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Highlights 
• Channel noise alters the temporal pattern of intermittent neural synchrony
• Noise may alter this pattern without significant change in average synchrony strength
• The resulting patterning is similar to that observed in multiple experiments

Abstract 

Neural synchrony in the brain is often present in an intermittent fashion, i.e., there are intervals of 
synchronized activity interspersed with intervals of desynchronized activity. A series of 
experimental studies showed that this kind of temporal patterning of neural synchronization may 
be very specific and may be correlated with behavior (even if the average synchrony strength is 
not changed). Prior studies showed that a network with many short desynchronized intervals may 
be functionally different from a network with few long desynchronized intervals as it may be more 
sensitive to synchronizing input signals. In this study, we investigated the effect of channel noise 
on the temporal patterns of neural synchronization. We employed a small network of conductance-
based model neurons that were mutually connected via excitatory synapses. The resulting 
dynamics of the network was studied using the same time-series analysis methods as used in prior 
experimental and computational studies. While it is well known that synchrony strength generally 
degrades with noise, we found that noise also affects the temporal patterning of synchrony. Noise, 
at a sufficient intensity (yet too weak to substantially affect synchrony strength), promotes 
dynamics with predominantly short (although potentially very numerous) desynchronizations. 
Thus, channel noise may be one of the mechanisms contributing to the short desynchronization 
dynamics observed in multiple experimental studies. 
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1. INTRODUCTION 
 
Neural systems exhibit synchronization of oscillatory activity in a variety of different situations. 
This synchronization is involved in multiple brain functions in cognitive and motor domains (for 
example, see reviews by Buzsáki and Draguhn, 2004; Fell and Axmacher, 2011; Fries, 2015; 
Harris and Gordon, 2015). Disorganization of neural synchrony (such as excessively strong or 
insufficiently strong synchrony) negatively affects the information processing in the networks of 
the brain and is associated with several neurological disorders (such as Parkinson’s disease) and 
psychiatric disorders (such as schizophrenia and autism spectrum disorders), see (Schnitzler and 
Gross, 2005; Uhlhaas and Singer, 2006; Oswal et al., 2013; Pittman-Polletta et al., 2015). 
 
Perfect synchrony is probably not achievable in the brain (at least in the rest state). A moderate 
synchrony strength implies that synchrony is sometimes high and sometimes low, yielding some 
average synchrony strength level. This kind of temporal patterning of synchronous activity may 
be independent of the synchronization strength (Ahn et al., 2018). Time-series analysis techniques 
to quantify the temporal patterning of synchrony on very short time-scales (provided there is a 
statistically significant synchrony overall) have been developed over the past decade (e.g., Park et 
al., 2010; Ahn et al., 2011). These techniques revealed that neural synchrony in the brain shows a 
very specific patterning: it is interrupted by potentially numerous but very short desynchronization 
episodes. This was observed in different species (rodents, humans), different brain signals (spikes, 
LFPs, EEG), different brain areas (cortex, hippocampus, basal ganglia), and different brain states 
(healthy and diseased), see (Park et al., 2010; Ahn and Rubchinsky, 2013; Ahn et al., 2014; 
Ratnadurai-Giridharan et al., 2016; Malaia et al., 2020) for the different experiments. The 
distribution of desynchronization durations is altered under different conditions. It was found to 
be related to the severity of symptoms of Parkinson’s disease, addiction, and autism (Ahn et al., 
2014; Ahn et al., 2018; Malaia et al., 2020, Dos Santos Lima et al., 2020). However, the mode of 
this distribution is always one (see studies mentioned above). 
 
Thus, the mechanisms behind the short desynchronization dynamics make an important problem 
to explore. Kinetics of sodium and potassium spike-producing ionic channels in neurons as well 
as spike-timing dependent plasticity can facilitate short desynchronization dynamics (Ahn and 
Rubchinsky, 2017; Zirkle and Rubchinsky, 2020). Noise can also potentially be a factor in 
temporal patterning of synchrony, because noise is well-known to affect synchronous dynamics in 
multiple ways from a straightforward decrease of synchrony under the action of noise to the 
increase of synchrony due to correlated noisy input (Zhou et al., 2002; Goldobin and Pikovsky, 
2005) and can exert multiple effects on the synchrony between and within networks of neurons 
(e.g., McMillen and Kopell, 2003; Zhou et al., 2013; Meng and Riecke, 2018). 
 
Noise is ubiquitous in neural systems (Ermentrout et al., 2008, Faisal et al., 2008). Thus, the 
question of how noise may affect the temporal patterning of neural synchrony is very natural. 
Leaving aside the issue of what is noise in neural systems (Stein et al., 2005; Yarom and 
Hounsgaard, 2011), we will focus here on specific types of noise. We will consider the effect of 
channel noise in individual neurons (multiplicative noise) as well as the effect of an additive noise 
on the temporal patterning of synchronized dynamics in a network of synaptically coupled model 
neurons. We show that both noise types can robustly alter the temporal patterning of the 
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synchronized dynamics, effectively shortening desynchronization intervals while simultaneously 
making them more frequent. This is similar to what one can observe in experimental data. 
 
 
 
2. METHODS 
 
To focus on the very basic aspects of the noise effect on the temporal patterns of synchronization, 
we employ a minimal heterogeneous network of relatively simple model neurons following (Ahn 
and Rubchinsky, 2017).  
 
 
2.1. Neuronal and Synaptic Modeling 
 
We use the same neuronal and synaptic model as the one used in (Ahn and Rubchinsky, 2017) and 
incorporate noise into it. This is a two-dimensional ODE model, a simplification of the Hodgkin-
Huxley model which is equivalent to the Morris-Lecar model. It is one of the simplest models of 
neurons that retain kinetics of ionic channels (which may be important for the temporal patterns 
of synchronized dynamics as suggested by (Ahn and Rubchinsky, 2017)). The model takes the 
following form:  
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= −𝐼𝐼𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐾𝐾 − 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎            (1) 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑤𝑤∞(𝑣𝑣)−𝑤𝑤
𝜏𝜏(𝑣𝑣)

                                           (2) 
 
Here 𝑣𝑣 is the membrane potential of a neuron and 𝑤𝑤 is the gating variable for the potassium current. 
The synaptic current between neurons, 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠, is described below. 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is a constant input current to 
each neuron which controls the excitability of the cell. The spike-producing sodium and potassium 
currents and the leak current are described by: 
 

𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞(𝑣𝑣)(𝑣𝑣 − 𝑣𝑣𝑁𝑁𝑁𝑁)                                             (3) 
𝐼𝐼𝐾𝐾 = 𝑔𝑔𝐾𝐾(𝑤𝑤 + 𝜉𝜉(𝑡𝑡))(𝑣𝑣 − 𝑣𝑣𝐾𝐾)                                            (4) 
𝐼𝐼𝐿𝐿 = 𝑔𝑔𝐿𝐿(𝑣𝑣 − 𝑣𝑣𝐿𝐿)                                                                (5) 

 
𝑔𝑔𝑁𝑁𝑁𝑁, 𝑔𝑔𝐾𝐾, 𝑔𝑔𝐿𝐿 are the maximal conductances for the sodium, potassium and leak currents, 
respectively. A Gaussian white noise term, 𝜉𝜉(𝑡𝑡), is added to the gating variable 𝑤𝑤. This 
introduction of noise represents the inherently stochastic nature of the membrane ion channels in 
neurons (Goldwyn and Shea-Brown, 2011). The steady-state values for the gating variables of the 
sodium and potassium currents are: 
 

𝑚𝑚∞(𝑣𝑣) = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒�−2𝑣𝑣−𝑣𝑣𝑚𝑚1
𝑣𝑣𝑚𝑚2

�
                                                  (6) 

𝑤𝑤∞(𝑣𝑣) = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒�−2𝑣𝑣−𝑣𝑣𝑤𝑤1𝛽𝛽 �
                                                   (7) 
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The voltage-dependent activation time constant of the potassium current is: 
 

𝜏𝜏(𝑣𝑣) = 1
𝜀𝜀
∗ 2

𝑒𝑒𝑒𝑒𝑒𝑒�𝑣𝑣−𝑣𝑣𝑤𝑤12𝛽𝛽 �+𝑒𝑒𝑒𝑒𝑒𝑒�𝑣𝑣𝑤𝑤1−𝑣𝑣2𝛽𝛽 �
                                      (8) 

 
All synapses are excitatory, and the synaptic current from each neuron 𝑗𝑗 ≠ 𝑖𝑖 to neuron 𝑖𝑖 is given 
by: 
 

       𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠)∑ 𝑠𝑠𝑗𝑗𝑗𝑗≠𝑖𝑖                                              (9) 
 
𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 is the maximal conductance of the synapse (i.e., the synaptic strength), and 𝑠𝑠𝑗𝑗  is the synaptic 
variable for neuron 𝑗𝑗 and the summation is taken over all neurons that are connected to the 𝑖𝑖-th 
neuron. The synaptic variable 𝑠𝑠 is governed by: 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=∝𝑠𝑠 (1 − 𝑠𝑠)𝐻𝐻∞(𝑣𝑣 − 𝜃𝜃𝑣𝑣) − 𝛽𝛽𝑠𝑠𝑠𝑠                                  (10) 
 
𝐻𝐻∞ is a sigmoidal function whose input is the presynaptic neuronal voltage: 
 

             𝐻𝐻∞(𝑣𝑣) = 1

1+𝑒𝑒𝑒𝑒𝑒𝑒�− 𝑣𝑣
𝜎𝜎𝑠𝑠
�
                                                       (11) 

 
With the exception of ∝𝑠𝑠, the values of the cellular and synaptic parameters are the same as used 
in (Ahn and Rubchinsky, 2017): 𝑔𝑔𝑁𝑁𝑁𝑁 = 1, 𝑔𝑔𝐾𝐾 = 3.1, 𝑔𝑔𝐿𝐿 = 0.5, 𝑣𝑣𝑁𝑁𝑁𝑁 = 1, 𝑣𝑣𝐾𝐾 = −0.7, 𝑣𝑣𝐿𝐿 = −0.4, 
𝑣𝑣𝑚𝑚1 = −0.01, 𝑣𝑣𝑚𝑚2 = 0.15, 𝑣𝑣𝑤𝑤1 = 0.08, 𝛽𝛽 = 0.145, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 0.045, 𝜀𝜀1 = 0.02 (unless noted 
otherwise as in 3.1 where different values of 𝜀𝜀 are considered) and 𝜀𝜀2 = 1.2𝜀𝜀1 are values of 𝜀𝜀 in 
two different neurons, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 = 0.5, ∝𝑠𝑠= 2, 𝛽𝛽𝑠𝑠 = 0.2, 𝜃𝜃𝑣𝑣 = 0.0, 𝜎𝜎𝑠𝑠 = 0.2. 
 
We also simulated the neurons with a current noise (additive noise) instead of a channel noise. The 
model is identical to the one described above, except that the noise term is now an additive term 
in the voltage equation: 
 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐼𝐼𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐾𝐾 − 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜉𝜉(𝑡𝑡)                                (12) 
 
 
2.2. Numerical Implementation 
 
Multiplying out the voltage equation from the multiplicative noise section, we obtain the following 
Langevin-type equation: 
 

𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐴𝐴(𝑣𝑣) + 𝐵𝐵(𝑣𝑣)𝜉𝜉𝑖𝑖  (𝑡𝑡)                                                 (13) 
 
where 𝐴𝐴(𝑣𝑣) and 𝐵𝐵(𝑣𝑣) are the drift and diffusion terms, respectively. In the case of additive noise 
we simply have 
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𝑑𝑑𝑣𝑣𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝐴𝐴(𝑣𝑣) + 𝜉𝜉𝑖𝑖 (𝑡𝑡)                                                         (14) 
 
We then solve the system numerically using the Euler-Maruyama method (Higham, 2001; 
Gardiner, 2009). Here 𝜉𝜉(𝑡𝑡) is white noise that is distributed as 𝜎𝜎√𝑑𝑑𝑑𝑑𝑁𝑁(0,1), where 𝜎𝜎 ∈ [0,0.02] 
is the noise strength. This interval was chosen so that the noise could be strong enough to induce 
a change in the temporal patterns of synchronous dynamics, yet not destroy the inherent spiking 
dynamics. The noise term for each neuron is generated with a different seed, i.e., the noise terms 
for each neuron are uncorrelated. The unit of time in our system is millisecond. The system was 
integrated on the time interval [0,20000] with a time step of 𝑑𝑑𝑑𝑑 = 0.01 ms. To account for the 
initial transient behavior the first 5% of the time-series was discarded from analysis.  
 
Depending on which parameter value was varied, the voltage threshold to define an action potential 
was set at either 0.20, 0.25 or 0.30. To eliminate the possibility of the channel noise driving the 
membrane voltage over the threshold immediately following an action potential, a window of 15 
ms was set after each neuron's action potential in which we do not count threshold crossings. Since 
the highest recorded frequency was approximately 40 Hz, a window of 15 ms is appropriate. 
 
 
2.3. Synchronization Data Analysis 
 
The time-series analysis of synchronized dynamics in the network follows the earlier study of a 
non-noisy version of this model (Ahn and Rubchinsky, 2017), and is similar to the analysis of the 
temporal patterns of neural synchrony in the experimental studies mentioned in the Introduction. 
We will briefly describe the major steps of the analysis here. 
 
The phase, 𝜑𝜑(𝑡𝑡), of a neuron is defined as 

𝜑𝜑(𝑡𝑡) = tan−1 � 𝑣𝑣(𝑡𝑡)−𝑣𝑣�
𝑤𝑤(𝑡𝑡)−𝑤𝑤�

�                                                   (15) 
 
where (𝑤𝑤� , 𝑣𝑣�) is a point selected inside the neuron's limit cycle in the (𝑤𝑤, 𝑣𝑣) – plane. The 
synchronization strength is computed as 
 

𝛾𝛾 = �1
𝑁𝑁
∑ 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖∆𝜑𝜑�𝑡𝑡𝑗𝑗��𝑁𝑁
𝑗𝑗=1 �

2
                                         (16) 

 
where ∆𝜑𝜑�𝑡𝑡𝑗𝑗� = 𝜑𝜑1�𝑡𝑡𝑗𝑗� − 𝜑𝜑2(𝑡𝑡𝑗𝑗) is the difference of the phases of neurons 1 and 2 at time 𝑡𝑡𝑗𝑗. 𝑁𝑁 
is the number of data points. The value of 𝛾𝛾 ranges from 0 to 1, which represent a complete lack 
of synchrony and perfect synchrony, respectively. 
 
The index 𝛾𝛾 represents an average value of phase-locking over the interval of analysis. However, 
to describe how synchrony varies in time, one needs to look at the transitions to and from a 
synchronized state on short timescales. This is done as follows.  
 
If there is some degree of phase-locking present, then there is a synchronized state, i.e., a preferred 
value of the phase difference ∆𝜑𝜑. We check if the actual phase difference is close to this preferred 
value or not for each cycle of oscillations. When 𝜑𝜑1 increases past zero, say at time 𝑡𝑡𝑖𝑖, then 
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𝜑𝜑2(𝑡𝑡𝑖𝑖) is recorded. This generates a sequence of numbers {𝜑𝜑2(𝑡𝑡𝑖𝑖)}𝑖𝑖=1𝑀𝑀 . Due to the presence of some 
synchrony, there is a clustering about some phase value, say 𝜑𝜑0. This is taken as the preferred 
phase value, and if 𝜑𝜑2(𝑡𝑡𝑖𝑖) =  𝜑𝜑𝑖𝑖 differs from it by more than a threshold value of 𝜋𝜋

2
 (the same value 

as in the experimental studies described in the Introduction) then the neurons are considered to be 
in the desynchronized state, otherwise they are considered to be in the synchronized state. 
 
The length of a desynchronization event is defined as the number of cycles the system spends in a 
desynchronized state minus one. The lengths of all desynchronization events are recorded, and the 
mode of these lengths is considered as a way to describe the distribution of desynchronizations (as 
in the experimental studies). For later reference, a "mode 𝑛𝑛" system or "mode 𝑛𝑛" dynamics means 
that the mode of all lengths of desynchronization events for that particular system (that particular 
set of parameter values) is 𝑛𝑛. Note that in this approach, the duration of desynchronizations is 
measured in relative units (the number of cycles of oscillations). We present examples of time-
series and associated distributions of desynchronization durations below in the beginning of the 
Results section. 
 
 
 
3. RESULTS 
 
Following (Ahn and Rubchinsky, 2017), we used a simple heterogeneous network consisting of 
two neurons connected via excitatory synapses with the same synaptic strength (see Fig. 1). As 
described in Methods, the values of ε (determining the potassium current activation dynamics) 
differ slightly between the two neurons, 𝜀𝜀2 = 1.2𝜀𝜀1, hence their frequency of spiking is slightly 
different. Also, the strength of both synapses is 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 0.005, hence the coupling is weak. Due to 
the heterogeneity of the network and the weak coupling, the synchronization strength in the 
network is relatively weak. While this study considered network heterogeneity due to different 
values of ε in neurons, we also performed a series of simulations, where a similar level of 
heterogeneity is achieved via difference of 𝑔𝑔𝐾𝐾 or 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎. The resulting effect of the noise action on 
the patterns of synchrony was similar to the one observed in the networks heterogeneous in ε, and 
thus was not studied in detail and is not reported here. 
 

 
Figure 1. The diagram of the minimal network: two cells mutually connected with mutually 
excitatory synapses. 
 
Figure 2 presents an example of time-series of two neurons (Fig. 2A) and phase plane illustrations 
of these neurons (Fig. 2B) in uncoupled, coupled, and coupled with noise cases. Note that the 
coupling is not strong enough to lead to strong synchrony, and that noise levels considered here 
do not substantially alter the shape of the spike and phase plane trajectory or substantially affect 
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synchrony strength. This lets us to focus on the action of noise on the temporal patterning of 
synchronous dynamics. 
 
Based on the noiseless case considered in (Ahn and Rubchinsky, 2017) and similarly to (Zirkle 
and Rubchinsky, 2020), we vary the values of parameters of the potassium current kinetics in such 
a way as to change the dynamics of the noiseless network from exhibiting predominantly short 
desynchronizations (i.e., those observed in experiments) to one with longer desynchronizations. 
These parameters are 𝜀𝜀; the reciprocal of the peak value of the activation time-constant 𝜏𝜏(𝑣𝑣), 𝛽𝛽; 
the widths of the activation time-constant 𝜏𝜏(𝑣𝑣) and the steady-state activation function 𝑤𝑤∞(𝑣𝑣), and 
𝑣𝑣𝑤𝑤1; the voltage of half-activation and of the peak activation constant. Variation of either of these 
three parameters effectively changes the voltage-dependent activation time-constant 𝜏𝜏(𝑣𝑣) to either 
large or small, which delays or accelerates the activation of potassium current, respectively (and 
changes the waveform of oscillations from sharp to more sinusoidal). 

 

 
Figure 2. Voltage time-series (A) and phase plane trajectories (B) of two neurons in the network 
(solid black and dashed grey lines). Top row is the case of uncoupled neurons, middle row is the 
case of weakly coupled neurons, and the bottom row is the case of coupled neurons with noise 
(𝜀𝜀1 = 0.044 and the noise level in the bottom row is 𝜎𝜎 = 0.0149). 
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3.1. Variation of 𝜺𝜺 
 
We first will explore if the channel noise preserves the prevalence of short desynchronizations or 
not. Smaller values of 𝜀𝜀 correspond to larger values of 𝜏𝜏(𝑣𝑣) and are known to promote short 
desynchronization dynamics (Ahn and Rubchinsky, 2017); smaller values of 𝜀𝜀 also result in a 
lower frequency. For 𝜀𝜀1 = 0.044, the noiseless system is mode 1 (i.e., the mode of the distribution 
of all desynchronization event lengths is one cycle of oscillation). This is similar to the 
experimental results (see Introduction). As the strength of the noise is increased, we see from Fig. 
3A that the system remains mode 1. It is worth noting, that the average synchrony strength stays 
virtually the same (Fig. 3B). Of course, a very strong noise will change it, but the noise range we 
consider here is sufficiently weak so as to not affect the average synchrony strength γ. We also 
plot the frequency of oscillations (firing rate) in Fig. 3C. The noise does not change it in a 
substantial way either, although we include it here because it is affected by the change of ε and 
other channel parameters. 
 
 

 
Figure 3. The effect of noise on synchrony properties of the network for the case of small  𝜀𝜀 (𝜀𝜀1 =
0.044), which exhibits mode 1 desynchronization dynamics in the noiseless case. The strength of 
the noise 𝜎𝜎 is varied along the horizontal axes. A: mode of the distribution of desynchronization 
durations, B: average synchrony index γ, C: mean oscillation frequency (firing rate) of the system. 
 
 
The effect of channel noise on the distribution of desynchronization durations for 𝜀𝜀1 = 0.044 is 
shown in Figure 4.  The strength of the noise increases from left to right, and the effect is to broaden 
the distribution while maintaining a mode of 1.  Fig. 4C for instance, is qualitatively similar to 
distributions obtained from previous studies conducted on experimental data (see references in 
Introduction). 
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Figure 4. Distributions of desynchronization durations for different levels of noise in the network 
exhibiting mode 1 desynchronization dynamics in the noiseless case (𝜀𝜀1 = 0.044).  Noise strength 
increases from left to right:  A:  𝜎𝜎 = 0 (no noise), B:  𝜎𝜎 = 0.0097, C:  𝜎𝜎 = 0.02. 
 
We now explore how the network with longer desynchronizations in the noiseless case will 
respond to noise. For this we consider a higher value of 𝜀𝜀; for 𝜀𝜀1 = 0.132, the noiseless network 
is mode 2. As the noise strength is increased the mode of the system shifts from 2 down to 1 (Fig. 
5A). This is not a fully monotonous transition. Several other noise-induced transitions between 
dynamics with different modes considered below are not monotonous either. Moreover, the mode 
is just a convenient characteristic of the desynchronization episodes. They may experience more 
gradual changes not captured by the mode. However, the results indicate that on a larger scale, 
there is a clear noise-induced transition from longer to shorter desynchronizations. Once again, the 
average synchrony strength and the frequency of firing are nearly constant with respect to the noise 
strength (Fig. 5B and 5C). This will be the case for all the situations considered here, reflecting 
the fact that the noise we use is effectively weak. This indicates that the distribution of the 
desynchronization durations can be altered independently of the average synchrony strength and 
the frequency of oscillations by varying the noise strength. 
 

 
Figure 5. The effect of noise on synchrony properties of the network, which exhibits mode 2 
desynchronization dynamics in the noiseless case (𝜀𝜀1 = 0.132). The strength of the noise 𝜎𝜎 is 
varied along the horizontal axes. A: mode of the system, B: average synchrony index γ, C: mean 
oscillation frequency (firing rate) of the system. 
 
The effect of channel noise on the distribution of desynchronization durations for 𝜀𝜀1 = 0.132 is 
shown in Figure 6. The strength of the noise increases from left to right, and the effect is to 
simultaneously broaden the distribution and shift the mode from 2 down to 1.   
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Figure 6. Distributions of desynchronization durations for different levels of noise in the network 
exhibiting mode 2 desynchronization dynamics in the noiseless case (𝜀𝜀1 = 0.132).  Noise strength 
increases from left to right:  A:  𝜎𝜎 = 0 (no noise), B:  𝜎𝜎 = 0.0097, C:  𝜎𝜎 = 0.02. 
 
We note that the same trend was observed for systems with larger modes, i.e., a strong enough 
noise shifts the mode of a system down to one. For example, for 𝜀𝜀1 = 0.184 the noiseless system 
is mode 4. However, if the noise is sufficiently large (yet small in a sense that it does not alter the 
shape of oscillations much and does not alter average synchrony), it will shift the system to mode 
1 dynamics. 
 
 
3.2. Variation of 𝜷𝜷 
 
We again will first explore if the channel noise will preserve the prevalence of short 
desynchronizations or not under the variation of parameter 𝛽𝛽. The parameter 𝛽𝛽 changes the widths 
of the voltage-dependent time-constant of activation 𝜏𝜏(𝑣𝑣) and the width of the steady-state 
activation function 𝑤𝑤∞(𝑣𝑣) for potassium current. Large values of 𝛽𝛽 correspond to the larger width 
of the sigmoidal function 𝑤𝑤∞(𝑣𝑣) and to the larger width of the bell-shaped function 𝜏𝜏(𝑣𝑣). Both 
changes effectively delay the activation of the potassium current and are known to promote short 
desynchronization dynamics (Ahn and Rubchinsky, 2017). For 𝛽𝛽 = 0.131, the noiseless system is 
mode 1. We see in Fig. 7A that the mode of the system is unchanged as noise is added and its 
strength is increased. The synchrony index and the frequency of the system are virtually unchanged 
from that of the noiseless system and are therefore not plotted. 
 

 
Figure 7. The effect of the noise strength 𝜎𝜎 on the mode of the desynchronization durations 
distribution for A: the network, which exhibits mode 1 desynchronization dynamics in the 
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noiseless case (𝛽𝛽 = 0.131) and B: the network, which exhibits mode 2 desynchronization 
dynamics in the noiseless case (𝛽𝛽 = 0.080). 
 
Now, let us look at a longer desynchronization case obtained by varying 𝛽𝛽. For 𝛽𝛽 = 0.080, the 
noiseless system is mode 2. For small noise strengths, the system remains mode 2, but for larger 
values the system becomes mode 1 (Fig. 7B), although this transition is not fully monotonous with 
respect to the noise strength. Again, the shift in mode is independent of the average synchrony 
index or the mean firing frequency, which do not substantially change with noise (even though 
they are different from those in the network with 𝛽𝛽 = 0.131). 
 
 
 
3.3. Variation of 𝒗𝒗𝒘𝒘𝒘𝒘 
 
The parameter 𝑣𝑣𝑤𝑤1 affects a horizontal translation in 𝑤𝑤∞(𝑣𝑣) and 𝜏𝜏(𝑣𝑣). In particular, increasing 
𝑣𝑣𝑤𝑤1 shifts both curves to the right, i.e., towards higher voltages. For the spike generation in the 
considered model neuron, it results in a faster potassium current activation. Smaller values of 𝑣𝑣𝑤𝑤1 
result in shorter desynchronization durations (Ahn and Rubchinsky, 2017). For 𝑣𝑣𝑤𝑤1 = 0.096, the 
noiseless system is mode 1. All channel noise strengths considered preserve this mode 1 dynamics 
(Fig. 8A). 
 

 
Figure 8. The effect of the noise strength 𝜎𝜎 on the mode of the desynchronization durations 
distribution for A: the network, which exhibits mode 1 desynchronization dynamics in the 
noiseless case (𝑣𝑣𝑤𝑤1 = 0.096) and B: the network, which exhibits mode 2 desynchronization 
dynamics in the noiseless case (𝑣𝑣𝑤𝑤1 = 0.169). 
 
Now we set the parameter 𝑣𝑣𝑤𝑤1 = 0.169 so as to place the noiseless network in mode 2 dynamics 
(longer desynchronizations). As we vary the noise magnitude from zero to larger values, the 
network exhibits a tendency for mode 1 (short desynchronizations) dynamics. This is not a 
monotonous transition, and with moderate noise the network may exhibit desynchronizations both 
shorter than in the noiseless case and longer than in the noiseless case. But a strong enough noise 
will shift the mode to one creating short desynchronization dynamics similar to experimentally 
observed ones (Fig. 8B). As earlier, in all the cases considered here, the frequency of oscillations 
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is not altered, and the average synchrony strength only varies slightly (even though they are 
different in the network with different values of 𝑣𝑣𝑤𝑤1 considered here). 
 
 
 
3.4. Variation of 𝜷𝜷𝒘𝒘 and 𝜷𝜷𝝉𝝉 
 
Variation of the previous parameters, i.e., 𝜀𝜀, 𝛽𝛽 and 𝑣𝑣𝑤𝑤1, can affect the average synchronization 
strength and frequency of firing in addition to changing the durations of desynchronizations. For 
example, for 𝛽𝛽 = 0.065 (and other parameter values as described above) the system exhibits a 
frequency of about 41 Hz (and desynchronization durations mode 1, 2 or 3 depending on the 
strength of the noise). While for 𝛽𝛽 = 0.131 the frequency is about 14 Hz. Thus, when we are 
changing the values of parameters to explore the effect of noise on the temporal patterns of 
synchronization, we do not keep the frequency of oscillations and average synchrony strength 
fixed. To take care of this issue, i.e., to use noise to control the mode of a noiseless system while 
keeping both the average synchrony strength and firing frequency near constant, one can take the 
parameter 𝛽𝛽 and separate it into two independent parameters, 𝛽𝛽𝜏𝜏 and 𝛽𝛽𝑤𝑤, for 𝜏𝜏(𝑣𝑣) and 𝑤𝑤∞(𝑣𝑣) 
respectively. The result is that the mode of the system is essentially independent of the synchrony 
strength and frequency as these two parameters are varied simultaneously (Ahn and Rubchinsky, 
2017). A smaller 𝛽𝛽𝑤𝑤 and larger 𝛽𝛽𝜏𝜏 result in shorter desynchronization durations even though 
frequency and average synchrony stay basically the same. 
 
For 𝛽𝛽𝑤𝑤 = 0.098,𝛽𝛽𝜏𝜏 = 0.079 the noiseless system is mode 1. As illustrated in Fig. 9A1, the mode 
remains at one even with the introduction of noise, regardless of the noise strength. 
 

 
Figure 9. The effect of the noise on the mode of the desynchronization durations distribution in 
the networks, which exhibits mode 1 desynchronization dynamics (row 1, 𝛽𝛽𝑤𝑤 = 0.098,𝛽𝛽𝜏𝜏 =
0.079) or mode 2 desynchronization dynamics (row 2, 𝛽𝛽𝑤𝑤 = 0.120,𝛽𝛽𝜏𝜏 = 0.068) in the noiseless 
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case, but otherwise have similar average synchronization strength and firing rate. The strength of 
the noise 𝜎𝜎 is varied along the horizontal axes. A: mode of the distribution of desynchronization 
durations, B: average synchrony index γ, C: mean oscillations frequency (firing rate) of the 
system. 
 
For 𝛽𝛽𝑤𝑤 = 0.120,𝛽𝛽𝜏𝜏 = 0.068 the noiseless system is mode 2, moreover, the average frequency of 
oscillations and the average synchronization strength stay the same as in the mode 1 case above. 
Introduction of noise of sufficiently large strength again leads to shortening of desynchronizations 
and mode 1 dynamics, see Fig. 9A2. Not only do the frequency and average synchrony strength 
not change with respect to noise (Fig. 9B2 and 9C2), but their values are not substantially different 
from those in Fig. 9B1 and 9C1.  
 
 
 
3.5. Additive Noise 
 
We also consider the action of an additive noise (current noise) on the temporal patterning of the 
synchronized dynamics. Thus, we consider here the action of additive (current, activity-
independent) noise as opposed to the multiplicative (channel, activity-dependent) noise. We use 
the same framework, looking at different variations of parameters and resulting modes of 
desynchronization duration distributions as described in the previous sections. Since the effects of 
parameter selection has been already described above, we will just briefly present the results here. 
 
In general, the effect of an additive noise on a system is very similar to the effect of the conductance 
noise, i.e., the mode of a system is switched down to one at sufficiently strong noise strengths. 
Thus, the forthcoming Fig. 10 is similar to figures in 3.1-3.4 above. The changes of average 
synchrony and firing frequency are not plotted, because they do not experience any substantial 
variation for the considered range of noise strength. For variation of 𝜀𝜀 results refer to the first row 
in Fig. 10, for variation of 𝛽𝛽 results refer to the second row in Fig. 13, for variation of 𝑣𝑣𝑤𝑤1 results 
refer to third row in Fig. 10, and for variation of 𝛽𝛽𝑤𝑤, 𝛽𝛽𝜏𝜏 results refer to the last row in Fig. 10. 
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Figure 10. The effect of additive noise on mode of the desynchronization durations distribution.  
The strength of the noise is varied along the horizontal axes. A: the network, which exhibits 
mode 1 desynchronization dynamics in the noiseless case, B: the network, which exhibits mode 2 
desynchronization dynamics in the noiseless case. The four rows present the networks with 
parameters considered in the sections 3.1-3.4, except that the noise is additive here. 
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4. DISCUSSION 
 
Our study considered intermittent synchronization of oscillations in a minimal network of two 
synaptically coupled neurons. In general, as the coupling strength between oscillators increases, 
the synchronization strength will increase from a low to high level (Pikovsky et al., 2001). 
Moderate values of coupling naturally give rise to intermittent synchrony, where episodes of strong 
synchrony are interspersed with episodes of desynchronized dynamics. The same level of 
synchrony may be reached with a few long desynchronizations, many short desynchronizations, 
and many possibilities in between. Here we considered how noise will affect the temporal 
patterning of moderately synchronous dynamics. 
 
We showed that weak noise may alter the temporal patterning of synchrony and starting from 
certain magnitude it leads to the synchronized activity punctuated by very short 
desynchronizations. That is, with noise of sufficient magnitude, the distribution of 
desynchronization durations has a mode of one. This is the case for both channel (or conductance) 
noise and current noise (i.e., for both multiplicative and additive noise). Interestingly, this 
reorganization of the temporal patterning of synchrony is achieved with relatively weak noise, so 
that the average synchronization strength is not substantially changed. 
 
The observed phenomena are interesting to consider in the context of the experimental results on 
the temporal patterning of neural synchrony in the brain. Multiple experiments show that 
moderately synchronized brain activity at rest has a very specific temporal pattern: most of the 
desynchronizations are very short, lasting for just one cycle of oscillation (Park et al., 2010; Ahn 
and Rubchinsky, 2013; Ahn et al., 2014; Malaia et al., 2020; see also Introduction). This study 
suggests that noise may be one of the factors promoting this regime of desynchronization 
dynamics. Naturally, real neurons are noisy, and there may be many sources of this noise (in 
particular, depending on the scale of the system considered). Multiplicative noise considered here 
is a good way to describe inherent stochasticity of ion channels in neural membranes (Goldwyn 
and Shea-Brown, 2011). Additive noise may represent stochastic inputs to neurons. Both are 
naturally occurring in the brain and the effect of either on the temporal patterning of synchrony is 
robust: it promotes short desynchronizations as in the experiments. 
 
Other potential mechanisms of experimentally relevant short desynchronizations dynamics have 
been considered and include the specific kinetics of the ionic channels (Ahn and Rubchinsky, 
2017) and spike-timing dependent plasticity (Zirkle and Rubchinsky, 2020). The stochastic 
mechanism of the short desynchronization dynamics considered here is not necessarily mutually 
exclusive with those mechanisms, rather all of them may potentially act in a cooperative manner. 
 
It is important to note the limitations of the study. The network studied here is a minimal network. 
Real neural networks of the brain have, of course, a much more complicated organization. The 
same consideration applies to the relatively simplistic model neurons used here. However, the 
robustness of the effect of noise even in this simple system may indicate that it is likely to persist 
on a larger scale. Also, this study does not provide an exhaustive quantitative description of the 
noise action. Rather it illustrates what the noise is capable of in terms of synchronization dynamics 
changes. 
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Finally, we would like to note that noise may exert different positive effects in the brain, such as 
increased reliability, sensitivity, and regularity (e.g., Ermentrout et al., 2008; Faisal et al., 2008). 
For example, a well-known effect of stochastic resonance (response to a weak signal improved by 
noise) has been described in neuronal networks and the whole brain experimentally (e.g., 
Gluckman et al. 1996; Ward et al., 2010). It also has long been discussed that noise (and, broadly 
speaking, various irregularities) may benefit neural systems because irregularities help networks 
to exhibit a wide repertoire of different dynamics (e.g., Rabinovich and Abarbanel, 1998; Ghosh 
et al., 2008; Garrett et al., 2011; McDonnell and Ward, 2011; Yarom and Hounsgaard, 2011). 
Perhaps somewhat similarly, noise effects the temporal variability of neural synchrony in such a 
way as to create a system with very dynamic behavior in the form of short desynchronizations 
dynamic. The latter may (as was argued in Ahn and Rubchinsky, 2013, 2017) lead to a network 
which can quickly, and efficiently, form and break-up transient neural assemblies to perform 
associated neural functions. 
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