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Estimation of a Selectivity Model with Misclassified Selection  

1. Introduction 

Since the seminal work of Heckman (1979) self-selection models have gained wide use 

and there have been many extensions.  The basic selection model consists of a decision equation 

and an outcome equation.  Selectivity models are commonly used in the contingent valuation 

literature.1  Contingent valuation is a method for estimating values for goods for which markets 

do not exist.  These studies are often used to estimate the value to society of preserving or 

improving some natural resource or estimating values for public goods.  In the usual contingent 

valuation study, respondents provide information on personal and family characteristics and then 

answer a series of questions to elicit information about the amount they are willing to pay (WTP) 

to preserve or improve some non-market good.  These WTP values are aggregated across 

respondents to estimate society’s WTP.  A selectivity model is a natural solution to the 

estimation problem presented by contingent valuation data.  The decision equation models 

whether or not a respondent has positive WTP.  For those responding affirmatively to this 

question, the outcome equation is used to model the amount a respondent is willing to pay.  In 

the two-equation system; 1) model parameters can be estimated for the decision equation and the 

outcome equation, 2) the set of exogenous variables used in each model can differ, and 3) the 

correlation between the error terms in the two equations can be estimated.  Selectivity models 

have been extended in many directions from this basic framework.2   

 
1 For examples of the use of selectivity models in contingent valuation studies see Whitehead (1991), Harpman, Welsh, and 
Sparling (2004), Brouwer, Beukering, and Sultanian (2008), Bellemare (2012), Soderberg and Barton (2014), Bonnichsen, Ole, 
and Soren (2016), and Skeie, Lindhjem, Skjeflo, and Navrud (2019). 
2 Extensions of the decision equation include polychotomous decisions by Trost and Lee (1984) and Malikov, Kumbhakar, and 
Sun (2016), sequential decisions by Caudill and Oswald (1993), an ordered decision function by Joyce (1994), a multinomial 
decision function by Schmertmann (1994), nonparametric selection by Ahn and Powell (1993), and ordered probit selection by 
Main and Reilly (1993).  The form of the outcome equation has also been the subject of several extensions including a spatial 
autoregressive model by Hsieh and Lee (2016), semiparametric estimation of the equation by Malikov, Kumbhakar, and Sun 
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A separate strand of the literature examines misclassification.  Usually these studies 

examine the consequences of using misclassified dummy dependent variables.3  Despite the 

great interest in both models of self-selection and models with misclassification, there have been 

few studies combining the two.  Notable exceptions are given by McCarthy, Millimet, and Roy 

(2015) and Shiu (2016).  None of these models have been developed in a contingent valuation 

setting, the focus of our work. 

Our goal is to add to this literature. We examine the case of a selectivity model in which 

the outcome equation is interval censored and the decision indicator is only partially observed, 

and, in the selectivity framework, can be considered misclassified.  More specifically, we know 

the interval in which the reported WTP lies, but the true underlying distribution of WTP is a 

nonnegative mixture, censored from below at zero.  The zero responses, essential for estimating 

the decision equation, are not observed; they are contained within the observed lowest interval.  

In addition, the true WTP may not be revealed by all respondents.  We assume those not 

revealing their true WTP are also contained in the lowest interval causing a selection problem. 

We use our model to estimate a selectivity model based on the rather peculiar contingent 

valuation dataset for the Kakadu nature park in Australia, previously examined by Carson, 

Wilks, and Imber (1994) and Werner (1999).  Our extension is necessary in order to examine 

WTP in a selectivity model.  Doing so provides some advantages over other methods.  We can 

recover parameter estimates from both the decision and outcome equations under a joint bivariate 

 
(2016), Poisson regression by Winkelmann (1998) and van Ophem (2000), nested logit by Falaris (1987), stochastic frontiers by 
Bravo-Ureta, Greene, and Solis (2012), and simultaneous Tobit models by Choe and Jeong (1993). 

3 By misclassified dummy dependent variables, we mean some of the ones are incorrectly coded as zero and vice versa.  Studies 
examining the consequences include Meyer and Mittag (2017), Hyslop and Townsend (2017), Lu, Luo, and Xiao (2014), Fu, 
Gao, and Shi (2011), Hausman, Abrevaya, and Scott-Morton (1998), and Caudill, Ayuso, and Guillen (2005).  Dustman and van 
Soest (2004) examine ordered response models with misclassification. 
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normal assumption.  These equations may contain different sets of explanatory variables, and we 

are able to estimate the correlation between the error terms in the decision and outcome 

equations.  As a full understanding of the Kakadu data set is critical to our analysis, we provide a 

detailed discussion in the next section. 

2. The Kakadu Data 

In 1999 a contingent valuation study was conducted to estimate willingness to pay to 

preserve the Kakadu nature park in Australia.  The study was unusual in that there was no 

independent information available through separate questions for the usual first stage decision 

equation.  That is, at no time were respondents asked whether or not they were willing to pay any 

positive amount for Kakadu preservation.   

The data in the questionnaire is collected by asking each respondent two questions about 

willingness to pay:  a first question and then a follow-up question based on the response to the 

first question.  For example, each individual is first asked whether they are willing to pay some 

amount, t1, for Kakadu preservation.  If the respondent answers No, the respondent is asked 

whether they are willing to pay a lower amount, tmin.  If the respondent answers Yes to the first 

question, the respondent is asked whether they are willing to pay a higher amount, tmax.  For the 

first question the value of t1 changed from respondent to respondent, being randomly chosen 

from a set consisting of {5, 20, 50, 100}.  The response to the follow-up question yielded the 

value of either tmin or tmax.  Based on the answers to this pair of questions, an individual’s 

willingness to pay can be converted into interval membership as indicated in Table 1.  

As Table 1 indicates, we discuss the interval limits in general terms, [t1, tmax, tmin] because 

the interval limits changed across respondents.  The following values for [t1, tmax, tmin] were used 
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in the Kakadu design: [5, 20, 2], [20, 50, 5], [50, 100, 20] and [100, 250, 50].  Each triple is used 

to construct four response intervals, one of which contained the WTP for the ith respondent.  For 

example, the triple [5, 20, 2] results in WTP intervals:  (0-2), (2-5), (5-20), and (20, +∞).  Thus, 

each willingness-to-pay response consists of a lower bound (LB) and an upper bound (UB) on 

the respondent’s willingness to pay.  Information about respondent characteristics were also 

collected. 

The pairs of questions described lead to three different types of intervals.  The 

problematic first interval in this design, (0 - tmin), is bounded below by zero and consequently 

includes zero responders and those with small positive willingness to pay.  Thus, the response to 

the decision question is hiding in the lowest interval.  Worse yet, in contingent valuation studies 

there are two kinds of zero responders.  There are those with zero WTP who do not wish to 

contribute but might like to free-ride on the contributions of others or have a negative WTP.  

There are also protest responders who do not reveal their true WTP, but rather report zero.  

Separating the two is important for obtaining good estimates of aggregate willingness to pay. 

The remaining intervals present no particular econometric difficulties.  The middle two 

intervals, (tmin – t1) and (t1 – tmax), are bounded by positive values above and below.  The topmost 

interval is open ended as tmax is assumed to equal positive infinity.  Estimation based on these 

types of intervals is routine.   

3. Previous Econometric Solutions 

With the main estimation problem arising due to the responses in the lowest interval, 

there are at least four possibilities for statistical analysis depending on the amount of information 

obtained on the treatment of the zero responders.  Carson, Wilks, and Imber (1994), using the 
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Kakadu data, ignore the preponderance of zero responders in the lowest interval and treat the 

lowest interval like any other continuous interval.  A consequence of this treatment is that the 

probability of a zero response in a continuous (0 - tmin) interval is zero.  This is likely not the case 

with the Kakadu response data.  A second approach ignores the difference in the two types of 

zero responders, considering them as a single group, and then directly addresses the inflated 

number of zero responses (see Kristom (1997), Del Saz-Salazar and Garcia-Mendez (2001), and 

Garcia and Rivera (2003)).  A third approach attempts to separate the zero responses after the 

fact into actual zero and protest zero responses.  This approach is used by Strazzera, Scarpa, 

Calia, Garrod, and Willis (2003) who extend a selectivity model for WTP by incorporating a 

mixture model to separate actual zero responders and protest zero responders.  A related 

approach by Werner (1999) and Fernandez, Leon, Steel, and Vazquez-Polo (2004) analyses 

contingent valuation data using mixture models but not within a selectivity framework.   

Our objective is to provide an alternative to the mixture approaches of Werner (1999) and 

Fernandez, Leon, Steel, and Vazquez-Polo (2004) based on self-selection.  Our approach has 

several advantages over the approaches mentioned above.  In particular, unlike the approaches of 

Werner (1999) and Fernandez, Leon, Steel, and Vazquez-Polo (2004), we do not assume 

independence of the “decision” and “outcome” equations.  Unlike Strazzera, Scarpa, Calia, 

Garrod, and Willis (2003), we are able to estimate a selectivity model without observing the 

outcome in the “decision” equation.  

4. Our Model 

As an alternative to the logistic-generalized gamma mixture of Werner and the other 

special cases, we propose a bivariate normal distribution.  Our approach is thus more like the 

selectivity models normally used to analyze WTP data.  The main advantage of our approach 
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over Werner’s is that we are able to capture the dependence between the two decision processes:  

the decision equation and the outcome equation.  In addition, our model recognizes two types of 

responders; protest responders and others who, justifiably, are not willing to pay anything. 

There are firm economic foundations underlying our modeling approach to WTP based 

on separating No responders into two groups.  An individual derives benefits and has a positive 

WTP for the preservation of a natural reserve for two reasons; either the utility gained by usage 

or potential usage of the reserve, or the utility due solely to the existence of the reserve. These 

components are called use value and existence value.  One group of No responders is called 

protest respondents who do not state their true WTP in a contingent evaluation survey for 

whatever reason (Meyerhoff and Liebe, 2008).  Protest respondents comprise about 20% of 

respondents across many studies (Frey and Pirscher, 2019).  A second group of No responders 

are individuals who never anticipate using the reserve and do not care about its existence.  For 

this group WTP is zero simply because preserving the reserve does not increase their utility.  

This group may also include people who do care about the fate of the reserve but are not 

necessarily willing to make any positive monetary contribution for preserving it--either 

expecting to free ride or obtain some benefit from an alternative policy option.  This could be 

something like an economic benefit from future mining activities inside the reserve.  Unlike 

Werner, we explicitly recognize both types of zero respondents. 

Our approach is closely related to a sample selection model with a joint bivariate normal 

error distribution.  We estimate a hierarchical system of two equations which mimics the data 

generating process.  The first equation is the decision equation.  Is one willing to report her true 

WTP?  For those who do, our second equation, the outcome equation, explains the WTP amount 

which can be zero or positive. 
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 As we note previously, our model is different from a standard sample selection model 

due two distinct features of the data generating process. The first feature is that those who are not 

willing to pay any amount (No responders) are mixed up in the lowest second-stage WTP 

interval resulting a misclassification problem.  As Figure 1 shows, the lowest WTP interval 

contains both types of “No” responders as well as those with a low positive WTP.  The second 

distinctive feature is that the participation regression model of WTP is an interval-censored or 

grouped data regression model with observations in all but the lowest interval correctly 

observed.4   

 Our general model is given by a hierarchical system of equations. The first stage is given 

by the following equation where P*is the unobservable propensity to report the true WTP, 

                                               𝑃𝑃𝑖𝑖*= Z𝑖𝑖δ + 𝜂𝜂𝑖𝑖                             (1) 

and a protest bid is observed when 𝑃𝑃𝑖𝑖∗ < 0.  Letting 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖* represent the unobserved net utility 

from preserving the reserve and 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖 represent the true willingness to pay, we have the 

following second stage equation when 𝑃𝑃𝑖𝑖∗ ≥ 0,  

𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝜀𝜀𝑖𝑖       (2) 

thus 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ = 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖 if 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ ≥ 0,  otherwise 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖 = 0 if 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ < 0. 

The two error terms, 𝜀𝜀𝑖𝑖 and 𝜂𝜂𝑖𝑖 , are assumed to have a joint bivariate normal distribution, 

Φ2(𝜂𝜂,   𝜀𝜀), with zero means, standard deviations 1 and 𝜎𝜎, respectively, and correlation 

 
4 Aside from the second feature, our model is similar to a partial observability model (Poirier, 1980) which has been used to 
model misclassified data (Nguimkeu et al., 2019; Tennekoon and Rosenman, 2014). 
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coefficient, ρ.  We normalize the standard deviation of 𝜂𝜂 to 1.  Both sets of covariate vectors, 

Z𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 X𝑖𝑖 , include constant terms which are identified along with the other parameters.   

Note that 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖 = 0 when either (i) 𝑃𝑃𝑖𝑖* < 0 or (ii) 𝑃𝑃𝑖𝑖*≥ 0 and 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖* < 0.  However, 

neither of these two groups is identified in the Kakadu design but both inhabit the lowest WTP 

interval which includes zero.  Again, the true value of WTP in this lowest response interval is 

either zero or a positive value less than the upper bound, UB.  

Based on our assumed dgp, we have following four types of observations in the sample. 

Type DGP Probability Outcome 

A1  𝑃𝑃𝑖𝑖*< 0 Φ(−Z𝑖𝑖δ) 𝐿𝐿𝐿𝐿𝑖𝑖 =  0 

A2  𝑃𝑃𝑖𝑖*≥ 0 and 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ < 0   Φ2(Z𝑖𝑖δ,−𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) 𝐿𝐿𝐿𝐿𝑖𝑖 =  0 

A3  𝑃𝑃𝑖𝑖*≥ 0 and 0 ≤ 𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ ≤  𝑈𝑈𝐿𝐿𝑖𝑖   Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) - 

Φ2(Z𝑖𝑖δ,−𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) 

𝐿𝐿𝐿𝐿𝑖𝑖 =  0 

B 𝑃𝑃𝑖𝑖*≥ 0 and 𝐿𝐿𝐿𝐿𝑖𝑖 <  𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖∗ ≤ 𝑈𝑈𝐿𝐿𝑖𝑖  Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) − 

Φ2(Z𝑖𝑖δ, 𝐿𝐿𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ 

𝐿𝐿𝐿𝐿𝑖𝑖 > 0 

 

Types A1, A2 and A3 inhabit the lowest WTP interval which is bounded below by zero.  Type 

A1 consists of protest responders who do not report their true WTP. Type A2 consists of those 

who are unwilling to pay any positive amount because of negative net utility and Type A3 

consists of those who are willing to pay a small positive amount less than the interval upper 

bound.  Type B contains all other responses-all lie in a WTP interval not bounded below by zero.   

The motivation behind protest responses also can be driven by negative net utility from the 

underlying valuation as for Type A2 but also can be a different reason, for example the disutility 
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from the involuntary participation in the survey. This is why a two-equation model is needed to 

capture different motivations behind the two types of zero responses. 

In the usual model the econometrician can uniquely identify the observation type.  

However, in our dataset, Types A1, A2 and A3 cannot be distinguished.  We know only that an 

observation is either Type A1, Type A2 or Type A3 when we observe 𝐿𝐿𝐿𝐿𝑖𝑖 = 0. Type B 

respondents are of the usual type found in grouped-data or interval-censored regression models 

where their WTP responses are known up to interval strength. 

 Due to Kakadu data limitations, we cannot distinguish Type A1, Type A2 and Type A3 

so we combine the first three cases above to obtain the probability that 𝐿𝐿𝐿𝐿𝑖𝑖 = 0 which is  

Pr(𝐿𝐿𝐿𝐿𝑖𝑖 = 0) = Φ(−Z𝑖𝑖δ) +  Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ).                (3) 

This expression represents all respondents in the lowest response interval which is bounded 

below by zero. 

For the remaining Type B observations, the probability that 𝐿𝐿𝐿𝐿𝑖𝑖 > 0, that is, the probability of 

reporting a WTP in any but the lowest response interval, is given by  

Pr(𝐿𝐿𝐿𝐿𝑖𝑖 > 0 ) =  Pr(𝐿𝐿𝐿𝐿𝑖𝑖 > 0 & 𝑃𝑃𝑖𝑖∗ ≥ 0) =  Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) − Φ2 �Z𝑖𝑖δ, 𝐿𝐿𝐿𝐿𝑖𝑖
𝜎𝜎
−

𝑋𝑋𝑖𝑖𝛽𝛽
𝜎𝜎

,−ρ� , where LB𝑖𝑖 ≠ 0.                                            (4) 

Based on the expressions given by (3) and (4) above, the following log-likelihood function for 

the model is obtained and can be estimated using observed data where I is the indicator function 

equal to one if the expression is true and zero otherwise, 



11 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝐿𝐿 = 1/N∑ 𝐼𝐼(𝐿𝐿𝐿𝐿𝑖𝑖 = 0) ln(Φ(−Z𝑖𝑖δ) +  Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ))𝑁𝑁
𝑖𝑖=1  +

 𝐼𝐼(𝐿𝐿𝐿𝐿𝑖𝑖 > 0) ln (Φ2(Z𝑖𝑖δ,  𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) − Φ2(Z𝑖𝑖δ,  𝐿𝐿𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ)).               

(5) 

If 𝑈𝑈𝐿𝐿𝑖𝑖 =  ∞, then, the second term, Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) − Φ2(Z𝑖𝑖δ, 𝐿𝐿𝐿𝐿𝑖𝑖/𝜎𝜎 −

𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) reduces to Φ(Z𝑖𝑖δ) − Φ2(Z𝑖𝑖δ, 𝐿𝐿𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ)  = Φ2(𝑋𝑋1𝛽𝛽1,𝑋𝑋2𝛽𝛽2/𝜎𝜎2 −

𝐿𝐿𝐿𝐿𝑖𝑖/𝜎𝜎2, ρ). 

The model can be identified uniquely when (i) each covariate vectors has at least one variable 

which need not be different; and (ii) either 𝐿𝐿𝐿𝐿𝑖𝑖 has at least two different non-zero values or 

𝑈𝑈𝐿𝐿𝑖𝑖 has at least two different finite values. The first order conditions and the information matrix 

are given in the appendix. Once the model parameters are estimated, the proportion of 

observations with zero-WTP is estimated as Pr (𝑊𝑊𝑊𝑊𝑃𝑃 = 0) = 1/𝑁𝑁∑ Φ�−Z𝑖𝑖δ�� +𝑁𝑁
𝑖𝑖=1

Φ2(Z𝑖𝑖δ�,−𝑋𝑋𝑖𝑖�̂�𝛽/𝜎𝜎�,−ρ�) and the mean WTP or  𝑊𝑊𝑊𝑊𝑃𝑃������� = 1/𝑁𝑁∑ max�𝑋𝑋𝑖𝑖�̂�𝛽, 0� .𝑁𝑁
𝑖𝑖=1   The estimation 

results are given in the next section.  

5. Estimation Results 

 We estimate the same specification as Werner (1999) in order to facilitate comparisons 

and help establish the usefulness of our approach.  The results from estimating our decision and 

outcome equations with misclassification are given in Table 2.  Variable descriptions are given 

in column 2 of Table 2.  The results from estimating the decision equation are given in column 3 

of Table 2.  The coefficients of Recparks, Lowrisk, Aboriginal, Finben, Mineparks, and major 

are statistically significant at the α = 0.10 level or lower.  The results from estimating the 

outcome equation are given in column 4 of Table 1.  All of the coefficients are significantly 
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different from zero at the α = 0.05 level or lower (Jobs, Finben, Mineparks, Moreparks, Envcon, 

Age, and Income).  

  Given the scale differences between Werner’s model and our own, we cannot directly 

compare parameter magnitudes.  However, we are able to compare the statistical significance of 

coefficients and the maximized value of the likelihood function across models.  In addition, all 

models provide estimates of the actual fraction of the respondents unwilling to pay any positive 

amount, along with estimates of the mean and median willingness to pay. 

 In comparison to Werner’s results, the signs of our corresponding coefficients are 

generally similar.  As far as statistical significance is concerned, we note that the absolute values 

of t-ratios in Werner’s model are generally larger than ours in the decision equation but are very 

similar in the outcome equation.   

 Werner estimates that about 25% of the respondents have zero willingness to pay.  Our 

estimate of the percentage of the respondents with zero willingness to pay is somewhat higher at 

32.9%.  Werner’s approaches yield mean WTP estimates ranging from A$489 to A$639.5  Our 

estimate is about A$155.  Werner’s median WTP estimates range from A$85 to A$87.  Our 

estimate is about A$159.  These differences might due, in part, to either our assumption of 

normality or our incorporation of correlated errors between our two equations.  Finally, we do 

find evidence of a large negative and statistically significant correlation coefficient (-0.497) 

 
5 Werner estimates four different models, a univariate mixture model, a univariate model assuming all WTP are 
positive, a covariate mixture model, and a covariate model assuming the probability of a positive response is 
constant, all estimated using several different distributional assumptions.  Across all models estimated by Werner, 
the range for mean is A$192.47 to A$63,956.95. For the median, the range is A$76.03 to A$95.93.  Generally, a 
higher mean estimate is associated with a lower median estimate.  
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between the error terms in the decision and outcome equations.  This parameter cannot be 

estimated with any of the other approaches currently in use. 

6. Conclusions  

 This paper presents a complementary alternative to the mixture procedure of Werner 

(1999) and Fernandez, Leon, Steel, and Vasquez-Polo (2004).  Our approach is based on an 

extension of the usual selectivity model in which the choices of some respondents are not 

directly observed and the WTP amounts are interval-censored.  We apply this model to the 

estimation of the Kakadu WTP survey data examined by Werner in which individuals unwilling 

to pay any amount and those willing to pay a small positive amount are not identified as they are 

lumped together into a single interval response group.  Werner solves this estimation problem by 

estimating a mixture model.  We present a complementary approach based on the bivariate 

normal distribution.  Compared to Werner, we estimate that a larger fraction of the respondents 

are unwilling to pay any amount.  We also find a lower mean WTP, a higher median WTP, and a 

negative correlation between the errors in the willing to pay or not equation and in the WTP 

amount equation.    

  In addition to contingent valuation studies, a simplified version of our model is useful 

when one wishes to estimate a selectivity model of expenditures based on survey data.  Surveys 

rely heavily on data collected in intervals to reduce collection time.  Without additional questions 

on expenditures, this survey response data may contain a lower interval containing the zero 

responses which must be located to estimate the first stage in a selectivity model.  A variation of 

our approach can be used to solve this problem.  
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Figure 1.  Our Decision Tree 

 

Table 1. Kakadu Elicitation Framework 
 

Response 
(first answer/second 
answer) 

Lower Bound (LB) Upper Bound (UB) 

(no/no) 0 tmin 

(no/yes) tmin t1  

(yes/no) t1 tmax  

(yes/yes) tmax ∞ 
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Table 2. Estimation Results for the Selectivity Model with Misclassification 

Variable Description Decision  
Equation  

Outcome 
Equation 

Constant ------- 0.572 
(0.90) 

223.836*** 
(4.90) 

Recparks Higher values indicate higher value placed 
on nature preserves 

0.206*** 
(3.14) 

------- 

Lowrisk Higher values indicate greater acceptance of 
low-risk mining 

-0.604*** 
(4.81) 

------- 

Aboriginal Higher values indicate more weight given to 
importance of Kakadu to Aboriginals when 
making environmental decisions 

0.113* 
(1.94) 

------- 

Jobs Higher values indicate jobs are an important 
factor in making natural resource decisions 

------- -31.637*** 
(6.44) 

Finben Higher values indicate greater importance of 
financial benefits when making 
environmental decisions 

-0.192** 
(2.43) 

-28.272*** 
(4.92) 

Mineparks Higher values indicate a belief that mining in 
national parks reduces their value 

0.470*** 
(5.64) 

19.968*** 
(2.93) 

Moreparks Higher values indicate respondent favors 
more parks  

0.088 
(1.29) 

14.661** 
(2.42) 

Envcon Equal 1 if respondent recycles and buys 
environmentally friendly products 

------- 28.503*** 
(2.58) 

Age Respondent’s age 0.004 
(0.66) 

-1.904*** 
(5.12) 

Major Equal to 1 if respondent received the major 
impact version of questionnaire 

0.369** 
(2.25) 

------- 

Income Respondent’s annual income in thousands of 
dollars 

------- 1.228*** 
(3.55) 

Sigma ------- ------- 149.440*** 
(18.22) 

Rho ------- ------- -0.497*** 
(2.58) 

Mean  ------- -------  155.15 
Median ------- -------  158.97 
Log 
likelihood 

------- ------- -1506.49 

WTP = 0 ------- ------- 32.90% 
aFigures in parentheses are absolute values of t-ratios. 
 ***Indicates statistical significance at the α = 0.01 level. 
 **Indicates statistical significance at the α = 0.05 level. 
 *Indicates statistical significance at the α = 0.10 level. 
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Appendix: 
 

I. Contingent Valuation Studies 

Contingent valuation (CV) involves asking individuals questions about their WTP (willingness 
to pay) for a good or their WTA (willingness to accept) compensation for a loss. WTP is the 
maximum price at or below which a consumer will buy one unit of a product. WTP cannot be 
observed directly. Purchase decisions of consumers of marketed products reveal some 
information about their WTP. If a consumer purchases a product at a given price, her WTP must 
be equal or larger than the price. This helps us to find one point of the CDF of WTP. If we can 
observe consumer choices at many different prices, we can identify several points along the CDF 
of WTP, which helps us to estimate the demand curve.  

Unlike the case of marketed products, we have no information to infer the WTP of a non-
marketed product, for example a new product to be introduced or a non-excludable common 
good. Contingent valuation surveys (CVS) are used to measure WTP of a non-marketed product, 
either using the direct method (stated preferences) or the indirect method (revealed preferences). 
Indirect method attempts to simulate an actual purchase decision.  

Early contingent valuation surveys attempted to collect stated preferences using open-ended 
questions of the form "how much compensation would you demand for the destruction of X 
area?" or "how much would you pay to preserve X?". Such open-ended questions were identified 
to have several shortcomings: strategic behavior, protest answers, social desirability bias and 
respondents ignoring income constraints. Indirect method is the preferred method now. 

In response to criticisms of CVSs, a panel of six eminent economists which included two Nobel 
laureates was appointed in 1992 by Bush Administration's National Oceanic and Atmospheric 
Administration (NOAA) to inquire into the validity of CV measures of “non-use value”. The 
panel heard evidence from 22 expert economists and made recommendations on designing of 
CVSs (Arrow et. al., 1993). Among other recommendations, the panel suggested that CVSs 
should be designed in a yes or no referendum format instead of attempting to collect stated 
preferences. The CVS questions, thus, take the form “If you are compensated $P would you 
demand for the destruction of X area?" or “Would you pay $P to preserve X?". 

By using this referendum format, similar to observing purchase decisions at a given price in case 
of marketed goods, we can identify two groups; those who have a valuation of at least $P and 
those who have a valuation less than $P. Unlike in the open-ended surveys, the referendum 
format does not help to identify many points along the distribution of WTP. Therefore, deriving 
the CDF of WTP requires additional assumptions, usually functional form assumptions. 

In order to identify a two-parameter distribution, we need to know at least two points on the 
curve. Double bound format of CVSs involves an additional follow-up question of the 
referendum format and that allows to identify two points on the CDF of WTP. 

Even with the single bound approach, several points along the CDF of WTP can be identified by 
randomly assigning different threshold values ($P) to participants. The single bound procedure is 
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easier to implement than the double bound procedure, but the double bound estimator is more 
efficient than the single bound estimator. Data from a double bound CVS can be used to estimate 
the CDF of WTP, assuming a functional form with unknown parameters. The mean and median 
WTP, usually the values of interest, are sensitive to the choice of functional form. If a two-
parameter distribution is assumed, a single fixed pair of threshold values is sufficient to identify 
the distribution as long as there are some observations in each of the three categories defined by 
these threshold values. The purpose of randomly assigning one of several threshold values is to 
make sure that the chosen values are neither too high nor too low. 

Early research used a normal CDF due to convenience, but this choice was criticized later based 
on the argument that WTP should be non-negative. Consequently, non-negative CDFs such as 
log-normal, Gamma, and Weibull distributions became popular. The lowest interval generated by 
the no-no pair of WTP responses includes respondents who are unwilling to pay anything and 
some who are willing to pay a small positive amount. A CVS of referendum format does not 
identify these two groups separately. An additional complication arises due to protest responses 
which are observed as no-no pairs of WTP responses, but those responses do not reveal the true 
preferences of respondents. Two stage hierarchical structures (as in Heckman, 1974) and zero 
inflated structures including Tobit-like models have been imposed on CVS data to model these 
complexities. The limitation of these structures is that they do not differentiate protest zeros from 
true zeros. The proposed structure assumes that these two types of zeros are generated by two 
different processes while not demanding any additional information beyond what is collected 
through standard double bounded approach.  
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II. Technical details 

 
The log likelihood function given by equation (5) can be expressed as, 
 
ℒℒ = 1/N∑ 𝐼𝐼(𝐿𝐿𝐿𝐿𝑖𝑖 = 0) ln�𝑃𝑃0,𝑖𝑖�𝑁𝑁

𝑖𝑖=1  +  𝐼𝐼(𝐿𝐿𝐿𝐿𝑖𝑖 > 0) ln (𝑃𝑃1,𝑖𝑖)  
 
where 𝑃𝑃0,𝑖𝑖 =  Φ(−Z𝑖𝑖δ) +  Φ2(Z𝑖𝑖δ,𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ)  and 𝑃𝑃1,𝑖𝑖 = Φ2(Z𝑖𝑖δ,  𝑈𝑈𝐿𝐿𝑖𝑖/𝜎𝜎 −
𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ) − Φ2(Z𝑖𝑖δ,  𝐿𝐿𝐿𝐿𝑖𝑖/𝜎𝜎 − 𝑋𝑋𝑖𝑖𝛽𝛽/𝜎𝜎,−ρ). 
 
First order conditions can be expressed as, 
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The information matrix is, 

 𝐼𝐼 =  −𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕2ℒℒ
𝜕𝜕δ𝜕𝜕δ′

𝜕𝜕2ℒℒ
𝜕𝜕δ𝜕𝜕𝛽𝛽′

𝜕𝜕2ℒℒ
𝜕𝜕𝛽𝛽𝜕𝜕δ′

𝜕𝜕2ℒℒ
𝜕𝜕𝛽𝛽𝜕𝜕𝛽𝛽′

𝜕𝜕2ℒℒ
𝜕𝜕δ𝜕𝜕𝜎𝜎

𝜕𝜕2ℒℒ
𝜕𝜕δ𝜕𝜕ρ

𝜕𝜕2ℒℒ
𝜕𝜕𝛽𝛽𝜕𝜕𝜎𝜎

𝜕𝜕2ℒℒ
𝜕𝜕𝛽𝛽𝜕𝜕ρ

𝜕𝜕2ℒℒ
𝜕𝜕𝜎𝜎𝜕𝜕δ′

𝜕𝜕2ℒℒ
𝜕𝜕𝜎𝜎𝜕𝜕𝛽𝛽′

𝜕𝜕2ℒℒ
𝜕𝜕ρ𝜕𝜕δ′

𝜕𝜕2ℒℒ
𝜕𝜕ρ𝜕𝜕𝛽𝛽′

𝜕𝜕2ℒℒ
𝜕𝜕𝜎𝜎2

𝜕𝜕2ℒℒ
𝜕𝜕𝜎𝜎𝜕𝜕ρ

𝜕𝜕2ℒℒ
𝜕𝜕ρ𝜕𝜕𝜎𝜎

𝜕𝜕2ℒℒ
𝜕𝜕ρ2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 1/N∑ 𝐼𝐼(𝐿𝐿𝐿𝐿𝑖𝑖=0)
𝑃𝑃0,𝑖𝑖

.𝐶𝐶0,𝑖𝑖
𝑁𝑁
𝑖𝑖=1 𝐶𝐶′0,𝑖𝑖 + 𝐼𝐼(𝐿𝐿𝐿𝐿𝑖𝑖>0)

𝑃𝑃1,𝑖𝑖
.𝐶𝐶1,𝑖𝑖𝐶𝐶′1,𝑖𝑖.  

 




