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Abstract

The National Institute on Drug Abuse and Joint Institute for Biological Sciences at

the Oak Ridge National Laboratory hosted a meeting attended by a diverse group of

scientists with expertise in substance use disorders (SUDs), computational biology,

and FAIR (Findability, Accessibility, Interoperability, and Reusability) data sharing. The

meeting's objective was to discuss and evaluate better strategies to integrate genetic,

epigenetic, and 'omics data across human and model organisms to achieve deeper

mechanistic insight into SUDs. Specific topics were to (a) evaluate the current state

of substance use genetics and genomics research and fundamental gaps, (b) identify

opportunities and challenges of integration and sharing across species and data types,

(c) identify current tools and resources for integration of genetic, epigenetic, and phe-

notypic data, (d) discuss steps and impediment related to data integration, and

(e) outline future steps to support more effective collaboration—particularly between

animal model research communities and human genetics and clinical research teams.

This review summarizes key facets of this catalytic discussion with a focus on new

opportunities and gaps in resources and knowledge on SUDs.

K E YWORD S

cross-species, data integration, drug abuse, genomics, GWAS, model organisms, multi-omic,
substance use disorders, working group

1 | INTRODUCTION

On May 29–31, 2019, the National Institute on Drug Abuse (NIDA)

and the Joint Institute for Biological Sciences at the Oak Ridge

National Laboratory (ORNL) hosted the Addiction Genetics and Epige-

netics Data Jamboree meeting at Oak Ridge, Tennessee. Over 30 sci-

entists with expertise in genetics and genomics of substance use in

human and model organisms gathered to discuss linking data and

results across systems that exploit genetics, genomics, epigenetics,

and other omics by leveraging innovative statistical methods and com-

putational tools. The meeting commenced with an open discussion of

the state of substance use genetics, including the strengths and weak-

nesses of various approaches to genotype–phenotype associations in

humans and model organisms. Most notably, researchers discussed

how joint data- and theory-driven studies using integrative cross-

species and multi-omics approaches could more rapidly discover and

translate mechanisms than relying upon genome-wide association

studies (GWAS) or model organisms alone. Over the course of 2 days,

researchers participated in thematic discussions that centered on the

current state of knowledge, gaps in understanding and advantages

and challenges of: (1) Data analyses using multi-species and multi-

omic data, (2) data integration methods/procedures, and (3) multi-
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omic data generation and sharing/accessibility. Meeting participants

reconvened on the third day to summarize findings and since then

have reflected upon the field's latest findings around the meeting's

topical areas in the preparation of the current document. Each

researcher brought their unique experience, perspective, and exper-

tise to these discussions, and a consensus was not always reached for

the best path forward on every topic. Not all authors of this report

necessarily endorse all ideas presented herein.

This report aims to summarize the discussions by focusing on the

state of science, including opportunities for more effective cross-talk

and collaboration between human and model organism research com-

munities, as well as barriers to data acquisition and integration. Next,

we discuss the methods and tools used for genetic and genomic dis-

covery, their assumptions and limitations, as well as areas for improve-

ment needed to achieve rapid translation of genetic loci to identified

mechanisms and potential treatments. We review challenges of data

transportability and sharing (i.e., Findability, Accessibility, Interopera-

bility, and Reusability data practices), for which there are interper-

sonal, legal, and technological barriers of integrating diverse data

types. Finally, we describe some gaps to address in future programs

on substance use disorders (SUDs).

1.1 | Status of substance use and disorders
genetics and genomics

SUDs represent a pressing area of unmet medical, psychological, and

social needs. In 2017, alcohol and illicit substance use and disorders

resulted in 13,969 and 67,000 deaths (directly and indirectly) in the

United States, respectively,1 which was less than smoking (� 250,000

deaths), but more than liver disease (62,493 deaths)2 and diabetes

(68,558 deaths).3 Worldwide, SUDs have a relatively early onset and

contribute to approximately 21% of lost disability-adjusted life years4

(15% for smoking and second-hand smoke not counting comorbid

drug use1), emphasizing the high societal and personal cost to affected

individuals and communities. Twin- and family-based studies show

that SUDs generally have moderate to high heritability,5 with

sequence differences contributing to 50%–70% of variance in liability.

Large-scale GWASs investigating hundreds of thousands of partici-

pants have become a reliable method to localize and identify genomic

regions, genes, and common and substance-specific nucleotide differ-

ences that contribute to the heritability of the many facets of

SUDs.6-8

To date, there has been substantial progress in the characteriza-

tion of the genetic etiology of human SUDs.9-13 Data sharing, meta-

analysis, and very large sample sizes have begun to yield loci for

alcohol-,14-19 tobacco-,18,20 and cannabis-related traits.20 The past

3 years have witnessed an escalation in these discoveries for instance,

findings for alcohol use disorder (AUD) increased from one locus

(N = 14,904 cases) in 2018 to 29 independent variants in 2020

(N = 435,563, including >57,000 cases). These human GWASs have

shown that SUDs are highly polygenic. This polygenicity may be par-

tially explained by human-specific evolutionary pressures and

diagnostic heterogeneity.21 Notably, the history of SUD and psychiat-

ric GWAS has shown that more common variants with modest effect

sizes can be identified and replicated when studies are well-powered.

Yet, there are other substances of abuse for which we still lack suffi-

cient power (e.g., opioids22 and cocaine23) for unbiased identification

of the heritable components of susceptibility, severity, and relapse.

For most common diseases, the number of genome-wide significant

hits that are discovered increases sharply after a threshold sample size

that ranges from about 10,000 to 100,000.24 In the case of psychiatric

disease, it took 36,989 cases and 113,075 controls to identify 108 loci

for schizophrenia.25 A simulation study by Walters et al. suggested

that AUD and other related SUDs26 have effect size distributions simi-

lar to major depression,27 a disease that required approximately

10,000 cases to identify the first locus,28 and may require sample

sizes between 55,000 and 130,000 cases (or more) to identify large

numbers of commonly occurring variants. 15 While biobanks and elec-

tronic health records provide opportunities for increasing sample sizes

for AUD, the ability to adequately assess illicit drug use disorder from

biobanks remains questionable. That said, steady progress is being

made for illicit substances. For example, a recently published GWAS

for opioid use disorder in the Million Veterans Program and two addi-

tional samples, obtained genome-wide significance for rs1799971 in

the gene encoding the mu-opioid receptor, OPRM1, with 8529 cases

and 71,200 opioid-exposed controls22 though additional work is

needed to validate these findings.

It is also important to note that identifying genetically-mediated

mechanisms of disease is also partially contingent on how well a phe-

notype is defined so that it reflects relevant biological and environ-

mental variation. In human GWAS, phenotypic heterogeneity, which

is evident in diagnostic classification, as well as the imprecision of

recall and self-report, has been shown to result in low heritability

(in some instances) and specificity for disease prediction.29 Compared

to humans, model organisms have the advantages of narrowly defined

phenotypic assays applied to both experimental and control groups

and objective measurements. However, animal models poorly reflect

the interpersonal and quality of life aspects of human SUD.30 Human

studies using case–control and quantitative phenotypes of the most

predominantly used substances, alcohol and tobacco, with sufficiently

large sample size have recently confirmed suspected genetic media-

tion of pharmacokinetic and pharmacodynamic pathways; studies also

suggest greater relevance of single nucleotide variants expressed in

brain.31-33 Liu et al.18 found that all central-nervous-system-expressed

nicotinic receptor genes (except for CHRNA7) were significantly asso-

ciated with one or more smoking phenotypes that they examined.

This suggests that related phenotypes, such as age of smoking initia-

tion and cigarettes per day, may show overlapping but differential pat-

terns of associations with relevant genetic variation. Therefore, it is

important to examine a variety of different phenotypes, from case–

control phenotypes to endophenotypes. For example, in a GWAS of a

pharmacologically relevant phenotype for smoking, a measure of the

rate of nicotine metabolism (the nicotine metabolite ratio [NMR]),

identified polymorphisms that account for nearly 40% of the pheno-

typic variance in NMR,34 but these same loci do not have a similarly
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large effect on nicotine dependence. Consequently, there is still a gap

in understanding the broad and substance-specific mechanisms and

the functional significance of DNA variants that have been discerned

to date using endo-, clinical-, and coarse-phenotypes and biomarkers.

Some researchers at the meeting commented that mixed-linear-

model-based and traditional GWAS and quantitative trait locus (QTL)

analyses alone cannot solve these phenotype limitations because the

variance structure of agglomerative phenotypes does not match that

of the genome and the associated structures/tissues. Others coun-

tered that well-powered GWAS complemented by new post-hoc com-

putational methods (e.g., genomic structural equation modeling 35 and

multivariate GWAS,36 to name a few) might surmount minimal

phenotyping limitations. For a detailed example of deep phenotyping

issues in a complex psychiatric disorder, we recommend the recent

paper by Cai et al.29

Based on these observations, researchers recognized that other

methods should help complement and extend well-powered GWAS

methods to address current knowledge gaps in the genetic architec-

ture of SUDs. A notable illustration arises from the characterization of

the complement C4 pathway in schizophrenia, which arose from a

GWAS that identified a strong signal in the MHC locus but required

deep, cross-species cellular and molecular experiments to explicate.

Previous studies15,37 have also indicated this will require (1) larger

sample sizes, (2) better phenotyping, (3) more diverse samples,

(4) improved coverage of genetic variation by GWAS arrays or greater

emphasis on sequencing,38-40 and (5) more comprehensive system-

based models and hypotheses that incorporate epistasis (GxG), envi-

ronmental factors, GxE, and many comorbidities. Systems-based and

multi-level studies would ideally model the complex nature of SUDs

using multiple cofactors (and confounders) and take into account the

inevitability that many agglomerative phenotypes will be made up of

multiple mechanistically distinct sub-phenotypes. In addition to the

more nuanced and precisely defined and quantified phenotypes and

cofactors (e.g., BMI for alcohol41) and confounders,42 such studies

would also incorporate other forms of DNA variation and potential

non-linear (i.e., GxG and GxE) effects although recent studies have

suggested that most of the genetic variance for complex traits appears

to be largely due to additive effects, with negligible dominance

effects, and an indeterminate amount of epistatic effects due to

power and study design issues.43 Still, it is worth noting that a negligi-

ble genome-wide contribution of dominance effects does not pre-

clude the existence of individual loci with a dominant mode of

inheritance. While the importance of these different issues and

approaches was discussed, a diversity of opinions was expressed

about GxG effects, and the group did not reach consensus.

At the sequence level, many studies are also still missing signifi-

cant genetic diversity—particularly from non-European populations.44

Even though copy number variant (CNV) studies of psychiatric disor-

ders are becoming more commonplace,45 mobile element polymor-

phisms, inversions and other types of structural variants are still

missed in GWAS—as are subsets of variants not tagged using standard

GWAS arrays or incorrectly aligned to a single canonical reference

genome. In short, recent insights from past studies highlight how gaps

in our understanding could be addressed using large and genetically

diverse samples (is being achieved for nicotine and alcohol, but not

other substances), better phenotyping, new computational methods,

and long-read sequencing technologies to capture and model causal

genome variants, especially those (e.g., CNVs, insertions, deletions,

and inversions) not well captured by GWAS arrays; see Peterson

et al.46 for a detailed discussion on opportunities for diversity in

GWAS. In addition, single-cell technologies, such as single-cell-RNA-

seq, and complementary approaches toward studying regulatory

effects of variants, among others, will help to better uncover cell-type

specific networks involved in SUDs, as has been documented for

schizophrenia.47 Altogether, these types of systems-based approaches

that incorporate multiple layers of genomic and environmental data

will require advanced methods, that may include multilevel machine

learning, deep learning, and explainable-artificial intelligence tech-

niques to name a few; and these model-free approaches will have to

accommodate features specific to the human genome, such as popula-

tion substructure, which can confound association signals.48 Likewise,

it will require a more comprehensive, integrated capture of

population-scale data at multiple omics layers (genome, epigenome,

transcriptome, metabolome, microbiome) in both model organism and

human studies (see Table 1). Costs for generating multi-omic data,

including brain proteomics and metabolomics are falling rapidly and

making such programs possible.

Complementary to human GWAS, research using model organ-

isms is amassing a large body of evidence supporting causal roles for

many genomic loci and gene variants related to SUDs (e.g., Taar1

for methamphetamine'49 APBA2 for addiction,46 XRCC5 for alcohol

dependence,50 and the use of CRISPy Critters for instance in

alcohol research51). Still, these findings probe only a small part of the

complex central nervous system (CNS) molecular and cellular net-

works affected by addictive substances. There is also deep sequence

data on shorter classes of DNA variants and expression data collected

in many contexts across large populations of key model organisms,

including Drosophila (the Drosophila Genetic Reference Panel),52,53

mouse (Collaborative Cross, the Hybrid Mouse Diversity panel, and

the BXD family, collectively n >200 isogenic strains,54,55 and outbred

mouse populations, including several heterogeneous stocks,56-59

advanced intercross lines60), and rat populations (e.g., Hybrid Rat

Diversity Panel and the National Institute of Health [NIH] heteroge-

neous stock,60 and outbred Sprague Dawley61,62). As a field, behavior

geneticists, both human and animal modelers, are beginning to catalog

and even understand the function(s) of subsets of variants that alter

protein-coding sequence, modulate transcript and protein isoforms, or

change expression.63-65 However, although great progress has been

made, we highlight key gaps:

1. the comparative invisibility of mobile element polymorphisms,

some types of structural variants, simple tandem repeats, and rare

variants, including de novo mutations;

2. the problematic nature of aligning a sequence to a linear reference

genome rather than to pangenomes that are savvy with respect to

sequence differences among individuals and ancestries; and
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TABLE 1 Considerations and Areas of Opportunity for Data Integration

Methodological

approach

Considerations in model

organism genetics

Considerations for human

genetics

Considerations for

reductionist models (human

and model organisms) Areas of convergence

G x E Many populations provide

favorable recombination and

allele frequencies to provide

adequate power to detect G

x E effects

Consortia efforts (e.g.,

Psychiatric Genetics

Consortium [PGC],114

deCODE Genetics,115 UK

biobank,116 etc.) and

integration of electronic

health records can help

construct large sample sizes

for improved power to

detect G x E effects

Not possible to mimic most

environmental effects (e.g.,

social interactions, early life

adversity, etc) in cell lines or

organ cultures

Animal models can test the

effects of a specific gene

implicated in human

GWAS across multiple

environments, or different

genes in the same

environment.

G x E hits from QTL mapping

can be used to prioritize

promising variants in

human GWAS that did not

meet significance

thresholds due stringent

corrections for multiple

testing

Some human environments are

not possible to model in

animals

Some environments are

unethical to impose on

humans

G x G QTL mapping in many

populations can provide

sufficient power to examine

other forms of DNA

variation and potential

nonlinear G x G effects

Need very large sample sizes

(> 1 million) to detect

potential nonlinear G x G

effects117

QTL mapping efforts should

utilize genetically diverse

populations in order to

better extrapolate results

across strains and species

-Development of new

statistical models to

detect G x G epistatic

interactions will improve

our understanding of the

polygenic nature of SUDs.

Use of genetically admixed,

mutant, and genetically

simple cohorts of model

organisms can identify

epigenetic modifiers

Structured panels of F1
progeny that place null

alleles on different genetic

backgrounds can identify G x

background interactions

Consortia efforts and private

direct to consumer

biotechnology companies

(e.g., 23 & me, ancestry.com)

may be key to amassing

large enough sample sizes

for improved power to

detect epistasis

If using CRISPR to study G x G

interactions, researchers

should test multiple genetic

backgrounds

CRISPR allows for

simultaneous alteration of

multiple genes to examine G

X G interactions

Meta-analysis Not commonly performed in

model organisms, but the

extendable nature of many

populations is favorable to

this approach

Meta-analysis has been key in

the successful identification

and replication of loci across

human studies, thus

increasing power and

reproducibility

Development and

application of metadata

standards and data

ontologies (such as

MONARCH) will be

critical to harmonize data

across organisms and data

types.

Improved data curation and

sharing will allow for

increased accessibility to

all researchers.

Meta-analytic studies using

omics data from both

mapping populations and

mutant animals can detect

and validate novel findings

entirely in silico.

Polygenic risk scores Must account for allele

frequency differences across

populations

Must account for allele

frequency differences across

populations

Need to develop

methodology to integrate

PGS between animals and

humans to improve

translational, predictive

and clinical utility.

Not widely implemented in

animal QTL mapping studies

PGS in humans have allowed

cross-trait and cross-sample

comparisons, greatly

enhancing our knowledge of

SUDs

(Continues)
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TABLE 1 (Continued)

Methodological

approach

Considerations in model

organism genetics

Considerations for human

genetics

Considerations for

reductionist models (human

and model organisms) Areas of convergence

For translational studies, need

to limit PGS variants to

those with orthologs in

humans

Proteomics/

transcriptomics

Can be easily obtained in

animals from relevant

tissues, cell-types, and

timepoints (post-drug,

developmental)

Post-mortem brain tissue from

humans is confounded by

life histories, drug use

patterns, time elapsed

between death and brain

collection

Multi-omics data (genome,

epigenome, transcriptome,

proteome, metabolome,

microbiome) data in both

model organisms and

humans can improve our

understanding of GWAS

hits that fall in regulatory

regions

Single-cell RNAseq will help

uncover cell-type specific

networks involved in

SUDs

Animal models may identify

mobile element

polymorphisms,

inversions, and other

structural variants that can

later be studied in human

GWAS.

Network integration (such as

LOE, RWR) is key to

permit the full illumination

of patterns shared across

multi-omics datasets and

can be used to leverage

information across species

Exploiting publicly available

bioinformatics resources

can provide secondary

study replication/

validation, increase power,

and provide a priori

information for study

hypotheses and design

Multiple bioinformatics

resources exist to integrate

omics results (GeneWeaver,

GeneNetwork)

Web-based repositories (GTEx,

BRAINEAC, CommonMind,

PsychENCODE) provide

valuable resources to

examine effects of gene

expression on disease

Functional validation Multiple genetic resources

exist (CRISPR, KO,

transgenics, RNAi, etc) to

functionally validate genes

of interest in developmental-

, tissue-, and cell-specific

regions

Unethical to perform gene

editing studies in humans

Functional validation studies

should test the effects of

gene manipulation on

multiple genetic

backgrounds

Model organisms provide

opportunities to test the

effects of a specific

gene(s) implicated in

human GWAS to help

elucidate the underlying

biology

Functional validation studies

may benefit from cross-

species analysis (yeast,

worms, flies allow for the

analysis of hundreds of

candidate genes)

-Development of efficient

and unbiased

computational workflows

(such as FUMA GWAS, H-

MAGMA, GeneWeaver,

PrediXcan/MetXcan) is

needed to rank top

variants and map their

cellular networks in both

Optogenetic and other brain

stimulation approaches can

isolate neurons, define

pathways relevant to traits

of interest

Transcranial magnetic

stimulation can excite/

silence brain regions in

humans, but is limited

Lesion studies can readily be

performed in animal models

Naturally occurring lesions can

be studied
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3. the reliance on simple additive models that cannot detect or are

confounded by gene-by-gene epistatic interactions or cleanly dis-

sect and unconfound GxE effects.64,66

Researchers at the meeting discussed gaps in knowledge and pos-

sibilities for the next phase of functional discovery for substance use

and disorders, which will likely require (1) the construction of appropri-

ate resources for systematic evaluation of loci function in humans,

(2) quantitative experimental studies of SUDs in model organisms with

a more realistic level of genetic complexity, (3) concerted multi-

disciplinary efforts to acquire additional samples for discovery/valida-

tion, and (4) a shift towards causal models and quasi-experimental

research designs in order to understand gene-by-environment, gene-

by-development, and epigenetic modifiers across a range of

genetically-admixed and genetically simple cohorts of model organisms.

2 | THEME A: BRIDGING THE GAP
BETWEEN HUMAN AND ANIMAL RESEARCH

2.1 | Prioritizing variants for functional follow-up

In recent years, larger human GWAS have begun to produce a more

robust and reliable set of genomic loci and gene variants. Similarly, model

system studies complement these phenotype–genotype associations via

behavioral neurogenetic methods, but not without limitations (see

Table 1). Indeed, human and model organism studies offer varying

degrees of power and limitations to identify a gene or network for func-

tional follow-up. For example, human GWAS require very large samples

to study phenotypes that may be less proximal to the biological ele-

ments. Model organisms require smaller sample sizes, but their individual

single nucleotide polymorphisms (SNPs) and genes may not entirely map

onto human biology and the substance use phenotypes that operate in a

complex, human environment. Given that the collection of larger, more

diverse GWAS samples for SUD phenotypes will require targeted data

collection, especially in underrepresented populations, some researchers

at the meeting acknowledged that animal QTL, and other methods

(e.g., recombinant inbred strains55), can help make headway in parallel.

One area for further development includes refinement of efficient and

unbiased computational workflows to rank top variants and map their

target genes and gene, molecular, and cellular networks.

Researchers at the meeting discussed strategies to make

advances in using integrative approaches, which could rapidly locate

and translate loci for SUDs. These strategies combine data from

GWAS in humans with well-matched experimental work in model

organisms—both genetically admixed crosses and gene knockout and

knock-in studies. Ideally, these studies would leverage a universal

platform for sharing current datasets from model organisms with

human GWAS findings, a resource currently lacking. At the time of

this publication, data from model organism studies are largely isolated

by species and even by strain and type. As such, they are often far

from FAIR compliant67 and are just as hard to access and integrate as

GWAS data from heterogeneous human populations, which are not all

shared on the NIH's database of Genotypes and Phenotypes (dbGaP)

or other repositories available to the scientific community. These real-

ities further compound the challenge of rigorously combining human

and animal model data sets (see Section 4 Theme C discussion for

details).

2.2 | Why data integration across species and
multiple omics is important for expansion, discovery,
and translation of genetic risk for SUDs

While there are many differences between behaviors, body, and brain

structures of all model organisms and humans, there is still a high level of

genomic and functional commonality that can be leveraged under tightly

controlled environmental and treatment conditions. In essence, a ran-

domized controlled trial across multiple genotypes can usually be

designed and implemented reasonably easily with model organisms.68

Likewise, causal models can be constructed to evaluate potential con-

founders by, for instance, comparing behavioral assays across

TABLE 1 (Continued)

Methodological

approach

Considerations in model

organism genetics

Considerations for human

genetics

Considerations for

reductionist models (human

and model organisms) Areas of convergence

human and model

organisms

Environmental

control

Can more tightly control

environmental parameters

Diverse environmental and

lifestyle influences

Improved statistical models

that better account for

confounds, Winner's

Curse, and cofactors/

covariates will enhance

translational potential for

both animal and human

research

Cannot accurately model some

human components (e.g.,

social elements) of

environments

Differing combinations of

psychiatric and other risk

factors

Abbreviations: FUMA, functional mapping and annotation of genetic associations; GWAS, genome-wide association studies; H-MAGMA, hi-C-associated multi-

marker analysis of genomic annotation; LOE, lines-of-evidence; PGS, polygenic score; QTL, quantitative trait locus; RWR, random walk with restart; SUD, substance

use disorder.
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constructed genetic backgrounds of varying disease susceptibility (see

Table 1: areas of convergence). Molecular and cellular endophenotypes

of SUDs are readily accessible in many model organisms. Conservation

of functional genes and networks across species can provide genuine

insight of high translational relevance–particularly when the GWAS

searchlight has illuminated a small number of plausible genes and geno-

mic regions. Because of differing evolutionary histories, individual vari-

ants among humans and model organisms are often not conserved69,70;

however, the prospects of comparing genetically engineered lines to

diverse populations of mice holds significant promise for disease map-

ping and detecting epistatic interactions.55 This apparent gap in the liter-

ature highlighted why analyses are best suited to be conducted at the

level of genes, molecular networks, and gene sets. Still, attendees at the

meeting acknowledged that experimental models could complement

these analyses by providing a reproducible resource to identify funda-

mental processes and modifiers that affect aspects of SUD with the goal

to transition as efficiently as possible to well-reasoned interventions that

reduce SUD burden. Gene network perturbations that are evident in cer-

tain model organism experiments and humans may highlight novel entry

points for pharmaceutical intervention and innovation that would be mis-

sed by the study of humans alone (e.g., modulation of an associated pro-

tein if variants are in a regulatory region). Further, identification of

molecular and cellular networks that contribute to SUD risk, progression,

and relapse will benefit from access to longitudinally collected datasets

to strengthen causal inferences, define and test plausible models, and

refine treatment options on the basis of genotypes and diplotypes.

Human tissues, cells, and organoids are highly useful tools for eluci-

dating molecular and cellular networks in human-relevant model sys-

tems but have fundamental limitations, especially with respect to

higher-order behavioral outcome variables that replicate aspects of

human addiction. While formal proof of the roles of DNA variants is

most readily provided using gene-engineered animals or specific phar-

macological treatments, it is vital to note that “necessary and sufficient”
causal criteria depend greatly on the genomic background.71 Moreover,

gene-engineered models will ideally account for genetic diversity in

order to ensure that results are not only replicable but are likely to have

external validity across species. While some researchers predicted that

data generated from these approaches would show greater consilience

with the diversity of human behavioral outcomes, others contended

that additional research is needed to understand which animal para-

digms and tissues best characterize the basic behavioral properties and

neurobiological components of addiction, respectively.

Many researchers have begun to tackle the issue of variant prioritiza-

tion by integrating multiple sources of information.72-74 Indeed, most

GWAS include detailed post-hoc analyses toward the identification of

credible causal variants. Network integration is one method that can per-

mit the full illumination of patterns that are shared across gene sets

derived from single omics data (e.g., genetic variants, RNA-seq in bulk tis-

sue, single-cell RNA-seq, chromatin immunoprecipitation sequencing

[ChIP-seq], ATAC-seq, methylome, etc.). Variant-based networks can be

mapped onto genes, enabling a common basis for network integration: the

gene level. A range of public data (e.g., ChIP-seq from ENCODE, RNA-seq

from the Genotype-Tissue Expression [GTEx] project,75 Hi-C data for

chromatin structure,76 protein–protein interaction data, etc.) can be incor-

porated to add evidence for the networks' biological plausibility; however

several researchers advised caution as data limitations and improper han-

dling could create biased results. Further sophisticated network layers can

be generated with the use of new explainable-AI tools that can find highly

accurate linear and nonlinear multi-way associations within and across

omics layers;77 though, as shown in the case of machine learning using a

candidate SNPs for opioid dependence, extreme care should be taken to

account for social inequities that permeate research practices and could

likely confound biological mechanisms under study.78 After integrating the

networks from the different data inputs based on gene IDs, lines-of-

evidence (LOE) scoring79 methods offer a way to establish links between

the networks, with each link adding to the score for connecting layers.

Explainable-AI approaches, such as iterative random forest-leave one out

prediction (iRF-LOOP) are able to find linear and linear expression relation-

ships in expression datasets derived from population-scale RNA-seq

datasets and are more accurate than traditional co-expression

approaches.77 These explainable-AI derived networks can be built from

publicly available datasets (such as GTEx) to provide tissue-specific regula-

tory patterns. They can similarly be built of single-cell-RNA-seq datasets

to provide cell-type-specific regulatory networks. Of course, they can also

be built from novel experimental data from individuals who were addicted

to opioids. These networks can be combined with networks derived from

other data types to form a multiplex network. For example, an

explainable-AI-derived RNA expression network associated with opioid

addiction in the nucleus accumbens (NAc) may link to a genome-wide

epistasis (GWES)-based network80 and a NAc-specific network assembled

from the GTEx, and may also connect through to a protein–protein inter-

action network and signaling cascade network all through common gene

IDs. Subsequently, random walk with restart (RWR) approaches, which

use an advanced form of network-association that is not limited to explor-

ing shortest paths or nearest neighbors, can jointly examine these multiple

heterogeneous multiplex networks while retaining the critical topological

information present in each network.81 By jointly integrating multiple het-

erogeneous data layers, one can score and rank candidate genes from

GWAS and genome-wide epistasis study (GWES) analyses using RWR-

based LOE algorithms. This can help to prioritize genes from GWAS/

GWES results and to provide mechanistic context for the resulting filtered

genes sets by way of subnetworks that include the links among members

of the filtered gene set and links to genes highly connected to members of

the gene set in the network. This context greatly enhances mechanistic

interpretation and the creation of conceptual models that can be used to

design validation experiments in human tissue or animal models. Because

similar gene-based networks can also be generated from model organisms,

they can also be integrated with human networks via ortholog projection

in order to leverage information from multiple species.

2.3 | Challenges and knowledge gaps in cross-
species research

There is heterogeneity in the behavioral phenotypes and paradigms

across humans and model organisms, respectively, that needs to be
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considered when attempting to identify the biobehavioral processes

underlying substance use and disorders. Clinical diagnoses of SUDs in

humans are based on assessments of drug-seeking, physical depen-

dence, and social disruption but often struggle to quantify each of

these phenotypes (e.g., the problem of going from a polythetic diagno-

sis to understanding severity/impact of combinations of criteria on a

person's life).82 It is often the case that qualitative symptoms are

employed, and several combinations of criterion endorsements (i.e., 2

or more of 11 DSM-5 symptoms) could result in a diagnosis. This diag-

nostic heterogeneity (i.e., different case subjects meeting the criteria

for endorsing varying sets of symptoms) leads to challenges in genetic

mapping83-85 and alignment with unconditioned and conditioned

quantitative traits used in animal models. In contrast, animal studies

place a high emphasis on measuring quantity/frequency and physio-

logical dependence. Studies of alcohol and cannabis use disorders

have shown quantitative and qualitative differences between the

genetics of consumption quantity and frequency and the genetics of

the disorders (e.g., impaired functioning, physical dependence, disrup-

tion of social responsibilities).12,86 Likewise, a geneset derived from

tobacco exposure paradigms in rodents shows modest enrichment for

the SNP-heritability of human tobacco consumption.87 Notably,

inbred strain comparison/selective breeding studies have allowed sci-

entists to examine the effects of genetic background on multiple

related traits.88 Differences in the phenotypes assessed in humans

and rodents may therefore contribute to a partially disconnected

approach to understanding risk rather than a fully integrated

approach, thus requiring detailed studies of consilience across pheno-

types and omic-phenotype associations. For example, even just within

humans, recent studies suggest that the genetics of human alcohol

consumption, particularly frequency of alcohol intake, is only partly

related to the genetics of alcohol problems (e.g., impaired functioning,

physical dependence, disruption of social responsibilities).19 Likewise,

a geneset derived from tobacco exposure paradigms in rodents shows

modest enrichment for the SNP-heritability of human tobacco con-

sumption.87 Therefore, differences in phenotypes and their associated

genetic architecture, whether within or across organisms, should be

taken into consideration, and leveraged when possible. As mentioned

above, there is tremendous potential to build integrated, cross-species

multi-omics networks that can serve to unify and utilize data and

extant knowledge from both humans and model organisms.

There are several knowledge gaps that, if addressed, would help

inform whether genetic results for SUD phenotypes can be translated

across species. These included understanding (1) the degree of con-

cordance among model organism findings, as well as (2) the extent to

which model organism evidence generalizes to humans, (3) the con-

textual implication of tissue, sex, and ancestry on these effects, and

(4) how unifying phenotypic definitions across databases can enhance

sample sizes and data integration. To date, several studies have shown

enrichment of mouse and rat gene sets (i.e., those that are differen-

tially expressed in the presence of cocaine) in the human brain trans-

criptome for cocaine use disorder, 89 as well as human GWAS of

tobacco/nicotine consumption.87 Identifying convergent genetic

mechanisms between humans and model organisms in SUDs is an

exciting challenge but is (relatively) close at hand. Even more daunting

challenges (and rewards) are presented by the ambitious goal of iden-

tifying neural pathways conserved between model organisms and

humans for addiction and its associated constellation of complex

behaviors. Clearly, the molecular and bioinformatics tools that emerge

from tackling the first problem will be a starting point for attacking

the second.

3 | THEME B: CURRENT TOOLS FOR
INTEGRATION OF GENETIC, EPIGENETIC,
AND PHENOTYPIC DATA

Several tools (e.g., methods, software, databases) currently exist and

are under active development to aid scientists in analyzing and inte-

grating multiple types and streams of data from a wide variety of

model organisms and diverse human populations. Here we highlight a

few that facilitate multi-omics and cross-species research. For a more

comprehensive list of tools please see the paper by Reynolds et al.90

Functional mapping and annotation of genetic associations

(FUMA) was developed 91 to annotate, prioritize, visualize, and inter-

pret GWAS results. The application integrates genome-wide summary

statistics with functional information, such as expression-QTL (eQTL)

and chromosomal interaction mapping in a tissue-specific manner to

identify the most likely causal SNPs. FUMA uses 18 biological data

repositories (e.g., GTEx) and tools to functionally annotate GWAS hits.

FUMA employs two gene-mapping strategies. First, it uses multi-

marker analysis of genomic annotation (MAGMA) to aggregate SNP-

level statistics up to the gene level, which enables more facile follow-

up network analyses. However, MAGMA does not take gene regula-

tory information into account when mapping SNPs to genes. Alterna-

tively, FUMA allows GWAS annotation by leveraging Hi-C and eQTL

data, leveraging available data resources including GTEx, Brain eQTL

Almanac (BRAINEAC),92 CommonMind,93 and PsychENCODE.94

Hi-C-associated multi-marker analysis of genomic annotation (H-

MAGMA) was developed to overcome limitations in MAGMA.95 H-

MAGMA advances MAGMA by incorporating long-range (gene regu-

latory) interactions defined by Hi-C in mapping SNPs to genes. Fur-

ther, it adopts the genome-wide mapping capability of MAGMA and

expands the gene set to follow-up for molecular and biological path-

way analysis. H-MAGMA has been developed on multiple Hi-C

datasets95,96—those obtained from human fetal brains, adult brains,

neurons, and glia sorted from the adult dorsolateral prefrontal cortex

(DLPFC), iPSC-derived neurons, and iPSC-derived astrocytes. This

enables developmental stage and cell type-specific gene mapping.

GeneWeaver is a suite of database and analysis tools that inte-

grate data from expression microarray, RNA-seq, QTL mapping,

GWAS, and mutation and perturbation screening experiments across

species (yeast, worm, fly, zebrafish, mouse, rat, dog, human, and other

species).97-99 It also integrates protein–protein, molecular networks,

and regulatory relationships to impute biological functions of variants

and genes to phenotypes. In addition, GeneWeaver can assess molec-

ular and trait relations through graphical network algorithms that
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leverage gene–gene and variant-variant comparison using complex,

heterogeneous networks and random walk or network flow-based

approaches. Until recently, GeneWeaver has used a gene-based strat-

egy to integrate data because convergence or conservation of mecha-

nism across species has typically relied on gene orthology.

Authoritative data resources, including model organism databases and

the Alliance of Genome Resources, have cataloged orthologous genes

across species based on sequence alignments. Functional genomics

analysis systems, including GeneWeaver, have made use of these

reported orthologues to compare the results of genomic experiments

across species at the gene level. Transitive associations are made to

infer cross-species orthology where sequence alignment has not

inferred a relationship (e.g., a Drosophila: zebrafish orthologue and

zebrafish: mouse orthologue can be used to infer Drosophila: mouse

orthology). Although functional coding variants, such as missense vari-

ants, are enriched among GWAS findings, most genome-wide signifi-

cant variants implicate noncoding regions.33 These noncoding variants

are poorly conserved at the sequence level, and their functional inter-

pretation presents a major challenge for the field. New approaches

are being developed by the GeneWeaver project for mapping noncod-

ing variants across species based on functional similarity and target

orthology using combined genomic data sources. These methods are

being applied to prioritize GWAS-identified variants based on evi-

dence obtained in model organisms.

3.1 | GeneNetwork

GeneNetwork is an interactive system for genome-to-phenome analy-

sis, QTL mapping, and network integration. This resource incorporates

large genetic, multi-omic, and phenotype data sets for highly diverse

animal model populations such as the BXD and CC lines of mice, the

HXB and HS rats, and several large number transcriptome data sets,

including GTEx. GeneNetwork integrates 40 years of animal model

data relevant to NIDA, NIAAA, NINDS, and NIMH missions, starting

with catalytic studies by Crabbe, McClearn, Hitzemann and Flint—

especially data on behavioral variation and its linkage to gene and pro-

tein expression in the central nervous system.55,68,100 The great

majority of data in GeneNetwork is both open and FAIR-compliant

and can be downloaded or used on-site in combination with powerful

mapping modules that include R/qtl,101,102 and the Bayesian network

webserver.103

3.2 | PrediXcan/MetaXcan

PrediXcan was developed as a gene-based association test that priori-

tizes genes likely to be causal for the phenotype, using predicted gene

expression levels, most often with GTEx as the reference.104 S-

PrediXcan is a variation of this test that uses summary statistics

instead of individual-level data. MultiXcan and S-MultiXcan are multi-

variate approaches (in contrast to the single-tissue approaches of Pre-

diXcan/S-PrediXcan) that integrate measurements across tissues

while accounting for correlations. Extensions of this approach are

now being used to transfer polygenic findings from GWAS between

human populations, and the authors suggest that these techniques

might allow translation between species in the future.105 These

methods fall under the family of transcriptome-wide association study

(TWAS)106 approaches more broadly (e.g., Fusion is a similar approach

that can be performed on GWAS summary statistics).106

4 | THEME C: ENSURING THAT DATA ARE
READY FOR INTEGRATION

The long-term data curation and implementation of FAIR data princi-

ples (https://www.go-fair.org/fair-principles/) is integral to the suc-

cess of integrating human and model organism research and multi-

omic data. FAIR standards are particularly important. Without atten-

tion to data accessibility, many large and small SUD-related data sets

risk evaporating over a relatively short period of time—often only 5–

10 years. This is particularly true of animal model data that tends to

be highly granular and often siloed. Data sharing issues aside, there is

a need for (inter)national storage and curation efforts because those

aspects are typically beyond the scope of most research projects.

Continued access to data, regardless of its presumed value, is key to

leveraging future technological advances. There are, however, notable

cases where advances in computing capacity and statistical methods

greatly improve the value of older data. For example, phenotype data

on drugs of abuse acquired over three decades ago can now be rea-

nalyzed using new mapping algorithms (e.g., linear mixed models) and

full genome sequence data. For example, data generated by a team at

ORNL a decade ago68 can be remapped today to generate signifi-

cantly stronger and even novel results than they did initially.

Participants discussed current knowledge gaps related to the

development of metadata standards and data ontologies in order to

move research forward. For instance, the lack of standards for

describing disease phenotypes, such as those developed by the MON-

ARCH initiative (Mondo disease ontology and Human Phenotype

Ontology [HPO];107,108) and the limited amount and quality of derived

phenotypes from electronic health records. Metadata helps with

findability, interoperability, and usability. Because of this, participants

emphasized that distribution platforms and curation tools that make

metadata searchable urgently need further development. Overcoming

these limitations would involve the identification of missing summary

metadata fields for human data in dbGaP, as well as making prior

results and data accessible both in name and in practice. Still, there is

not a standard process for making data more findable and readable.

Participants discussed several possible approaches for making data

more searchable, such as using a Digital Object Identifier (DOI),

machine-readable identification number, and Research Resource Iden-

tifiers (RRIDs)109 as possible strategies to achieving data integration.

As with all large-scale data endeavors, the researchers recognized a

limitation around encryption software that would enable accessibility

of primary raw data and allow searches across databases without the

loss of de-identification. A major benefit of overcoming this limitation
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would be the ability to work with raw data using alternative methods

that meta-analysis does not permit. Similarly, researchers acknowl-

edge the limited number of application programming interfaces (APIs)

to enable interactions between data, applications, and devices. APIs

deliver data and facilitate connectivity between devices and programs.

Compelling prototype solutions are described above, but issues

remain in the widespread integration and adoption of these systems.

The biggest challenges are dynamic updating and organization of data

for sharing and discovery as well as connecting across organisms and

data types (e.g., sequence, epigenomic, etc.). Integration between

graphical and relational databases remains a problem to be solved. To

address these major challenges, participants discussed areas for

improvement, including a lack of understanding of the following:

1. The degree of modularity and interoperability of existing data anal-

ysis software that can be used to facilitate the integration of ChIP-

seq, DNA methylation, Hi-C, RNA-seq, splice variants, and struc-

tural variants information.

2. How gene network, epistasis, and genetic modifiers affect sub-

stance use outcomes.

3. How chromatin organization varies across human brain regions

and in different cell types.

4. Ancestry differences in gene regulation.

5. How chromatin (Hi-C) and methylation (H3K27ac) data can be

combined to predict gene expression with higher accuracy.

6. How models using protein–protein interaction (or similarly relevant

omic data) data can help to improve the performance of existing

genetic prediction tools.

7. How to access raw primary data while maintaining de-identification.

5 | CONCLUSIONS AND FUTURE
DIRECTIONS

Genetics in human and animal models is now providing significant

insights into molecular causes of addiction and SUDs. However, these

leads still require extensive evaluation before being employed as pre-

vention (e.g., to understand the utility of a polygenic score [PGS]

beyond indicators of family history) and intervention tools (e.g., to

reset CNS metabolic and cellular states back to health and well

adapted behavior).110 Major gaps in the field's mechanistic under-

standing of the perturbations underlying SUDs remain. Addressing

these gaps and advancing the field will require attention to the follow-

ing areas: (1) well-powered GWAS of SUDs and relevant human traits

in diverse samples, (2) computational workflows that jointly leverage

model organisms and large human cohorts, (3) generation and integra-

tion of multi-omic data across developmental stages, brain regions,

molecularly defined cell types, and disease conditions, (4) data harmo-

nization across human and model organisms at the level of the pheno-

type, as well as different omic, cellular, and systems levels, and

(5) data curation and sharing.

Meeting participants also discussed key areas for future data inte-

gration, beginning with cross-species research and data integration

tools. Continued research in integrative platforms will allow the exam-

ination of various use cases that will help develop an understanding of

the difficulties and opportunities in data integration. As the goal is to

develop a plausible set of gene networks/sets from robust GWAS and

fine mapping studies in mice and humans, it will be important to con-

sider the nuances of mapping top results based solely on positional

data. For example, previous SUD GWASs limited annotations to genes

nearest to the lead SNP, and only more recently have studies begun

to include tissue-specific annotation methods such as H-MAGMA and

PrediXscan, to name a few. Many researchers are working on system-

atic multi-omic integration approaches to fine map complex genetic

loci and nominate target genes. Reports on the progress of these

efforts began at the Genetics and Epigenetics of Addiction (January

13–14, 2020) and are available at https://www.drugabuse.gov/

research/research-data-measures-resources/genetics-epigenetics-

ccrt/nida-genetics-consortium-ngc/nida-genetic-consortium-

meetings-abstracts. Second, we need an increased understanding of

the neurotoxic and behavioral effects of drugs. This continuously

evolving body of literature will facilitate computational experiments

to identify gene variants in underpowered GWAS. Integrative analyses

in humans that include model organism data could also be applied to

GWAS data as have been realized to date using Bayesian approaches

to optimize gene identification using functional categories in genet-

ics111 and cis- and trans-eQTL information in transcriptomics.112

This Data Jamboree meeting represents a pivotal point in an

ongoing process of information sharing that reflects the interdisciplin-

ary nature of addiction genetics research. Notably, it builds on the

previous report by Cates et al.,113 that emphasized the importance of

harmonizing phenotypes and methods of analysis among studies.

Even though geneticists at this meeting did not always agree on

the ideal course of action for the next phase of discovery, the debate

and dialog, spurred by a shared commitment towards identifying tan-

gible genetic targets, resulted in several new directions for human and

model organism research.
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