making the incorporation of snow cover information into integrated drought monitoring 320 

an important task (Hamlet et al., 2005; Kalra et al., 2008; Margulis et al., 2016). Drought indices 321 

accounting for snow (e.g., Standardized Snow Melt and Rain Index (SMRI) (Staudinger et al., 322 

2014)) have been shown to provide enhancements relative to traditional meteorological drought 323 

indices. Snowpack data has also been used in combination with soil moisture information to 324 

show improved indicators for drought estimation and disaster risk prediction (Kumar et al., 2014; 325 

Tachiiri et al., 2008). It is also important to note that global warming causes changes of 326 

snowpack in many regions and changes the sensitivity of snowpack to climate (Flanner and 327 

Zender, 2006; Mote et al., 2005; Stewart, 2009), so incorporating snow data into drought studies 328 

is likely to be an aspect of increasing importance. 329 

2.6 Remote sensing based evaporation 330 

Given its central role as a linking mechanism between the water and energy cycles, evaporation 331 

presents as an important metric for drought monitoring and estimation. Determining evaporation 332 

dynamics from satellite observations is complicated, since it is not directly observable from any 333 
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sensor, but rather inferred through combining meteorological, radiation, vegetation and other 334 

data with an interpretive model. Evaporation also represents the integration of a range of water 335 

loss processes, from direct soil and canopy evaporation, as well as the transpiration deriving 336 

from plants, making its accurate modeling a challenging task (Anderson et al., 2011b; Mu et al., 337 

2011; Su et al., 2005). Numerous models and algorithms have been developed to infer 338 

evaporation from remote sensing observations, and the readers are referred to some of the 339 

extensive reviews undertaken by Kustas and Norman (1996), Kalma et al. (2008), Li et al. (2009), 340 

Wang and Dickinson (2012) and Fisher et al. (2017) for further details. Drought monitoring 341 

studies have used evaporation as a parameter to develop drought indices, with the most 342 

recognized being the Palmer Drought Severity Index (PDSI) (Palmer, 1965), Standardized 343 

Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) and the Evaporative 344 

Stress Index (ESI) (Anderson et al., 2011a; Anderson et al., 2016). However, most of the 345 

commonly used long-term ET based drought monitoring indices are derived from coarse spatial 346 

resolution (e.g., 0.5o grid cell size for SPEI, 2.5o grid cell size for PDSI) with monthly temporal 347 

resolution, which limit their applicability for drought monitoring. Given the important role that 348 

evaporation plays, not just in drought studies, but also in monitoring ecosystem function, 349 

understanding water and carbon cycles (Wilkinson et al., 2020), and food and water security 350 

studies (López Valencia et al., 2020), the need for ongoing and improved satellite missions 351 

dedicated to its measurement is a critical requirement (Fisher et al., 2017; Wang et al., 2012). 352 

Efforts exploring the recently commissioned ECOsystem Spaceborne Thermal Radiometer 353 

Experiment on Space Station (ECOSTRESS) (Fisher et al., 2020) provide an example of current 354 

capabilities for multi-sensor high spatiotemporal observations of evaporation. Future multi-355 

instrument satellite systems, such as the Hyperspectral Infrared Imager mission (HyspIRI), may 356 
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provide the combination of spectral, spatial and temporal resolution needed for global 357 

evaporation derivation (Lee et al., 2015).  358 

2.7 Remote sensing based vegetation vigor  359 

Vegetation plays the most active role in modulating the water and carbon cycles of most 360 

ecosystems (Jasechko et al., 2013; Lanning et al., 2020; Lanning et al., 2019; Wang et al., 2014). 361 

Plants respond quickly and dynamically to hydrologic stress and control the land-atmosphere 362 

exchanges of water and energy (Novick et al., 2016). Over the past few decades, remote sensing 363 

based vegetation observations have explored the optical and microwave domains of the 364 

electromagnetic spectrum, with a large number of available multi- and hyperspectral sensors at 365 

ground-, air- and space-borne level. An historical overview of vegetation estimation based on 366 

leaf spectral properties can go back to the 1970s  (Ryu et al., 2019). With the launch of Landsat 367 

in 1972, pioneering studies sought to explore drought impacts on vegetation growth at the 368 

landscape to regional scales (e.g., Thompson and Wehmanen 1977; Short 1976). The launch of 369 

active and passive microwave and hyperspectral sensors (e.g., Hyperion data from Earth 370 

Observing-1 (EO-1) satellite, launched November 21, 2000), provided further data to study 371 

drought impacts on vegetation beyond more traditional observations from broad-band optical 372 

sensors. In more recent times, active light detection and ranging (LiDAR), especially in 373 

combination with Unmanned Aerial System (UAS) platforms (Sankey et al., 2018) have 374 

dramatically expanded the fine-scale application of remote sensing vegetation monitoring (Xue 375 

and Su, 2017).   376 

 Vegetation indices are the primary approach towards monitoring vegetation greenness, 377 

with changes in the spectral characteristics of plant leaves and canopy being used to provide 378 

insights into health and condition (Bannari et al., 1995; Zargar et al., 2011). One of the most 379 
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widely used remote sensing based vegetation indices is the Normalized Difference Vegetation 380 

Index (NDVI) (Rouse et al., 1974). However, as with many such indices, NDVI has a range of 381 

limitations related to its sensitivity to background factors, such as shading and soil brightness, 382 

atmospheric effects, as well as saturation issues (Huete, 1988; Richardson and Wiegand, 1990). 383 

A suite of other NDVI type indices were subsequently developed in an attempt to improve such 384 

limitations, or to provide a more focused retrieval of plant physiological features. For example, 385 

the Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988), modified SAVI (MSAVI) (Qi et al., 386 

1994), or the Global Environment Monitoring Index (GEMI) (Xue and Su, 2017) were all 387 

developed to eliminate the soil background effect of vegetation indices, while the enhanced 388 

vegetation index (EVI) was developed to simultaneously correct soil and atmospheric effects 389 

(Huete et al., 2002). More recently, Badgley et al. (2017) developed near-infrared reflectance of 390 

vegetation (NIRV) with the aim of minimizing both the effects of soil contamination and variable 391 

viewing geometry from satellite observations.  392 

While broad-band based indices have provided numerous opportunities for vegetation 393 

sensing, hyperspectral sensors can provide an order of magnitude increase in spectral 394 

information relative to multispectral systems. Hyperspectral reflectance derived indices such as 395 

the Photochemical Reflectance Index (PRI) (Thenot et al., 2002) or the MERIS terrestrial 396 

chlorophyll index (MTCI) (Dash and Curran, 2007), were shown to have good performance in 397 

monitoring early plant water stress by reflecting drought-induced vegetation physiological and 398 

biochemical processes change (He et al., 2016; Suárez et al., 2008).  399 

The main advantage of microwave sensors is that they have higher penetration ability and 400 

are less affected by weather and atmospheric influences. While the value of microwave remote 401 

sensing has been well detailed in the context of oceanographic applications and soil moisture 402 
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estimation, an increasing number of recent studies have explored its sensitivity to plant water 403 

content (Konings et al., 2019; Liu et al., 2011), particularly via examination of the vegetation 404 

optical depth (VOD). However, the drawbacks of passive microwave observations include the 405 

relatively low spatial resolution and the sensitivity to both temperature and single-scattering 406 

albedo, which can affect the derivation of VOD accuracy (Vreugdenhil et al., 2019).  407 

Besides vegetation indices, other variables that are more directly linked to vegetation 408 

photosynthesis have been used to estimate drought impacts. Vegetation Gross Primary 409 

Productivity (GPP) is one of the most commonly used photosynthesis proxies that can be 410 

employed to infer drought impact and prediction (Meng et al., 2014; Zhao and Running, 2010). 411 

Current satellite GPP can be generally estimated from four types of modeling: process-based 412 

model (Farquhar et al., 1980), light use efficiency (LUE) models (Zhao et al., 2005), machine 413 

learning techniques based on eddy covariance measurements (Tramontana et al., 2016), and solar 414 

induced chlorophyll fluorescence (SIF) based statistical model (Guanter et al., 2014). However, 415 

there remain considerable uncertainties in using GPP datasets for drought studies. For example, 416 

Stocker et al. (2019) found that satellite GPP data underestimated the drought impact on 417 

terrestrial primary production due to the lack of consideration of soil moisture information. 418 

Studies also indicate the divergent ability of reflecting drought impact among different GPP 419 

models and products (Chang et al., 2020; Li and Xiao, 2020). Remote sensing based solar 420 

induced chlorophyll fluorescence (SIF) is a rapidly advancing research front in studies of global 421 

vegetation (Guan et al., 2016; Guanter et al., 2007; Joiner et al., 2013), with recent research 422 

indicating its potential to monitor the drought impact on vegetation dynamics (Jiao et al., 2019a; 423 

Sun et al., 2015; Yoshida et al., 2015). Although there have yet to be any satellites specifically 424 

designed to measure SIF, the planned FLuorescence EXplorer (FLEX) (scheduled to launch in 425 
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2022) will be the first (Mohammed et al., 2019). Remote sensing based SIF retrieval mechanisms 426 

have been studied for decades, with detailed reviews provided by Mohammed et al. (2019), Ni et 427 

al. (2019), Aasen et al. (2019), and Bandopadhyay et al. (2020). Several satellite-based SIF 428 

datasets have been compiled from other satellite missions and directed towards the study of 429 

drought. SIF products derived from the Greenhouse gases Observing Satellite (GOSAT) 430 

provided regional to global scale availability (Frankenberg et al., 2011; Joiner et al., 2011). 431 

Datasets from other satellite sensors such as the SCanning Imaging Absorption spectroMeter for 432 

Atmospheric CartograpHY (SCIAMACHY) (Joiner et al., 2012), the Global Monitoring Ozone 433 

Experiment 2 (GOME-2) (Joiner et al., 2013), Orbiting Carbon Observatory-2 (OCO-2) (Sun et 434 

al., 2018b; Taylor et al., 2020), the TROPOspheric Monitoring Instrument (TROPOMI) (Köhler 435 

et al., 2018), and Orbiting Carbon Observatory-3 (OCO-3) (Taylor et al., 2020)  have also 436 

provided global SIF retrievals. The use of recent TROPOMI observations for providing 437 

relatively high spatiotemporal resolutions revolutionized satellite-based SIF application for 438 

drought studies (Köhler et al., 2018). However, current SIF data also have a number of 439 

limitations, including noise from clouds and aerosols, coarse spatial resolution and sensor 440 

degradation (Mohammed et al., 2019), all of which may introduce uncertainties for drought study. 441 

Despite such uncertainties, SIF presents several key advantages over other vegetation proxies 442 

and may provide an alternative perspective to study the impact of drought on vegetation 443 

photosynthesis. Indeed,  SIF has been shown to track the seasonality of photosynthesis and be 444 

more consistent with site-observed GPP variability than vegetation indices such as EVI and 445 

photochemical reflectivity index (PRI) (Magney et al., 2019; Smith et al., 2018; Verma et al., 446 

2017). Incorporating satellite SIF could also improve global estimates of important plant traits, 447 

such as GPP and photosynthetic capacity (He et al., 2019; Smith et al., 2018; Zuromski et al., 448 
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2018). Recent studies have indicated that SIF is more sensitive to drought related water and heat 449 

stress than greenness indices (Qiu et al., 2020; Song et al., 2018), highlighting this potential. 450 

3. The role of multi-sensor remote sensing for drought related phenomena and mechanisms 451 

Drought can substantially impact global and regional carbon cycling and cause irreversible 452 

damage to ecosystem function in a warming climate (Anderegg, 2015; Dai, 2011; Garcia et al., 453 

2014; Hao et al., 2017; Seddon et al., 2016; Sippel et al., 2018; Willis et al., 2018). Recent 454 

research suggests that drought associated with extreme high temperatures are leading to negative 455 

impacts on carbon uptake, slowing down carbon dioxide and nitrogen fertilization effects on 456 

terrestrial ecosystem vegetation (Peñuelas et al., 2017). In addition, drought has been reported to 457 

have increasing impacts on ecosystem carbon uptake. In a related study, Yuan et al. (2019a)  458 

indicated an increasing impact of drought related vapor pressure deficit on vegetation growth 459 

over the past three decades. However, drought impact on ecosystems is complex and many 460 

uncertainties and questions remain unresolved (Trnka et al., 2018). Due to the complexity of 461 

drought interactions within ecosystems, single sensor remote sensing observation are unlikely to 462 

provide a comprehensive and convincing accounting of their characterization. On the other hand, 463 

multi-sensor based evaluations can offer deeper insights across a range of drought-related 464 

research. For instance, multi-sensor based evaluations can improve the understanding of drought 465 

related phenomena such as drought-induced tree mortality, drought-related ecosystem fire, and 466 

developing trends under climate change. Multi-sensor based evaluations can also enhance the 467 

understanding of drought related mechanisms, including those behind vegetation response and 468 

land-atmospheric feedbacks during drought. Here we provide a review of these research aspects 469 

as well as identify some of the current gaps in drought research that could benefit from multi-470 

sensor observations.  471 
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3.1 Monitoring mechanisms of vegetation response to drought using remote sensing 472 

Drought can have a direct impact on the terrestrial carbon sink, with vegetation response being a 473 

key indicator of this influence (Piao et al., 2019). Drought impact on the terrestrial carbon cycle 474 

has been evaluated using remote sensing observations (AghaKouchak et al., 2015), with 475 

decreases in vegetation productivity acting to reduce CO2 uptake (Chen et al., 2013; Ciais et al., 476 

2005; Donohue et al., 2013). However, vegetation response to drought can vary considerably, 477 

both physiologically and structurally across leaf to canopy levels, let alone for different biome 478 

types and species (Zhang et al., 2013). The structural and physiological responses of plants to 479 

droughts are not well understood at large scales (Van der Molen et al., 2011). Physiological 480 

responses vary depending on the photosynthesis related enzymatic activities and stomatal closure, 481 

which act to prevent water loss (Chang et al., 2020; Meir et al., 2008; Meir and Woodward, 482 

2010). Two contrasting stomatal closure strategies for water use under drought have been 483 

identified: isohydric, where species decrease stomatal conductance to prevent reducing leaf water 484 

potential; and anisohydric, where species exert little or no stomatal control in response to 485 

drought (Klein, 2014; Lanning et al., 2020; Roman et al., 2015). Due to the different stomatal 486 

closure strategies under drought, isohydric species are generally expected to experience a larger 487 

reduction of short-term gross primary productivity (GPP) than anisohydric species (Van der 488 

Molen et al., 2011). A recent multi-sensor approach by Hwang et al. (2017) indicated that 489 

photochemical reflectance index (PRI), derived from Moderate Resolution Imaging 490 

Spectroradiometer (MODIS) observations and field spectroradiometer data, can capture the 491 

divergent isohydric and anisohydric behavior under drought stress at both leaf and canopy scales, 492 

from sunlit and shaded portions of the canopy. Their study provided a theoretical framework for 493 

observing the vegetation physiological response to drought at large scales. GPP reduction caused 494 
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by drought can also be determined from structural changes in the vegetation canopy (Van der 495 

Molen et al., 2011).  496 

Structural change under drought stress can include reductions in leaf area, leaf shed, and 497 

the alteration of leaf angle distribution within the canopy (Kull et al., 1999). Such change has 498 

often been inferred via remote sensing based leaf area index (LAI) measurements (Zhang et al., 499 

2013). However, accurate LAI estimation at regional to global scales remains a longstanding 500 

challenge (Richardson et al., 2009). Remote sensing of LAI can be determined from passive 501 

optical sensors, microwave sensors, and active light detection and ranging (LiDAR) instruments, 502 

with each method having its relative strengths and limitations (Fang et al., 2019; Zheng and 503 

Moskal, 2009). For example, passive optical sensors can provide multispectral imagery, which is 504 

beneficial to object discrimination (Chen et al., 2004). However, passive optical sensor based 505 

LAI estimations can be affected by multiple factors, such as saturation of vegetation index based 506 

derivation of LAI, sensor degradation, mitigating leaf pigment effects, and atmospheric 507 

contaminations (Xie et al., 2018; Yan et al., 2019). Microwave based LAI estimation has the 508 

potential to overcome the impacts from cloud and other atmospheric influences (Fang et al., 509 

2019). However, few microwave based LAI estimations are based on radar physical models, and 510 

the accuracy of large regional scale  microwave based LAI retrievals need further evaluations 511 

(Fang et al., 2019; Tao et al., 2016). LiDAR based LAI can be estimated by separating canopy 512 

woody and foliage components (Zhao et al., 2011). In addition, LiDAR observations are have the 513 

potential to characterize the vertical vegetation structure at different heights, and provide 514 

accurate three-dimensional (3D) point cloud data (Liu et al., 2017b). Such data provides new 515 

opportunities for detailed assessments of drought impact on canopy structure. For example, a 516 

recent study by Smith et al. (2019a) indicated that LiDAR showed great potential in capturing 517 
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canopy structural heterogeneity in response to drought and seasonality. However, limitations 518 

such as the uncertainty of LiDAR based LAI estimation models, and the issue of converting 519 

effective LAI (LAIeff) to LAI can also hamper the applications of LiDAR based LAI. (Fang et al., 520 

2019). More generally, the combined use of multi-sensor information from LiDAR and optical 521 

observation (Ma et al., 2014), tend to show capacity for a more comprehensive description of the 522 

biophysical characteristics of forest ecosystems, making for a promising opportunity for further 523 

exploration in multi-senor drought studies. Besides remote sensing LAI data, multi-angle 524 

reflectance based observations have been linked to canopy structure characteristics such as 525 

canopy roughness (Strahler, 1997), foliage clumping (Chen et al., 2005), and leaf angle 526 

distribution (Roujean and Lacaze, 2002). Recent multi-angle approaches such as MODIS derived 527 

Multi-Angle Implementation of Atmospheric Correction (MAIAC) has identified anomalies in 528 

Amazon forest canopy structure under drought (De Moura et al., 2015).  529 

 Species composition could change in response to drought, and multi-sensor based 530 

evaluations have the capacity to capture such changes. Recent studies indicate that ecosystems 531 

tend to change species composition towards deeper rooted varieties in order to stabilize 532 

ecosystem primary production under drying conditions (Griffin‐Nolan et al., 2019; Liu et al., 533 

2018a; Luo et al., 2019). Ecosystem with more species exhibiting lower productivity declines 534 

during droughts, tend to recover faster after extreme droughts (Anderegg et al., 2019; Anderegg 535 

et al., 2018). The reason is that different species can have different drought tolerances, and 536 

although some species may die during prolonged droughts, other species are able to persist. For 537 

example, Coates et al. (2015) used hyperspectral and thermal observations to study the impacts 538 

of the 2013-2014 drought on Southern California chaparral species and established that 539 
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Ceanothus were the least well-adapted species, while deeply rooted species were the least 540 

impacted. 541 

 Drought impacts on an ecosystems carbon cycle can be examined via multi-sensor 542 

observations of vegetation greenness and other biophysical variables. Due to the complexity of 543 

drought response and the inherent uncertainties in any single remote sensing product, attempting 544 

to answer the same question using different remote sensing observations and platforms has the 545 

potential to produce conflicting (and sometime erroneous) conclusions. For example, a number 546 

of early studies exploring the impacts of the 2005 Amazon drought used observed LAI and 547 

spectral reflectance data in the near infrared region (NIR) to suggest that severe drought caused 548 

reductions in LAI and carbon storage (Brando et al., 2008). Another study based on MODIS EVI 549 

proposed a finding that the Amazon forest showed a greening-up, even during a severe drought, 550 

and indicated that  Amazon forests might be more resilient to severe drought than previously 551 

thought (Saleska et al., 2007). However, a later study by Samanta et al. (2010) indicated that 552 

Amazon forests did not green up during 2005 drought. In another later study exploring the 553 

Amazon’s response to drought, Liu et al. (2018c) used AMSR-E derived vegetation optical depth 554 

(VOD), MODIS based LAI, EVI, aerosol optical depth (AOD) and cloud optical thickness 555 

(COT), CERES derived photosynthetically active radiation (PAR), GRACE based terrestrial 556 

water storage (TWS), and AIRS based surface skin temperature, air temperature and relative 557 

humidity data. Multiple lines of evidence from the change of VOD, LAI, and EVI indicated that 558 

during the early drought stage, sufficient soil moisture enhanced leaf development and 559 

ecosystem photosynthesis, while prolonged intense drought in the dry season negatively 560 

impacted forest growth (Liu et al., 2018c). The divergent results highlight the challenges in using 561 

single sensor observations that cannot always resolve the inherent uncertainties of complex 562 
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interactions (Asner and Alencar, 2010) and the importance of exploiting multiple lines of 563 

evidence.  564 

Indeed, multi-sensor observation strategies allow for the introduction of alternative and 565 

complementary sources of information to help disentangle complex phenomena. For example, 566 

SIF has been used to provide insight beyond more standard greenness approaches, with a number 567 

of studies exploring its potential for drought impact monitoring (Sun et al., 2015; Yoshida et al., 568 

2015). Other studies have evaluated the SIF sensitivity to drought under various conditions. For 569 

example, Liu et al. (2018b) showed that SIF is better than NDVI for early drought detection, 570 

although NDVI remains useful in reflecting long lasting droughts. Multi-sensor observations 571 

have also been used to examine drought impact on carbon uptake. Wigneron et al. (2020) used 572 

MODIS based EVI and GOME-2 based SIF data to test the robustness of spatial patterns of 573 

anomalies in aboveground biomass carbon (AGC) to indicate that tropical forests did not recover 574 

from the 2015–2016 El Niño event. Other studies have employed multi-platform and multi-575 

sensor approaches. For example,  Zhou et al. (2014) conducted a comprehensive evaluation of 576 

the impacts of chronic drought on the Congo rainforest, using multi-sensor satellite products of 577 

EVI, VOD, backscatter anomaly, photosynthetically active radiation (PAR), terrestrial water 578 

storage (TWS), aerosol optical thickness (AOD), cloud optical thickness (COT), and land surface 579 

temperature (LST) to show the widespread decline of Congo rainforest greenness due to the 580 

long-term drying trend over the past decade. In another case, Wang et al. (2016a) used MODIS 581 

LST, NDVI, fire count, fire radiative power, fire density, atmospheric water vapor, cloud 582 

fraction, and TRMM accumulated rainfall to study the characteristics of the 2012 Central Plains 583 

drought. Li et al. (2019) used MODIS NDVI, EVI, and GIMMS NDVI3g to provide robust 584 

analysis of the impact of the 2009/2010 South China drought on vegetation growth and terrestrial 585 
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carbon balance. Park et al. (2020) used multi-sensor based Scaled Drought Condition Index 586 

(SDCI) and Evaporative Stress Index (ESI) to explore the influence of El Nino-Southern 587 

Oscillation (ENSO) on East African drought during rainy seasons. More recently, a study from 588 

Jiao et al. (2020) used multiple sensors to examine the drought responses of biophysical 589 

variables including fraction of absorbed photosynthetic active radiation (fPAR), canopy density, 590 

photosynthetic vegetation cover, and aboveground biomass carbon, with all showing increased 591 

sensitivity during Australia’s millennium drought.  592 

3.2 Monitoring land-atmospheric feedbacks mechanisms  593 

Land–atmospheric feedbacks play an important role in water and carbon cycles during droughts 594 

(Baldocchi et al., 2001; Roundy and Santanello, 2017). It is generally acknowledged that severe 595 

droughts dry out soils and vegetation and reduce land evaporation, hence making the near-596 

surface air even drier, which may in turn decrease the likelihood of rainfall and further 597 

exacerbate the occurrence of droughts (Roundy et al., 2014; Seneviratne et al., 2010; Zaitchik et 598 

al., 2013). However, our knowledge of how droughts start and evolve, and how climate change 599 

will affect their occurrence, remains incomplete (Miralles et al., 2019). There has been a strong 600 

focus on climate modeling of large scale land–atmospheric feedback during droughts over the 601 

last decade (Fischer et al., 2007; Stegehuis et al., 2015). One particular challenge of these studies 602 

is the degree of variability in modeling the strength of the land-atmosphere coupling, which has a 603 

strong impact on accurately forecasting and predicting climate extremes such as drought. Multi-604 

sensor remote sensing provides large-scale observational variables and parameters for land–605 

atmospheric feedbacks that can be used to reduce such uncertainties. For example, evaporation is 606 

a key linking mechanism in land–atmosphere feedback studies and is a direct modulator of 607 

climates trends and hydro-meteorological extremes through a series of feedbacks acting on air 608 
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temperature, precipitation, cloud cover, and photosynthesis (Douville et al., 2013; Miralles et al., 609 

2014; Seneviratne et al., 2006; Teuling et al., 2010). To date, global climate model based land 610 

evaporation estimates remain unreliable (Dolman et al., 2014; Jimenez et al., 2011; Mueller et al., 611 

2011; Wang and Dickinson, 2012), making their use as diagnostic tools challenging. On the 612 

other hand, multi-sensor based remote sensing approaches have been applied to provide more 613 

realistic observationally-based estimates of evaporation (Martens et al., 2017), offering the 614 

capacity for new insights into land-atmosphere behavior. A number of recent efforts have 615 

evaluated multi-sensor remote sensing data in land-atmosphere coupling studies exploring 616 

drought, and illustrated their considerable advantages (Hao et al., 2018b; Roundy and Santanello, 617 

2017; Santanello Jr et al., 2018). Further work is required, but with the advent of an increasing 618 

number of sensors and complementary platforms, additional insights and clearer identification of 619 

patterns and trends in land–atmospheric feedbacks during droughts are anticipated. 620 

3.3 Exploring drought-induced tree mortality  621 

Severe drought acts not only to reduce vegetation productivity, but may also cause large-scale 622 

plant mortality (Allen et al., 2015). Myriad studies on the mechanisms of plant response to 623 

drought may not necessarily involve drought-induced tree mortality, which can also lead to 624 

ecosystem recession and impact ecosystem water and carbon cycles (Huang et al., 2019; Piao et 625 

al., 2019). Hydraulic failure and carbon starvation have been widely reported as two 626 

nonexclusive mechanisms of drought-induced tree mortality (Anderegg et al., 2012; Hartmann, 627 

2015; McDowell et al., 2018). Hydraulic failure occurs when drought-caused embolisms block 628 

xylem cells and impair hydraulic transport systems (Huang et al., 2019). Carbon starvation 629 

occurs when isohydric species close stomata to avoid excessive water loss. However, the closure 630 

of stomata not only avoids water loss, but also forgoes access to atmospheric carbon dioxide, and 631 
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if respiratory consumption of the needed carbon exceeds stored resources, tree mortality may 632 

occur (Adams et al., 2010). One of the main approaches for studying drought-induced tree 633 

mortality is to estimate the plant water content (Huang et al., 2019; McDowell and Sevanto, 634 

2010). Historically, satellite multispectral sensors were used to extract vegetation water status 635 

(Kokaly et al., 2009; Zarco-Tejada et al., 2003). However, it is challenging to accurately extract 636 

canopy water content for forest regions via traditional remote sensing observations, due to the 637 

cloud cover and the fact that those observations primarily sense the top of the canopy only 638 

(Asner et al., 2004; Konings et al., 2019). New large-scale datasets such as satellite-based VOD 639 

are emerging (Rao et al., 2019) and can be used as indicators of drought-induced tree mortality. 640 

Currently, high spatial resolution images are the most commonly used datasets to monitor 641 

regional forest health (Huang et al., 2019). Recent integrations of multi-sensor airborne 642 

hyperspectral and LiDAR have shown potential to provide accurate estimation of leaf water 643 

content at regional scales. Stovall et al. (2019) combined airborne LiDAR and optical data to 644 

track tree mortality rates and indicated that higher trees are more vulnerable than small trees 645 

during extreme droughts. Zhu et al. (2019) combined LiDAR and hyperspectral data using 646 

radiative transfer models (RTM) and an invertible forest reflectance model to address the effects 647 

of canopy structure variation, and to estimate leaf water content over the Bavarian Forest 648 

National Park in southeastern Germany. Related studies show that the integrated use of airborne 649 

high-fidelity imaging spectroscopy (HiFIS) and LiDAR scanning improves the ability for 650 

monitoring forest canopy water content (Shugart et al., 2015). The integrated application of 651 

HiFIS and LiDAR provides three dimensional forest measurements and allows for excluding 652 

non-forest covers, such as grass, bare ground and rock cover, which could affect the analysis 653 

(Asner et al., 2007). Recently, Asner et al. (2016) provided a multi-sensor remote sensing canopy 654 
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water content observation strategy by fusing HiFIS and LiDAR with Landsat data, and illustrated 655 

a progressive canopy water loss across California forests during 2012-2015 that allowed 656 

improved predictions of tree mortality. Research from Brodrick and Asner (2017) used a similar 657 

strategy to monitor progressive canopy water content loss to tree mortality during the 2015-2016 658 

Sierra Nevada mountain drought in California. The NASA Global Ecosystem Dynamics 659 

Investigation (GEDI) LiDAR, which launched to the International Space Station in December 660 

2018 and has been collecting observation data since March 2019 (Hancock et al., 2019), serves 661 

as an exploratory mission to study tree mortality from canopy structure measurements (Qi et al., 662 

2019). The combination of simulated GEDI with other measurements such as TerraSAR-X add-663 

on for Digital Elevation Measurement (Tandem-X) InSAR (Lee et al., 2018; Qi and Dubayah, 664 

2016) and Ice, cloud, and land elevation satellite-2 (ICESat-2) and NASA-ISRO Synthetic 665 

Aperture Radar (NISAR) (Fatoyinbo et al., 2017; Silva et al., 2018) highlights the potential of 666 

mapping tree health from a forest structure perspective.  667 

3.4 Investigating drought-related ecosystem fires  668 

Drought may cause an increase in the frequency of ecosystem fires, which is an important factor 669 

in the decline of ecosystem carbon uptake (Brando et al., 2014). Remote sensing may be the only 670 

technology that can provide for drought-induced wildfire observations at regional to global 671 

scales. Thermal remote sensing has been widely used to establish the location of active fires 672 

(Asner and Alencar, 2010). However, due to the spatial resolution and observation period, it is 673 

challenging for single sensor based remote sensing observations to provide long time period and 674 

accurate detection, and thus integrated use of multi-sensor remote sensing observations has often 675 

been applied to improve long-term fire detection. Van Der Werf et al. (2004) combined multi-676 

sensor satellite observations of global fire activity over the 1997 to 2001 El Niño/La Niña period 677 
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from TRMM, European Remote Sensing Satellite–Along Track Scanning Radiometer (ERS-678 

ATSR), and MODIS Terra satellite sensors, showing increases in tropical fires during droughts 679 

associated with ENSO. For datasets related to global fires, the widely used Global Fire 680 

Emissions Database (GFED) was developed based on the integrated use of fire products from 681 

Terra and Aqua MODIS and the ATSR-based World Fire Atlas, to provide global daily, monthly, 682 

and annual burned area from 1995 onwards (Giglio et al., 2013). A particular challenge for single 683 

sensor observations for drought-induced fire studies is to detect ground-covering fires from space, 684 

since a moist and highly foliated canopy could block the fire signal on the ground (Goetz et al., 685 

2006; Meng et al., 2017; Yi et al., 2013). Integrated use of multi-sensor satellite products by 686 

overlying fire detections (e.g., TRMM fire detections) on satellite deforestation maps (e.g., 687 

multi-sensor remote sensing based Brazilian National Institute of Space Research, INPE 688 

deforestation map) was shown to provide good indications for detecting ground-covering fire 689 

signals above the moist and highly foliated canopy (Asner and Alencar, 2010; Asner et al., 2005). 690 

In addition, the integrated use of multi-sensor observations from airborne imaging spectroscopy 691 

and LiDAR was tested to quantify the post-fire forest recovery rate and demonstrated that 692 

integrated multi-sensor observation can separate canopy recovery from understory recovery, 693 

providing reliable information of post-fire forest recovery over large scales (Meng et al., 2018). 694 

Apart from reliable detection of burned areas, satellite estimation of fire-induced CO and CO2 695 

emission measurements are useful for understanding the impact of drought-induced wildfire to 696 

ecosystem carbon and water cycles. The combination of satellite-derived burned areas with 697 

atmospheric CO and CO2 measurements is likely to assist in quantitatively estimating the impact 698 

of drought-induced fires on ecosystem carbon cycle (Piao et al., 2019).  699 
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Live fuel moisture content (LFMC), which is defined as the mass of water contained 700 

within vegetation in relation to the total dry mass, is another primary variable that has been 701 

widely used in drought-related fire prediction and fire risk models (Yebra et al., 2013). Remote 702 

sensing observations could provide the opportunity of frequent monitoring of LFMC over large 703 

areas. However, there are a number of challenges for existing estimations of LFMC from remote 704 

sensing, with the retrieval of LFMC influenced by multiple factors. The physical basis for remote 705 

sensing based estimation of LFMC is via the different absorption and reflectance of radiation in 706 

NIR and SWIR spectral regions due to water content within vegetation (Tucker, 1980). As such, 707 

traditional indices such as the Normalized Difference Infrared Index (NDII) (Hardisky et al., 708 

1983), Normalized Difference Water Index (NDWI) (Gao, 1996), and Normalized Difference 709 

Vegetation Index (NDVI) (Rouse et al., 1974) have all been applied to estimate the LFMC over 710 

large regions. Indices based on the optical and thermal bands provide important information on 711 

LFMC estimation via vegetation vigor and water content. However, observations from optical 712 

regions are limited in their ability to provide accurate estimation of LFMC. First, the optical and 713 

thermal wavelengths are affected by contamination such as clouds, smoke, and atmospheric 714 

aerosols. In addition, remote sensing based retrieval of LFMC are affected by confounding 715 

factors such as canopy structure and biomass (Yebra et al., 2013). Apart from observations 716 

across optical wavelengths, signals from the microwave portion of the electromagnetic spectrum 717 

have been explored as alternatives for monitoring LFMC (Fan et al., 2018) due to the advantage 718 

that they can detect changes in canopy structure, biomass, soil and vegetation water content, 719 

while being less sensitive to atmospheric and cloud contamination (Al-Yaari et al., 2016). As 720 

such, exploiting multi-sensor remote sensing to estimate LFMC can offer multiple advantages. 721 

First, the multi-sensor approach can provide insights into the many complementary sensitives to 722 
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needed parameters (such as vegetation water content, greenness, canopy structure) required by 723 

LFMC retrievals. Second, multi-sensor observations alleviate individual limitations from any 724 

specific sensor. Third, multi-sensor observations can provide high temporal and spatial LFMC 725 

estimations needed for fire risk and prediction. One recent example of multi-sensor remote 726 

sensing based LFMC estimation is the study of Rao et al. (2020), which presents an improved 727 

LFMC estimation every 15 days at 250 m resolution.    728 

3.5 Identifying post-drought recovery and drought legacy effects 729 

Drought extremes not only have immediate impacts on ecosystem functioning, but can also 730 

impart long-lasting lagged effects, hindering a comprehensive understanding of terrestrial 731 

ecosystem response to drought (Anderegg et al., 2015). Our understanding of drought legacy is 732 

challenged by the fact that such effects can be highly variable for species, ecosystems, climate 733 

conditions, and can even have both positive or negative impacts on plants (Kannenberg et al., 734 

2020; Wu et al., 2018; Xu et al., 2010). A number of recent studies have examined drought 735 

recovery and legacy effects from organism to ecosystem scales based on tree ring chronologies, 736 

flux towers, and remote sensing datasets (Kannenberg et al., 2020). Compared with flux towers 737 

and tree ring observations, remote sensing has been widely used for drought recovery and legacy 738 

effects at both ecosystem and global scales due to the large spatial support scales (Schwalm et al., 739 

2017; Wu et al., 2018). However, due to the complexity of ecosystem drought legacy impacts 740 

and difficulties in quantifying drought recovery time, large uncertainties still exist for regional to 741 

global drought recovery and legacy effect studies (Liu et al., 2019a). Multi-sensor remote 742 

sensing can provide drought identification from various aspects that enhance our understanding 743 

of these drought recovery and legacy effects. For example, the recovery of photosynthetic 744 

capacity can be relatively quick and can be quantified via greenness indices. The combination of 745 
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optical/NIR sensors with airborne SAR may be useful for quantifying the canopy recovery, and 746 

the recovery of below canopy structure in forests can be extracted by LiDAR and microwave 747 

imagery, since they are sensitive to properties of the below canopy (Frolking et al., 2009). 748 

Characterization of drought recovery legacy effects can be further complicated, since droughts 749 

not only have legacy impacts on vegetation structure and photosynthetic capacity, but also on 750 

other aspects such as phenology. Recent studies such as Peng et al. (2019), indicated that drought 751 

has both lagged and cumulative impacts on autumn leaf senescence over the Northern 752 

Hemisphere. Yuan et al. (2020) found that pre-season drought could impact vegetation spring 753 

phenology. Buermann et al. (2018) highlighted the growing adverse negative lagged effect of 754 

spring warmth on northern hemisphere vegetation productivity. Shi et al. (2019) examined the 755 

legacy effects of precipitation and evaporation changes during the 2005 Amazon drought based 756 

on multiple satellite observations of precipitation and evaporation, and found that the drought 757 

effect induced evaporation reductions, triggering a delay of the wet season onset. Gonçalves et al. 758 

(2020) confirmed the 2005 Amazon drought legacy effects on tropical forest leaf phenology 759 

using multi-sensor observations of near-surface and satellite remote sensing. Overall, like many 760 

of the other aspects explored herein, observations from multi-sensor remote sensing provide 761 

multiple lines of evidence for the study of drought recovery and legacy effects.  762 

3.6 Capturing and monitoring flash droughts 763 

While drought is generally described as a slowly evolving phenomena (Wilhite et al., 2007), 764 

recent rapidly developing drought events (e.g., 2012 United States summer drought) have caused 765 

a growing interests in the study of so-called “flash drought” within the scientific community. 766 

Flash droughts are generally defined as a short term but severe drought with rapid onset and 767 

evolving processes (Ford and Labosier, 2017; Otkin et al., 2018; Senay et al., 2008). Flash 768 
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droughts can cause severe environmental and agricultural impacts in a short time period, and 769 

since they have a sudden onset and rapid intensification, can bring particular challenges for 770 

drought monitoring, forecasting, and mitigation (Christian et al., 2019; Ford and Labosier, 2017; 771 

Pendergrass et al., 2020). The identification of flash droughts is of great importance. Distinct 772 

from conventional droughts, high evaporation rates are usually found before their developments 773 

(Chen et al., 2019). Thus, remote sensing based evaporation products have been used to identify 774 

these events. A good example is the satellite-based evaporative stress index (ESI) (Anderson et 775 

al., 2016), which was shown to provide early warning of flash drought impacts on agricultural 776 

system. More recently, a series of ESI based drought indices, including the rapid change index 777 

(RCI) (Otkin et al., 2014), evaporative demand drought index (EDDI) (Hobbins et al., 2016), and 778 

standardized evaporative stress ratio (SESR) (Christian et al., 2019) were developed for flash 779 

drought characterization. Studies have also identified that other drought characteristics, such as 780 

rapid declines in precipitation, soil moisture and abnormally high temperature, were also 781 

important to identify flash droughts (Haile et al., 2020; Mo and Lettenmaier, 2015). The 782 

combined information of soil moisture, temperature, and evaporation was applied by Wang et al. 783 

(2016b) to identify a flash drought in China and indicated an increasing number of flash droughts 784 

from 1979 to 2010 due to global warming. Other multi-sensor remote sensing based integrated 785 

drought indices have also been developed for characterizing flash droughts. For example, the 786 

Quick Drought Response Index (QuickDRI) (Svoboda et al., 2017), which integrated satellite 787 

based ESI and Standardized Vegetation Index (SVI) (Peters et al., 2002) with climate indicators 788 

such as SPEI, Standardized Precipitation Index (SPI), and North American Land Data 789 

Assimilation System-2 (NLDAS-2) based soil moisture data, was developed to characterize 790 

shorter-term and quickly evolving droughts. Although a relatively new drought classification, the 791 
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characteristics of flash droughts, including sudden onset, rapid evolution, and severe impacts on 792 

ecosystem (Mo and Lettenmaier, 2015; Yuan et al., 2019b), make their further study and 793 

description of considerable importance. Multi-sensor remote sensing observations provide a 794 

unique platform for providing the needed high spatial-temporal resolutions for flash droughts, 795 

and will undoubtedly play a key role in enhancing aspects of their description.  796 

3.7 Drought trends under climate change  797 

There is ongoing scientific debate on whether climate change will cause global drying, and how 798 

drought will evolve under such conditions (Vicente‐Serrano et al., 2020). Climate metrics such 799 

as the self-calibrated Palmer drought severity index (scPDSI), PDSI with potential 800 

evapotranspiration estimated using the Penman-Monteith equation (sc_PDSI_pm) and climate 801 

model predictions themselves, suggest a likely strong increase of drought severity and severe 802 

drought impacts in the future (Baig et al., 2020; Dai, 2013; Trenberth et al., 2014; Xu et al., 803 

2019). However, other research providing a retrospective assessment has indicated that relatively 804 

little change in global drought has occurred over the past 60 years (Sheffield et al., 2012). Some 805 

climate model simulations suggest that global drying may not happen due to predicted increases 806 

in runoff, and that the effect of an increase in evaporation could be offset by a decrease in 807 

evaporation driven by increased surface resistance responding to elevated CO2 (Berg and 808 

Sheffield, 2019; Yang et al., 2019). However, other studies have indicated that vegetation will 809 

reduce future runoff despite the increased surface resistance to evaporation, due to increasing 810 

canopy water demands and freshwater availability that will be reduced due to climate change 811 

(Mankin et al., 2019). 812 

Studies of global drought trends based on multi-sensor remote sensing can provide a 813 

range of informative metrics, including their use as signals to evaluate climate model output. 814 
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Damberg and AghaKouchak (2014) indicated that there was no significant drying trend from 815 

1980-2012 by combining multi-sensor satellite precipitation data from the Global Precipitation 816 

Climatology Project (GPCP), Multi-satellite Precipitation Analysis – Near Real Time (TMPA) 817 

(TMPA-RT), and Precipitation Estimation from Remotely Sensed Information using Artificial 818 

Neural Networks (PERSIANN) satellite data. Dorigo et al. (2012) analyzed the global trend in a 819 

multi-sensor soil moisture product from 1988-2010, which indicated a strong tendency towards 820 

drying soil moisture. They also found that the drying soil moisture trends were not consistent 821 

with the patterns of precipitation, which indicated that even though precipitation is the main 822 

driver of variations in soil moisture, other factors such as evaporation, soil type, and vegetation 823 

cannot be neglected (Dorigo et al., 2012). Recently, a drought trend study over the United States 824 

using multi-sensor satellite data from the Scanning Multi-channel Microwave Radiometer 825 

(SMMR), the Special Sensor Microwave Imager (SSM/I), the Advanced Scatterometer (ASCAT), 826 

MODIS, AMSR-E, AMSR-2, and SMOS and SMAP soil moisture data (Kumar et al., 2019), 827 

indicated  a trend of longer and more severe droughts over parts of the Western United States. 828 

Despite these and related studies, the complexity of spatially heterogeneous trends, limited 829 

coverage periods of individual satellite data, and inherent uncertainties from single satellite 830 

datasets, all suggest that further integration of multi-sensor observations are needed to 831 

disentangle the development of global scale drought trends under a changing climate. 832 

4. Recent modeling advances for developing integrated multi-sensor remote sensing 833 

drought indices 834 

Drought indices integrate various drought related variables (e.g., precipitation, temperature, 835 

evaporation, snow, groundwater, and soil moisture) to monitor and assess physical characteristics 836 

such as onset, duration, severity, and spatial extent (Hao and Singh, 2015; Hayes et al., 2007; 837 
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Mishra and Singh, 2010). Drought has multiple aspects, examples of which might be high 838 

temperature with low soil moisture along with declines in plant function: all of which can occur 839 

independently or simultaneously (Wilhite, 2000). As such, a single drought index that is 840 

developed based on one particular element is unlikely to capture many complex processes and 841 

diverse impacts (Jiao et al., 2019b). For example, a precipitation based drought index may fail to 842 

characterize plant water stress linked to rising vapor pressure deficit (VPD) during a heat wave, 843 

since drought can have independent impacts on both meteorology and plant function (Novick et 844 

al., 2016; Stocker et al., 2018). Not surprisingly, multivariate drought indices developed using 845 

multiple models and indices, and including drought properties such as severity and duration or 846 

alternative data sources, have proved to better and more comprehensively characterize drought 847 

than any single index (Andreadis et al., 2005; Hao and AghaKouchak, 2013; Touma et al., 2015). 848 

  849 

Many studies have sought to develop multivariate indices by combining observations 850 

from in-situ observations, gridded climate datasets, and single-sensor remote sensing dataset 851 

(AghaKouchak, 2015; Brown et al., 2008; Hao and AghaKouchak, 2013; Hao and AghaKouchak, 852 

2014; Huang et al., 2016; Kao and Govindaraju, 2010; Niemeyer, 2008; Sepulcre-Canto et al., 853 

2012; Tabari et al., 2013; Vasiliades et al., 2011; Waseem et al., 2015; Westra et al., 2007). 854 

Integrated drought indices that only exploit multi-sensor remote sensing data is an emerging 855 

research topic (AghaKouchak et al., 2015; West et al., 2019). While a number of multi-variable 856 

drought indices have been developed, few have been applied using multi-sensor remote sensing 857 

observations. One reason is the relatively short length of satellite records (AghaKouchak et al., 858 

2015; Lettenmaier et al., 2015). On the other hand, numerous recent efforts have been made 859 

towards integrated multi-sensor drought indices based on multiple models. These multi-sensor 860 
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based drought indices can generally be divided into three categories: data-driven models, water 861 

balance models, and process-based models. Here we provide an overview of these and related 862 

studies, with Table 2 providing a summary of some of the core research efforts.  863 

4.1 Data-driven models 864 

Data-driven models are the most commonly used models for multi-sensor integrated drought 865 

indices development. The primary strategy of data-driven models is combining the input 866 

variables using a set of statistical models, and often with limited knowledge about the physical 867 

mechanism of the system (Solomatine, 2002). Some recent examples can be summarized through 868 

their use of simple linear combination models, principal component analysis (PCA) combination 869 

models, machine learning models, and fuzzy weighting models, and all of which are described 870 

below.   871 

4.1.1 Simple linear combination models 872 

One of the most commonly employed statistical models to integrate drought variables from 873 

multiple sensors is simple linear combination. Several multi-sensor integrated drought indices 874 

were developed by linearly assigning weights to single drought variables. For example, the 875 

Microwave Integrated Drought Index (MIDI) (Zhang and Jia, 2013) combines the Soil Moisture 876 

Condition Index (SMCI) from AMSR-E data, the Precipitation Condition Index (PCI) using 877 

TRMM, and the Temperature Condition Index (TCI) from MODIS LST data. Similarly, the 878 

Scaled Drought Condition Index (SDCI), Optimized Meteorological Drought Index (OMDI) and 879 

Optimized Vegetation Drought Index (OVDI) integrate drought variables including precipitation, 880 

soil moisture, vegetation indices, and LST, also using linear weighting (Hao et al., 2015; Rhee et 881 

al., 2010). The advantage of simple linear combination models is that they are relatively easy to 882 

calculate and straightforward to implement. While they have been shown to present good 883 
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performance for drought monitoring at local scales (Zhang et al., 2017a), simple linear 884 

combination model have limitations for large scale implementation. For instance, they often 885 

assume that the sub-areas of a particular study area contribute the same weight for a particular 886 

single variable. Also, assigned weights for each drought variable are likely to vary in different 887 

climate regions, and may thus lead to poor performance when applied to diverse climate 888 

conditions (Hao and Singh, 2015; Jiao et al., 2019b).  889 

4.1.2 Principal component analysis models 890 

Since the basic purpose of principal component analysis (PCA) is to distill a large number of 891 

variables into a new data set with low dimensionality (Wold et al., 1987), it is no surprise that it 892 

has been commonly used to develop drought indices from multi-variables. Numerous studies 893 

have developed integrated drought indices based on site observation data using PCA (Arabzadeh 894 

et al., 2016; Barua et al., 2011; Bazrafshan et al., 2014; Bazrafshan et al., 2015; Keyantash and 895 

Dracup, 2004; Liu et al., 2019b), while others have also applied PCA to develop multi-sensor 896 

remote sensing based drought indices. Du et al. (2013) developed a synthesized drought index 897 

(SDI) using PCA to combine vegetation, temperature, and precipitation variables from TRMM 898 

and MODIS data. PCA has also been combined with other models to developed integrated multi-899 

sensor based drought indices. For example, PCA was applied with a partial least squares 900 

regression (PLSR) model to assess agricultural drought in East Africa (Agutu et al., 2017), while 901 

Jiao et al. (2019c) used PCA with a geographically weighted regression (GWR) model to 902 

developed a station-enabled Geographically Independent Integrated Drought Index 903 

(GIIDI_station), which showed good performance under diverse climate regions. One of the 904 

main limitations of the PCA based indices is the linearity assumption of the input variables and 905 

the assumption that the maximum information of the input variables is oriented along the 906 
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direction of maximum variance of data transformation (Wold et al., 1987). However, the 907 

Gaussianity of input variables and their linearity may not always be met in reality (Azmi et al., 908 

2016; Hao and Singh, 2015). To avoid those limitations, it may be helpful to explore other 909 

feature extraction models, such as kernel entropy component analysis (KECA), kernel PCA, and 910 

sparse KPCA (SKPCA), which have recently been developed as modified PCA models to 911 

overcome the linearity assumption (Rajsekhar et al., 2015; Waseem et al., 2015). 912 

4.1.3 Machine learning models 913 

Big data is a term that is well associated with the collection and storage of vast amounts of 914 

remote sensing data (Ma et al., 2015). Recent studies have used multiple machine learning 915 

algorithms to incorporate multi-sensor remote sensing information for drought assessment at 916 

regional scales. Park et al. (2016) monitored meteorological and agricultural drought in the arid 917 

region of Arizona and New Mexico and the humid region of North Carolina and South Carolina 918 

by incorporating sixteen remote sensing based drought factors from MODIS and TRMM satellite 919 

sensors using random forest, boosted regression trees, and Cubist models. Similarly, Park et al. 920 

(2017) developed the High resolution Soil Moisture Drought Index (HSMDI) for meteorological, 921 

agricultural, and hydrological droughts over the Korean peninsula using Random Forest, Cubist, 922 

and Boosted Regression Trees based on AMSR-E soil moisture, MODIS NDVI, ET, albedo and 923 

LST data. Han et al. (2019) developed the combined drought monitoring index (CDMI) in 924 

Shaanxi province in China by combining MODIS LST, NDVI and ET data with TRMM 925 

precipitation data using a random forest model. Feng et al. (2019) adopted a bias-corrected 926 

random forest, support vector machine, and multi-layer perceptron neural network using thirty 927 

remotely sensed drought factors from the TRMM and the MODIS satellite sensors to reproduce 928 

drought conditions in South-Eastern Australia. Their results indicated strong correlation between 929 
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machine learning based satellite drought observations and ground-based crop yield and drought 930 

indices (Feng et al., 2019). Similar to the development of the Vegetation Drought Response 931 

Index (VegDRI) (Brown et al., 2008), Wu et al. (2015) developed an Integrated Surface Drought 932 

Index (ISDI) using a classification and regression tree (CART) approach based on MODIS 933 

NDVI and LST and climate data in China. Rahmati et al. (2020) mapped agricultural drought 934 

using CART, boosted regression trees (BRT), random forests (RF), multivariate adaptive 935 

regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines 936 

(SVM) in the south-east region of Queensland Australia. Son et al. (2021) developed a Vector 937 

Projection Index of Drought (VPID) based on Vector Projection Analysis (VPA) by integrating 938 

site observation based SPI, SPEI, PDSI, and Z-index with multi-sensor satellite based 939 

precipitation, evaporation, vegetation, and soil moisture data. 940 

Of course, the advantage of using machine learning models for integrated drought 941 

monitoring is that such models are good at handling multi-dimensional and multi-variable data in 942 

different environments and without human intervention (Lary et al., 2016; Ma et al., 2015). 943 

However, machine learning based integrated drought monitoring relies heavily on the selection 944 

of training data. They also require massive data sets to train on, and are highly susceptible to 945 

errors that often exist when a training set is not representative of diverse environmental 946 

conditions or climate states (Ali et al., 2015; Lary et al., 2016). The transferability issue means 947 

that for regions with limited available ground observation, machine learning models may have 948 

limited application. Whether this can be overcome with the availability of spatiotemporal remote 949 

sensing records is a topic of ongoing research.  950 
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4.1.4 Fuzzy weighting models 951 

The lack of a widely accepted drought definition is one of the primary obstacles to effectively 952 

investigate drought events (Lloyd-Hughes, 2014). The majority of research divides drought into 953 

different types: meteorological, agricultural, hydrological, and social-economic (Wilhite and 954 

Glantz, 1985). However, the boundaries separating these drought conceptions are vague, and it is 955 

difficult to set a specific boundary for drought impacts of certain rates to meteorology, 956 

agriculture, hydrology, and social-economic (Pesti et al., 1996). To address these concerns, fuzzy 957 

analysis methods have been used to monitor drought based on multi-sensor remote sensing 958 

observations. Alizadeh and Nikoo (2018) applied an Ordered Weighted Averaged approach 959 

using multi-sensor data from CHOMPS, GPCP, CMAP, PERSIANN-CD, TRMM, GLDAS-2, 960 

MERRA-2, with results indicating that the model significantly improved drought estimation. Jiao 961 

et al. (2019b) proposed a framework for developing a Geographically Independent Integrated 962 

Drought Index (GIIDI), based on local OWA models and multi-sensor data from MODIS NDVI, 963 

TRMM precipitation, and AMSR-E soil moisture data, which could have applicability for 964 

various climate regions. Huang et al. (2015) developed the Integrated Drought Index (IDI), 965 

combining meteorological, hydrological, and agricultural factors across the Yellow River basin 966 

in North China based on variable fuzzy set theory. In another approach, Nasab et al. (2018) 967 

developed a Fuzzy Integrated Drought Index (FIDI) based on an entropy weighting fuzzy model, 968 

utilizing the Anomaly Percentage Index of precipitation, runoff, actual ET, and soil moisture in 969 

the Neyshabour basin, Iran. Fuzzy weighting models are widely used in the multi-criteria 970 

decision making field (Aruldoss et al., 2013). These models aim to address the uncertainty and 971 

interior related relationship between the single variables (Jiang and Eastman, 2000; Yager, 1996). 972 

However, the limitation of weights determined by fuzzy weighting algorithms are not 973 
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straightforward and the development of fuzzy models is often tedious (Grabisch, 1996; 974 

Reshmidevi et al., 2009; Velasquez and Hester, 2013). In addition, other studies argue that the 975 

min-max ordered rule of fuzzy weighting models may not be able to best reflect the conjunctive 976 

and disjunctive reasoning, and integrated fuzzy models should be applied in the real world 977 

(Simić et al., 2017). 978 

4.2 Process based models 979 

Drought is a complex natural hazard with gradual dynamic transition between drought and non-980 

drought conditions (Rulinda et al., 2012). Different stages of drought, cumulative impacts, or 981 

even different drought timings, can all affect the environment differently (Fukai and Cooper, 982 

1995; Pasho et al., 2011; Peng et al., 2019; Sippel et al., 2018). Drought monitoring indices that 983 

are based on the evolution of the drought process may better reflect the dynamic of drought 984 

severity changes. Zhang et al. (2017b) recently proposed an Evolution Process-based Multi-985 

sensor Collaboration (EPMC) framework and developed the Process-based Accumulated 986 

Drought Index (PADI) based on multi-sensor data that included GPCC precipitation data, 987 

GLDAS soil moisture data, and AVHRR NDVI data. The various phases of drought latency, 988 

onset, development, and recovery were quantified differently by the authors, and their results 989 

showed that the process based drought monitoring framework could provide robust multi-sensor 990 

remote sensing based agricultural drought monitoring analysis (Zhang et al., 2017b).  991 

4.3 Water balance models 992 

While there are various definitions of drought and different classification types, it is a well-993 

accepted theme that drought is a condition of insufficient water to meet needs (Redmond, 2002). 994 

A range of water budget based drought indices have been developed and widely used for a 995 

number of decades. One of the most widely employed indices is the PDSI, which is based on a 996 
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water balance model of soil moisture supply and water demand of evaporation, with the input 997 

data including precipitation, temperature, and soil water content (Palmer, 1965). The Palmer 998 

Hydrologic Drought Index (PHDI) (Karl et al., 1987) and Surface Water Supply Index (SWSI) 999 

(Shafer and Dezman, 1982) are other examples of widely used water budget models for 1000 

monitoring drought. Similarly, the standardized precipitation evapotranspiration index (SPEI) 1001 

monitors drought by estimating the water balance using the difference between precipitation and 1002 

PET (Vicente-Serrano et al., 2010). Remote sensing based water balance models offer an 1003 

important means to monitor droughts, since they are able to map the physical mechanisms 1004 

behind ecosystem water supply and demand at regional to global scales, and previous multi-1005 

sensor remote sensing studies have shown the potential for the estimation of regional terrestrial 1006 

water cycles (Pan et al., 2008; Sheffield et al., 2009). In related efforts, Zhang et al. (2019b) 1007 

developed the Standardized Moisture Anomaly Index (SZI) using a water-energy balance 1008 

approach that combined remote sensing estimates of precipitation, potential evaporation, and 1009 

runoff. A global evaluation of SZI indicated that it has strong performance for drought 1010 

monitoring in different climate regions and could physically capture surface water-energy 1011 

balances (Zhang et al., 2019a). However, while effectively capturing natural water balance 1012 

behavior is important, there are other elements that effect budget calculations. Anthropogenic 1013 

effects associated with land use change, irrigation efficiency, and rapid increases in population 1014 

can all effect the physical consistency of hydrological processes, yet the vast majority of water 1015 

budget based drought indices fail to consider these (Mukherjee et al., 2018). If truly integrated 1016 

approaches are to be developed, incorporation of the anthropogenic effects into multi-sensor 1017 

drought index approaches are required.  1018 
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5. Challenges  1019 

While there is general recognition that multi-sensor remote sensing presents a great opportunity 1020 

for integrated drought studies, it remains very much in its infancy, and multiple challenges to 1021 

effective implementation remain. Foremost amongst these is the inconsistency between variables 1022 

derived from different sensors, which may lead to uncertainties in multi-sensor integration 1023 

efforts. Differences arising from spatial, temporal, and spectral resolution, spatial extent, 1024 

overpass time, and length of record all contribute to complicate data synthesis. The recent 1025 

advances in new satellite data acquisition such as SIF serve as a notable example of the future 1026 

need for more focused efforts on data fusion techniques.  For example, current methods for 1027 

observing SIF require the exploitation of different features of the electromagnetic spectrum, 1028 

resulting in SIF observation across different platforms that are specific to different wavelengths 1029 

(Cendrero-Mateo et al., 2019; Mohammed et al., 2019), challenging data fusion techniques. 1030 

Additionally, SIF varies considerably with time, and thus moving from instantaneous to daily 1031 

SIF, together with any associated data fusion across platforms, may prove to be challenging. For 1032 

SIF, as well as other land surface variables including LST, observations at different times of the 1033 

day are critically needed (e.g., OCO3 and ECOSTRESS), as are geostationary missions (e.g., 1034 

GeoCarb and GOES). However, this is not a problem unique to drought studies. Indeed, it is an 1035 

area that is being actively explored in topics such as the development of remote sensing based 1036 

climate records and essential climate variables (Hamaguchi et al., 2018; McCabe et al., 2008; 1037 

Zhang, 2010), so much can be learned from these efforts. Related advances in data fusion and 1038 

merging approaches provide a natural pathway for progress in this area.  1039 

Another challenge relates to what precisely “drought severity” might mean for multi-1040 

sensor remote sensing based drought indices. Drought indices such as SPI and SPEI (McKee et 1041 
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al., 1993; Vicente-Serrano et al., 2010) define severity using drought frequency based on 1042 

probability distributions (e.g., gamma and log-logistic distribution) from long-term observations. 1043 

Other indices arbitrarily define drought severity based on the abnormal degree of the current 1044 

state compared with an historical calendric “normal” status over a period of years (without 1045 

calculating probability distributions). For instance, the vegetation condition index (VCI), 1046 

temperature condition index (TCI), and precipitation condition index (PCI) are widely used in 1047 

multi-sensor integrated drought index models, and are all based on the similar standardization 1048 

method, i.e., 
��,����,���

��,��	���,���
, where Vi,j represents the monthly PCI, TCI, and VCI for month i in 1049 

year j, and Vi,max and Vi,min denote the multiyear minimum and maximum PCI, TCI, and VCI, 1050 

respectively, for month i in year j. The arbitrary definition that VCI is less than 0.1 for extreme 1051 

drought may not be accurate. In addition, the same value of VCI, TCI, and PCI may not reflect 1052 

the same degree of drought anomaly, since the relationships between vegetation indices, soil 1053 

moisture, precipitation and temperature are rarely linear. The problem is also exacerbated by the 1054 

fact that remote sensing observations do not generally extend beyond 5-10 years of continuous 1055 

observation (sometimes, much less), meaning that anomaly records must be developed based on 1056 

multi-sensor integrations, which can introduce biases. Future multi-sensor remote sensing 1057 

drought monitoring studies may need to develop more objective, rather than arbitrary, definitions 1058 

of drought severity.  1059 

In addition, there is still a lack of cause-and-effect based drought monitoring studies. 1060 

Most current multi-sensor drought monitoring strategies are based on data-driven models, which 1061 

lack mechanisms detailing how droughts impact ecosystems. For example, few current drought 1062 

indices can directly reflect vegetation water stress. Due to the complexity of the Earth system, 1063 

there are multiple factors other than drought (e.g., insects, disease, and hail damage) that could 1064 
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cause ecosystem anomalies (Brown et al., 2008). The compound feature of hazards (e.g., drought 1065 

and heat waves) makes cause-and-effect studies even more needed in order to explicitly 1066 

understand drought characteristics and their underlying features (AghaKouchak et al., 2020; Hao 1067 

et al., 2018a; Zscheischler et al., 2020). Causal models based on multi-sensor remote sensing 1068 

data are needed to augment widely used linear correlation studies, since correlations do not 1069 

impart causality.   1070 

6. A road map for the future 1071 

6.1 Integrating new and emerging sensors/platforms into physical models 1072 

With an increasing level of both remote sensing and in-situ data availability (McCabe et al., 1073 

2017b), there are new and emerging opportunities that have the potential to further advance 1074 

multi-sensor remote sensing drought characterization. Physical models that integrate such data 1075 

are likely to improve our understanding of the complex mechanisms of immediate and lagged 1076 

drought effects across spatial, spectral and temporal scales. For example, hyperspectral remote 1077 

sensing presents an opportunity to more directly detect the plant physiological and biochemical 1078 

changes under water stress than traditional broad optical wavelengths. Hyperspectral remote 1079 

sensing missions under operation or development, including the Hyperspectral Imager Suite 1080 

(HISUI) (Iwasaki et al., 2011), High-resolution Temperature and Spectral Emissivity Mapping 1081 

(HiTeSEM) (Udelhoven et al., 2017), hyperspectral infrared imager (HyspIRI) (Abrams and 1082 

Hook, 2013), Environmental Mapping And Analysis Program (EnMAP) (Kaufmann et al., 2008), 1083 

Precursore Iperspettrale Della Missione Applicativa (PRISMA) (Labate et al., 2009), and 1084 

FLuorescence EXplorer (FLEX) (Mohammed et al., 2019) offer possibilities for regional to 1085 

global hyperspectral remote sensing for future multi-sensor drought studies.  1086 
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As noted in Section 2.7, hyperspectral based approaches offer just one of the pathways 1087 

for improving our drought observation capacity. Leveraging LiDAR observations also provides 1088 

opportunities for future multi-sensor drought characterization since LiDAR data have advantages 1089 

in mapping canopy vertical change and 3-D reproduction. The LiDAR on the Global Ecosystem 1090 

Dynamics Investigation (GEDI) instrument (Coyle et al., 2015), provides global LiDAR data 1091 

availability that is suitable for use in multi-sensor drought studies. Recent studies synergizing 1092 

LiDAR with hyperspectral data at regional scales have shown potential for multi-sensor early 1093 

warning of plant water stress (Degerickx et al., 2018; Sankey et al., 2018; Shivers et al., 2019; 1094 

Sobejano-Paz et al., 2020).  1095 

Drought studies based on Unmanned Aerial Systems (UAS) also present new 1096 

opportunities to improve our understanding of the underlying mechanisms and processes, as well 1097 

as in advancing our ability to proactively monitor and predict drought events as they occur and 1098 

develop. The benefits of incorporating UAS observations into multi-sensor drought studies 1099 

include the relatively low costs, sensor agnostic capability, and the on-demand capability 1100 

combined with high spatial resolution. These UAS-based advantages make it possible to detect 1101 

local-to-regional scale water deficit before they become widespread and this is particularly useful 1102 

for agriculture and forest management applications.  1103 

Likewise, leveraging geostationary satellite systems provides another opportunity for 1104 

advancing multi-sensor drought studies. The high temporal frequency of geostationary satellites 1105 

affords a unique platform for monitoring rapid-development in drought response (i.e., flash 1106 

droughts) (Otkin et al., 2013). Studies indicate that geostationary satellite systems such as 1107 

Himawari-8/9 showed great insight for agricultural drought monitoring (e.g., Hu et al. 2020b). 1108 

The upcoming Geostationary Carbon Cycle Observatory (GeoCarb) mission will provide CO2 1109 
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and SIF measurement at higher than 3-hour temporal resolution (Moore III et al., 2018), which 1110 

makes it possible to study large-scale drought impacts on carbon cycles and vegetation 1111 

photosynthesis at sub-daily scales. Fusing geostationary satellite observations with polar-orbiting 1112 

sensors would provide a pathway towards high spatiotemporal resolution of drought related 1113 

variables, following similar efforts with evaporation and land surface temperature (Smith et al., 1114 

2019b). 1115 

6.2 Establishing the spatiotemporal resolution needed to deliver effective drought 1116 

monitoring 1117 

Effective drought monitoring often require both high spatial and temporal resolution 1118 

observations (e.g., flash drought and vegetation photosynthesis dynamics under droughts). Over 1119 

the last decade, there have been a number of major international efforts to address both model 1120 

development and inter-comparison activities across various hydrological variables (McCabe et 1121 

al., 2016; Miralles et al., 2016) with an assessment of both limitations and advantages forming 1122 

key areas of focus (Chen et al., 2014; Liou and Kar, 2014; Yang et al., 2015; Zhang et al., 2016b). 1123 

One of the major limitations identified in many of those studies relates to the trade-off between 1124 

spatial resolution and temporal frequency: that is, a compromise is routinely required, whereby 1125 

you can have one, but only at the expense of the other (McCabe et al., 2017a). Observations with 1126 

both high spatial resolution and temporal frequency are urgently needed for a range of 1127 

applications. Emerging constellations of space-based data offer an enhanced observation 1128 

capacity for drought characterization that can overcome such constraints. For example, the 1129 

application of constellations such as ASCAT onboard the Metop-A, B, and C platforms can 1130 

provide sub-daily microwave soil moisture products, which are capable of leading the next 1131 

generation high spatiotemporal soil moisture observation (Peng et al., 2020). New opportunities 1132 
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such as the Multi-Radar Multi-Sensor (MRMS) system, which integrated about 180 operational 1133 

radars to provide a three dimensional radar mosaic with both high spatial (1km) and high 1134 

temporal (2 min) resolution is another good example, although the current MRMS only covers 1135 

the United States and Canada (Zhang et al., 2016a). New approaches exploiting constellations of 1136 

small CubeSat systems, provide an enhanced capacity that also collapses this spatiotemporal 1137 

constraint (Aragon et al., 2018). Figure 2 shows an example of the competing resolution of 1138 

CubeSat imagery alongside Sentinel-2 and Landsat, illustrating the spatial advantage. With its 1139 

fleet of more than 170 CubeSats, Planet is able to provide multi-spectral reflectance data at ~3 m 1140 

spatial and daily resolution (Houborg and McCabe, 2018b). While presenting clear 1141 

spatiotemporal advantages, the commercial-off-the-shelf sensors have lower radiometric quality 1142 

compared to more traditional satellite platforms (McCabe et al., 2017a; Ryu et al., 2019). 1143 

However, sensor harmonization strategies, such as the CubeSat Enabled Spatiotemporal 1144 

Enhancement Method (CESTEM) of Houborg and McCabe (2018a) have overcome such sensor 1145 

limitations, offering an analysis ready product comparable to Sentinel-2 and Landsat systems. 1146 

The approach has enabled atmospherically corrected high-spatiotemporal surface reflectance and 1147 

vegetation variables such as LAI and NDVI to be developed at unprecedented resolutions 1148 

(Houborg and McCabe, 2018a; Houborg and McCabe, 2018b). Such sensor fusion and 1149 

harmonization approaches offer much potential for drought studies and characterization in the 1150 

future. Geostationary platforms such as the Geostationary Operational Environmental Satellites 1151 

(GOES) also provide multi-sensor data opportunities for drought characterizations. The GOES 1152 

series of satellites (R, S, T, and U), which cover the western hemisphere (from the west coast of 1153 

Africa to New Zealand) could provide both multichannel passive imaging and near-infrared 1154 

optical observations with up to 1-min imagery research request (Goodman, 2020), making it 1155 
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possible for nearly continuous monitoring of drought impacts (e.g., vegetation photosynthesis) 1156 

for the covered regions. 1157 

 [Insert Figure 2 here] 1158 

6.3 Retrospective assessment of long-term multi-sensor remote sensing record 1159 

As noted in section 2, a suite of regional to global satellite observations of drought-related 1160 

variables have been collected from as early as the 1970s. However, those satellite observations 1161 

for drought-related variables often suffer from various uncertainties (e.g., data contamination, 1162 

sensor degradation, and model retrieval uncertainties) and result in data inconsistency (e.g., GPP 1163 

inconsistency revealed by O’Sullivan et al. (2020)). Such uncertainties may cause overestimation 1164 

or underestimation of drought impacts (Stocker et al., 2019; Zhang et al., 2017c). Retrospective 1165 

assessment of long-term remote sensing record for multi-sensor drought studies provide 1166 

opportunities to more accurately evaluate the drought impacts. In addition, the development of 1167 

multi-sensor remote sensing data fusion models has the potential to curate long-term remote 1168 

sensing records with high spatiotemporal resolutions. Retrospective drought studies based on the 1169 

long-term multi-sensor remote sensing record present opportunities to better evaluate the 1170 

underlying drought mechanisms and improving modelling accuracy.   1171 

6.4 Exploiting the new multi-sensor capabilities based on existing sensors 1172 

Together with new and emerging sensors/platforms (as noted in section 6.1), exploring novel 1173 

applications of existing sensor records also provides new opportunities for drought 1174 

characterization. Many remote sensing sensors originally designed for a specific application have 1175 

been subsequently utilized to produce new capabilities (so-called “signals of opportunity” as in 1176 

McCabe et al. (2017b)). For example, several atmospheric satellite sensors have been shown to 1177 

have the capability to measure vegetation SIF (Mohammed et al., 2019). Likewise, many of the 1178 
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existing microwave vegetation water content observations are a by-product of microwave soil 1179 

moisture retrievals, with a good example of the development of a long-term global multi-sensor 1180 

based VOD dataset (Liu et al. 2011). Likewise, other existing sensors also provide opportunities 1181 

for new multi-sensor capabilities of drought studies. The Global Navigation Satellite System 1182 

(GNSS), which was originally designed for navigation and communication, has illustrated the 1183 

potential for constellation-based precipitation monitoring and prediction (Asgarimehr et al., 2018; 1184 

Cardellach et al., 2019), with further studies exploring its capability for soil moisture retrieval. 1185 

Leveraging our existing networks of both in-situ and space-based sensors for such purposes 1186 

offers further data and needed insights to better understand drought.   1187 

6.5 Identifying the capabilities of drought prediction and early warning through target 1188 

experiments 1189 

Drought prediction and early warning are effective approaches to mitigate drought impacts. 1190 

Current drought prediction methods can be generally divided into statistical drought prediction 1191 

models, dynamical drought prediction approaches, or combinations of both (Hao et al., 2017). 1192 

All need multi-sensor remote sensing observations to improve large-scale drought prediction 1193 

reliabilities. For the statistical approaches, predictions require a long-term observation records to 1194 

build reliable historical relationship between predictors and observations. The dynamical method 1195 

is based on climate/hydrologic models linked to the physical processes of land-atmospheric 1196 

interactions (Hao et al., 2018b). Multi-sensor remote sensing can not only provide long-term 1197 

record for statistical prediction but also multiple components of observations for the land, ocean, 1198 

and atmospheric for better simulation of description of linked processes. Target experiments can 1199 

be performed to evaluate drought prediction models, providing evidence-based assessment of 1200 

drought-climate links and confidence in the chosen prediction approach.  Indeed, establishing the 1201 
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physical basis and/or empirical links between drought extent, severity and duration and changing 1202 

features of the climate system remains one of the outstanding questions where multi-sensor 1203 

methods may play an important role. Moreover, identifying the interlinked variables responsible 1204 

for driving the initiation, prolongation and completion of drought events may only be possible 1205 

through such studies. 1206 

6.6 Identifying the missing elements in drought assessment  1207 

Given the complexity of the various direct and indirect elements of drought impacts, drought 1208 

characterization demands interdisciplinary expertise. Over the decades of remote sensing-based 1209 

drought studies, some drought features have been relatively well studied, while other elements 1210 

remain less studied or even missing. For example, much of our understanding of remote sensing-1211 

based drought characterization has focused on natural ecosystems, while drought impacts on 1212 

social-hydrological systems (Sivapalan et al., 2012) remain less studied. Multi-sensor drought 1213 

studies that include human interventions (e.g., irrigation and water pumping to mitigate 1214 

agriculture drought) will provide opportunities to physically improve water budget models for 1215 

multi-sensor drought monitoring, providing capacity to not just monitor, but also manage the 1216 

water resource systems under drought conditions. Incorporating key aspects of socio-economic 1217 

impacts, social response, needs of governments, business/insurance companies is a much needed 1218 

future objective to translate the science into actionable response.  1219 

6.7 Leveraging new strategies of data processing 1220 

Relative to single sensor drought studies, one of the obvious differences for multi-sensor drought 1221 

studies is the increased data volumes with high dimensionality and metadata. Indeed, this is true 1222 

not just for future multi-sensor drought studies, but for future remote sensing applications in 1223 

general, due to the exponential increases in remote sensing data being produced. The data 1224 
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volume and velocity comes with particular challenges for data storage, management, transfer and 1225 

processing. In this regard, efficient drought identification and characterization strategies that 1226 

significantly reduce data redundancy and improve generality and transferability are critically 1227 

needed. Leveraging high-performance computing (HPC) and cloud-based resources (e.g., Google 1228 

Earth Engine, GEE) provide an obvious path to deal with the such storage and processing 1229 

challenges.  1230 

 1231 

7. Conclusions 1232 

Leveraging advances in our capacity to monitor and characterize droughts not only 1233 

improves our understanding of their initiation and development, but also provides a pathway for 1234 

improved conceptual understanding and physical description of the underlying process. Likewise, 1235 

enhancing our understanding and description of key vegetation-water-carbon interactions, which 1236 

is becoming increasingly viable due to opportunities provided by multi-sensor remote sensing, 1237 

may not only drive these needed improvements, but also provide a path towards developing 1238 

mechanism-based drought prediction. Exploiting the expanding array of remote sensing 1239 

platforms, whether in-situ, airborne or satellite-based, and recognizing that each system provides 1240 

independent insights and supporting evidence, is an obvious way to drive these needed 1241 

developments in process understanding. The expanding capacity of multi-sensor observations 1242 

also increases our capacity to develop the mechanistic descriptions required to deliver improved 1243 

drought monitoring, early warning and prediction systems in the coming decades. Such 1244 

knowledge will be central to disentangling the complex interplays that define the drought process. 1245 

Importantly, these knowledge advances are not just key to resolving the influences and 1246 

fingerprints of climate change on drought occurrence, severity and duration, but also in 1247 



56 | P a g e  

 

developing the socio-economic links that are desperately needed for drought monitoring and 1248 

prediction systems that can be applied towards planning, management and mitigation efforts.  1249 
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Table 1. Summary of major drought related satellite products that can be incorporated into integrated drought characterization. 2477 

 Data Temporal 

resolution 

Spatial 

resolution 

Coverage Data period References 

Precipitation CPC-Global Daily 0.5o Global 2006-present (Xie et al., 2010) 

GPCP Daily/Monthly 1o/2.5o Global 1979-present (Adler et al., 2003) 

GPM 30 min/3h/Daily 0.1o 60oS-

60oN 

2015-present (Hou et al., 2014; Hou 

et al., 2008) 

GSMaP 1h/Daily/Monthly 0.1o 60oS-

60oN 

2002-2012 (Kubota et al., 2007) 

CMAP Monthly 2.5o Global 1979-present (Xie and Arkin, 1997; 

Xie et al., 2007) 

TRMM 3h/Daily/Monthly 0.25o/0.5o 50oS-

50oN 

1998-2015 (Huffman et al., 2007) 

PERSIANN-CCS 30 min/3h/6h 0.04o 60oS-

60oN 

2003-present (Sorooshian et al., 

2000) 

PERSIANN-CDR 3h/6h/Daily 0.25o 60oS-

60oN 

1983-present (Ashouri et al., 2015) 

Land Surface 

Temperature 

Landsat  16 days 60 m Global 1999-present (Sobrino et al., 2004) 

MODIS Twice daily 0.01o Global 2000-present (Wan, 2008; Wan and 

Li, 1997) 

ASTER Twice daily 90 m Global 1999-present (Jiménez-Muñoz and 

Sobrino, 2009) 
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AVHRR Twice daily ~1.1 km Global 1978-present (Kerr et al., 1992) 

AATSR 35 days ~1 km Global 2004-present (Prata, 2002) 

Soil Moisture AMSR-E Daily 25 km Global 2002-2011 (Paloscia et al., 2006) 

AMSR2 Daily 25 km Global 2012-present (Kim et al., 2015) 

SSM/I Daily 25 km Global 1987-present (Paloscia et al., 2001) 

ASCAT 3 Days 12.5/25 km Global 2007-present (Brocca et al., 2011) 

SMAP 2-3 Days 3 /9 /36 km Global 2015-present (Das et al., 2010) 

SMOS 2-3 days  35 km Global 2010-present (Kerr et al., 2012) 

Groundwater/Surface 

water storage 

GRACE Monthly 220 km Global 2002-present (Ruzmaikin et al., 

2014) 

 GRACE-FO Monthly 180 km Global 2017-present (Flechtner et al., 2016) 

Snow MODIS 5 min/Daily/8 

days/Monthly 

1 km Global 2000-present (Hall et al., 2002) 

IMS Daily 1 km /4 

km/24 km 

0-90oN 1997-present (Helfrich et al., 2007) 

CMC Daily 24 km 0-90oN 1998-present (Brown et al., 2003) 

 AMSR-E Daily/5 days 25 km Global 2002-2011 (Chang and Rango, 

2000) 

 SSM/I Daily 25 km Global 1978-present (Pulliainen and 

Hallikainen, 2001) 

 AMSR2 Daily 25 km Global 2012-present (Kim et al., 2015) 

Evapotranspiration MODIS 8 Days 500 m Global 2000-present (Mu et al., 2011) 
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GLEAM Daily 0.25o Global 1980-2018 (Miralles et al., 2011) 

GLDAS 3 h/month 1o Global 1979-2016 (Liu et al., 2016a) 

METRIC 16 days 30 m Global 2011-present (Allen et al., 2007) 

Vegetation vigor AVHRR 

NDVI/EVI 

bi-week 0.083o Global 1982-present (Tucker et al., 2005) 

MODIS 

NDVI/EVI 

8 Days/Monthly 500 m Global 2000-present (Beck et al., 2006) 

Landsat NDVI 16 days 30 m Global 1972-present (Beck et al., 2011) 

MODIS LAI  8 days  500 m Global 2000-present (Myneni et al., 2002) 

SMOS VOD Daily ~40 km Global 2009-present (Vittucci et al., 2016) 

GOME-2 SIF Daily 0.5o Global 2007-present (Joiner et al., 2011) 

TROPOMI SIF Daily 7 

km×3.5km 

Global 2017-present (Köhler et al., 2018) 

OCO-2 SIF Daily 2.25 km × 

1.29 km 

Global 2014-present (Frankenberg et al., 

2014; Sun et al., 2017) 

SCIAMACHY 

SIF 

Daily/Monthly 1.5o/1o Global 2002-2012 (Köhler et al., 2014) 

MODIS GPP/NPP 8 days 500 m Global 2000-present (Zhao et al., 2005) 

2478 

2479 

2480 
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Table 2. Synthesis from the last decade summarizing various approaches for the development of multi-sensor integrated drought 2481 

indices. 2482 

Model 

Type Index Data References 

Data 

driven 

models 

Simple 

linear 

combination 

models 

MIDI Precipitation (TRMM), Soil moisture (AMSR-E), LST (AMSR-E) 

(Zhang and Jia, 

2013) 

SDCI 

Precipitation (TRMM), Vegetation (MODIS NDVI), LST 

(MODIS) (Rhee et al., 2010) 

ADI 

Vegetation (AVHRR NDVI, GPP), Soil moisture (ASCAT, 

AMSR-E, SMMR, SSM/I) 

(Wang et al., 

2018) 

Optimal SDCI 

Precipitation (TRMM, GSMaP), Vegetation (MODIS NDVI), 

LST (MODIS) (Guo et al., 2019) 

OVDI 

Precipitation (TRMM), Vegetation (MODIS NDVI), LST 

(MODIS), Soil moisture (AMSR-E) (Hao et al., 2015) 

OMDI Precipitation (TRMM), LST (MODIS), Soil moisture (AMSR-E) (Hao et al., 2015) 

PCA 

models SDI 

Precipitation (TRMM), LST (MODIS), Vegetation (MODIS 

NDVI) (Du et al., 2013) 

 IDCI 

Precipitation (TRMM), LST (MODIS), Vegetation (MODIS 

NDVI) (Meng et al., 2016) 
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Machine 

learning 

models 

HSMDI Precipitaiton (TRMM), LST (MODIS), Vegetation (MODIS 

NDVI, EVI, LAI), ET (MODIS), Soil moisture (AMSR-E) 

(Park et al., 2017) 

CMDI Precipitation (TRMM), LST (MODIS), Vegetation (MODIS 

NDVI), ET (MODIS) 

(Han et al., 2019) 

ISDI Vegetation (MODIS), LST (MODIS), Land cover (IGBP) (Wu et al., 2015) 

VPID Precipitation (GPM, IMERG), Vegetation (VIIRS), Soil moisture 

(METOP, ASCAT), LST (S-NPP), ET (MODIS) 

(Son et al., 2021) 

Fuzzy 

weighting 

models 

Nonparametric-

SPI 

Precipitation (CHOMPS, GPCP, CMAP, PERSIANN-CD, 

TRMM, GLDAS-2, MERRA-2) 

(Alizadeh and 

Nikoo, 2018) 

GIIDI Precipitation (TRMM), Vegetation (MODIS NDVI), LST 

(MODIS), Soil moisture (AMSR-E) 

(Jiao et al., 2019b) 

Process 

based 

models PADI 

Precipitation (GPCC), Vegetation (AVHRR NDVI), Soil moisture 

(GLDAS) 

(Zhang et al., 

2017b) 

Water 

balance 

models SZI 

Precipitation (GLDAS-2), ET (GLDAS-2), PET (GLDAS-2), 

Runoff (GLDAS-2) 

(Zhang et al., 

2019a) 
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2483 

Figure 1. Conceptual diagram of drought impacts and the potential ecosystem feedbacks under 2484 

global warming. Brown arrows in indicate the components of drought impacts and how global 2485 

warming potentially exacerbate drought; blue arrows indicate potential drought feedbacks to 2486 

climate.  2487 

2488 

2489 
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 2490 

Figure 2. Natural color representation of an agricultural area along the Nile River near Banha, 2491 

Egypt that demonstrates the spatial resolution advantage of CubeSats. Panel a) shows a 3 m 2492 

spatial resolution CubeSat image from Planet, where small agricultural fields and urban 2493 

structures can be discerned. Panels b) to d) show a zoomed-in view of the area contained by the 2494 

cyan rectangle for b) Landsat 8, c) Sentinel-2A and d) Planet at 30, 10, and 3 m resolutions, 2495 

respectively. The Landsat image was acquired on March 31,2020, and both Planet and Sentinel-2496 

2A images were acquired on March 29, 2020.  2497 

 2498 

 2499 
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Acronym dictionary: 2500 

AGC: Aboveground biomass carbon 

AMS: American Meteorological Society 

AOD: Aerosol optical depth 

ASCAT: Advanced Scatterometer 

AVHRR: Advanced Very High Resolution Radiometer 

BRT: Boosted regression trees 

CART: Classification and regression tree 

CCI: Climate Change Initiative 

CDMI: Combined drought monitoring index 

COT: Cloud optical thickness 

ECOSTRESS: 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space 
Station  

EDDI: Evaporative demand drought index 

ENSO: El Nino-Southern Oscillation 

EPMC: Evolution Process-based Multi-sensor Collaboration 

ERSATSR: European Remote Sensing Satellite–Along Track Scanning Radiometer 

ESA: European Space Agency 

ESI: Evaporative Stress Index 

FDA: flexible discriminant analysis 

FIDI: Fuzzy Integrated Drought Index 

FLEX: FLuorescence EXplorer 

fPAR: fraction of absorbed photosynthetic active radiation 

GEDI Global Ecosystem Dynamics Investigation 

GEO: Geostationary Earth orbit 

GFED: Global Fire Emissions Database 

GNSS: Global Navigation Satellite System 

GPCP: Global Precipitation Climatology Project 

GPP: Gross primary productivity 

GRACE: Gravity Recovery and Climate Experiment 

GWR: Geographically weighted regression 

HiFIS : High-fidelity imaging spectroscopy 

HLS: Harmonized Landsat and Sentinel-2  

HSMDI: High resolution Soil Moisture Drought Index 

ICESat-2: Ice, cloud, and land elevation satellite-2 

IDI: Integrated Drought Index 

IMS: Ice Mapping System 

INFORM: Invertible forest reflectance model 

InSAR: Interferometry of Synthetic Aperture Radar 

ISDI: Integrated Surface Drought Index 
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JAXA: Japan Aerospace Exploration Agency 

KECA: Kernel entropy component analysis 

LAI: Leaf area index 

LEO: Low Earth orbit 

LFMC: Live fuel moisture content 

LiDAR: Light detection and ranging 

LST: Land surface temperature 

MAIAC: Multi-Angle Implementation of Atmospheric Correction 

MARS: Multivariate adaptive regression splines 

MIDI: Microwave Integrated Drought Index 

MODIS: Moderate Resolution Imaging Spectroradiometer 

MRMS: Multi-Radar Multi-Sensor 

NASA: National Aeronautics and Space Administration 

NDII: Normalized Difference Infrared Index 

NDVI: Normalized Difference Vegetation Index 

NDWI: Normalized Difference Water Index 

NIR: Near infrared radiation 

NIRV: Near-infrared reflectance of vegetation 

NISAR: NASA-ISRO Synthetic Aperture Radar 

NLDAS-2: North American Land Data Assimilation System-2  

NOAA: National Oceanic and Atmospheric Administration 

OMDI: Optimized Meteorological Drought Index 

OVDI: Optimized Vegetation Drought Index 

PADI: Process-based Accumulated Drought Index 

PAR: Photosynthetically active radiation 

PCA: Principal component analysis 

PCI: Precipitation Condition Index 

PDSI: Palmer drought severity index 

PERSIANN: 
Precipitation Estimation from Remotely Sensed Information using 
Artificial Neural Networks 

PHDI: Palmer Hydrologic Drought Index 

PLSR:  Partial least squares regression 

PRI: Photochemical reflectance index 

QuickDRI: Quick Drought Response Index 

RCI: Rapid change index 

RF: Random forests 

RTM: Radiative transfer models 

SDCI: Scaled Drought Condition Index 

SDI: Synthesized drought index 

SESR: Standardized evaporative stress ratio 

SIF:  Solar-induced chlorophyll fluorescence 
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SKPCA: Sparse KPCA 

SMCI: Soil Moisture Condition Index 

SMMR: Scanning Multi-channel Microwave Radiometer 

SMRI: Standardized Snow Melt and Rain Index 

SPEI: Standardized Precipitation Evapotranspiration Index  

SPI: Standardized Precipitation Index 

SSM/I: Special Sensor Microwave Imager 

SVI: Standardized Vegetation Index 

SVM: Support vector machines 

SWSI: Surface Water Supply Index 

SZI: Standardized Moisture Anomaly Index 

Tandem-X: TerraSAR-X add-on for Digital Elevation Measurement 

TCI: Temperature Condition Index 

TRMM: Tropical Rainfall Measuring Mission 

TWS: Terrestrial water storage 

USGS: United States Geological Survey 

VCI: Vegetation condition index 

VegDRI: Vegetation Drought Response Index  

VIS/IR: Visible and infrared radiation 

VOD: Vegetation optical depth 

VPD: Vapor pressure deficit 
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