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Abstract 

We propose a new phase-field model formulated within the system of lattice Boltzmann 

(LB) equation for simulating solidification and dendritic growth with fully coupled melt flow and 

thermosolutal convection-diffusion. With the evolution of the phase field and the transport 

phenomena all modeled and integrated within the same LB framework, this method preserves and 

combines the intrinsic advantages of the phase-field method (PFM) and the lattice Boltzmann 

method (LBM). Particularly, the present PFM/LBM model has several improved features 

compared to the existing phase-field models including: (1) a novel multiple-relaxation-time (MRT) 

LB scheme for the phase-field evolution is proposed to effectively model solidification coupled 

with melt flow and thermosolutal convection-diffusion with improved numerical stability and 

accuracy, (2) convenient diffuse interface treatments are implemented for the melt flow and 

thermosolutal transport which can be applied to the entire domain without tracking the interface, 

and (3) the evolution of the phase field, flow, concentration, and temperature fields on the level of 

microscopic distribution functions in the LB schemes is decoupled with a multiple-time-scaling 

strategy (despite their full physical coupling), thus solidification at high Lewis numbers (ratios of 

the liquid thermal to solutal diffusivities) can be conveniently modeled. The applicability and 

accuracy of the present PFM/LBM model is verified with four numerical tests including 
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isothermal, iso-solutal and thermosolutal convection-diffusion problems, where excellent 

agreement in terms of phase-field and thermosolutal distributions and dendritic tip growth velocity 

and radius with those reported in the literature is demonstrated. The proposed PFM/LBM model 

can be an attractive and powerful tool for large-scale dendritic growth simulations given the high 

scalability of the LBM. 

Keywords: Dendritic growth, solidification, phase field, lattice Boltzmann, multiple-relaxation-

time. 

 

1. Introduction 

Quantification and prediction of the evolution of the microstructure and segregation 

patterns of solidified pure materials and alloys are of great scientific and technological interest. 

The dendritic growth during solidification is a complex multiscale phenomenon that involves 

phase transition, melt flow, heat and solute convection-diffusion that are fully coupled at the 

evolving liquid-solid interface of complex morphology. In addition to the nature of multiphysics 

coupling, large transport property ratios are also encountered in the solidification process, for 

instance, the solutal diffusivity in the liquid state is generally two to four orders of magnitude 

smaller than the thermal diffusivity, and the solutal diffusivity in the solid state is typically two to 

four orders of magnitude smaller than that in the liquid [1]. It is also well known that solidification 

of alloys differs in many respects from solidification of pure substances, e.g., pure metals solidify 

at their definite melting point temperatures, while most alloys start to solidify at their liquidus 

temperatures and complete solidification at the solidus temperatures with the latter lower than the 

former; and undercooling related microstructure can only be produced by thermal means in pure 

metals, while in alloys it can be produced by changes in both temperature and composition. Direct 

simulation of solidification and crystal growth on the scale that captures the local liquid-solid 

interface geometry (sharp interface) has thus experienced only limited progress [1]. 

The phase-field method (PFM), which employs the concept of a diffuse interface and 

introduces a phase field variable (with constant values in the bulk phases and varying steeply yet 

smoothly in the diffuse interface region), has become a widely accepted technique for 

computational modeling of dendritic growth and interfacial pattern formation. Several detailed 

reviews on phase-field modeling of dendritic growth can be found in [2–4]. While the present 

study focuses on solidification modeling, it should be noted that the PFM has broad applications 
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in modeling and predicting mesoscale morphological and microstructure evolution in materials 

such as solid-state phase transformations, grain growth and coarsening, domain evolution in thin 

films [5], morphological evolution of multicomponent vesicles and solving nonlinear high-order 

PDEs [6–8], among others. In the early works, the PFM was only employed to model solidification 

controlled by pure diffusion, and the effects of thermal and solutal diffusion were mostly separately 

studied. The first coupled thermosolutal PFM was proposed in [1] where it was also demonstrated 

that the coupled model can reduce to the isothermal and iso-solutal cases. The effect of fluid flow 

and melt convection on the crystal growth was well recognized [9–12], but little work was reported 

mainly due to the lack of effective and reliable coupled models. Beckermann et al. [13] reported 

the first phase-field simulations including melt convection, in which the mass, momentum, energy, 

and species conservation equations in the diffuse interface region were formulated based on 

volume averaging; and a dissipative interfacial stress term (momentum sink) was introduced in the 

momentum equation to deal with the interaction at the liquid-solid interface. All the conservation 

equations were solved with traditional computational fluid dynamics (CFD) schemes in [13]. Since 

then, a great number of publications on PFM modeling of dendritic growth under melt convection 

has been reported (e.g., [14–18]). 

In the CFD and heat and mass transfer communities, the lattice Boltzmann method (LBM) 

has become a powerful and alternative numerical method for modeling fluid flows and 

thermal/mass transport problems with complex geometry due to its attractive features including 

simple algorithm, easy implementation, convenience in boundary and interface treatment, and 

compatibility with parallel computing [19–27]. It is no surprise that a growing number of 

publications have focused (e.g., [14,17,28,29]) on coupling the PFM and LBM for dendritic growth 

simulations. Most of those PFM-LBM models can be considered as hybrid models in which finite-

difference- or finite-volume-based PFM was applied to simulate the phase field evolution, while 

the LBM was implemented to model the melt flow and heat and solute transfer. In addition, fully 

coupled PFM models considering all the effects of melt flow and thermosolutal convection-

diffusion in the literature are very rare (e.g., [30]) due to the lack of general, convenient, and 

efficient numerical schemes.   

Recognizing the capabilities and advantages of the LBM, there has been growing interest 

in constructing LB schemes to solve the governing equation for the phase field [31–33]; as a result, 

the generic LB algorithm, and thus a single grid system, can be applied to model all the transport 
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phenomena as well as the phase field evolution. The current work falls into this category. The main 

attractive features of the proposed PFM/LBM model in this work include: (1) compared to the 

isothermal PFM models in [14,32,33] and the iso-solutal PFM models in [17,18,28,29,34–36], the 

present PFM model is formulated to model fully coupled thermosolutal convection-diffusion; (2) 

compared to the PFM model in [1,31,37–39] for solidification with coupled thermosolutal pure 

diffusion, the present model also includes melt flow and thermosolutal convection-diffusion; (3) 

compared to the single-relaxation-time (SRT) based LBM model for solving the phase-field 

equation in [31,33,34], the present PFM/LBM model employs the multiple-relaxation-time (MRT) 

based collision operator for both the phase-field evolution and all the other transport equations, 

considering the improvement in both numerical accuracy and stability of the MRT-LBM models 

compared to the traditional SRT-LBM models [23–27]; and (4) the multiple-time-scaling strategy 

proposed in [40] is implemented in the present model so that different time steps can be used in 

the evolution of the four sets of microscopic distribution functions defined in the LB schemes for 

the respective phase field, flow field, concentration field and thermal field, thus decoupled 

relaxation-time coefficients can be selected, and hence a wide range of characteristic parameters 

encountered in solidification and dendritic growth processes can be effectively simulated. The 

applicability and accuracy of the present PFM/LBM model is verified with four representative 

benchmark test cases including both 2D and 3D examples. 

This rest of this paper is organized as follows. The governing equations for the phase field, 

melt flow, concentration (solute) field, and temperature field and their coupling are described in 

Section 2. The specific LBM-based numerical schemes in the proposed PFM/LBM model for 

solving those governing equations are presented in Section 3. Model verification and discussion 

are then detailed in Section 4. And concluding remarks are provided in Section 5. Lastly, the 

Chapman-Enskog analysis for the MRT-LBM scheme to recover the phase-field evolution 

equation is presented in Appendix A, and Appendix B briefly explains the algorithms used to 

compute the dendritic tip growth velocity and radius. 

 

2. Phase-Field Equation and Conservation Equations 

2.1 Phase field 

In the phase field methods, a continuous dimensionless phase-field variable, ϕ, is defined 

with ϕ = −1 in the liquid phase, ϕ = 1 in the solid phase, and varying smoothly in the diffuse interface 
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(−1 ≤ ϕ ≤ 1). To determine the governing equation for the phase field in thermosolutal convection-

diffusion problems, the following dimensionless concentration (also called supersaturation) and 

temperature (also called undercooling) variables are defined for the entire domain [1,31] 
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where c∞ is the far-field concentration that equals the initial concentration of the alloy, k = cs/cl 

the partition coefficient that relates the compositions of solid and liquid in contact with each other 

at the interface, Tm the melting temperature, m the slope of the liquidus line in the phase diagram, 

Lh the latent heat, and Cp the specific heat. Following the formulations in [1,13,17,31–33], the 

governing equation for ϕ during solidification and dendritic growth can be written as 

   ( ) ( ) ( )2 2

0( , ) ( )tU W W f Mc U g      
   =   +  − − + n n Ν ,

  
(3) 

where the relaxation time τ(n, U) and the anisotropic interface width 0( ) ( )sW W a=n n  are both 

functions of the local normal vector n that can be calculated as
 

 = − n , W0 is the 

characteristic width, λ is a dimensionless parameter that controls the coupling between the phase 

field and the concentration and temperature fields, ( )f   and ( )g   are interpolating functions 

associated with the double-well potential and the free energy of the bulk, respectively, with a 

popular choice of ( ) 3f    = − + , ( ) 2 2(1 )g   = −  [17,31], M is the scaled magnitude of the 

liquidus slope ( )(1 ) /h pM m k L C= − − , and N is the anisotropic vector defined as 
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T
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 

   
=   

      

n n n
Ν n .

  
(4) 

In most previous PFM models, τ is considered as a function of n only [31–34,36], and 

2

0( ) ( )sa =n n  was applied with τ0 a constant and ( )sa n  defined as the crystalline anisotropy 

function [31–33] 
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where εs is the anisotropic strength. As pointed out by Ramirez et al. [1] and later also implemented 

in [30,37–39], for coupled thermosolutal transport problems, τ should also be dependent on the 

concentration field, i.e., 

 
2

0( , ) ( ) ( )sU a F U =n n ,
  

(6a) 

and  
1

( ) 1 (1 )F U Mc k U
Le

= + + − ,
  

(6b) 

where Le = α/Dl is the Lewis number denoting the ratio between the thermal diffusivity α and 

solutal diffusivity Dl in the liquid phase. This work also implements the generic definition of τ(n, 

U) in Eq. (6) for thermosolutal convection-diffusion problems. It should be noted that most of the 

previous PFM models for solidification and dendritic growth considered only the effect of heat 

transfer (i.e., ϕ and θ coupled only, see e.g., [14,32,33]) or solute transfer (i.e., ϕ and U coupled 

only, e.g., [17,18,28,29,34–36]); fully coupled thermosolutal diffusion (without convection) 

problems were studied in [1,31,37–39], while the dependence of τ on U was not taken into account 

in [31]. The present PFM model (details presented in Section 3) is applicable to more general 

solidification processes involving fully coupled thermosoltual convection-diffusion. It is also 

worth noting that the present general PFM model reduces to that for (1) ϕ and θ coupled 

thermal/iso-solutal transport problems with the selection of Le = 1, 0Mc = , and (2) ϕ and U 

coupled solutal/iso-thermal transport problems with Le → ∞, 1 (1 )Mc k = − −   and 

1 (1 )
U

k


=

− − 
, where Ω is the imposed solutal “undercooling” relating c∞ to the equilibrium 

liquidus concentration at the system temperature 
0

lc , i.e., 

 
0

0(1 )

l

l
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−
,
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It is clear that for both simplified versions, τ(n, U) in Eq. (6) reduces to 
2

0( ) ( )sa =n n . 

 With the above expressions, Eq. (3) can be rewritten in the explicit form as 

 ( ) ( )( )
2

2 2 2 2 3 2

0 0 0( ) ( ) ( ) 1s t sa F U W a W Mc U       
  =   +  + − − + − n n Ν .

  
(8) 

2.2 Melt flow 

The melt is assumed to be incompressible Newtonian fluid and the flow is governed by the 

continuity and Navier-Stokes equations 
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 0 =v ,
  

(9) 

 
2

t p   +  = − + v v v v ,
  

(10) 

where v is the flow velocity, p the pressure, ρ the density, and ν the viscosity. For sharp interfaces, 

the no-slip boundary condition should be used. For diffuse interfaces, however, a volume-averaged 

momentum equation can be formulated, as shown in [13] in the diffuse interface domain; and with 

the introduction of the phase field, convenient boundary schemes can be implemented at the diffuse 

interface, such as treating the interfacial flow as a flow in a porous medium [33].  In this work, the 

latter approach is applied and the specific interface treatment for flow simulation will be presented 

in the context of the PFM/LBM model (see Section 3.2 below). 

2.3 Concentration field 

The governing equation for the concentration field can be written as [1,17,29,31,38,41]  

 ( ) ( )
( )1 1

2
t at t

k U
p U U D U  
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where 
( )11
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−+
= − , the interpolated diffusivity 

1 1

2 2
s lD D D

 + −
= + , atj  is the 

phenomenological anti-trapping current term defined as [31] 

 ( )0

1
1 1

2 2
at W k U

t

 



 
= − + −    

j ,
  

(12) 

and J is the flux term associated with fluctuation [17]. The third term on the RHS of Eq. (11) is 

due to the rearrangement of ∂tU as U is related to ϕ (see Eq. (1)). In this work, the flux J is neglected 

following the setups in [1,31,33,34,42] for direct quantitative comparison with results reported 

therein. It should be stressed that in this work, the solute diffusion within the solid phase is also 

taken into account as in [17,29]. This is different from the models in [1,31,38,41] where solute 

diffusion in the solid was neglected with 
1

2
lD D

−
= . 

2.4 Temperature field 

The governing equation for the dimensionless temperature considering convection is 

[1,31,33,38,42] 

 2 1

2
t t     +  =  + v ,

  
(13) 
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where α is the thermal diffusivity, the last term in Eq. (13) is related to the latent heat of fusion (see 

Eq. (2)) during phase change, and the coefficient ½ shows up in Eq. (13) since the bounds for the 

phase field variable are ϕ =  1. 

 

3. Present Phase-Field/Lattice-Boltzmann Model (PFM/LBM) 

3.1 LB scheme for phase field 

By treating the phase-field equation as a transient pseudo-convection-diffusion equation 

with source terms, and following the idea originally demonstrated in [43] for solute and heat 

transfer in heterogeneous porous median, an LB scheme was proposed in [31,32] for the phase 

field with a modified single-relaxation-time (SRT, also called BGK [44]) collision operator: 

( ) ( ) ( )2 2( ) , , 1 ( ) ,s sa g t t t g t a g t t       + + = − − + n x e x n x e
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( ) ( ) ( )eq

0

1
, , ,

,
tg t g t G t

t
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

  


 − − + x x x
x

,
  

(14) 

where gα(x, t)  g(x, ξα, t), ξ is the microscopic particle velocity vector in the LB model and it is 

discretized to a small set of discrete velocities {ξα|α = 0, 1, …, m  1}, eα the αth discrete velocity 

vector, δt the time step, and ωα the weight coefficient. The distribution function ( ),g t t +x e

evaluated at the adjacent nodes is necessary to recover the correct governing equation for ϕ [31,32]. 

The macroscopic phase-field variable can be obtained from 

,       (15a) 

 and the equilibrium distribution was defined as [31,32] 
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 
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with ξ a constant related to the lattice structure (ξ = 1/3 in D2Q5 and ξ = 1/4 in D3Q7 LB models), 

and the relaxation time coefficient needs to satisfy 

( )
2
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2

0

1 1
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2
s
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x
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
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The BGK-LB scheme in Eq. (14) was also implemented in [33,34], where the authors introduced 

an “interface advancing velocity” evoked by the interfacial surface energy and it can be expressed 

as 



−
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1
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m

t g t
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2

0

0

n

W t

x



 
 −v N .       (17) 

It is noted that the 2nd-order terms of O( 2

nv ) were also included in the equilibrium distribution in 

[33,34] – a practice generally considered necessary for modeling fluid flow but not for scalar 

convection-diffusion [24,27]. 

 Based on the modified BGK scheme in Eq. (14) and the discussion in [43] regarding the 

numerical stability of the modified LB scheme, we present an improved PFM/LBM model in this 

work for the phase field coupled with thermosolutal convection-diffusion. 

 First, the phase-field governing equation in (8) is rewritten as 

 
2

2 2 2
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where ( ) ( )( )
2

3 21G Mc U     = − − + − . Clearly, in obtaining Eq. (18), the assumption of 

“semi-explicit” coupling was applied, i.e., the coupling of U into the phase-field is mainly through 

the last source term in Eq. (8), while its coupling in the remaining transient, diffusion and pseudo-

convection terms in Eq. (8) is assumed to be weak so that 1/F(U) was directly moved into the 

divergence terms. Such an assumption is acceptable for LB simulations with small enough time 

steps as demonstrated in Section 4 with numerical examples. For problems with strong coupling 

between U and ϕ, the present model can still be applicable, one just needs to add those originally 

neglected terms (related to U ) to the combined source term. 

  The present LB evolution scheme is written as 

 ( ) ( ) ( )2 2( ) , , 1 ( ) ,s sa g t t t g t a g t t       + + = − − + n x e x n x e
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
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
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x
M S m x m x ,

  
(19) 

where M is a transformation matrix to map the distribution functions to the moment space through 

m = M∙g and meq = M∙geq, and S is related to the matrix of relaxation time coefficients with the 

multiple-relaxation-time (MRT) collision operator applied in Eq. (19). We choose the matrices as 

in [24] and the equilibrium moments can be explicitly obtained as in [25,27]. Specifically, for the 

D2Q5 MRT-LB model 
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M = 

1 1 1 1 1

0 1 1 0 0

0 0 0 1 1

4 1 1 1 1
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m , in D2Q5,  (20b) 

while for the D3Q7 MRT-LB model, the following can be similarly obtained 

M = 

1 1 1 1 1 1 1

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1
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0 2 2 1 1 1 1
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m , in D3Q7. (21b) 

Remark 1. It should be emphasized that in deriving meq in Eqs. (20b, 21b), the equilibrium 

distribution function is rescaled in the present model as 
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where 
( )

n
n

F U


v
u  with vn defined in Eq. (17). Additionally, in the relaxation matrices in Eqs. (20a, 

21a), the relaxation coefficient τϕ related to the diffusion coefficient also needs rescaling to satisfy 

the following 

( )
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0
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0
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,
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F U x
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

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The other relaxation coefficients do not affect the leading-order numerical solutions and thus τ00 = 

τP = 1 is used for consistency [25–27].  

Remark 2. The proposed MRT-LB model for the phase field evolution is able to 

significantly improve the numerical stability with two combined features. First, it is well known 

that the LB models with an MRT collision operator generally have better numerical accuracy and 

stability compared to those with the BGK operator in both fluid flow and scalar transport 

simulations [22,24,27,45,46]. Therefore, the present MRT-LB scheme in Eq. (19) is considered an 

improvement from the BGK-LB scheme in Eq. (14). Second, the rearrangement of the governing 

equation in Eq. (18) and the rescaling of the corresponding equilibria, relaxation coefficients and 

source term (see Eqs. (19, 20b, 21b, 22, 23)) are crucial in ensuring the numerical stability 

especially for high Lewis number (Le) problems. While one could keep the original governing 

equation in (8), combine F(U) with 
2 ( )sa n , and construct similar LB scheme as in Eq. (14) such 

as 

 ( ) ( ) ( )2 2( ) ( ) , , 1 ( ) ( ) ,s t t s ta F U g t g t a F U g t       + + = − − + n x e x n x e

 ( )
( ) ( ) ( )eq

0

1
, , ,

,
tg t g t G t

t
   



  


 − − + x x x
x

,
  

(24) 

in Eq. (24) no rescaling is needed for eqg , 
  or G

, and it can be verified to recover Eq. (8) up to 

2nd-order accuracy; the LB scheme in Eq. (24) would become unstable when the magnitude of 

F(U) is small (noting that 
2 ( )sa n  is of O(1) and F(U) ~ 1/Le in Eq. (6b)) since the RHS of Eq. (24) 

will be divided by 
2 ( ) ( )sa F Un  when updating ( ),t tg t  + +x e . This phenomenon was also 

reported in detail in [43] for low-porosity simulations. Furthermore, it should be noted that as 

pointed out in [1], in typical solidification of alloys the solutal diffusivity in the liquid state is 

generally much smaller than the thermal diffusivity (i.e., Le = α/D >> 1). Thus small F(U) is 

encountered in typical alloy solidification processes. Overall, the present PFM/LBM model is 

well-poised to simulate solidification and dendritic growth with both high- and low-Lewis 

numbers with improved numerical stability compared to those previous PFM-LBM models. 

Remark 3. Accurate and efficient computation of the gradient   is essential in the PFM 

as it shows up in several different terms (e.g., the normal vector  = − n , the anisotropy 

function as(n) in Eq. (5), and the anisotropic vector N in Eq. (4)). As demonstrated in [27,47], in 
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the LB framework, the scalar gradient can be conveniently computed from the distribution 

functions. Using the notations in this work, the scheme becomes 

1
neq

1

1 m

i

i

e g
x x

 




 

−

=


= −


 ,        (25) 

where 
neq eqg g g  = −  is the non-equilibrium component of the distribution function. It is 

emphasized that Eq. (25) is a local scheme, i.e., it requires only the populations at the local lattice 

node and is thus more efficient than using finite-difference schemes that were used in previous 

PFM models. The second-order accuracy of the scheme in Eq. (25) has been verified in [27,47].  

The Chapman-Enskog analysis for the LB evolution equation (19) to recover the phase-

field governing equation (18) is presented in Appendix A. 

For efficient computation and storage, the LB evolution equation (19) is solved in two 

steps: 

collision step: 

( ) ( ) ( ) 2

2

1
ˆ , , 1 ( ) ,

( )
s

s

g t g t a g t t
a

    = − − + x x n x e
n

   
 

( )( )
( )1 eq

0

,
,

( )

G t
t t

F U






 


−
 −  − +  


x
M S m m x , and    (26a) 

streaming step: 

 ( ) ( )ˆ, ,g t t t g t   + + =x e x ,     (26b) 

where ĝ  
represents the post-collision state. 

3.2 LB scheme for melt flow 

The incompressible melt flow in the liquid phase can be simulated with the widely used 

D3Q19 and D2Q9 MRT-LB models [45,46]. In the diffuse interface, the flow can be considered 

as porous medium flow. To avoid tracking the sharp interface with no-slip boundary condition, we 

adopt the gray LB scheme [48–50] for porous medium flows to handle the diffuse interface. The 

collision-streaming procedure for melt flow becomes 

collision step: 

( ) ( ) ( )( )1 eqˆ , , ,f t f t t 


− = −  −
 

x x M S m m x , and     (27a) 

streaming step: 
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( ) ( ) ( ) ( )
1ˆ ˆ ˆ, , , , ,
2

t t f t tf t f t t f t f t          
   + + = + + + −    

x e x x e x e x , (27b) 

where the details of the matrices M, S and the equilibrium moments meq can be found in [45,46] 

and are not shown here for brevity, and the subscript 
 
denotes the opposite direction of α (i.e., 

 = −e e ). The fraction coefficient θf is related to the solid fraction that can be calculated from the 

phase-field variable (θf  = (ϕ+1)/2) and is evaluated at the midpoint of the link in Eq. (27b), i.e., 

( ) ( ) ( ) ( ), , , , 21
,

2 2 4

f f t t

f t

t t t t
t

 



     
 

+ + + + + 
+ = = 

 

x x e x x e
x e . (28) 

The LB scheme for melt flow in Eq. (27) and the calculation of the macroscopic variables 

including density and velocity are applicable to the entire computational domain under the 

PFM/LBM framework. Specifically, all the terms in Eq. (27b) are considered within the diffuse 

interface region; additionally, it reduces to the standard LB scheme for fluid flow within the melt 

at θf  = (ϕ+1)/2 = 0, and to the bounce-back scheme which represents the no-slip condition within 

the solid phase at θf  = 1. Similar discussion was also presented by Sun et al. [33], however, it 

should be noted that in [33] the pre-collision distribution functions ( ),tf t +x e  and ( ),f t x  

were used in the last term in Eq. (27b). To correctly recover the governing equations for flow in 

porous media, post-collision terms as shown in Eq. (27b) should be used. One can refer to [48] for 

a detailed comparison of the various LB schemes for porous media flow and their Chapman-

Enskog analyses. 

For dendritic growth modeling with melt flow and dendrite movement under external 

forces (e.g., gravity or buoyance forces as in [17,35,51]), the body forces can be conveniently 

added in the LB scheme in Eq. (27) using standard body force treatments in the LB model. Thus 

the PFM/LBM model is an attractive and powerful tool for large scale simulations of solidification 

processes with motion of multiple dendrites [35,51]. 

3.3 LB scheme for concentration field 

To apply the LB method to solve for the concentration (supersaturation) field, the 

governing equation (11) is reorganized to an anisotropic convection-diffusion equation (CDE) with 

a general source term 

 ( )t eff UU U D U G +  =   +v ,
  

(29) 
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where 
( ) ( )

( ) ( )

1 1

1 1

s l

eff

D D D
D

p k k





 



+ + −
= =

+ − −
, and the combined source term becomes  

 
( ) ( )

 

( )
2

(1 ) 1 1 1 1 2

(1 ) (1 )(1 ) (1 )

s l t at

U

k D D k U
G U

k kk k

  




− + + − + −  −       = −   +
+ − −+ − −

j
.
  

(30) 

It is noted that ( )
 

1

2

2(1 )

(1 ) (1 )

k
p

k k
 



− −
 = 

+ − −
 was used in deriving Eq. (30). In this work, the 

CDE in (29) will be solved with the D2Q5/D3Q7 MRT-LB models [24,27]. By introducing the set 

of distribution functions hα(x, t), the dimensionless concentration is obtained from 

( ) ( )
1

0

, ,
m

U t h t


−

=

=x x , and the collision-streaming procedure for the LB evolution equation includes 

collision step: 

( ) ( ) ( )( ) ( )1 eqˆ , , , ,Uh t h t t tG t  


 − = −  − +
 

x x M S m m x x , and   (31a)
 

streaming step: 

 ( ) ( )ˆ, ,h t t t h t   + + =x e x .      (31b) 

The matrices M and S are the same as those in Section 3.1 and the details of equilibrium moment 

meq can be found in [24,27]. It is worth noting that the principal relaxation time coefficients are 

related to the effective diffusion coefficient through 3 0.5U effD = + . With the MRT collision 

operator implemented, the present LB model is stable in handling solutal convection-diffusion 

with very large diffusivity ratios. Numerical verification with Dl/Ds = 104 will be presented in 

Section 4.3. Some additional remarks are given below. 

First, the present LB model for solute convection-diffusion is considered much more 

convenient and easier to implement than the LB model proposed in [31], where 

( )

( ) ( )

1

1 1

l

eff

D
D

k k





−
=

+ − −
 was assumed neglecting diffusion in the solid phase. As a consequence, 

in order to apply the LB model to the entire domain for U evolution, the relaxation coefficient τU 

was chosen to be related to the Dl even within the solid phase; and additional rearrangement of the 

governing equation for U as well as redefinition of the equilibrium distribution function were used 

in [31]. The present LB model avoids those complex steps and is able to model diffusion within 

the solid as well. 
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Second, similar to computing   in the LB model, the gradient U  is also conveniently 

obtained from a local scheme similar to that in Eq. (25) based on the distribution functions in the 

LB model. It is also noted that, however, for computing at j  in Eq. (30), one has to adopt 

conventional schemes (the central-difference scheme is applied in this work) as in all previous 

PFM models. And the simple forward Euler method, 
( , ) ( , )

t

t t t

t

  




− −
 =

x x
, is used for 

computing 
t  in the combined source term in Eq. (30). 

3.4 LB scheme for temperature field 

The energy equation (13) can also be considered as a standard CDE with a source term (

1

2
tG =  ) and the above D2Q5/D3Q7 MRT-LB models [24,27] will also be implemented for the 

temperature field evolution. For completeness, the collision-streaming procedure is also shown 

below where nα(x, t) is the last set of distribution function defined to yield ( ) ( )
1

0

, ,
m

t n t



−

=

=x x  

collision step: 

( ) ( ) ( )( ) ( )1 eqˆ , , , ,n t n t t tG t   


 − = −  − +
 

x x M S m m x x , and   (32a)
 

streaming step: 

 ( ) ( )ˆ, ,n t t t n t   + + =x e x .      (32b) 

 The flow chart for the present PFM/LBM model for solidification and dendritic growth 

simulation with fully coupled melt flow and thermosolutal convection-diffusion is depicted in Fig. 

1.  
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Fig. 1. Flow chart for the proposed fully coupled PFM/LBM model. Here MTS represents 

the multiple-time-scaling (MTS) strategy developed in [40]. 

 

4. Numerical Verification and Discussion 

In this section, we implement the present PFM/LBM model to simulate four representative 

solidification problems with coupled melt flow and thermosolutal convection-diffusion. The 

applicability and accuracy of the proposed model is verified through detailed comparison of the 

simulated results with published data in the literature. In each test, a single circular/spherical solid 

seed of radius Rs is initially placed in the center of a 2D/3D domain with an initial phase-field 

distribution ( )0 tanh / 2s s oR d W  = −
 

, where ds is the distance from the seed center; 

Initialize phase field ϕ and physical fields 

(v, U, θ) and calculate model parameters 

(e.g.: λ, Le, Pe, Pr, Mc∞, ε, k)

Estimate the ranges of 

relaxation-time coefficients in 

LB schemes (τϕ, τf, τU, τθ)

t < ttotal

Yes

True

Initialize the LB domain

MTS 

needed?

t = t + δt

1. Update flow field (v, fα);

2. Update phase field (ϕ, gα);

3. Update concentration field (U, hα);

4. Update temperature field (θ, nα).

1. Update flow field (v, fα) for λs1 steps;

2. Update phase field (ϕ, gα);

3. Update concentration field (U, hα) for λs2 steps;

4. Update temperature field (θ, nα) for λs3 steps.

No

False

t = t + δt

True

*

Stop

**

* Converged flow and DFs fα for flow over the initial seeds can be used;

** Scaling factors λs1, λs2, and λs3 can be chosen independently with the MTS used for each LB scheme.

t < ttotal

False

Stop



17 

 

solidification and dendritic grow under various melt flow, heat, and solute transport conditions are 

simulated. Specifically, the first test focuses on iso-solutal solidification in 2D with the coupled 

melt flow, phase field, and temperature field evolution simulated; the second test is for isothermal 

solidification in 2D; fully coupled thermosolutal convection-diffusion in 2D is simulated in the 

third test; and 3D simulations are presented in the fourth test. The evolution of the phase field, 

melt flow, concentration (supersaturation) and temperature fields is checked for each case, and 

quantitative verification of the simulated results in terms of tip velocity and radius, and selected 

concentration/temperature profiles is presented. The details for accurate computation of the tip 

velocity and radius based on the solved phase field are given in Appendix B.   

4.1 Thermal/iso-solutal dendritic solidification in 2D 

The 2D computational domain is shown in Fig. 2, where the domain size is set as a square 

with 512δx  512δx grid resolution and the initial seed radius is 10sR x= . The characteristic 

parameters for convection-diffusion are 
2

0

0

0.25
W

Pe


= =  and / 23.1Pr  = = , and the inlet 

velocity is set as 
0 0/inu W =  for convection and uin = 0 for pure diffusion problems. The length and 

time scales are controlled by selected interface thickness 
0 2.5W x=  and reference time 

0 125 t =  

with unit spatial and time steps (δx = δt = 1) in the LB framework. To simulate the coupled 

thermal/iso-solutal solidification and be consistent with reported simulations in the literature, the 

parameters in the PFM model are chosen as Le = 1, 0Mc = , 0.05s =  and  
1 0 0/ 6.3826aW d = =  

with constant 
1 0.8839a = . Under the above parameter settings, the relaxation coefficient in the 

thermal LB model is 1.1g =  which results in ,original 14.36f =  in the hydrodynamic LB model if 

the same time scaling is utilized. Such a large relaxation coefficient would lead to instability of 

the model and/or large numerical error. Therefore, we implement the multiple-time-scaling (MTS) 

strategy in [40] and decouple the time steps in the LB models. The effect of this scaling factor, 

,original

,scaled

0.5

0.5

f

s

f






−
=

−
, is studied in Fig. 11 below, and for all the other results presented λs = 15 was 

used, which would render ,scaledf  = 1.424. 
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Fig. 2. Schematic depiction of the square computational domain for dendritic growth with 

melt convection with boundary conditions specified on all four walls and a circular seed 

located at the center. 

 

Dendritic solidification under pure diffusion is considered first. Fig. 3 shows the phase 

field interface (ϕ = 0) at different times with both the BGK- and MRT-LB models for the phase-

field evolution implemented (see Sec. 3.1). Excellent agreement between the results from the two 

LB models in Fig. 3 and also between the present results and those in previous studies [31,33] is 

observed, confirming the accuracy of the proposed MRT-LB model for the phase field in this work. 

The results from the MRT-LB model are thus shown throughout this paper. Furthermore, the 

dimensionless temperature contours and the phase-field “advancing velocity” (see Eq. (17)) 

components in x- and y-directions are shown in Figs. 4 and 5, respectively, at the time of t/τ0 = 

128. 

 
Fig. 3. Interface evolution comparison between the MRT- and BGK-LB models for the phase 

field for 2D dendritic growth with pure diffusion at t/τ0 = 0, 4, 8, 16, 32, 64, 128. 

 

x

y
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Fig. 4. Contours of the temperature field for 2D dendritic growth with pure diffusion at t/τ0 

= 128. 

 

 
(a) (b) 

Fig. 5. Interface advancing velocity contours in (a) x-direction and (b) y-direction for 2D 

dendritic growth with pure diffusion at t/τ0 = 128. 

 

The velocity contours in Fig. 5 clearly show that the advancing velocities are much more 

significant in the diffuse interface region compared to the rest of the domain. It should be noted 

that the velocity components are evaluated at the LBM nodes with the convenient local scheme in 

the LBM framework (see Eq. (25)); this allows direct and quantitative investigation of the diffuse 

interface growth at different locations of interest in addition to the tip velocities that were studied 

in previous publications. To further verify the present model, Fig. 6 compares the tip velocity and 

radius results with those reported in [31,33]. 
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(a) (b) 

Fig. 6. Evolution of (a) tip velocities, and (b) tip radii for 2D dendritic growth with pure 

diffusion. 

 

The computed values at the four tips are the same for pure diffusion case, confirming the 

self-consistence of the model and simulation results. Good agreement for the tip velocity with 

those in [31,33] and the steady-state analytical value (dashed line) is observed in Fig. 6a; and our 

simulation shows smoother and more consistent tip radius data in Fig. 6b compared to Sun et al.’s 

[33], where the tips showed fluctuating results. 

Next, we report the simulation results for the 2D dendritic solidification with both thermal 

convection and diffusion. Fig. 7 shows the interface comparison at the same times as in Fig. 3. It 

is clearly observed that convection plays a significant role on the dendrite growth, with the west 

(upstream) tip becoming much larger than the other tips. Consistent results are obtained from both  

BGK- and MRT-LB models with some discrepancy noticed at the west tip at 
0/t   = 128. The 

respective contours of the temperature field and the phase-field advancing velocity components 

under convection at 
0/t   = 128 are shown in Figs. 8 and 9, where the effect of thermal convection 

is obvious compared to those in Figs. 4 and 5. In addition, the evolution of the tip velocities and 

radii is presented in Fig. 10. The tip velocity comparison further illustrates the significant influence 

of the fluid flow and thermal convection on the dendrite growth: the upstream west tip has much 

higher growth velocity and the downstream east tip lower velocity compared to the symmetric 

north and south tips perpendicular to the inlet flow; and excellent agreement with those reported 

in [33] is observed. The evolution of the radii of the four tips is close to each other, and also in 

good agreement with that in [33]. Consistent with the comparison in Fig. 6b, our model and tip 

radius evaluation scheme (see Appendix B) yield improved results compared to those in [33].  
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Fig. 7. Interface evolution comparison between the MRT- and BGK-LB models for the phase 

field for 2D dendritic growth with convection-diffusion at t/τ0 = 0, 4, 8, 16, 32, 64, 128. The 

melt flow velocity vectors are shown at t/τ0 = 128. 

 

 
Fig. 8. Contours of temperature field for 2D dendritic growth with convection-diffusion at 

t/τ0 = 128. 
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(a) (b) 

Fig. 9. Interface advancing velocity contours for 2D dendritic growth with convection-

diffusion at t/τ0 = 128. 

 

 

 

  
(a) (b) 

Fig. 10. Evolution of (a) tip velocities and (b) tip radii for 2D dendritic growth with 

convection-diffusion. 

 

Furthermore, the efficacy of the multiple-time-scaling (MTS) strategy, which is critical in 

decoupling the time steps in the different LB schemes in the coupled PFM/LBM model, is 

demonstrated in Fig. 11, where the comparison of the tip growth velocities and radii at different 

scaling factor λs values is shown. With the selected Prandtl number Pr = 23.1, the rescaled 

relaxation-time coefficients for the melt flow are ,scaledf = 1.424, 0.962, and 0.731 at λs = 15, 30, 
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and 60, respectively. In general, very good agreement can be observed in both tip velocity and 

radius results in Fig. 11, confirming the applicability and accuracy of the MTS scheme. 

   
(a) (b) 

Fig. 11. Comparison of the (a) tip velocities and (b) tip radii with the multiple-time-scaling 

(MTS) strategy implemented using various λs values for 2D dendritic growth with 

convection-diffusion. 

 

4.2 Solutal/iso-thermal dendritic solidification in 2D  

The 2D MRT-LB schemes for the phase field coupled with the concentration field is 

verified in this section with the 2D isothermal solidification problem with pure diffusion that has 

been studied by various authors such as Karma [36] with the finite-difference Euler method, 

Cartalade et al. [31] using the BGK-LB schemes for both fields, and Wang et al. [34] with a hybrid 

BGK-LB/finite-volume method for the respective phase field and concentration field. In present 

simulations, the scaled solute mass diffusivity is selected as 2

0 0/ 2l lD D W= =  with interface 

thickness 
0 2.5W x=  and constant time scale

0 50 t = . The ratio of the solutal diffusivity in solid 

to liquid is 4/ 10s lD D −=  in all cases considered including the following Section 4.3. Other model 

parameters include 3.1913 = , intial dimensionless cocentration Ω0 = -0.55 (see Eq. (6)),   = 0, 

k = 0.15, 
s  = 0.02, and Mc∞ = 0.5325. The computation domian has a 1000δx  1000δx uniform 

mesh and with an initial seed radius 
sR  = 10δx.  
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(a) (b) 

 Fig. 12.  (a) Phase-field interface evolution at t/τ0 = 0, 40, 120, 200, 400, 600, 800, and 1000, 

and (b) concentration field at t/τ0 = 800 for the 2D dendritic growth with pure diffusion. 

 

 
(a) (b) 

Fig. 13. (a) Dendritic tip velocity variation and (b) concentration profile in the solid phase 

for the 2D isothermal dendritic growth with solute diffusion. 

 

The interface morphology of ϕ at different times and the distribution of Ω at 
0/ 800t  =  are 

shown in Fig. 12. The results are consistent with those reported in [1,31,34]. It should be noted that 

different from the previous models [1,31,34] where Dl = 0 was assumed, the present model also 

considers the solutal transfer within the solid phase ( 4/ 10s lD D −= ), therefore the concentration 

gradient on the solid side can be clearly observed in Fig. 12(b). To quantify the comparison with 

published results, Fig. 13(a) shows the variation of simulated tip velocity and Fig. 13(b) the central 

solute profiles along the y-axis in the solid at 
0/ 800t  = . Due to the symmetry of the pure 
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diffusion case, we only present the results of the north tip in Fig. 13; and the solute profile obtained 

from the Gibbs-Thomson relation 
0/ [1 (1 ) / ]s l tipC C k k d r= − − , where 

tipr  is the dendritic tip radius 

(
tipr  = 21.996δx with the present bi-cubic interpolation used), is also included in Fig. 13(b). Good 

agreement with published results is observed for both the tip velocity and solute profile in Fig. 13, 

confirming the accuracy of the present PFM/LBM model for isothermal solidification simulations. 

The discrepancies in the solute profiles near the dendrite center might be caused by (1) different 

initial seed radii used in the various simulations (e.g., Rs  = 10δx = 14.4d0 in present simulation, Rs  

= 22d0 in [36], and Rs not specified in [34]), and (2) slightly higher relative concentration at the 

center ( / 0.085s lC C =  in present) than the reference value / 0.08s lC C =  in [34,36] since the present 

model considers non-zero diffusity 
sD  in the solid phase.  

 

4.3 Thermosolutal solidification and dendritic growth in 2D  

In this section, the PFM/LBM model is implemented to simulate the 2D dendritic growth 

of a binary alloy into an undercooled melt with coupled melt flow and thermosolutal convection-

diffusion. The diffusion cases at Le = 1 and 50 studied in [1] are used for model verification; and 

we also report our simulation results under convection at Le = 50. 

First, for the diffusion case with Le = 1, the same parameters as in [1] are used including λ 

= 3.1913, 0.5325Mc = , 
0U  = 0, 

0  = -0.55, k = 0.15, 
s  = 0.02, and 2

0 0/ 2l lD D W= = ; 

addtionally, we choose the reference length and time scales 
0 2.5W x=  and 

0 55 t = , respectively, 

which yield a domain size of 2395δx  2395δx to maintain the same resolution as in [1]. And the 

same initial seed radius is also used (
sR = 65d0 = 45δx). The evolution of the tip velocity and radius 

(results are symmetric for the four tips) is presented in Fig. 14, where it is clear that the tip velocity 

matches extremely well with the reference data, and although persistent discrepancy in the tip 

radius results is noticed at small times, they both converge to close steady results. It is speculated 

that the initial phase field, ( )( ,0) tanh / 2s s oR d W  = −
 

x  with ds the distance to the seed center 

used in the present simulation following [31] could be responsible for the early deviation in Fig. 

14(b). To further verify the accuracy of the present model, Fig. 15 shows the comparison of the 

profiles of ϕ, U, and θ along the central dendrite axis with those in [1] at 2

0/ltD d = 470,000. The 

present results match very well with the published data in general, and the discrepancy in the U 
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profiles near the dendrite center is due to the non-zero solid solute diffusivity ( 4/ 10s lD D −= ) used, 

as a similar behavior is also noted in Fig. 13(b). 

    
(a) (b) 

Fig. 14. Evolution of (a) tip velocity and (b) tip radius for the 2D thermosolutal dendritic 

growth with pure-diffusion at Le = 1. 

 

 
Fig. 15. Simulated ϕ, U, and θ profiles along the central dendrite axis at tDl/𝒅𝟎

𝟐 = 470,000. 

 

Next, thermosolutal dendritic growth at higher Lewis numbers is simulated. As emphasized 

in Section 3.1, the present PFM/LBM model is particularly stable in simulating high Le cases.  For 

illustration purposes, Fig. 16 (a-f) presents the phase field, concentration, and temperature fields 

at 2

0/ltD d = 3500 for both the diffusion-only and convection-diffusion cases. The simulation 
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parameters include Le = 50, λ = 1.5957, 
lD  = 1, Mc  = 0.1, k = 0.15, 

s  = 0.02, 
0 2W x= , and 

0 1000 t = ; initial distributions ( )0 tanh / 2s s oR d W  = −
 

, 
0U  = 0, and 

0  = -0.55 and far-field 

Dirichlet boundary conditions ϕ = -1, U = 0, and θ = -0.55 are employed; and the computational 

domian size is 1751δx 1751δx with two initial seed radii 
sR  = 20δx and 

sR  = 44δx tested. Similar 

to the convection test in Section 4.1, constant inlet flow condition (
0 0/inu W = ) and the converged 

flow field over the circular seed as initial condition are implemented for the convection-diffusion 

case with 
2

0

0

1
0.02

l

W
Pe

D Le



= = =  and Pr = 23.1. The distributions in Fig. 16 are very similar to 

those reported in [1] for pure diffusion and [30] for convection-diffusion dendritic growth. In 

particular, the complex microsegregation pattern in the solid is fully captured; the thermal 

boundary layer thickness is much larger than that of the solutal boundary layer due to the high Le 

simulated; the concentration variations are mainly confined within the solid phase with more 

complex contours obtained compared to those in [1] as a non-zero solid solutal diffusivity is used 

in the present model; noticeable temperature variations in a much larger domain are observed 

including those in the solid; and the effects of the melt flow and convection on the field 

distributions are also clearly seen in Fig. 16 (b, d, f) with the upstream primary and secondary tips 

growing much faster and with significantly higher tip temperature compared to the pure diffusion 

case in Fig. 16 (a, c, e). 

 
(a) (b) 
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(c) (d) 

 
(e) (f) 

 Fig. 16. Distributions of (a, b) the phase fields, (c, d) concentration fields, and (e, f) 

temperature fields at 
2

0/ltD d  = 3500 for the 2D fully coupled thermosolutal dendritic growth. 

(a, c, e) are simulations for the pure diffusion case and (b, d, f) for the convection-diffusion 

case both at Le = 50. 

 

To further verify the temporal accuracy of the present model, Figs. 17 and 18 show the 

evolution of the primary tip velocity and tip radius results for the respective diffusion and 

convection-diffusion cases at Le = 50 and with the same parameters described above. The results 

from [1] are also included in Fig. 17 as references. First, the overall agreement in Fig. 17 is 

encouraging, especially for the excellent agreement of tip velocity at small times and the close 
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steady tip radius results. It should be noted that the present work represents the first quantitative 

comparison with the published data in [1] for the dendritic growth with coupled thermosolutal 

transport. Second, the present simulation results with two different Rs values confirm the 

sensitivity of the tip evolution with the initial seed size, which was also examined in detail in [37] 

in terms of interface morphology. Moreover, the results in Fig. 17 demonstrate that even though 

obvious discrepancies are noticed with different initial seed sizes, their steady-state (when domain 

size is large enough) results are almost identical for both tip velocity and radius. Compared to the 

large fluctuations in the data from [1] in Fig. 17 (a, b), it is believed that the present simulation 

results are more reliable. Lastly, the effect of the melt flow and convection on the evolution of the 

four primary tips is clearly seen in Fig. 18 (a, b). In summary, the present results in Figs. 17 and 

18 can serve as benchmark data for verification of phase-field models for dendritic growth with 

fully coupled thermosolutal transport.  

  
(a) (b) 

Fig. 17. Evolution of (a) the primary tip velocities and (b) tip radii for 2D dendritic growth 

with thermosolutal diffusion at Le = 50. 
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(a) (b) 

Fig. 18. Evolution of (a) the primary tip velocities and (b) tip radii for the 2D dendritic 

growth with thermosolutal convection-diffusion at Le = 50. 

 

 

4.4 Thermal/iso-solutal dendritic solidification in 3D  

In this section, dendritic growth in 3D with pure diffusion is simulated to verify the present 

PFM/LBM model when extended to 3D. The thermal/iso-sloutal diffusion problem in Section 4.1 

is directly extended to 3D with the same characteristic parameters Le = 1, 0Mc = , 0.05s =  and  

6.3826 = . A computational domain with 385δx  385δx  385δx grid sizes and a spherical seed 

of initial radius 10sR x=  are used, and the interface thickness and reference time are selected as 

0 2.5W x=  and 
0 125 t = . Fig. 19 shows the representative phase-field and temperature 

distributions at t/τ0 = 60. The 3D contours in Fig. 19 (a, b) can be observed to be symmetric across 

the three central coordinate planes; and the 2D phase-field contours in Fig. 19 (c) are similar to 

those presented in Section 4.1. Furthermore, Fig. 20 compares the computed tip growth velocity 

and radius results with those reported by Jeong et al. [42], where excellent agreement for the tip 

velocities are observed in Fig. 20 (a), and similar trends in tip radii are shown in Fig. 20 (b) with 

slight discrepancies in magnitude. It should be noted that similar phenomena are observed and 

discussed in Section 4.3, the tip radius results are very sensitive to the initial seed size, the initial 

phase-field distribution and the evaluation schemes used. 
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(a) (b) 

 
(c) (d) 

 Fig. 19. (a) Dendritic shape at ϕ = 0 and (b) isothermal shape at θ = -0.25 in 3D, and (c) 

phase-field and (d) temperature contours in 2D on the central x-y plane for the 3D 

thermal/iso-solutal dendritic growth problem with pure diffusion. All results are at t/τ0 = 60. 
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(a) (b) 

Fig. 20. Evolution of (a) tip velocities and (b) tip radii on the central x-y plane for 3D dendritic 

growth with pure diffusion. 

 

5. Conclusions 

A new PFM/LBM model for solidification and dendritic growth simulation with fully 

coupled melt flow and thermosolutal convection-diffusion was developed in this work based on a 

synergy of the phase-field method (PFM) and the lattice Boltzmann method (LBM). The attractive 

feature of the diffuse interface in the PFM was maintained to effectively simulate the complex 

dendritic morphology evolution; and different from previous hybrid PFM-LBM models where the 

LBM was mainly applied to simulate the flow field, the present coupled PFM/LBM model inherits 

the intrinsic benefits of the LBM (e.g., simple and explicit algorithms, convenient 

boundary/interface treatment, and compatibility with parallelization), and all the evolution of the 

phase field, flow field, solute and thermal fields is simulated in the LB framework with a single 

Cartesian grid system. In addition, effective diffuse interface treatments are proposed in the LB 

schemes, which are directly implemented to the entire computational domain. Moreover, to 

improve the model stability and accuracy, multiple-relaxation-time (MRT) LB schemes are 

applied for all. Furthermore, in order to simulate various dendritic growth problems with wide 

ranges of characteristic parameters, a multiple-time-scaling strategy is employed in the LB 

framework that effectively decouples the times steps in the four LB schemes.  

The efficacy of each of those unique features and the overall accuracy of the coupled 

PFM/LBM model were verified with representative numerical tests involving melt flow and 

thermosolutal convection-diffusion in 2D and pure diffusion in 3D. It was demonstrated that with 
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comparable spatial and temporal resolution, the present model showed more robust and consistent 

results than those in the literature in terms of the dendrite tip growth velocity and radius. The 

reported simulation results for thermosolutal dendritic solidification with and without convection 

can serve as reliable benchmark data.  

Future studies will focus on applications of the verified PFM/LBM model to simulate large-

scale dendritic growth such as those with natural and forced convection effects and involving 

dendrite motion driven by melt flow, and model validation with experimental measurements 

available in the literature. 
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Appendix A. Chapman-Enskog Analysis of the MRT-LBM for the Phase-Field Equation  

For the Chapman-Enskog expansion analysis, a “small” perturbation parameter , which 

is defined as the ratio of the lattice spacing δx to a characteristic macroscopic length L, i.e., 

/x L , is applied. The standard spatial scale x1 = x and two time scales t1 = t and t2 = 

2 t  (hence 
1 =  , 

1 2

2

t t t =  +  ) are considered for the analysis, with also the following 

expansions introduced 
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nn
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(A2b) 

where 
= d e , and  

t



= + 


D e   is the convective derivative. 

Following the similar steps in [31,43,48,52], one can insert the above expansions and rewrite the 

MRT-LB scheme in Eq. (19) in the consecutive orders of the parameter  as follows 

 
( ) (0)0 eq: 0g g  

  − = Λ ,
  

(A3a) 

 
( ) ( ) ( )1 01

1

1
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(A3b) 

 
( ) ( ) ( ) ( ) ( )

2
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1 1

2 1
:

2
s t

t
g a g g g

t
      




 − =  + +Λ D D ,

  
(A3c) 

where 1−Λ M SM  and 
2

1 1

1

sa
t

 


= + 


D e . 

Since Λ  is invertible, Eq. (A3a) simply implies 

 

(0) eqg g = .
  

(A4) 

Also, the combination of Eqs. (A3b, A3c) gives 

 

( ) ( ) ( ) ( )

2

2 0 12

1

1
2s tg a g g

t
    

− =  + −Λ D I Λ .
  

(A5) 

 From the zeroth-order moments of  
( )1

g   in Eq. (A3b) and 
( )2

g   in Eq. (A5) one can obtain 



35 

 

 1

2 (0) (0)

1 0s ta g g  
 

   
 +  =   

   
 e ,

  
(A6) 
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2 (0) (1)

1 1 2 0s ta g g  
 

   
 +  − =   

   
 I S e ,

  
(A7) 

where the following relations are noted 

 
0 10 1,s      

 

= = + c Λ c e Λ S c S e ,
  

(A8) 

with c = (1, 1, …, 1)   Rm, s0 a constant parameter, S10 a m 1 matrix, and S1 an invertible m

m relaxation matrix corresponding to the diffusion matrix [52]. 

 Also from the first-order moment of  
( )1

g   we obtain 
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Eq. (A9) can be inserted into (A7) to yield 
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With the appropriate selection of 
(0) eqg g = , 

1

(0) 0t g 


 =e  is noted and thus Eq. (A10) 

reduces to 
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2

2 (0) 1 (0)

1 1 12s ta g t g   
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(A11) 

Finally, we can combine the terms in  Eq. (A6), 2  Eq. (A11) and the source term 

of 2( )O to obtain 
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Clearly, with eqg
 defined in Eq. (22), 

(0)g


= , 
2

(0) 0

0( )

W t
g

F U x
 





 
= −e N  and 

(0)g  


=e e I  can be readily verified; also, recalling the relaxation matrix in Eq. (23), Eq. 

(A12) becomes 
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 

Ν
.
  

(A13) 

Eq. (A13) is identical to the governing equation in (18) when preserving the terms up to ( )2 . 

It is thus verified that the MRT-LB evolution scheme in Eq. (19) recovers the governing equation 

for the phase field up to second-order accuracy.  
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Appendix B. Evaluation of the Tip Velocity and Radius  

With the objective of accurately evaluating the tip velocity and tip radius during the dendritic 

growth, bi-cubic interpolation using 16 data points of the phase field variable, ϕij, (i = 1 ~ 4, j = 1 ~ 4) 

enclosing each tip is applied. Through the introduction of a local coordinate system (ξ, η), the bi-cubic 

function is constructed as 
3 3

0 0

( , ) C  


 

    
= =

=  where Cαβ are constant coefficients that can be 

easily determined with the ϕij values from the phase-field solution.  

In addition, the Newton-Raphson method for root-finding in 2D is employed to accurately 

determine the tip coordinates (ξt, ηt) that satisfy the two conditions of ( , ) 0t t   = , and ( , ) 0
t t 






=


 

(for north and south tips) or ( , ) 0
t t 






=


 (for west and east tips). After determining the tip 

coordinates, the tip velocity can be readily calculated in the time marching procedure, and the tip 

radius is analytically calculated according to 
( , )

tip 2

( , )

t t

t t

  
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





=


 (for north and south tips) and 

( , )

tip 2

( , )

t t

t t

  
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





=


 (for west and east tips). 

For 3D simulations, the center of the initial spherical seed is placed exactly on a lattice node, 

and the tip velocity and radius are evaluated on the selected 2D planes following the same process 

described above. 
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