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A semi-analytical algorithm for deriving the particle size distribution slope 

of turbid inland water based on OLCI data: a case study in Lake Hongze  

 
ABSTRACT: The particle size distribution (PSD) slope (ξ) can indicate the predominant 

particle size, material composition, and inherent optical properties (IOPs) of inland waters. 

However, few semi-analytical methods have been proposed for deriving ξ from the surface 

remote sensing reflectance due to the variable optical state of inland waters. A semi-

analytical algorithm was developed for inland waters having a wide range of turbidity and 

ξ in this study. Application of the proposed model to Ocean and Land Color Instrument 

(OLCI) imagery of the water body resulted in several important observations: (1) the 

proposed algorithm (754 nm and 779 nm combination) was capable of retrieving ξ with R2 

being 0.72 (p < 0.01, n = 60), and MAPE and RMSE being 4.37% and 0.22 (n = 30) 

respectively; (2) the ξ in HZL was lower in summer than other seasons during the period 

considered, this variation was driven by the phenological cycle of algae and the runoff 

caused by rainfall; (3) the band optimization proposed in this study is important for 

calculating the particle backscattering slope (η) and deriving ξ because it is feasible for 

both algae dominant and sediment governed turbid inland lakes. These observations help 

improve our understanding of the relationship between IOPs and ξ, which is affected by 

different bio-optic processes and algal phenology in the lake environment.  

 
Main finding of this work: 

A new semi-analytical PSD slope estimation algorithm suitable for algae or sediment 

dominant water was developed. 
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1. Introduction 

The size distribution range of organic phytoplankton communities and inorganic 

particles in lake environments is different due to the difference of particle type, internal 

structure, and shape (Stramski et al., 2004; Vaillancourt et al., 2004). Therefore, particle 

size distribution (PSD) characteristics are important indicators of biogeochemical cycling 

and can be monitored optically because they are the major sources of backscattering 

(Hovenier, 2000; Risović, 2002; Stramski and Mobley, 1997). The slope (denoted as ξ) 

of PSD is the value of exponential position when the number concentration of suspended 

particulate matter (SPM) in water is fitted by a Junge-type (Junge, 1963) power law 

function (Boss et al., 2001; Stramski and Kiefer, 1991). The ξ is usually informative for 

understanding the contribution of SPM to the flocculation, transport, deposition, and 

carbon cycle in lakes because it is indicative of the relative proportion of small to large 

SPM in water directly (Garcia Bravo et al., 2011; Tamigneaux et al., 1999; Wedd et al., 

2019; Xi et al., 2014). The larger the ξ, the more number concentration of fine inorganic 

suspended particles (clay and fine silt); the smaller the ξ, the more algae and other organic 

matter (Neukermans et al., 2012; Stramski et al., 2004). Meanwhile, the ξ value and its 

changes in time can indirectly reveal the composition of SPM 1(Bader, 1970; Koestner 

et al., 2019; Reynolds and Stramski, 2019; Sheldon et al., 1972). Furthermore, the 

inherent optical properties (IOPs) of a compositional diverse SPM is strongly relevant to 

ξ. A large magnitude ξ magnifies the backscattering of light underwater and plays an 

important role in driving remote sensing signals (Boss and Pegau, 2001; Boss et al., 2009; 

Lei et al., 2020b; Loisel et al., 2006; Thosteson and Hanes, 1998; Wozniak et al., 2018). 

This relevance of ξ to the water IOPs forms the physical basis of using remote sensing to 

reveal the ξ of SPM in ocean and inland waters (Baker and Lavelle, 1984; Bao et al., 

2018; Lamont et al., 2018; Mie, 1908; Thorne and Hurther, 2014).  

Two remote sensing models have been used to map the ξ of SPM. The lookup table 

(LUT) model was proposed to derive ξ from the slope of particle backscattering 

coefficient (η) using the Mie theory and was successfully applied to algae dominated 

global ocean water (Kostadinov et al., 2009). Given the compositional complexity of 

SPM in inland waters, it is difficult for an LUT model to accommodate the SPM optical 

properties exhaustively (Evers-King et al., 2017; Li et al., 2018; Reynolds et al., 2016; 

Song et al., 2017). For example, the complex refraction index of a particle assemblage 

can vary as the phytoplankton species or mineral composition changes, thus an LUT 

model constructed for one lake may not be suitable for other lakes (Huang et al., 2014; 
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Mishra et al., 2005; Stramski, 1999). Also, an LUT model does not have an explicit 

relationship (Arabsahebi et al., 2020; Bowden and Taylor, 2019; Hu et al., 2012; 

Ogashawara et al., 2016). Additionally, an empirical model was proposed by Lei et al. 

(2019b) to describe the relationship between the ratio of remote sensing reflectance red 

band Rrs(Red) to green band Rrs(Green) and ξ for Lake Hongze. Despite its robust 

performance in characterizing the correlation of ξ to the apparent optical properties 

(AOPs) via regression analysis, the empirical method lacks a mechanistic explanation for 

the resultant relationship (Li et al., 2017; Sun et al., 2019). On the contrary, the semi-

analytical method has an advantage over the empirical method of offering a rational 

explanation on the relationship of SPM IOPs and ξ, and is often a favorable approach to 

assess the quality of inland waters with remote sensing (Oyama et al., 2009; Watanabe et 

al., 2016; Werdell et al., 2018). However, few studies have been devoted to the 

development of semi-analytical methods for determining the ξ of inland lakes.  

Establishment of a strong performing semi-analytical algorithm is required 

considering the complexity of SPM in inland lakes as well as the variation of the 

corresponding IOPs (Grunert et al., 2019; Peng and Effler, 2012). Algae dominated turbid 

inland water is expected to show a small magnitude ξ (Koestner et al., 2019; Kostadinov 

et al., 2012; Lei et al., 2019a; Qi et al., 2018). Furthermore, the IOPs of algal particles 

can vary with algal species, physiological adaptations, and morphology due to the ratio 

of chlorophyll to cellular carbon changes (Behrenfeld et al., 2005; Kostadinov et al., 2009; 

Wang et al., 2016; Xu et al., 2019b; Zhang et al., 2019a). In contrast, a water body can 

exhibit a larger magnitude ξ due to the dominance of inorganic particles such as clay and 

fine silt (< 6 μm) due to river discharge into the lake and/or wind disturbed resuspension 

from the lake bottom. (Bowers and Binding, 2006; Chen et al., 2015; Lei et al., 2020a; Li 

et al., 2015; Xu et al., 2019c; Zhang et al., 2019b). In other words, the efficiency of the 

backscattering of organic matter is usually low, while typical inorganic minerals present 

strong backscattering (Serra et al., 2001; Zhang et al., 2010). This fundamental IOP 

difference between the sediment governed water and the algae dominated water results 

from the compositional nature of SPM in these two types of inland waters (Du et al., 2018; 

Halse and Syvertsen, 1996; Qi et al., 2018; Wang et al., 2019; Xu et al., 2018; Xu et al., 

2019a; Yu, 2019). Therefore, understanding and exploring the relationship between the 

SPM IOPs and ξ of inland lakes is the premise to establish a reliable semi-analytical 

algorithm and is worthy of more research (Huang et al., 2016; Sun et al., 2017).  
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Lake Hongze (HZL) is the fourth largest freshwater lake in China and provides 

drinking water for about 5 million people of Huaian City. Suspended sediments are the 

main particulate matter of HZL due to the inflow of the Huai River (Cao et al., 2018). In 

recent years, algal blooms occasionally occur in HZL in summer due to rich nutrients in 

the lake. Hence, operational monitoring of the ξ in this lake is of special significance to 

the protection of this drinking water resource (Zhao et al., 2014). However, the presence 

of both sediment and algal particulates results in complex optical properties (Li et al., 

2019b; Xiong et al., 2019), the ξ can be affected by the stream discharge, temperature-

driven algal phenology, and local hydrodynamic conditions such as wind-driven current 

(Lyu et al., 2017; Maeda et al., 2019; Peng et al., 2019). Although an empirical model 

was previously proposed to retrieve ξ in HZL (Lei et al., 2019b) from the AOPs of the 

lake, a thorough understanding of the relationship between SPM IOPs and ξ was missing.  

The main objective of this research is to develop a semi-analytical algorithm for 

estimating ξ with SPM IOPs. With abundant spectral bands, the Sentinel 3A/OLCI 

(Ocean and Land Color Instrument) imagery provides great potential for remotely 

monitoring coastal and inland waters, thus OLCI images were used to construct the semi-

analytical model for estimating ξ in HZL. The specific objectives are to determine (1) the 

optimal band combination of OLCI to describe the relationship between the η and ξ in 

inland lakes, (2) the spatiotemporal distribution of the ξ of HZL, and (3) the transferability 

of the proposed semi-analytical algorithm. To our knowledge, this is the first study to 

employ Sentinel 3A/OLCI images to quantitatively estimate ξ using a semi-analytical 

method in inland lakes. 

2 Materials and methods 

2.1 Study area 

Lake Hongze (HZL) is a shallow lake (the average water depth is 1.9 m) with a 

latitude between 33°06′N and 33°40′N and longitude between 118°10′E and 

118°52′E. HZL is an artificial dammed lake and is connected with the Huai River, 

shown in figure 1. The main discharge entering HZL is Huai River which makes up over 

70 percent of total runoff entering into HZL (Lei et al., 2019a; Tang, 2007). 
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Figure 1. Location of three examined lakes (in dark blue colour) Lake Hongze, Lake Gaoyou, and Lake Taihu in 

China. The yellow points in the three lakes represent the location of in situ experiments. The black triangle near 

Lake Hongze represents the meteorology stations (Huaian No.58141 and Xuyi No.58138). The shallow blue 

colour represents the rivers and water bodies. The red colour represents construction land and the green colour 

represents forest land. 

2.2 Field data collection 

Figure 1 shows the location of the in situ measurements performed in the three highly 

turbid inland waters: HZL, Lake Gaoyou, and Lake Taihu.  

From 2016 to 2018, four in situ experiments were conducted in HZL. Remote 

sensing reflectance Rrs(λ) (Mueller et al., 2003) and PSD data were collected at the same 

time from 90 sampling points. The PSD and corresponding water samples were obtained 

from a 20 cm water depth underwater. Water samples were analyzed in the laboratory to 

determine the mass concentrations of SPM (CSPM) gravimetrically (Zhang et al., 2007) 

and chlorophyll a (Chla) fluorometrically (Welschmeyer, 1994), respectively. The PSD 

data were measured using a LISST-100X instrument calibrated with MilliQ water before 

data collection was performed (Lei et al., 2019b). The instrument capable of measuring 
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particle size ranging from 1.25 to 250 μm (type B, Sequoia, USA) (Jong and Grant, 2007). 

The 𝑁𝑁`(D) (m-3 · μm -1) is the differential distribution per unit size (Reynolds et al., 2010): 

𝑁𝑁`(𝐷𝐷) =
6𝑉𝑉(𝐷𝐷)
𝜋𝜋𝐷𝐷3

Δ𝐷𝐷
� (1) 

where D (μm) represents the midpoint of each ring of LISST-100X, the V(D) (μL · 

L-1) represents the volume concentration of the corresponding 32 rings. Δ𝐷𝐷 represents the 

width of each measured size interval. In this study, a power law function was applied to 

the PSD (Bader, 1970; Jonasz and Fournier, 2007; Reynolds et al., 2010): 

𝑁𝑁`(𝐷𝐷) = 𝑁𝑁`(𝐷𝐷0) �
𝐷𝐷
𝐷𝐷0
�
−𝜉𝜉

(2) 

where D0 is 19.2 μm, and the midpoint of the whole logarithmic size ranges from 

1.25 to 250 μm (Lei et al., 2020b). The exponent (ξ) is the slope of the distribution for the 

generalized model of particle size distribution. 

At the same time, the particle backscattering coefficient at wavelength 852 nm, i.e., 

bbp(852), was measured by the HS-6 (HOBI Laboratories, 2012; Maffione and Dana, 

1997) at a 20 cm water depth underwater. In this study, 60 in situ bbp(852) data were used 

to validate the accuracy of the η retrieval algorithm.  

Field measurements were also made in Lake Gaoyou at 7 sampling points pairs in 

September 2018, and in Meiliang Bay of Lake Taihu at 22 sampling points pairs in July 

2016 and July 2017. The data measured in Lake Taihu and Lake Gaoyou, the third and 

the sixth largest freshwater lakes in China, were used to test the transferability of the 

optimal model established with the data for Lake Hongze. The optical characteristics are 

different between these two lakes. Lake Gaoyou is a downstream lake to HZL and is 

dominated by suspended sediment like HZL. The Meiliang Bay of Lake Taihu is a water 

body dominated by algae and frequently experiences algal blooms (Huang et al., 2019).  

2.3 Meteorological data 

The monthly precipitation, air temperature, and wind speed data were obtained from 

Huaian City (No.58141) and Xuyi City (No.58138) meteorological stations, shown in 

Figure 1. The meteorological data are downloaded from the China Meteorological Data 

Sharing Service System (http://cdc.cma.gov.cn/) (Mu et al., 2019).  

http://cdc.cma.gov.cn/
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2.4 Sentinel 3A/OLCI data 

A total of 338 cloud-free Sentinel 3A/OLCI Level-0 images of HZL acquired from 

June 2016 to July 2019 (shown in Table S2) were pre-processed by SeaWiFS Data 

Analysis System (SeaDAS 7.5.3). To eliminate or weaken the influence of the 

atmosphere, the Management Unit Mathematical Model (MUMM) was used to perform 

atmospheric correction (Ruddick et al., 2000). In the MUMM method, the Rrs(779) and 

Rrs(865) are used to replace the zero values for water-leaving radiance in the red and near-

infrared bands in Gordon’s standard atmospheric correction algorithm (Gordon, 1997; 

Miao et al., 2019). 

Among the four data-gathering expeditions conducted in HZL from 2016 to 2018, a 

total of 46 matching spectra for which the sampling time was close to the OLCI imaging 

(±3 hour) were chosen to validate the accuracy of the MUMM-derived Rrs(λ). 

Furthermore, the complex atmospheric environment over inland lakes makes it difficult 

to reduce the atmosphere effect perfectly, thus quasi synchronous measured data were 

used to perform necessary systematic correction. 

2.5 Algorithm development and accuracy assessment 

2.5.1 Estimating ξ from simulated OLCI Rrs(NIR) 

The subsurface remote sensing reflectance, rrs(λ) (sr-1), can be derived from the 

above-surface remote sensing reflectance Rrs(λ) (Gordon, 1988).  

𝑟𝑟rs(λ) =
𝑅𝑅rs(λ)

0.52 + 1.7𝑅𝑅rs(λ)
(3) 

According to Lee et al. (1998) and Gordon (1988), rrs(λ) can be defined by the total 

absorption a(λ) (m-1) and backscattering 𝑏𝑏b(λ) (m-1) coefficients: 

�−g0 + [g02 + 4 ∗ g1 ∗ 𝑟𝑟rs(λ)]
1
2�

2g1
=

𝑏𝑏b(λ)
[𝑎𝑎(λ) + 𝑏𝑏b(λ)]

(4) 

In higher-scattering coastal waters, g0 and g1 are wavelength-independent constants 

0.084 and 0.17. The parameters 𝑏𝑏b(λ) and 𝑎𝑎(λ) are IOPs of different water component: 

𝑏𝑏b(λ) = 𝑏𝑏bp(λ) + 𝑏𝑏bw(λ) (5) 

𝑎𝑎(λ) = 𝑎𝑎ph(λ) + 𝑎𝑎nap(λ) + 𝑎𝑎w(λ) + 𝑎𝑎CDOM(λ) (6) 

The absorption and backscattering coefficients of pure water (𝑎𝑎w(λ) and 𝑏𝑏bw(λ)) 

are known (Pope and Fry, 1997). When λ is between 700 nm and 900 nm, the absorption 
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coefficients of total suspended particulate matter , 𝑎𝑎p(NIR)  (including absorption 

coefficients of pigment particles (𝑎𝑎ph(NIR))  and non-pigmented particulate matter 

(𝑎𝑎nap(NIR))), and coloured dissolved organic matter (𝑎𝑎CDOM(NIR)) can be ignored in 

the near-infrared (Shi et al., 2019a; Shi and Wang, 2019; Sun et al., 2016). Thus, 

 𝑏𝑏bp(NIR) can be obtained. Subsequently, η can be derived by any two bands λ0 and λ1 

in the NIR as shown below: 

𝑏𝑏bp(λ1) = 𝑏𝑏bp(λ0) ∗ �
λ1
λ0
�
−𝜂𝜂

(7) 

η = −
ln (

𝑏𝑏bp(𝜆𝜆1)
𝑏𝑏bp(𝜆𝜆0))

ln (𝜆𝜆1𝜆𝜆0
)

(8) 

Finally, the slope of PSD mentioned in equation (2) is derived based on the 

relationship between the slope of the backscattering coefficient η and ξ. 

2.5.2 Performance matrix 

The performance of the various developed band combination algorithms was 

assessed by IBM SPSS (Statistical Product and Service Solutions) 17 with mean absolute 

percentage error (MAPE) and root mean square error (RMSE): 

MAPE =
1
𝑛𝑛
��

𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖 − 𝑋𝑋𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖
𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

∗ 100% (9) 

 

RMSE = �∑ �𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖−𝑋𝑋𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

(10) 

where n is the number of training or testing samples, and 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑋𝑋𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 represent 

the in situ and predicted values for samples, respectively.  

3 Results 

3.1 Water constituent concentrations  

Table S1 shows the concentrations of water components in HZL. CSPM ranged from 

7.82 mg l-1 to 100.00 mg l-1 with a mean value of 49.37 ± 23.85 mg l-1. Chla was at a 

lower level (12.10 ± 10.75 μg l-1). Due to the phenology of phytoplankton, Chla in winter 

was lower than that in summer, decreasing from 22.02 ± 19.87 μg l-1 in July 2016 to 9.83 
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± 4.95 μg l-1 in December 2016 as a result of an increasing trend of inorganic substances. 

The dominance of inorganic SPM in the turbid water led to a high ξ (3.92 ± 0.34) and 

bbp(852) (0.76 ± 0.36 m-1) (Zeng et al., 2020). 

3.2 In situ spectra-based ξ model  

In this study, a total of 90 in situ ξ measurements and Rrs(λ) data were used to develop 

the Sentinel 3A/OLCI-based ξ retrieval model with 2/3 sample points (60 points) being 

randomly selected for calibration and the rest (30 points) for validation. The in situ 

Rrs(NIR) are used to simulate the bands of OLCI (700–900 nm) using relative spectral 

response function (SRF). Seven near-infrared OLCI bands (Donlon et al., 2012; Jorge et 

al., 2017), named Oa11/12/13/16/17/18/19 (note that the O2 absorption bands of Oa14/15 

were not selected here) were used to derive  𝑏𝑏bp(NIR) using equations (3)-(8). 

Twenty one NIR band combinations of the simulated OLCI spectra were tested for 

their performance for the retrieval of η. Table 1 shows that the No.3 NIR band 

combination resulted in the highest correlation coefficient (R = 0.85) between the in situ 

and simulated bbp(852). However, the corresponding MAPE and RMSE of bbp(852) are 

higher than those for No.8 combination, indicating the superior performance of the latter 

to the former. Correspondingly, the same band combinations were compared for their 

performance for establishing the ξ model. The resultant correlation coefficient, R ranges 

from -0.34 to 0.85 for the calibration and from -0.19 to 0.79 for the validation, implies 

that not all of the NIR bands are suitable for deriving ξ. It is clear that the No. 8 

combination (754 nm of Oa12 and 779 nm of Oa16 band pair) resulted in the highest R 

(R = 0.85) in the calibration and the lowest MAPE (4.37%) and RMSE (0.22) in the 

validation (Figure 2 (a)).  

 
Table 1 Results from using various NIR bands for developing the relationship between η and ξ using 

in situ data. The bold font indicates the best combination used in this study. 

Combinations 

of λ(NIR) 
Model validation of bbp(852), n=60 

Model (η vs. ξ), 

n=60 
Model validation of ξ, n=30 

No. λ1 λ0 r Slope 
Inter

cept 

MA 

PE 

RM 

SE 
r Slope 

Inter

cept 
r Slope 

Interc

ept 

MA 

PE 

RM 

SE 

1  754  709  0.82  3.88  -0.32  258.58  2.35  -0.34  -0.05  3.52  0.23  0.08  3.59  7.20  0.35  

2  762  709  0.82  2.89  -0.16  179.92  1.62  -0.31  -0.05  3.58  0.28  0.09  3.55  7.13  0.34  

3  779  709  0.85  1.67  0.12  98.26  0.77  -0.17  -0.04  3.72  0.10  0.02  3.84  7.46  0.36  
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4  865  709  0.79  0.88  0.22  46.03  0.28  -0.24  -0.07  3.73  0.16  0.04  3.72  7.45  0.36  

5  885  709  0.74  0.81  0.25  48.25  0.29  -0.18  -0.05  3.78  0.17  0.04  3.76  7.51  0.35  

6  900  709  0.74  0.77  0.28  48.88  0.29  -0.19  -0.06  3.75  0.20  0.05  3.70  7.88  0.37  

7  762  754  0.55  0.97  0.20  56.44  0.56  0.10  0.01  3.89  -0.06  0.00  3.91  8.11  0.37  

8  779  754  0.83  0.74  0.22  31.23  0.20  0.85  0.29  3.56  0.79  0.62  1.47  4.37  0.22  

9  865  754  0.79  0.93  0.22  48.58  0.31  -0.06  -0.02  3.89  0.06  0.00  3.87  7.72  0.36  

10  885  754  0.76  0.92  0.24  53.82  0.35  -0.01  0.00  3.90  0.08  0.00  3.90  7.73  0.36  

11  900  754  0.76  0.92  0.27  55.64  0.36  0.00  0.00  3.90  0.14  0.00  3.90  7.73  0.36  

12  779  762  0.70  0.67  0.27  39.34  0.27  0.48  0.07  3.81  0.53  0.27  2.85  7.28  0.35  

13  865  762  0.79  0.93  0.22  48.29  0.31  -0.09  -0.03  3.89  0.00  0.00  3.89  7.70  0.36  

14  885  762  0.76  0.93  0.24  53.09  0.34  -0.04  -0.01  3.90  0.05  0.00  3.89  7.72  0.36  

15  900  762  0.76  0.92  0.26  54.66  0.35  -0.03  -0.01  3.89  0.11  0.00  3.88  7.81  0.36  

16  865  779  0.79  0.92  0.22  47.69  0.30  -0.26  -0.07  3.85  0.19  0.06  3.63  7.64  0.36  

17  885  779  0.76  0.91  0.24  51.40  0.33  -0.17  -0.04  3.87  0.18  0.03  3.78  7.62  0.35  

18  900  779  0.77  0.90  0.26  52.26  0.33  -0.16  -0.04  3.85  0.23  0.05  3.71  8.03  0.38  

19  885  865  0.78  0.89  0.23  52.36  0.31  0.07  0.00  3.91  -0.16  -0.01  3.92  7.82  0.36  

20  900  865  0.78  0.91  0.21  50.28  0.30  0.06  0.00  3.91  -0.19  -0.01  3.93  8.04  0.37  

21  900  885  0.52  0.89  0.28  70.21  0.57  -0.02  0.00  3.89  0.07  0.00  3.89  7.80  0.36  

 

3.3 Application of the model to synchronizing images 

When compared with the 46 (see Section 2.4) in situ simulated Rrs(λ) and the quasi-

synchronous OLCI Rrs(λ) after atmospheric correction (AC) for bands 754 nm and 779 

nm (Figure 2 (b) and (c)), the MUMM-derived Rrs(λ) was systematically lower though 

the R2 is 0.78 and 0.74, respectively. This means that the MUMM-derived Rrs(λ) should 

be recalibrated against the in situ measurements before being applied to the OLCI images.  

𝑅𝑅𝑟𝑟𝑜𝑜(754)𝑖𝑖𝑛𝑛 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 2.0058 ∗ 𝑅𝑅𝑟𝑟𝑜𝑜(754)MUMM −  0.0091 (11) 
𝑅𝑅𝑟𝑟𝑠𝑠(779)𝑖𝑖𝑛𝑛 𝑜𝑜𝑖𝑖𝑠𝑠𝑠𝑠  =  1.8515 ∗ 𝑅𝑅𝑟𝑟𝑠𝑠(779)MUMM − 0.0073 (12) 

After using equations (11) and (12) for the systematic conversion, the MAPE was 

reduced from 24.28% to 15.93% for band 754 nm, and from 24.84% to 16.74% for band 

779 nm, the RMSE was reduced to 0.003 Sr-1. As shown in Figure 2 (d), the use of the 

recalibrated OLCI spectra led to more accurate ξ estimates with MAPE, RMSE, and R2 

being 4.87%, 0.24, and 0.73, respectively. 
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Figure 2. (a) Calibration and validation of the algorithm for estimating the ξ from 𝜂𝜂. Validation scatters diagram of 

OLCI products of (b) Rrs(754), (c) Rrs(779), and (d) the ξ comparing with the in situ data in ±3 hour difference 

from imaging. Rrs(754)MUMM-Cor and Rrs(779)MUMM-Cor represent the corrected Rrs using the formula (11) and (12). 

3.4 Applicability of the model to in situ data of other lakes 

The ξ retrieval algorithm established for HZL was also tested with the in situ data 

measured in Lake Gaoyou and Lake Taihu. Overall, testing the transferability of the ξ 

algorithm resulted in a systematic bias (R² = 0.62, RMSE = 0.26, MAPE = 6.42%, n = 

29) when applied to 29 samples collected from both Lake Gaoyou and Lake Taihu. When 

29 samples were stratified for the test, the model performed differently. For Lake Gaoyou, 

despite a little underestimation, the algorithm performed satisfactorily with the RMSE 

and MAPE being 0.13 and 3.13% (n = 7, Figure 3), respectively. This strong model 

performance may be attributed to the geographical location and the similarity of the 

optical properties of Lake Gaoyou to those of HZL.  
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However, the performance of the proposed algorithm was found to be low when 

applied to the data collected for Lake Taihu (RMSE is 0.29 and MAPE is 7.47%, Figure 

3). The trend line between the estimated and in situ ξ is below the 1:1 line. When the 

coefficient of determination is high, a slope of one and a zero intercept are necessary to 

indicate a strong correlation. Although the R² and slope are very satisfactory (y = 1.0348x 

- 0.3999, R² = 0.81, n = 22), the intercept is high, almost 0.4. After a systematic correction 

using the above formula in Lake Taihu, the performance of the algorithm was improved 

significantly (RMSE = 0.10 and MAPE = 2.18%). 

 
Figure 3: Scatter plot between the estimated and in situ ξ in Lake Taihu and Lake Gaoyou. 

3.5 Spatiotemporal variability of ξ in HZL 

3.5.1 Spatial variability of OLCI-derived ξ in HZL 

Spatially, in Figure 4 (a), HZL shows higher ξ values in the middle and east of the 

lake and lower near the shore, especially the western bay of the lake. The average ξ of 

HZL was 3.79 ± 0.41. 
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Figure 4: (a) Spatial and (b) monthly average distribution of ξ from June 2016 to July 2019 in HZL. 

3.5.2 Temporal variability of OLCI-derived ξ in HZL 

Seasonally, the ξ values from HZL were highest in winter (December-February) at 

4.32 ± 0.09, moderate in spring and autumn (March-May and September-November) at 

3.75 ± 0.24 and 3.77 ± 0.37, and lowest in summer (June-August) at 3.39 ± 0.12. A 

slightly increasing trend can be observed in Figure 5 and Figure 6 from 2016 to 2019. As 

shown in Figure 4 (b), Figure 5, and Figure 6, the monthly mean ξ value in HZL can be 

fitted with a quadratic equation with R2 being 0.90. 
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Figure 5. Monthly and yearly average spatial distribution of ξ from June 2016 to July 2019 in HZL. 
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Figure 6: Monthly distribution of OLCI-derived ξ, precipitation, wind speed, and air temperature from June 2016 

to July 2019 in HZL. The averaged climate data of the two meteorological stations were used for analysis in this 

study. 
 

4. Discussion 

4.1 Optimal NIR band combinations for relating η to ξ using in situ data 

Based on the equations presented in Section 2.5.1, the Rrs(λ) of sediment dominated 

turbid waters depends primarily on the absorption of pure water and optical properties of 

sediments in the spectral region 700 nm to 900 nm (Babin and Stramski, 2002). This is 

because the 𝑎𝑎p(NIR)  and 𝑎𝑎CDOM(NIR)  can be ignored, the backscattering of 

phytoplankton is insignificant, and the bbp(NIR) is much greater than the backscattering 

of pure water (Shi et al., 2019b; Wu et al., 2011). In theory, the derived η using any two 

band reflectance values Rrs(NIR) should be the same for a given water sample (Xue et al., 

2019). However, when a turbid water is rich in algae, the influence of 𝑎𝑎ph(709) makes 

the zero 𝑎𝑎ph(NIR) assumption invalid (Liu et al., 2020). In addition, one absorption peak 

of O2 at 761.8 nm may affect Rrs(754), Rrs(762), Rrs(764), and Rrs(768), i.e. the OLCI 

reflectance values at wavelengths 754, 762, 764, and 768 nm, and thus can introduce 

errors in the derived  𝑏𝑏bp(λ) and η. Studies demonstrate that Rrs(λ) increases with SPM 

as exemplified by the presence of the reflectance peak at 820 nm (Li et al., 2019a), which 

could push the relationship between  𝑏𝑏bp(λ) and η to deviate from the assumed power 

law decay (Bisson et al., 2019; Lin et al., 2018; Organelli et al., 2018; Thorne and Hurther, 

2014), Another possible error source for calculating the 𝑏𝑏bp(λ) and η is a low SNR 

(signal to noise ratio) of instruments in the near infrared band region such as bands 885 

nm and 900 nm because noise can interfere with the derivation of  𝑏𝑏bp(λ) and η from 
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reflectance. The four error sources mentioned above cause equation (8) to be valid only 

in some spectral intervals. Therefore, identification of the optimal bands to compute η is 

essential for the success of this study. 

Previous research used a fixed (Shi and Wang, 2019; Sun et al., 2016) band ratio to 

explore the relationship between η and ξ rather than selecting the optimal one among 

different band combinations. In this study, an important band optimization framework 

was proposed to calculate η which was used to derive ξ in turbid inland lakes. Twenty-

one NIR band combinations of the simulated OLCI spectra were tested for their 

performance, but the result shows that not all of the NIR bands combinations are suitable 

for deriving ξ. Table 1 shows almost 2/3 band combinations present negative correlation 

coefficients between the η and ξ even though the relationship between the two should be 

positive according to the Mie theory (Kostadinov et al., 2009; Mie, 1908). Since most of 

the validation results present high MAPE (> 7%) and RMSE (> 0.35) values, optimization 

of the band combinations for estimating η is an essential step for accurate prediction of ξ. 

Otherwise, the model for prediction of ξ could result in unexpected results or inaccurate 

estimates, as shown by the two examples below. 

Shi and Wang (2019) applied the three-order polynomial function between η and ξ 

proposed by Kostadinov et al. (2009) to calculate ξ using two NIR bands (745 nm and 

865 nm) of VIIRS (Visible Infrared Imaging Radiometer Suite) data. However, the 

VIIRS-derived ξ for the inland lakes considered in Shi and Wang (2019) was not 

consistent with most previous studies on Lake Taihu (Shi et al., 2018; Xu et al., 2019c; 

Zhang et al., 2016). For example, given that ξ is positively correlated to the concentration 

of SPM in inland lakes (Lei et al., 2019b), the spatial pattern of ξ observed by Shi and 

Wang (2019) was low in the southern part of Lake Taihu where high sediments often 

govern SPM (Shi et al., 2019b; Shi et al., 2018). Such deviation may result from 

inappropriate band selection for calculating η in inland lakes. 

In addition, in the Bohai Sea and the Yellow Sea, a negative relationship was found 

between η and ξ by Sun et al. (2016) using the MODIS (Moderate Resolution Imaging 

Spectroradiometer) bands of 748 nm and 869 nm. However, most of the reported 

relationships between η and ξ were positive when η ranged from -0.5 to 4 (Huang et al., 

2016; Kostadinov et al., 2009; Kostadinov et al., 2012). The negative correlation reported 

by Sun et al. (2016) between η and ξ may also suggest inappropriate band selection to 

derive ξ.  
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4.2 Influence of meteorological factors on the monthly OLCI-derived ξ 

External factors, such as river sediment discharge, wind-driven suspension of 

sediments, and air temperature-driven algal phenology processes could substantially 

affect ξ, as shown in Figure 6 (Guo et al., 2017; Maeda et al., 2019; Villa et al., 2018). 

The monthly air temperature, wind speed, and precipitation data from the Huaian City 

(No.58141) and Xuyi City (No.58138) were analyzed to assess the influence of 

meteorological factors on ξ, shown in Figure 1. In this study, precipitation data were used 

as the substitute for river runoff, as the two variables are strongly and positively correlated 

(Mendes et al., 2017; Zuo et al., 2012).  

Figure 7 shows that there is a negative and robust correlation (p < 0.05) between 

monthly average ξ and air temperature of HZL, the coefficient of determination is high 

(0.81). Meanwhile, the coefficient of determination between monthly ξ and precipitation 

is high (R2 = 0.79, n = 12, p < 0.05). The two strong trends characterizing the influence 

of air temperature and precipitation on the monthly ξ indicate that suspended algae and 

solids are greatly influenced by air temperature-driven algal phenology and lake inflows. 

Meanwhile, there is a positive but very weak correlation between monthly average ξ and 

wind speed (R2 = 0.03, n = 12, p > 0.05). These data are consistent with observations of 

previous studies (Kondolf et al., 2018; Minghelli et al., 2019; Shi et al., 2015; Watanabe 

et al., 2018).  

 
Figure 7: Correlation analysis between the monthly averaged OLCI-derived ξ and monthly averaged precipitation 

(Pre.), wind speed (WS), air temperature (AT) from June 2016 to July 2019 in HZL. 
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4.3 Transferability of the algorithm applies to other lakes using in situ data  

From the above discussion, the proposed algorithm represents an innovative 

alternative to deriving ξ in inland lakes. In Section 3.4, the assessment result for Lake 

Gaoyou is even better than HZL as indicated by lower RMSE and MAPE values of the 

former compared to the corresponding values of the latter. This algorithm is shown to be 

effective when applied to other lakes with the same optical properties as HZL. However, 

the number of in situ validation points from Lake Gaoyou is small and the data were 

collected within a limited sampling time window. Additional data from sediment 

dominated lakes are required to further test the applicability of the proposed algorithm. 

The algorithm was also calibrated on the samples from Meiliang Bay, Lake Taihu 

where organic algal particles primarily constitute the suspended matter and the particle 

density and size should be different from those in HZL (Huang et al., 2019; Lyu et al., 

2017; Zhang et al., 2019a). However, a high coefficient of determination (R2 = 0.81) was 

obtained, indicating that the relationship between the slope of particle backscattering η 

and the PSD slope ξ for Lake Taihu should have a similar linear trend to that of HZL 

despite different intercepts. Also, the optimal band combination identified for HZL to 

compute η and ξ is viable for Lake Taihu. The proposed method represents a valuable 

reference to investigate the η and ξ in the algae dominated water.  

Due to the potential effects of particle number concentration, shape, and internal 

structure, the relationship between η and ξ can vary. Two of the η vs. ξ relationships 

previously published by others (Figure 8 curve b and d) (Huang et al., 2016; Kostadinov 

et al., 2012) were compared with the optimal ξ algorithm proposed by this paper (Figure 

8 curve a and c). The comparison shows much lower coefficients of determination (< 0.5) 

for the results reported by others than those by the current study, which can be explained 

by the use of the optimal band combination in the current study for deriving η.  

For Lake Poyang where mineral particles are more common as a result of sediment 

resuspension and river runoff, the relationship between η and ξ is governed by inorganic 

particles. The results described in Huang et al. (2016) were based on only 12 observations 

with a mean CSPM value of 11.05 mg l-1, suggesting that their relationship could be 

applied to much less turbid waters than HZL with the CSPM being 49.37 ± 23.85 mg l-1. 

This explains why relationships between η and ξ for the two lakes are very similar but 

have slightly different slopes as shown in Figure 8 curve a and b. Also, in Figure 8 curve 

c and d, for Santa Barbara Channel (Kostadinov et al., 2012) and Lake Taihu, different 
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algal species can have different phytoplankton size populations and should have different 

relationships between η and ξ. Therefore, the intercept and slope between η and ξ are 

different from each other. In short, various η vs. ξ relationships in Figure 8 may be 

attributed to varying component properties in inorganic particle dominated waters and 

algae particle dominated water in inland lakes (Ahn and Grant, 2007; Babin et al., 2003; 

Bowers et al., 2009; Qing et al., 2014). 

 
Figure 8. The relationship between η and ξ in different water regions. 

5. Conclusions 

In this paper, a band optimization semi-analytical method was proposed to calculate 

the particle backscattering slope (η) from which the PSD slope (ξ) is derived for several 

turbid inland lakes. Twenty-one NIR band combinations of simulated OLCI spectra were 

examined for their performance, and bands 754 nm and 779 nm have been identified as 

the optimal band combination to compute η and ξ for HZL and Lake Gaoyou (inorganic 

particle dominated waters); this band combination also proved to be viable for Lake Taihu 

(algae dominated waters). The proposed semi-analytical algorithm resulted in a MAPE 

of 4.37% and an RMSE of 0.22 for estimating ξ with OLCI images of HZL. Furthermore, 

testing this model on an independent dataset of Lake Gaoyou proved its satisfactory 

performance (RMSE = 0.13 and MAPE = 3.13%). The model showed a systematic bias 

when applied to algae dominated waters, such as Lake Taihu, but a systematic correction 
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improved the performance of the algorithm significantly (RMSE = 0.10 and MAPE = 

2.18%).  

HZL showed higher ξ in the eastern lake but lower in the western lake bay from June 

2016 to July 2019. On the other hand, the monthly ξ distribution reached high values in 

winter but low values in summer in HZL, indicating the effects of lake inflows and algal 

phenology. This finding provides data evidence for managing turbid inland lakes to 

improve water quality on short and long timescales. 
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