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Abstract

Purpose of Review: Emerging data have suggested that β-cell dysfunction may exacerbate the 

development and progression of type 1 diabetes (T1D). In this review, we highlight clinical and 

preclinical studies suggesting a role for β-cell dysfunction during the evolution of T1D and 

suggest agents that may promote β-cell health in T1D.

Recent Findings: Metabolic abnormalities exist years before development of hyperglycemia 

and exhibit a reproducible pattern reflecting progressive deterioration of β-cell function and 

increases in β-cell stress and death. Preclinical studies indicate that T1D may be prevented by 

modification of pathways impacting intrinsic β-cell stress and antigen presentation. Recent 

findings suggest that differences in metabolic phenotypes and β-cell stress may reflect differing 

endotypes of T1D. Multiple pathways representing potential drug targets have been identified, but 

most remain to be tested in human populations with pre-clinical disease.

Summary: This cumulative body of work shows clear evidence that β-cell stress, dysfunction, 

and death are harbingers of impending T1D and likely contribute to progression of disease and 

insulin deficiency. Treatment with agents targeting β-cell health could augment interventions with 

immunomodulatory therapies but will need to be tested in intervention studies with endpoints 

carefully designed to capture changes in β-cell function and health.
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Introduction

Type 1 diabetes (T1D) is defined classically as insulin deficiency arising from autoimmune 

destruction of the pancreatic β cells (1). However, recent studies in both preclinical model 

systems and humans have reinforced the idea that the β cell actively contributes to disease 

pathogenesis as well as its own demise in T1D (2, 3), indicating a need to refine classic 

paradigms of T1D pathogenesis. Moreover, trials of therapies focused solely on modulating 

the immune system have had limited success in normalizing insulin secretion (1), suggesting 

that efforts for disease modification may benefit by combining immune therapies with 

agents that improve β-cell health. Below, we highlight studies identifying a role for β-cell 

dysfunction during T1D progression, including metabolic studies in humans and data from 

preclinical models. We also highlight potential biomarkers capable of reflecting β-cell 

health, and identify next steps for application of potential therapeutics targeting the β cell in 

T1D.

β-cell Dysfunction During T1D Development in Humans

The majority of our knowledge about the metabolic progression of T1D comes from 

longitudinal cohort studies of individuals with high genetic risk, where β-cell function has 

been measured using oral or IV glucose tolerance tests (OGTTs or IVGTTs, respectively) 

(4-6). Results from these studies suggest a framework for declining β-cell function that 

encompasses at least three metabolic phases prior to the onset of clinical, or Stage 3 T1D 

(7).

The first appreciable defect observed in at-risk individuals appears to be a loss of early C-

peptide secretion that can be documented at the time of seroconversion to islet autoantibody 

positivity (Aab+). The Type I Diabetes Prediction and Prevention (DIPP) study followed 

Finnish children with high-risk HLA alleles pre and post-seroconversion. IVGTTs 

performed at the time of seroconversion showed that 42% of 52 children with newly 

identified islet cell autoantibodies had first phase insulin responses (FPIR) below the 5th 

percentile. Within this cohort, progressors to T1D had significantly lower FPIR documented 

as early as 4-6 years prior to T1D diagnosis (8). Similar results were seen in Aab+ relatives 

monitored in the TrialNet Pathway to Prevention (PTP) Cohort for at least 5 years before 

diabetes onset. While PTP participants are identified as Aab+ in a cross-sectional manner, 

early C-peptide responses were reduced in progressors at study entry by 40%, as compared 

to autoantibody negative relatives, on average 6.5 years before diagnosis (9). Consistent with 

this observation, alterations in early C-peptide secretion have been used to stratify Aab+ 

individuals with the highest risk of T1D. In the European Nicotinamide Diabetes 

Intervention Trial (ENDIT) reduced FPIR was predictive for diabetes development over a 

median 4.95 years of follow-up (10).
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These initial defects appear to be followed by a second phase of metabolic progression that 

typically lasts until about 2 years before T1D onset. During this period, overall glycemia 

worsens gradually, whereas average OGTT C-peptide responses can appear largely stable. 

However, there are important changes in the architecture of C-peptide responses during this 

period. Analysis of placebo-treated subjects in the Diabetes Prevention Trial-Type 1 (DPT-1) 

and in PTP participants demonstrate reciprocal increases in late C-peptide responses during 

the OGTT that follow earlier losses of first phase C-peptide responses (9, 11, 12). Whether 

these changes reflect dysfunctional insulin secretion or an attempt at compensation by the by 

the β cell is not clear.

Finally, there is evidence for a third metabolic phase that begins around two years before the 

onset of Stage 3 T1D. This phase is characterized by significant reductions in C-peptide 

secretion and rising glycemia, with accelerated metabolic decompensation in the peri-onset 

period (defined as 6 months prior to diagnosis). Analysis of data from DPT-1 and PTP 

cohorts indicates there are reductions in both early and late C-peptide responses as well as 

evidence of reduced β-cell glucose sensitivity, followed by significantly rising blood glucose 

levels culminating in the need for exogenous insulin therapy (9, 13, 14).

Pancreas Imaging

A longstanding question is whether these metabolic changes primarily reflect reductions in 

β-cell mass or β-cell function. Comparisons between physiologic studies aimed at 

quantifying β-cell function in living subjects and histologic studies in organ donors with 

T1D highlight an important disconnect between β-cell mass and function in Aab+ 

individuals as well as in early stage and established T1D (16-19). In contrast to physiologic 

assessment of function, efforts to measure β-cell mass have proven challenging in humans. 

However, two groups recently reported reduced pancreas volume on magnetic resonance 

imaging relative in persons with T1D and nondiabetic Aab+ individuals compared to 

nondiabetic controls (20, 21). While these changes could be acquired, autoantibody negative 

first-degree relatives of individuals with diabetes also showed reduced pancreas volume 

relative to controls, suggesting inherited differences in whole-pancreas physiology (22). 

Along these lines, several studies have suggested that defects in β-cell function may be 

present in some relatives without detectable islet autoimmunity (13, 23, 24). Taken together, 

these findings indicate there could be differences in β-cell reserve that are independent of 

changes in autoimmunity in some individuals. Investigations defining the mechanistic link 

between pancreatic exocrine and β-cell mass and function and longitudinal studies of 

pancreas volume in at-risk populations are needed to better understand the relevance of these 

findings.

Preclinical Studies Suggesting Mechanistic Contributions of β-cell 

Dysfunction to T1D Development

The non-obese diabetic (NOD) mouse model has been a gold standard preclinical model to 

study the immunobiology of T1D for more than 30 years (25). These animals typically 

develop T1D after 12 weeks of age, but show signs of insulitis as early as the first 3-4 weeks 

after birth that intensifies gradually with age (26). Detailed analyses of β-cell function 
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during the prediabetic phase have revealed patterns that parallel human data, including 

evidence that loss of β-cell function precedes loss of mass and that changes in mass and 

function are not always linked (26-28).

The molecular mechanisms giving rise to loss of β-cell function in prediabetic NOD mice 

provide important insight into potential disease-modifying approaches to preventing T1D. 

Because β cells are the only significant source of circulating insulin, they depend heavily 

upon the endoplasmic reticulum (ER) to ensure that proteins, particularly insulin, are 

produced and folded efficiently. As such, even minor perturbations that alter homeostasis in 

calcium handling, oxidation-reduction balance, or insulin demand can impose stresses that 

lead to ER decompensation or stress. The consequence of ER stress is a failure to efficiently 

produce and process relevant proteins (29). During the pre-diabetic phase in NOD mice, 

there is increasing development of ER stress in islets as evidenced by elevation in genes 

corresponding to the unfolded protein response (UPR) (Hspa5, Xbp1s, and Ddit3), an 

increase in activation of the three molecular arms of the UPR (ATF6, IRE1α, PERK), a 

suppression of mRNA translation initiation, and a striking increase in unprocessed 

proinsulin in the circulation (27, 30). The administration of a protein folding chaperone, 

taurine-conjugated ursodeoxycholic acid (TUDCA), to NOD mice alleviated islet ER stress, 

enhanced insulin secretion, and reduced T1D incidence (31). More recently, it was shown 

that β-cell-specific deletion of one of the UPR arms, IRE1α, strikingly reduced insulitis and 

prevented the onset of T1D in NOD mice (30), thereby implicating directly a role for the β-

cell UPR in propagating the autoimmune response and progression to frank diabetes. The 

nature of the trigger for ER stress in β cells has remained elusive, although it is plausible 

that an early type 1 interferon response (e.g. from viral infections) or proinflammatory 

cytokines (IL-1β, IFN-γ, TNF-α) from early invading innate immune cells might serve as 

potential sources (32, 33).

Despite these observations, it remains unclear how activation of ER stress and the UPR 

might directly initiate or propagate autoimmunity. Recent studies have begun to elucidate a 

model, wherein unfolded or improperly processed proteins that are expressed or released by 

β cells have the potential to serve as neo-antigens that trigger an adaptive immune response. 

In one study, it was demonstrated that calcium-mediated activation of tissue 

transglutaminase 2 (tTG2) in human islets by ER stress led to the generation of deamidated 

proteins that served as neoepitopes (34). Using a peptidomics/transcriptomics strategy, islet 

stress elicited by proinflammatory cytokines led to association of altered peptides from a 

host of β-cell proteins and identified recognition of these altered peptides by CD8 cytotoxic 

T cells (35).

Biomarkers of β-cell Health in Type 1 Diabetes

Collectively, findings from preclinical and human studies highlight a prominent role for the 

β cells in T1D pathogenesis and raise the possibility that interventions targeting β cells 

could have therapeutic utility in diabetes prevention strategies. However, given limitations in 

our ability to image the β cell and challenges associated with the widespread application of 

OGTT and IVGTT, there is a need for reliable circulating biomarkers that provide a readout 

of β-cell stress and mass (reviewed in detail in (36)). Below we highlight examples of 
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potential biomarkers, with a summary of markers assayed in human populations with or at-

risk for T1D in Table 1.

Circulating Proinsulin

As noted above, under circumstances of β-cell stress where whole body insulin demand 

exceeds β-cell secretory capability, the machinery for proinsulin processing can become 

overwhelmed. Increased expression of proinsulin relative to insulin has been shown in islets 

from donors with autoantibody positivity and recent onset and longstanding T1D (37-39). 

These changes can be reflected in the circulation as increased secretion of proinsulin relative 

to mature insulin or c-peptide (proinsulin:C-peptide ratios or PI:C) (27, 40). Elevated serum 

PI:C levels were associated with increased progression to T1D in Aab+ relatives, suggesting 

this biomarker may also complement risk prediction (41-43). At the time of T1D diagnosis, 

PI:C is very elevated relative to nondiabetic controls (44, 45). Despite improved C-peptide 

secretion, ratios in children remain elevated during the honeymoon or clinical remission, and 

these increases often persist into longstanding T1D, suggesting persistent β-cell stress 

(45-47). Older studies have shown that PI:C may also be increased in some autoantibody 

negative relatives of individuals with T1D (48-50).

PI:C ratios may be also useful in dissecting T1D endotypes, with more pronounced 

aberrations in processing (43, 46). A high PI:C ratio was most strongly associated with 

progression to diabetes in younger (≤10 YO) Aab+ children, and individuals with 

longstanding T1D diagnosed with T1D at younger ages (<7 YO) are more likely to have 

high PI:C ratios compared to those diagnosed in later childhood or adulthood (43, 46). 

Interestingly, pancreas sections from young pediatric donors with T1D also show a strong 

association between islet insulitis profiles exhibiting increased B lymphocytes and aberrant 

proinsulin processing. Islets exhibiting these phenotypes were most common in samples 

from younger pediatric donors (46). Finally, ratios may also be helpful in identifying 

treatment responders, as older work showed that an elevated PI:C was linked to a more 

pronounced remission after cyclosporin treatment (44).

Cell free preproinsulin DNA

Because β-cells demethylate CpG sites on the gene encoding preproinsulin (INS) to increase 

expression of its mRNA, and dying cells release their genetic material extracellularly, β-cell 

death results in increases in cell free unmethylated INS DNA (51-53). Multiple groups have 

developed assays showing that circulating INS DNA increases acutely with β-cell death in 

preclinical models and after islet transplants. Clinical data suggest that circulating 

unmethylated INS DNA is increased at T1D diagnosis but decreases to near normal during 

clinical remission, followed by a slow increase to milder elevations in longstanding T1D 

(54-57). Cross-sectional comparisons between Aab+ progressors and nonprogressors were 

less drastic; although very high risk Aab+ positive dysglycemic individuals have clearer 

elevations (55). Longitudinal analysis of Aab+ individuals suggests that increases in 

unmethylated INS DNA over time are associated with younger age of T1D onset (58).

Several limitations have made implementation of this biomarker challenging. Firstly, INS 
DNA in circulation has a relatively short (~2.2 hour) half-life, therefore, cross-sectional 
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analyses may miss transient elevations if β-cell death exhibits a relapsing/remitting pattern 

as T1D progresses (59). Sensitivity and variability of signal to detect small increases may be 

compromised with smaller sample volumes (60). Additionally, analyses have shown that 

other islet cells exhibit unmethylated CpG sites around the INS gene locus, and even after 

pancreatectomy, low-level background signal exists, suggesting that a subset of other cell 

types also exhibit unmethylation of the INS gene locus (59, 61, 62). Despite these 

limitations, current assays appear to be able to discriminate between differences in high 

levels of acute β-cell death or turnover. Important steps moving forward will be to quantify 

cumulative increases in INS DNA over time, validate assays using additional differentially 

methylated genes to improve signal specificity, and determine if circulating levels can be 

useful as alternative endpoints in intervention trials.

Extracellular noncoding RNAs

Numerous groups have described alterations in extracellular noncoding RNAs, most 

commonly circulating microRNAs (miRNAs), in clinical populations relevant to T1D 

(63-73). Several reports have specifically described increased serum or plasma levels of 

miRNAs highly expressed or enriched in the β cell as reflecting β-cell loss or reductions in 

β-cell mass (63, 73). However, reports often vary between groups (63-72). This is likely 

related in part to methodologic differences in sample collection and storage, miRNA 

isolation and quantification, and normalization strategies. Another key limitation is the lack 

of truly β-cell-specific noncoding RNAs, so that even RNAs consistently released by the β 
cell in the microenvironment of T1D can be obscured by varying background signal from 

other cell types. One potential solution could be interrogation of RNA cargo within 

circulating extracellular vesicles or attached to binding proteins that are derived from β cells 

or islets (74, 75). However, to date, this has not been successfully reported using native 

islets.

Interventions targeting β-cell health and function in humans with or at-risk 

for T1D

Although a sustainable impact on the natural history of T1D will likely require 

immunomodulatory therapy, a multi-drug regimen that includes an agent that targets β-cell 

health could feasibly improve outcomes of treatment with immunomodulatory therapies 

alone. However, several challenges remain to be addressed. The first involves identification 

of an optimal agent to target β-cell stress pathways. Although several drugs increase insulin 

secretion in T2D, therapies working solely as secretagogues (such as sulfonylureas) may 

have negative impacts on long-term β-cell survival in T1D (76). Agents specifically 

targeting the β cell are lacking, although multiple drugs may nonspecifically impact β-cell 

health or β-cell stress pathways (Table 2). Conjugation to ligands for receptors enriched on 

β-cell surfaces, such as the glucagon-like peptide-1 receptor, is an alternative approach of 

great interest, which would allow for targeted drug delivery while minimizing extra-islet 

effects (77). Another important question to address, is the optimal endotypes for treatment 

and optimal timing of intervention, as treatment after irremediable progression of β-cell 

dysfunction may show little benefit. Alternatively, β-cell-targeted treatment of individuals 

without signs of β-cell stress or dysfunction may not be needed. Finally, proof-of-principle 
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trials utilizing targets aimed at β-cell health should be designed to optimally quantify 

informative metabolic endpoints, such as insulin resistance, first-phase insulin secretion, and 

functional β-cell mass, all which require more invasive testing than the standard 2-hour 

OGTT, as well as the application of carefully curated biomarkers.

Conclusions

Studies in humans and pre-clinical models show clear evidence that β-cell stress, 

dysfunction, and death are harbingers of impending T1D and likely contribute to disease 

progression. These data suggest that treatment with agents targeting β-cell health could 

augment interventions with immunomodulatory therapies. Important next steps in the field 

will involve intervention studies using therapeutic agents that target β cells, with endpoints 

carefully designed to capture changes in β-cell function and health. Successful 

implementation of such studies could ultimately lead to combination regimens for T1D 

prevention and treatment, which are better able to promote long-term β-cell survival in T1D.
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Key Bullet Points:

• Both pre-clinical and clinical studies show clear evidence that β-cell stress, 

dysfunction, and death are harbingers of impending T1D and likely contribute 

to disease progression.

• Circulating biomarkers that provide a readout of β-cell stress and mass can 

provide important information between the relationship of β-cell health with 

T1D progression.

• Potential candidate agents targeting β-cell health are highlighted; such agents 

could augment interventions with immunomodulatory therapies.

• Careful study design to include assessments of β-cell health and function will 

be necessary to understand impacts of interventions targeting these pathways.
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Table 1:

Biomarkers of β-cell Health that Have Been Tested in Clinical Samples from population with or at-risk for 

T1D

Biomarker Proposed β-cell Intramolecular
Process Represented by
Increases in Circulation

Clinical Findings

Proinsulin/C-
peptide or Insulin 
Ratio

• Altered prohormone 
processing reflecting β-cell 
stress

• Altered processing associated with islet inflammatory 
stress as well as altered insulitis profiles in recent onset 
T1D (CD20 high/increased B cell profile) (39, 46).

• Increased ratios associated with increased progression 
(41-43).

• Ratios higher in younger children before and after T1D 
onset (43, 46).

• Ratios increased during honeymoon in children, but 
reduced during honeymoon period in adults (44, 45, 
78).

• Persistent detectable proinsulin in over half of 
individuals with longstanding T1D, even in absence of 
detectable C-peptide, suggesting ongoing β-cell stress 
(43, 46).

Pro-Islet Amyloid 
Polypeptide 
(ProIAPP)/Mature 
IAPP

• Altered prohormone 
processing reflecting β-cell 
stress

• Increased in recent onset T1D (79).

Cell free 
unmethylated 
preproinsulin DNA

• Extracellular release of cellular 
DNA reflecting β-cell death/
turnover

• Increased in Aab+ progressors relative to Aab− 
controls. Very increased in Aab+ dysglycemic 
individuals. Higher levels associated with younger age 
of T1D onset (55, 58).

• Increased at the time of T1D diagnosis (54-56).

• Levels normalize during clinical remission (54).

• Lower elevations may be present in longstanding T1D 
(57).

Cell free 
unmethylated 
amylin DNA

• Extracellular release of cellular 
DNA reflecting β-cell death/
turnover

• Increased in recent onset T1D (80).

miR-375 • Extracellular nucleic acid 
release reflecting β-cell death/
turnover

• Varying data regarding increased levels in humans with 
new, recent onset, and longstanding T1D compared to 
controls (64, 65, 67, 68).

• Not increased in Aab+ individuals (70).

miR-204 • Extracellular nucleic acid 
release reflecting β-cell death/
turnover

• Increased in Aab+ individuals and recent onset T1D 
(73).

miR-21 • miR-21 transcription increased 
during islet inflammatory 
stress

• miR-21-5p with increased 
release in beta cell 
extracellular vesicles (EVs) 
under conditions of islet 
inflammatory stress

• Serum EV miR-21-5p increased in new onset T1D 
(66).

• Cell-free serum miR-21-5p increased in longstanding 
T1D (68, 69).

• Cell-free serum miR-21-3p increased in AAb+ 
progressors and new-onset T1D (66, 70).
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Biomarker Proposed β-cell Intramolecular
Process Represented by
Increases in Circulation

Clinical Findings

Insulin-like Growth 
Factor 1 (IGF1) and 
IGF2

• Effects of insulin action • Decreased in Aab+ individuals (81, 82).

• IGF1 decreases over time in multiple Aab+ individuals 
and after T1D diagnoses (81).

Glutamate 
decarboxylase 65 
kDA (GAD65)

• Extracellular release reflecting 
β-cell death/turnover

• Identified in exosomes isolated 
from human islets treated with 
cytokines (83)

• Early increases after islet transplants in GAD- 
individuals with T1D associated with poor graft 
outcomes (84, 85).
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Table 2:

Potential Candidate Agents for Interventions Targeting β-cell Health

Therapeutic Class Mechanism of Action on β-cell 
Health

Considerations

Thiazolidinediones (86) Act on peroxisome proliferator-
activated receptors (PPAR) 
receptors to improve insulin 
sensitivity and decrease 
functional demand on β-cells; 
Directly increase β-cell 
antioxidant expression, enhance 
unfolded protein response and 
improve ER calcium levels in 
preclinical models (87-89).

• Rosiglitazone or rosiglitazone+insulin treatment improved β-
cell function compared to sulfonylureas or insulin alone in 54 
latent autoimmune diabetes patients (90).

• Potential side effects including weight gain, edema and heart 
failure, decreased bone mineral density in women, possible 
increased risk of bladder cancer with pioglitazone, increased 
cardiovascular events with rosiglitazone.

• Development of newer agents targeting PPAR receptors may 
allow for effects with decreased side effect profile.

Glucagon-like 
peptide-1-based 
therapies (GLP-1 
agonists and dipeptidyl 
peptidase 4 inhibitors 
(91)

Potentiate insulin secretion, 
delay gastric emptying to 
decrease glycemia. Directly 
increase β-cell regeneration, 
differentiation, and proliferation 
in preclinical models (92, 93).

• Exendin-4 administration reduced meal-associated glycemic 
excursions in 8 adults with T1D (94).

• Acute potentiation of insulin secretion may not be optimal for 
long-term β-cell health.

• Side effects including nausea, weight loss, possible association 
with pancreatitis and/or pancreatic cancer, association with 
thyroid C cell tumors in rats.

Dual sodium glucose 
cotransporter (SGLT2) 
Inhibitors (95)

Decrease functional demand on 
β cells by improving glycemia.

• Treatment associated with improved glycemic control and 
reduced insulin doses in meta-analysis of randomized control 
trials (RCTs) in 3238 adults with T1D (96).

• Side effects including increased risk of diabetic ketoacidosis, 
and increased risk of genital infections which may be 
exacerbated by concurrent immunotherapy.

Intensive insulin 
therapy

Allow for period of β cell rest 
and potential recovery by 
obviating need for intrinsic 
insulin secretion

• Supported by idea that patients undergo clinical remission/
honeymoon period after starting insulin (97).

• Diabetes Prevention Trial-Type 1 showed no effect of twice 
daily subcutaneous ultralente insulin and yearly IV insulin 
infusion on diabetes progression in 339 Aab+ positive relatives 
(98).

• DirecNet RCT showed no effect of ~3 days inpatient hybrid 
closed loop therapy followed by sensor augmented pump 
therapy (vs. usual care) in 68 children with new-onset T1D (99).

• Multicenter study underway testing impact of longer-term use of 
more modern hybrid closed loop systems to optimize dosing and 
time-in-range (CLVer mullti-center study NCT04233034).

Pharmacologic 
inhibition of insulin 
secretion (diazoxide 
and somatostatin 
analogs)(100)

Allows for period of β-cell rest 
and potential recovery by 
inhibiting insulin secretion 
through binding of KATP 

channels or somatostatin 
receptors.

• RCT showed 3-month diazoxide treatment of 20 Swedish adults 
with new-onset T1D resulted in increased fasting C-peptide at 
12 and 18 months of follow-up (101).

• RCT showed 3-month diazoxide treatment of 56 Swedish 
children with new-onset T1D resulted in increased meal 
stimulated C-peptide at 6-12 months of follow-up, but 
improvement was lost by 24 months of follow-up (102).

• RCT showed no β-cell function effects of 6 months of lower-
dose intermittent diazoxide treatment in 41 adults with recent 
onset T1D (103).

• Side effects of temporarily worsened β-cell function, diazoxide 
with severe side effects including hypertrichosis and risk of 
pulmonary hypertension. Octreotide with nonspecific 
somatostatin receptor activity.

Verapamil (104) Reduces β-cell calcium entry, 
reduces transcription of 

• Favorable side effect profile.
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Therapeutic Class Mechanism of Action on β-cell 
Health

Considerations

Thioredoxin-Interacting Protein 
(TXNIP) to attenuate β-cell 
oxidative stress in preclinical 
models (105).

• 12-month treatment associated with increased mixed meal C-
peptide AUC in recent onset T1D in 32 adult RCT (104).

• Larger follow up study underway in children in multiple arm 
trial with hybrid closed loop therapy (CLVer mullti-center study 
NCT04233034).

Tyrosine kinase 
inhibitors

In addition to effects on immune 
cell tolerance, may have direct 
impact to inhibit β-cell platelet-
derived growth factor receptor 
intrinsic inflammatory response 
signaling and reduce β-cell 
endoplasmic reticulum stress 
(106, 107).

• Imatinib mesylate RCT in 67 adults with recent onset T1D 
(NCT01781975) reportedly with increased MMTT C-peptide 
AUC after 12 months of treatment.

Molecular chaperone 
proteins

Chemical mitigation of β-cell 
endoplasmic stress via improved 
mediation of unfolded protein 
response in preclinical models of 
T1D, leading to improved 
function and survival (31)

• Favorable side effect profile.

• Tauroursodeoxycholic Acid (TUDCA) RCT underway 
(Columbia) in 20 adults with recent-onset T1D 
(NCT02218619).

• May need to be administered before Stage 3 T1D for efficacy 
based on preclinical data.

Polyamine synthesis 
inhibitors

β-cell polyamine depletion 
inhibited islet inflammation, 
preserved β-cell area and 
function, and delayed T1D onset 
in preclinical models (108)

• Multicenter dose ranging RCT of Difluoromethylornithine 
(DFMO) underway in 41 children with recent-onset T1D 
(NCT02384889).

• May need to be administered before Stage 3 T1D for efficacy 
based on preclinical data.

Tyrosine Kinase 2 
(TYK2) Inhibitors and 
Janus Kinase (JAK) 
Inhibitors

Inhibitor treatment reduces 
interferon I intracellular 
signaling, decreasing cytokine-
induced β-cell MHC Class I 
expression and chemokine 
secretion. JAK inhibitors have 
been shown to prevent and 
reverse diabetes in preclinical 
models (33, 109, 110).

• SNPs in TYK2 locus leading to reduced function are associated 
with decreased T1D susceptibility (111).

• JAK Inhibition may reduce cytokine-induced β-cell PDL1 
expression (112).

Small-molecule 
inhibitors of dual-
specificity tyrosine-
regulated kinase 1A 
(DYRK1A) + GLP1R) 
agonists

Act synergistically to increase 
human β-cell replication without 
loss of differentiation in 
preclinical models (113).

• Despite targeting with GLP1R agonist, still concern for 
nonspecific effects on proliferation.

• Not tested in humans in-vivo.
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