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Abstract—Detecting the source of an outbreak cluster during a
pandemic like COVID-19 can provide insights into the transmis-
sion process, associated risk factors, and help contain the spread.
In this work we study the problem of source detection from mul-
tiple snapshots of spreading on an arbitrary network structure.
We use a spatial temporal graph convolutional network based
model (SD-STGCN) to produce a source probability distribution,
by fusing information from temporal and topological spaces.
We perform extensive experiments using popular compartmental
simulation models over synthetic networks and empirical contact
networks. We also demonstrate the applicability of our approach
with real COVID-19 case data.

Index Terms—source detection, COVID-19 epidemic, spatial
temporal graph convolutional network

I. INTRODUCTION

By early January 2021, the number of confirmed COVID-
19 cases has reached 83.6 millions world-wide, and over 1.8
million people have lost their lives. One important method
for limiting transmission of an infectious disease consists of
identifying epidemic cluster sources and isolating them from
the population. Epidemiologists conduct source detection by
analysing the genetic evolution of virus strains [1] or by
contact tracing [2], which can be time-consuming and labor-
intensive. However, COVID-19 has demonstrated limits to
contact tracing when prevalence is widespread, for example in
the United States, and methods are needed for source detection
in such situations.

In real life, most individuals have high probability of
contact with only a small portion of the population. It is thus
realistic to model an epidemic as a spreading process on an
interpersonal network, where infection can only transmit from
an individual to its neighbors. Moreover, the interpersonal
network can be obtained through IoT technology [3]. For
example, [4] reconstructs contact networks through mobile
phone communication data. So in this work, we solve the
source detection problem in a network setting and assume the
availability of the network.

Source detection on networks is a well studied problem with
wide applications [5]. Existing solutions include centrality
based methods [6]–[8], Dynamic Message Passing (DMP) [9]
and Label Propagation based Source Identification (LPSI) [10].
Recently, [11] proposed using graph convolutional network
(GCN) to solve source detection with improved efficiency

and accuracy. The method takes as input a snapshot of the
spreading and outputs a probability for each node in the graph
as to whether the node is the source. There appears to be
some controversy [12] as to whether a GCN approach is
valid compared to more standard (non-deep learning based)
methods for source detection. In particular, some discussion
on the 2021 ICLR open review portal questions whether a
GCN approach can handle diverse and realistic transmission
dynamics (beyond SIR), diverse network topology, and can
even be solved using a single snapshot.

In practice, there can possibly be multiple snapshots ob-
served at different stages of an epidemic; these snapshots can
help revealing the temporal dynamics of the disease propa-
gation. As suggested in [13], multiple independent snapshots
can enhance detectability. So an ideal model should be able
to take advantage of richer observations and at the same
time exploit the underlining connectivity of the network. This
motivates us to adopt a spatial temporal graph convolutional
network (STGCN) architecture that combines the best of the
two worlds. STGCNs were originally developed for the tasks
of traffic forecasting [14] and action recognition [15], where
the data contains sequences of temporal snapshots of route
networks and skeleton networks, respectively. We adapt the
particular form of STGCN proposed in [14] for source detec-
tion, and name it Source-Detection-STGCN (SD-STGCN).

In this work we address some of the issues raised in recent
debate on GCN applicability to source detection [12]. We
show that single snapshot GCNs [11] do not perform signif-
icantly better than simpler message passing algorithms, how-
ever multi-snapshot STGCNs do lead to significant accuracy
improvements. We validate these findings using more realistic
models of transmission, including non-Markovian epidemic
simulations with delay, and more realistic network topology,
including both synthetic and empirical contact networks. Ad-
ditionally, we apply our model to real COVID-19 case data.
The experiments demonstrate the superior performance of SD-
STGCN.

II. BACKGROUND

A. Epidemic Models
SD-STGCN is a deep learning model that requires abundant

data to train. However, real infection records are very limited
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in the public domain. So we resort to epidemic models to gen-
erate simulations that resemble the real contagion processes.
It is worth noting that although SD-STGCN is trained on
simulation data, it is independent with the particular epidemic
models, and thus can be applied to more complex and realistic
cases.

SIR [16], [17] splits the population into three compartments
- susceptible (S), infectious (I), and recovered (R). Let S(t),
I(t), and R(t) denote the fractions of individuals who are
susceptible, infectious, and recovered, respectively, at time t.
They follow the transformation rule: S ! I ! R, and satisfy
S(t)+I(t)+R(t) = 1, assuming a close system. The ordinary
differential equations of the system are given by:

dS

dt
= ��IS,

dI

dt
= �IS � �I,

dR

dt
= �I (1)

where � is the transmission rate (S ! I) and � is the recovery
rate (I ! R). Given �, �, and initial conditions (S0, I0, R0),
one can solve S(t), I(t), and R(t) at any t from Eq. 1.

Network SIR [11], [18] assumes that the population form
a static contact network G of N nodes, with each node
representing an individual. An infectious node j can transmit
the disease to a node i if and only if i is susceptible and is a
neighbor of i, i.e. i 2 N (j). Let A be the adjacency matrix of
G, with Aij = 1 if i 2 N (j), Aij = 0 otherwise. Let Si(t),
Ii(t), and Ri(t) be the probabilities of node i being in each of
the states at time t, with Si(t)+Ii(t)+Ri(t) = 1. Let I0 denote
the initial infected persons at time t = 0, where I0,i = 1 if
i is initially infectious (i.e. patient zero), otherwise I0,i = 0.
Let P(t) denote the probability of remaining infectious at later
time t after becoming infectious. P(t) is monotonic decreasing
with P(0) = 1 and limt!1 P(t) = 0. Consequently, Si, Ii,
and Ri obey the following differential equations (for derivation
see Appendix):

dSi(t)

dt
= ��

X

j

AijSi(t)Ij(t)

dIi(t)

dt
= �

X

j

AijSi(t)Ij(t) + I0,iP
0(t)

+ �

Z t

0

X

j

AijSi(x)Ij(x)P
0(t� x)dx

dRi(t)

dt
= �I0,iP

0(t)� �

Z t

0

X

j

AijSi(x)Ij(x)P
0(t� x)dx

(2)
where � is the transmission rate and P

0(t) = dP(t)
dt . Note that

a similar derivation can be found in [19], but there they assume
that the population is homogeneously mixed and an individual
can have contact with anyone else. In contrast, here we derive
the system assuming that the population is in a network and
an individual has only limited contacts.

Standard network SIR model For standard SIR, we have
P(t) = e

��t, i.e. the probability for an I node to stay

infectious decays exponentially [19]. Eq. 2 becomes:

dSi(t)

dt
= ��

X

j

AijSi(t)Ij(t)

dIi(t)

dt
= �

X

j

AijSi(t)Ij(t)� �Ii(t)

dRi(t)

dt
= �Ii(t).

(3)

In the early stage, we have Si(t) ⇡ 1. Plugging it in Eq. 3, we
can obtain the basic reproduction number R0 of the following
form:

R0 =
��1

�
, (4)

where � is the transmission rate, � is the recovery rate, and
�1 is the largest eigenvalue of the adjacency matrix A. For
detailed derivation, see Appendix.

Delay network SIR model For delay SIR, following [19],
we assume P(t) = ⇥(t� T ), a step function, with P(t) = 1
for 0  t  T and P(t) = 0 for t > T , then P

0(t � x) is
��(t� x� T ). Here T is the delay time for recovery, i.e. an
infectious node would recover after T units of time. Now Eq.
2 becomes:

dSi(t)

dt
= ��

X

j

AijSi(t)Ij(t)

dIi(t)

dt
= �

X

j

AijSi(t)Ij(t)� �

X

j

AijSi(t� T )Ij(t� T )

dRi(t)

dt
= �

X

j

AijSi(t� T )Ij(t� T ).

(5)
Such delay differential equations are known to be associated
with non-Markovian dynamics [19], [20]. From Eq. 5, we can
derive the basic reproduction number R0 of the following form
(for derivation see Appendix in the supplementary material):

R0 = ��1T, (6)

where � is the transmission rate, �1 is the largest eigenvalue of
the adjacency matrix A, and T is the delay time for recovery.

SEIR is another popular epidemic model [16], [17] that
is well-suited for modeling the infectious diseases with an
exposed/latent period. During such period, the pathogen in the
host is in low numbers, so that the host is infected but cannot
transmit it to others. In addition to S, I , and R, the model
further assumes an exposed (E) compartment, to account for
the latent period. The compartments follow the transformation
rule: S ! E ! I ! R, and obey the following differential



equations:

dSi(t)

dt
= ��

X

j

AijSi(t)Ij(t)

dEi(t)

dt
= �

X

j

AijSi(t)Ij(t)� ↵Ei(t)

dIi(t)

dt
= ↵Ei(t)� �Ii(t)

dRi(t)

dt
= �Ii(t),

(7)

where � is the transmission rate, � is the recovery rate, and
↵ is the rate from E to I (or equivalently 1/↵ is the mean
latent period). The basic reproduction number is of the same
form as Eq. 4.

B. STGCN
Although STGCN is separately developed in [15] and [14],

here we adopt the one designed for traffic forecasting [14].
The model combines graph convolutional network (GCN) [21],
[22] and convolutional neural network (CNN) for extracting
spatial and temporal information. The model takes a traffic
network (i.e. a network of sensor stations) and a sequence of
sensor data (e.g. traffic speed, volume, density) as input, and
predicts the future traffic status. The core of STGCN is a stack
of the so-called spatio-temporal convolution (ST-Conv) blocks.
An ST-Conv block consists of a spatial layer sandwiched by
two temporal layers. A temporal layer contains a 1-D CNN
along time axis followed by a gated linear unit (GLU), to
capture the temporal dynamics. The spatial layer is a GCN
implemented using the Chebyshev polynomials approximation
[21] or the 1st-order approximation [22]. As suggested in [14],
such sandwich architecture allows jointly processing graph-
structured time series; the spatial layer in the middle can serve
as a bottleneck to help achieve scale compression and feature
squeezing.

III. METHODOLOGIES

Problem description In general, a contact network during a
contagion process can be temporal, directed, and weighted, but
here we concentrate on a static undirected and non-weighted
graph G = (V,E), where V and E are the sets of nodes
and edges; the number of nodes in G is N = |V |. For a
contagion process on G, we observe a sequence of k snapshots
X = {xt1 , . . .xtk} at time steps {t1, t2, . . . tk}. Note that the
snapshots are not necessarily for consecutive time value. A
snapshot xtk contains the states of all the nodes of G at tk,
i.e. xtk = {xtk,1, . . . xtk,N}, with each node’s state xtk,i 2

{S, I, R} for the SIR model or 2 {S,E, I, R} for the SEIR
model. The problem of source detection is to find the set of
initially infected nodes Y = {i|xt=0,i = I, i 2 V } by solving
the following objective:

Y
? = argmaxYP (X|Y , G) (8)

where P (X|Y , G) is the likelihood of observing X with Y

being the source.

Fig. 1: SD-STGCN architecture. The blue areas on the left
represent the input snapshots, which are one-hot encoded
network states at multiple time steps. The orange areas on
the right illustrate the model architecture consisting of a stack
of ST-Conv blocks followed by an output layer. The output is
a list of probabilities of each node being the source.

Model description Our SD-STGCN model is built upon the
STGCN architecture. Fig. 1 is an illustration of SD-STGCN.
The input is a sequence of k snapshots X = {xt1 , . . .xtk}

(the blue areas in Fig. 1). A snapshot xtk = {xtk,1, . . . xtk,N}

contains the states of all the nodes of G, with xtk,i being a
one-hot encoded vector of the states. So the input X is of the
shape k⇥N ⇥Cin, where k is the number of snapshots, N is
the number of nodes, Cin is the number of channels (= 3 for
SIR or 4 for SEIR). X then goes through a series of ST-Conv
blocks (the orange areas in Fig. 1), each consisting of two
temporal layers and one spatial layer.

A temporal layer contains a 1-D CNN followed by a GLU.
The CNN has a kernel of size Kt and applies to every node
of G without padding, thus compressing X along time axis
by Kt � 1. This part of the operation can be summarized as:

Z1 = GLU(CNN(X )) 2 R(k�Kt+1)⇥N⇥Ch , (9)

where Z1 is the output of the layer and Ch is the number of
channels.
Z1 is then fed to the spatial layer, which is a GCN

followed by a rectified linear unit (ReLU). The GCN has a
kernel of size Ks. If the GCN is implemented by Chebyshev
polynomials approximation [21], then Ks � 1 is the order of
the truncated expansion; if the GCN is implemented by 1st-
order approximation [22], then Ks is the number of successive
convolutional layers. The spatial layer can effectively encode
the information in the spatial domain by aggregating the
signals in the Ks neighborhood of each node in each snapshot.
Let the graph convolution preserve the channel dimension, the
spatial layer can be summarized as:

Z2 = ReLU(GCN(Z1)) 2 R(k�Kt+1)⇥N⇥Ch , (10)

where Z2 is the output of the layer.



Following the spatial layer is another temporal layer. It
performs the same operation as the first temporal layer, and
further reduces the time dimension by Kt � 1. Unlike the
spatial layer, this layer does not preserve the channel dimen-
sion, but instead magnifies it, so the spatial layer becomes a
bottleneck. The formula for this layer is:

Z3 = GLU(CNN(Z2)) 2 R(k�2Kt+2)⇥N⇥Cout , (11)

where Z3 is the output of the ST-Conv block and Cout is the
number of channels (Cout > Ch). As in Fig. 1, Z3 then goes
through more ST-Conv blocks that repeat the same sequence
of operations. Assuming that M ST-Conv blocks are used,
the output of the last ST-Conv block has the shape Z3 2

R(k�2MKt+2M)⇥N⇥Cout .
Finally, we send Z3 to an output layer, which contains a

temporal layer followed by a fully-connected (dense) layer
with softmax activation. The temporal layer is a 1-D CNN
with a kernel of size Ko = k � 2MKt + 2M , so that the
time dimension becomes 1. The fully-connected layer further
reduces the channel dimension from Cout to 1, and the softmax
function normalizes the output across the nodes to represent
the source probability distribution. The output layer can be
summarized as:

P = Softmax(Dense(CNN(Z3))) 2 RN
, (12)

where P = {P1, . . . , PN}, with
PN

i=1 Pi = 1. We then pick
the set of nodes with top Pi as Y?. For single-source detection
(i.e. |Y?

| = 1), we select the node i
? = argmaxiPi as the

source. We perform single-source detection in Sec. V-A-V-B,
and multi-source detection in Sec. V-D.

The model parameters ⇥ are learned in a supervised manner.
In specific, we generate S(E)IR simulations on G with random
sources Ytrue (the ground truth), and sample k random snap-
shots X from the simulations. We then minimize the following
cross-entropy loss:

⇥ = argmin⇥ �

X

i2V

yilog(Pi) (13)

where Ytrue = {y1, . . . yN} is the one-hot encoded source set;
P = {P1, . . . , PN} is the output of SD-STGCN.

Training protocol We adopt two ST-Conv blocks in SD-
STGCN. We set the block dimensions as (C1

in, C
1
h, C

1
out) =

(3, 36, 144) and (C2
in, C

2
h, C

2
out) = (144, 36, 72) for SIR

model; (C1
in, C

1
h, C

1
out) = (4, 36, 144) and (C2

in, C
2
h, C

2
out) =

(144, 36, 72) for SEIR model. To train the model, we perform
batch gradient descent with RMSProp optimizer, a batch size
of 16, and a learning rate of 0.001. In each pass, a series of
k = 16 snapshots are sampled uniformly at random from every
simulation. We examine different configurations - Chebyshev
polynomials approximation [14] vs. 1st order approximation
[22], spatial kernel size Ks in {2, 3, 4}, and temporal kernel
size Kt in {2, 3, 4}. In our experiments, for each graph, we
generate 2, 000 simulations and split into 80% training, 10%
validation, and 10% testing. Grid search on validation data
suggests that using 1st order approximation with Ks = 4

and Kt = 3 renders the best performance. In the following
experiments, we adhere to this setup.

IV. RELATED WORKS

There have been a surge of works on various topics related
to the COVID-19 pandemic [19], [23], [24]. To the best
of our knowledge, there was only one work [11] before us
using deep learning to solve the source detection problem of
COVID-19, although the general problem of identifying the
propagation sources in networks [5] is well studied. Early
methods resort to graph-centrality measures such as rumor
center [6], [25]–[27], eigenvector center [7], [28], [29], and
Jordan center [8]. However, these methods are heuristic and
only provide suboptimal solutions. Alternatively, [9] proposes
a method named dynamic message passing (DMP) that pro-
vides near-optimal solution. However, this method has high
computational complexity and requires the propagation time,
which is in general not available in practise. [10] performs
multi-source detection based on the idea of source prominence
and label propagation, nonetheless, its convergent version has
O(N3) complexity. Recently, [11] proposes using graph neural
networks (GCN) [21], [22] for single-source detection without
knowing the propagation time. But this method utilizes only
one snapshot, while multiple snapshots may be observed in
reality. Moreover, it has been shown in [13] that using multiple
independent snapshots can improve source detection accuracy.
In the fields of traffic forecasting [14] and action recognition
[15], different forms of spatial temporal graph convolutional
networks were developed for prediction involving spatial and
temporal signals. Inspired by these works, especially [14], we
propose SD-STGCN, a spatial temporal graph convolutional
network for source detection that utilizes multiple snapshots.

V. EXPERIMENTS

Data We run standard and delay S(E)IR simulations with
synthetic random graphs [30] and empirical contact net-
works. We generate different types of random graphs using
Erdös–Rényi (ER), Barabási–Albert (BA & BA-Tree) [31],
and Random Geometric Graph (RGG) [32] models. We adopt
three empirical contact networks - Bernard and Killworth
Fraternity (Frat) [33], [34], SFHH conference (Conf) [35],
and High school (High) [36], which are static networks
obtained by aggregating dynamic contact sequences. Fraternity
network describes the interactions between students living in a
fraternity at a West Virginia college. An edge is added if two
students are spotted engaged in a conversation. Conference
network describes the face-to-face interactions of participants
of the SFHH 2009 conference. High-school data contains close
proximity records of students, teachers, and other persons in
an American high school. We add an edge if two people are in
close proximity for more than 5 minutes. The statistics of the
networks are listed in Table I. Note in addition to the entries in
Table I, we also test our model on ER graphs with 5, 000 and
10, 000 nodes. We defer the description of the real COVID-19
cases data to Sec. V-D.



TABLE I: Network statistics. The columns from left to right
are the network name, number of nodes |V |, number of edges
|E|, average degree d, and clustering coefficient C [30].

network |V | |E| d C

ER 1000 10128 20.3 0.020
BA 1000 9900 19.8 0.062
BA-Tree 1000 999 2.0 0
RGG 1000 9326 18.7 0.618
Frat 58 967 33.3 0.747
Conf 403 9565 47.5 0.282
High 774 7992 20.7 0.186

Baseline methods We compare our SD-STGCN with two
popular baseline methods - Dynamic Message Passing (DMP)
[9] and a graph convolutional network based model (GCN)
[11]. We choose DMP as a representative of the non-deep
learning based methods, as it has been shown in [9] to
considerably outperform other popular methods like rumor
center [6] and Jordan center [8]. We select the GCN model as
the second baseline, as it also utilizes deep learning for source
detection. We show that by leveraging multiple snapshots, our
model can achieve significant improvement over this model.
We notice that the algorithm proposed in [10] can perform
multi-source detection, however their code is not publicly
available.

DMP [9] is a source detection model based on the message
passing framework [37]. For a single source SIR on a network
G = {V,E}, it predicts the source given a snapshot O at time
t. Assuming an arbitrary node i as the source, it first estimates
the marginal probabilities for any node to be in each of the
three states S, I , R, at time t. It then approximates the joint
likelihood P (O|i) as the product of the marginal probabilities
of the observed nodes being in the observed states. It then goes
through all i 2 V and picks the one that maximizes P (O|i)
as the source. The time complexity of the model is O(tN2

d),
where t is the time step of the observations, N is the number
of nodes, and d is the average degree of the network. It is
thus computationally expensive for very large networks that
are strongly connected [5], [11]. Besides, the method requires
the propagation time t of the observations, which is generally
unknown.

GCN [11] is a graph convolutional network [22] based
model for source detection. Similar to DMP, it predicts the
source using one snapshot of the network. But unlike DMP, it
does not need to know the time of the snapshot. Moreover, it
can be applied to both SIR and SEIR. The model takes one-hot
encoded node states as features and outputs the probabilities
of each node being the source. In [11], the authors actually
proposed three GCN models (i.e. GCN-S, GCN-R, GCN-M)
varied by propagation rules (i.e. symmetric, random walk,
mixture). We adopt GCN-S as it appears to have the best
performance among the three.

Performance metrics For single-source detection, we adopt
three types of metrics - top-1 accuracy, mean reciprocal rank
(MRR), and hit rates. Top-1 accuracy (Top-1 Acc) examines
whether the highest ranking node is aligned with the true
source. MRR is the average reciprocal ranks of the true source

TABLE II: Performance of SD-STGCN and GCN trained and
tested on SIR simulations using R0 = 2.5 and � = 0.4, over
random graphs of different types. The scores are evaluated
over five graphs per type and five runs per graph. The format
is mean (standard deviation).

Type Model Top-1 Acc MRR Hit@5
ER SD-STGCN 0.694 (0.017) 0.816 (0.012) 0.974 (0.006)

GCN 0.302 (0.029) 0.375 (0.025) 0.450 (0.028)
DMP 0.258 (0.009) 0.291 (0.008) 0.328 (0.006)

BA SD-STGCN 0.818 (0.027) 0.892 (0.016) 0.981 (0.005)
GCN 0.523 (0.035) 0.598 (0.029) 0.685 (0.031)
DMP 0.383 (0.013) 0.415 (0.011) 0.451 (0.010)

BA-Tree SD-STGCN 0.908 (0.042) 0.948 (0.023) 0.994 (0.004)
GCN 0.753 (0.029) 0.834 (0.019) 0.935 (0.018)
DMP 0.781 (0.016) 0.854 (0.011) 0.949 (0.014)

RGG SD-STGCN 0.724 (0.020) 0.839 (0.012) 0.984 (0.008)
GCN 0.413 (0.041) 0.517 (0.037) 0.629 (0.043)
DMP 0.362 (0.042) 0.439 (0.050) 0.529 (0.057)

given by the model, and a greater MRR indicates better
performance. In addition, we evaluate hit rates at k (Hit@k)
to see if the true source is among the top k candidates given
by the model. For multi-source detection, besides Hit@k,
we adopt Jaccard Similarity (JS) and normalized discounted
cumulative gain (nDCG). JS and nDCG are estimated between
the true source set Y

? and the predicted set Y of the same
size, i.e. |Y?

| = |Y|. These metrics can measure the model’s
ranking quality.

Model reproducibility All experiments were conducted
on a server with Nvidia Tesla V100-PCIE-16GB
GPU. We make our datasets and code available at
https://github.com/anonymous-anuthor/SD-STGCN.

A. Experiments with standard S(E)IR simulations
In this section, we examine our SD-STGCN model on

standard S(E)IR simulations obeying Eq. 3 and 7 over random
graphs and empirical contact networks.

SIR on random graphs We generate standard SIR simu-
lations (Eq. 3) with R0 = 2.5 (the basic reproduction number
of COVID-19 [23]), � = 0.4 on ER, BA, BA-tree, and RGG
networks of 1, 000 nodes. The transmission rate � can be
calculated using Eq. 4. To compare with the results in [11],
we adopt a similar setup with the simulation length fixed at 30
time steps. SD-STGCN infers the source using 16 randomly
sampled snapshots, while DMP and GCN use only one. We
evaluate the average performance across five independent runs
per graph, and five graphs per type. The results are shown in
Table II. We can see that SD-STGCN outperforms DMP and
GCN by a significant margin, which indicates the advantage
of leveraging multiple snapshots. Like the two baselines,
the performance of SD-STGCN varies across graph types:
the highest top-1 accuracy ⇠ 0.908 in BA-Tree; the lowest
⇠ 0.694 in ER.

SEIR on random graphs In addition to SIR, we evaluate
SD-STGCN with SEIR simulations on ER, BA, BA-Tree and
RGG random graphs with 1, 000 nodes. The simulations are
generated using R0 = 2.5, � = 0.4, and ↵ = 0.5. Note that
DMP is designed for SIR and not applicable for SEIR [9], so



TABLE III: Performance of SD-STGCN and GCN trained and
tested on SEIR simulations using R0 = 2.5, � = 0.4 and
↵ = 0.5, over random graphs of different types. The scores
are evaluated over five graphs per type and five runs per graph.
The format is mean (standard deviation).

Type Model Top-1 Acc MRR Hit@5
ER SD-STGCN 0.775 (0.028) 0.849 (0.019) 0.954 (0.012)

GCN 0.126 (0.019) 0.192 (0.019) 0.252 (0.023)
BA SD-STGCN 0.802 (0.029) 0.870 (0.021) 0.959 (0.012)

GCN 0.154 (0.024) 0.226 (0.025) 0.291 (0.033)
BA-Tree SD-STGCN 0.983 (0.011) 0.990 (0.007) 0.997 (0.003)

GCN 0.439 (0.053) 0.583 (0.043) 0.754 (0.035)
RGG SD-STGCN 0.775 (0.032) 0.846 (0.026) 0.942 (0.025)

GCN 0.207 (0.038) 0.319 (0.042) 0.435 (0.059)

we evaluate SD-STGCN against GCN only. The results across
different types of random graphs are listed in Table III. We can
see that SD-STGCN is the clear winner over GCN by more
than two folds in most of the cases. We also observe a similar
trend like in the SIR case, where the performance varies across
graph types, with BA-Tree the easiest to predict. Overall, the
results here highlight that by using multiple snapshots, our SD-
STGCN outperforms GCN for not only SIR but also SEIR.

SIR on empirical contact networks Empirical contact
networks can exhibit different characteristics from random
graphs. For example, as shown in Table I, the empirical contact
networks under consideration show higher clustering coeffi-
cients than the random graphs except for RGG, which indicate
that the nodes in these empirical networks are more likely to
form clusters. It is thus important to examine SD-STGCN over
contagion processes on empirical contact networks.

For data generation, we run standard SIR simulations on
Frat, Conf and High networks. The training set is generated
using random R0 2 [1, 15) and � 2 [0.1, 0.2) for Frat and � 2

[0.1, 0.3) for Conf and High. The ranges are determined such
that the simulations are longer than 20 iterations. The test set is
generated using R0 = 2.5 and � = 0.2 for Frat and Conf, and
� = 0.4 for High. We evaluate the performance of SD-STGCN
against GCN and DMP on the test set, and the results are
listed in Table IV. We can see that SD-STGCN outperforms
the competing methods by a significant margin, in particular
SD-STGCN achieves above 90% Hit@5 rates higher than the
runner-up by about 30%. This demonstrates that our method is
effective for not only random graphs but also empirical contact
networks.

B. Experiments with delay SIR simulations

The experiments up to this point are based on simulations
that are Markovian, while in reality the disease diffusion
process is better described as non-Markovian [38]. To generate
non-Markovian simulations, we adopt a delay SIR model [39],
[40] that follows the dynamics in Eq. 5. In particular, it
assumes that a constant delay period T between infectious and
recovery states. Although, in real epidemics, T can vary from
one individual to another, for simplicity, we adopt a constant
T representing the average length of delay across population,
and most importantly, using constant T already induces non-
Markovian property.

TABLE IV: Performance of SD-STGCN evaluated against
baseline methods over standard SIR simulations on empirical
contact networks. The scores are evaluated across five runs per
network. The format is mean (standard deviation).

Data Model Top-1 Acc MRR Hit@5
Frat SD-STGCN 0.664 (0.002) 0.805 (0.009) 0.976 (0.004)

GCN 0.457 (0.035) 0.561 (0.031) 0.670 (0.040)
DMP 0.546 (0.161) 0.642 (0.157) 0.738 (0.180)

Conf SD-STGCN 0.540 (0.006) 0.708 (0.003) 0.926 (0.002)
GCN 0.480 (0.038) 0.549 (0.031) 0.623 (0.027)
DMP 0.414 (0.341) 0.448 (0.356) 0.475 (0.382)

High SD-STGCN 0.644 (0.022) 0.781 (0.013) 0.953 (0.007)
GCN 0.408 (0.029) 0.482 (0.027) 0.564 (0.034)
DMP 0.346 (0.310) 0.376 (0.326) 0.404 (0.359)

TABLE V: Performance of SD-STGCN evaluated against
GCN over delay SIR simulations. The scores are evaluated
across five runs per network. The format is mean (standard
deviation).

Data Model Top-1 Acc MRR Hit@5
ER SD-STGCN 0.573 (0.165) 0.708 (0.149) 0.881 (0.139)

GCN 0.130 (0.025) 0.203 (0.025) 0.285 (0.029)
Frat SD-STGCN 0.773 (0.012) 0.875 (0.005) 0.995 (0.000)

GCN 0.231 (0.033) 0.367 (0.037) 0.504 (0.047)
Conf SD-STGCN 0.719 (0.007) 0.833 (0.004) 0.982 (0.002)

GCN 0.145 (0.044) 0.230 (0.044) 0.306 (0.039)
High SD-STGCN 0.722 (0.013) 0.828 (0.006) 0.953 (0.005)

GCN 0.141 (0.027) 0.214 (0.024) 0.280 (0.027)

We run delay SIR with R0 = 2.5 and T = 14 (e.g. days) on
random graphs (ER with 1, 000 nodes) and empirical contact
networks (Frat, Conf, and High). Since no tractable form
of DMP is known for the non-Markovian simulations [9],
we only evaluate SD-STGCN against GCN. The results are
shown in Table V. We can see that SD-STGCN significantly
outperforms GCN. Comparing to Table II, for ER, we find
that the performance of GCN reduces significantly, whereas
the performance of SD-STGCN only reduces slightly. For
example, GCN’s top-1 accuracy drops by ⇠ 56%, in contrast,
SD-STGCN’s top-1 accuracy only decreases by ⇠ 17%.
Comparing to Table IV, for Frat, Conf and High, we observe
that the performance of SD-STGCN improves, whereas the
performance of GCN reduces by more than 50%. Overall, we
can see that SD-STGCN remains effective for non-Markovian
simulations, while GCN deteriorates, which highlights the fact
that SD-STGCN is better than GCN by utilizing multiple
snapshots instead of only one.

C. Sliding windows

In the previous sections, we perform source detection based
on randomly sampled snapshots distributed over different
stages of the spread. In real life contact tracing, we may
observe consecutive snapshots in a time window of limited
length. Therefore, in this section, we mimic such scenario
and place sliding windows across standard and delay SIR
simulations on ER random graph and Frat, Conf and High
contact networks, and examine SD-STGCN’s performance at
these windows.



(a) Acc: standard SIR, ER R0 = 2.5 (b) Acc: standard SIR, Frat (c) Acc: standard SIR, Conf (d) Acc: standard SIR, High

(e) Acc: delay SIR, ER R0 = 2.5 (f) Acc: delay SIR, Frat (g) Acc: delay SIR, Conf (h) Acc: delay SIR, High

(i) MRR: standard SIR, ER R0 = 2.5 (j) MRR: standard SIR, Frat (k) MRR: standard SIR, Conf (l) MRR: standard SIR, High

(m) MRR: delay SIR, ER R0 = 2.5 (n) MRR: delay SIR, Frat (o) MRR: delay SIR, Conf (p) MRR: delay SIR, High

(q) Acc: delay SIR, ER R0 = 10 (r) MRR: delay SIR, ER R0 = 10 (s) nDCG: Singapore (t) nDCG: Tianjin

Fig. 2: Top-1 accuracy and MRR across sliding windows with standard and delay SIR simulations on different networks. (a)-(d)
Top-1 accuracy and (i)-(l) MRR for standard SIR simulations. The horizontal axis represents the first frame in each window.
(e)-(h) Top-1 accuracy and (m)-(p) MRR for delay SIR simulations. The horizontal axis represents percentage windows. (q)-(r)
Top-1 accuracy and MRR for delay SIR on ER graph with R0 = 10. (s)-(t) nDCG across sliding windows on Singapore and
Tianjin datasets. The black crosses represent the source cases, which are jittered to avoid overlapping.

For standard SIR, we train SD-STGCN using simulations
with random R0 2 [1, 15) and � 2 [0.1, 0.4). For testing, we
generate simulations using R0 = 2.5 and � = 0.4, with a fix
size of 30 iterations. We then place sliding windows of size 16
at step 1, 5, 10, 15, 20, and 25, and evaluate the top-1 accuracy
and MRR. As comparison, we apply GCN and DMP at the
same windows with the first frame of each window as input.

The results are illustrated in Fig. 2 (a)-(d) (top-1 accuracy)
and (i)-(l) (MRR). We can see that the performances of all the
three models decrease as the window moving away from the
starting point. Nevertheless, SD-STGCN and GCN outperform
DMP significantly after 10 iterations except for the Frat case
in Fig. 2 (b) where the network size (58 nodes) is smaller
than the others (Table I). Also notice that SD-STGCN and



TABLE VI: COVID-19 case data network statistics. The
columns from left to right are the network name, number of
nodes |V |, number of edges |E|, clustering coefficient (C)
[30].

network |V | |E| C

Emp-HighSchool 774 7992 0.172
Singapore-ER 1000 9999 (84) 0.021 (0.000)
Singapore-RGG 1000 9463 (75) 0.601 (0.009)
Singapore-Conf 1000 10311 (79) 0.029 (0.001)
Tianjin-ER 1000 10074 (88) 0.020 (0.000)
Tianjin-RGG 1000 9439 (104) 0.589 (0.004)
Tianjin-Conf 1000 10348 (79) 0.029 (0.001)

GCN give very close scores. This is because the standard SIR
simulations following Eq. 3 are Markovian - the subsequent
snapshots are conditionally independent of the source given
the first snapshot in the window [13]. Therefore, SD-STGCN
essentially operates like a GCN in this case. In the following,
we will demonstrate that this is not the case for delay SIR
simulations which are non-Markovian.

For delay SIR, we run simulations using R0 = 2.5 and
T = 14. Since the simulations generated in this way have
different sizes, we place windows at fix percentages rather
than at fix time steps, to better represent the various stages of
the spread. Note that DMP is not available for non-Markovian
simulations, so we only compare SD-STGCN against GCN.
The results are illustrated in Fig. 2 (e)-(h) (top-1 accuracy) and
(m)-(p) (MRR). We can see that GCN suffers a performance
degradation in the early stage (near the 10% window). In
contrast, our SD-STGCN achieves above 80% top-1 accuracy
in this period. This is because in the early stage many newly
infected nodes emerge while none is yet recovered, so GCN
has to pick the source out of many I nodes in one snapshot.
In contrast, SD-STGCN can look ahead for multiple snapshots
(e.g. 16 frames) in which the source and other early infected
nodes recover, so it only needs to select the source from
the fewer recovered nodes. In the later stage, as more and
more nodes recover, the difference between one snapshot and
multiple snapshots becomes less significant, and therefore we
can see that SD-STGCN and GCN have similar performance.

To verify this reasoning, we further compare SD-STGCN
against GCN on sliding windows using delay SIR with R0 =
10 on ER graph. The results are shown in Fig. 2 (q)-(r).
With a greater R0, more nodes become infectious in the early
stage, making it more difficult for GCN to predict the source.
Therefore, we can see that the difference between the two
curves here is even more significant. Before the 40% window,
SD-STGCN maintains high accuracy and MRR, whereas the
corresponding scores of GCN drop to near zero.

D. Case study: real COVID-19 case data

In this experiment, we assess SD-STGCN on two real world
datasets of COVID-19 cases in Singapore and Tianjin. The
Singapore dataset comprises 93 confirmed COVID-19 cases
in Singapore from Jan 19, 2020 - Feb 26, 2020; the Tianjin
dataset contains 135 confirmed cases in Tianjin, a city in the
northeast of China, from Jan 21, 2020 - Feb 27, 2020 [41]. In

both datasets, the initial cases were imported from Wuhan (or
Hubei province), with later cases being caused by local trans-
mission. The datasets provide temporal information like date
of onset symptoms, date of confirmation, and date discharged
for those who recovered (or date of death). Assuming SIR
type, we use the date of onset symptoms as the step when an
individual turns from S to I; while the date of onset symptoms
is not available, we use the date of confirmation instead. For
the recovered/death cases, we assume that they turned from I

to R on the date discharged or date of death.
The datasets also provide links between the cases that are

related (e.g. by family or location). We can thus connect these
cases and form a network G0. However, G0 is likely a subset
of a larger network G, as the confirmed cases may have
unidentified contacts. To model this, we overlay G0 onto a
greater network G of 1, 000 nodes. Note that the size of G

is arbitrary, and a different value can be used. We generate
G using ER, RGG, and a configuration model [18] with the
degree distribution of the High school network. In addition,
we simply adopt the high school network as G. The network
statics are listed in Table VI.

For training, we generate 2, 000 SIR simulations per net-
work, using random R0 2 [1, 15) and � 2 [0.1, 0.4). For test-
ing, we project the states of the confirmed cases to a sequence
of daily snapshots of the network (treating the unknown cases
as susceptible), rendering 38 and 40 consecutive snapshots
for Singapore and Tianjin, respectively. For prediction, we
take 16 random snapshots as input, and rank the nodes by
the probability of being the source. We take the set of the
top k candidates and evaluate how much it overlaps with the
set of the initial cases from Wuhan (or Hubei province). The
results are shown in Table VII. Note the scores are evaluated
over five runs and five networks for each graph type. As the
sources here are more than one, we utilize Hit@10, Jaccard
Similarity (JS), and normalized discounted cumulative gain
(nDCG) as performance measure. The Hit@10 scores indicate
that ⇠ 60% (Singapore) and ⇠ 40% (Tianjin) of the top 10
predictions are overlapped with the reported sources. The JS
scores (between the set of sources and the set of top predictions
of the same size) are around 0.4 for Singapore and 0.2 for
Tianjin. The nDCG scores are above 0.7 for Singapore and
0.6 for Tianjin. We can also see that the performance does not
vary significantly between different networks. In Fig. 2 (s)-(t),
we plot nDCG scores at different sliding windows. The curves
here are not monotonically decreasing as time increases. This
is likely because multiple sources emerge at different time
steps. The black crosses in Fig. 2 (s)-(t) mark the time when
a source emerges. We can see that the nDCG scores are high
at the steps when the source cases cluster, especially in the
Tianjin case.

E. Impact of graph and simulation related factors
Effect of graph sizes We also examine SD-STGCN on

ER graphs of different sizes. In addition to graphs of 1, 000
nodes, we generate ER graphs of 5, 000 and 10, 000 nodes.
We train and test SD-STGCN using standard SIR simulations



TABLE VII: Performance of SD-STGCN over real COVID-19 cases. The cases are projected onto random networks generated
by ER, RGG, and the Configuration (Conf) models, and an empirical contact network (Emp). The scores are evaluated across
five runs and five networks per model. The format is mean (standard deviation).

Singapore Tianjin
Data Model Hit@10 JS nDCG Hit@10 JS nDCG
ER SD-STGCN 0.624 (0.076) 0.398 (0.034) 0.738 (0.058) 0.400 (0.000) 0.198 (0.076) 0.644 (0.095)

GCN 0.528 (0.151) 0.280 (0.099) 0.724 (0.089) 0.312 (0.170) 0.138 (0.077) 0.609 (0.086)
RGG SD-STGCN 0.632 (0.112) 0.425 (0.044) 0.802 (0.060) 0.428 (0.053) 0.219 (0.079) 0.688 (0.102)

GCN 0.464 (0.176) 0.248 (0.085) 0.724 (0.077) 0.216 (0.164) 0.130 (0.092) 0.579 (0.056)
Conf SD-STGCN 0.656 (0.070) 0.393 (0.061) 0.771 (0.051) 0.400 (0.000) 0.185 (0.090) 0.625 (0.118)

GCN 0.524 (0.166) 0.287 (0.099) 0.757 (0.088) 0.284 (0.138) 0.129 (0.086) 0.601 (0.085)
Emp SD-STGCN 0.560 (0.150) 0.396 (0.034) 0.712 (0.042) 0.400 (0.000) 0.276 (0.013) 0.733 (0.038)

GCN 0.572 (0.137) 0.261 (0.065) 0.797 (0.062) 0.468 (0.122) 0.193 (0.080) 0.684 (0.069)

TABLE VIII: Performance of SD-STGCN trained and tested
on SIR simulations using R0 = 2.5 and � = 0.4, over ER
graphs of different sizes. The scores are evaluated over five
graphs per size and five runs per graph. The format is mean
(standard deviation).

|V | Top-1 Acc MRR Hit@5
1000 0.541 (0.038) 0.704 (0.022) 0.928 (0.018)
5000 0.532 (0.044) 0.689 (0.030) 0.896 (0.019)
10000 0.441 (0.018) 0.616 (0.016) 0.845 (0.032)

with R0 = 2.5 and � = 0.4 on these graphs. The performance
metrics are shown in Table VIII. We observe a slightly
decrease in performance as the graph size increases, which is
understandable as the model has to pick the correct source out
of more candidates. Nonetheless, SD-STGCN achieves above
44% top-1 accuracy for a network of 10, 000 nodes.

Effect of basic reproduction numbers R0 In this exper-
iment, we evaluate SD-STGCN with standard SIR and SEIR
simulations using different R0. [17] provides a list of estimated
reproduction numbers for some well-known diseases, ranging
from 1.5 (Spring wave) to 14.5 (Measles in Ghana). We thus
train and test SD-STGCN over simulations with R0 = 1.5, 2.5,
5 and 10 on ER graphs of 1, 000 nodes. For fair comparison,
we keep the simulation length roughly the same for different
R0 (⇠ 40 for SIR and ⇠ 70 for SEIR), by adjusting � and
↵. The results are shown in Table IX. We can see that the
performance reduces as R0 increases. This is likely because
when R0 is large, the number of I nodes reaches a large value
in a relatively short period of time, thus making the back-
tracking more difficult.

F. Training without pre-knowledge of epidemics
In real-world scenarios, we may not know the true R0 and

� during training. In this case, we train our model with bunch
of R0 and � combinations in the range of the well-known
diseases [17]. In specific, we train SD-STGCN on simulations
generated using R0 and � sampled uniformly at random in
[1, 15) and [0.1, 0.4), respectively. The range of R0 is based
on the estimated reproduction numbers of well-known diseases
[17]; the range of � is determined such that the simulations
are at least 20 iterations. To evaluate the model trained in this
way against that trained with known parameters, we use the

TABLE IX: Performance of SD-STGCN trained and tested on
SIR and SEIR simulations using different R0. The scores are
evaluated over five ER graphs and five runs per graph. The
format is mean (standard deviation).

R0 Top-1 Acc MRR Hit@5

SI
R

1.5 0.597 (0.035) 0.735 (0.024) 0.924 (0.008)
2.5 0.541 (0.038) 0.704 (0.022) 0.928 (0.018)
5 0.483 (0.029) 0.655 (0.019) 0.885 (0.024)
10 0.369 (0.036) 0.533 (0.028) 0.735 (0.032)

SE
IR

1.5 0.883 (0.019) 0.929 (0.011) 0.988 (0.004)
2.5 0.887 (0.012) 0.933 (0.007) 0.993 (0.005)
5 0.837 (0.021) 0.902 (0.014) 0.986 (0.006)
10 0.814 (0.023) 0.878 (0.015) 0.965 (0.009)

TABLE X: Performance of SD-STGCN trained on SIR simu-
lations using random R0 and �, and tested on simulations with
different R0. The scores are evaluated over five ER graphs and
five runs per graph. The format is mean (standard deviation).

R0 Top-1 Acc MRR Hit@5
1.5 0.619 (0.029) 0.749 (0.026) 0.930 (0.021)
2.5 0.568 (0.029) 0.725 (0.016) 0.931 (0.013)
5 0.504 (0.035) 0.675 (0.021) 0.896 (0.014)
10 0.359 (0.039) 0.526 (0.027) 0.738 (0.014)

same test sets described in the previous section. The results are
listed in Table X. Compared to Table IX, the results here are
slightly better, except for the case when R0 = 10. Therefore,
in practise, we can train SD-STGCN in this way and apply it to
real epidemics with unknown parameters. It is worth pointing
out that in some of the experiments earlier in this work, we
have already adopted this approach.

VI. CONCLUSION

In this work, we tackled the problem of identifying the
source(s) of epidemics. We considered the problem in the
framework of source detection on networks and solved it using
SD-STGCN - a model that extracts both spatial and tempo-
ral features of a contagion process. We conducted a series
of experiments using standard and non-Markovian epidemic
simulations, on synthetic and empirical contact networks. We
compared our model with two state-of-the-art baselines - DMP
and GCN. The results suggest that SD-STGCN outperforms
the baselines for randomly sampled snapshots and consecutive
snapshots at sliding windows. Lastly, we applied SD-STGCN



to two real COVID-19 cases datasets with multiple sources,
and we found that the prediction was well aligned with
the ground truth. For future work, we like to examine SD-
STGCN on simulations not limited to fix reproduction number
and extend SD-STGCN to directed acyclic graph (DAG) and
subgraph with a fraction of the nodes observed.
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APPENDIX

A. Derivation of the differential equations for network SIR
Let I0 denote the initial infected persons at time t = 0, and

P(t) denote the probability of remaining infectious at later
time t after becoming infectious. P(t) is monotonic decreasing
with P(0) = 1 and limt!1 P(t) = 0. The probability for
node i being in state I at time t is:

Ii(t) = I0,iP(t) + �

Z t

0

X

j

AijSi(x)Ij(x)P(t� x)dx (14)

where � is the transmission rate. So the derivative of Ii is:
dIi(t)

dt
= �

X

j

AijSi(t)Ij(t) + I0,iP
0(t)

+ �

Z t

0

X

j

AijSi(x)Ij(x)P
0(t� x)dx.

(15)

As P(t) is non-increasing, P 0(t) is non-positive, so the last
two terms reduce the increase of infection, which corresponds
to the increase of the recovered:
dRi(t)

dt
= �I0,iP

0(t)� �

Z t

0

X

j

AijSi(x)Ij(x)P
0(t� x)dx.

(16)
Given that dSi(t)

dt + dIi(t)
dt + dRi(t)

dt = 0, we also have:
dSi(t)

dt
= ��

X

j

AijSi(t)Ij(t). (17)

Let Fi(t) be the probability of node i being in either I state
or R state, i.e. Fi(t) = Ii(t) + Ri(t) and Si(t) + Fi(t) = 1.
We further have the derivative of Fi(t) as:

dFi(t)

dt
=

dIi(t)

dt
+

dRi(t)

dt

= �

X

j

Aij(1� Fi(t))(Fj(t)�Rj(t))
(18)

B. Derivation of basic reproduction number R0

Standard SIR model Plugging Si(t) ⇡ 1 and P(t) = e
��t

in Eq. 15, dIi(t)
dt becomes:
dIi(t)

dt
=

X

j

(�Aij � ��ij)Ij(t)

=
X

j

(�A� �1)ijIj(t)
(19)

where �ij is Kronecker delta. Solving Eq. 19, we have

I(t) = exp((�A� �1)t)I0

= exp((�Q⇤QT
� �QQ

T )t)I0

= exp(Q(�⇤t� �1t)QT )I0

= Qexp(�⇤t� �1t)QT
I0

⇡  1exp((��1 � �)t) T
1 I0

= exp((��1 � �)t)( T
1 I0) 1

(20)

where we expand A using the eigenvalue decomposition
A = Q⇤QT with Q and ⇤ being the eigen-vector and eigen-
value matrices. �1 and  1 are the largest eigen-value and
the corresponding eigen-vector, respectively. Eq. 20 gives the
basic reproduction number

R0 =
��1

�
, (21)

and we can see that when R0 > 1 the disease will spread to
form an epidemic.

Delay SIR model Plugging P(t) = ⇥(t�T ), a step function,
with P(t) = 1 for 0  t  T and P(t) = 0 for t > T in
Eq. 15 and combing the result with dFi(t)

dt = dRi(t)
dt + dIi(t)

dt =

�
P

j AijSi(t)Ij(t), we have dRi(t)
dt = dFi(t�T )

dt , which leads
to Ri(t) = Fi(t) + C where C is a constant. Since Ri(t)
and Fi(t) are both monotonic increasing and Fi(t) saturates
at t ! +1, therefore C = 0, namely Ri(t) = Fi(t � T ).
Plugging this into Eq. 18, we have

dFi(t)

dt
= T�

X

j

Aij
Fj(t)� Fj(t� T )

T
, (22)

or equivalently

dF (t)

dt
= T�Q⇤QT F (t)� F (t� T )

T

⇡ T� 1�1 
T
1
F (t)� F (t� T )

T

= T��1( 
T
1
F (t)� F (t� T )

T
) 1,

(23)

which gives the basic reproduction number

R0 = ��1T. (24)


