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Abstract: Epigenetics is a mechanism underlying cardiovascular disease. It is unknown whether
DNA hydroxymethylation is prospectively associated with the risk for cardiovascular death inde-
pendent of germline and common environment. Male twin pairs middle-aged in 1969-1973 and
discordant for cardiovascular death through December 31, 2014, were included. Hydroxymethylation
was quantified in buffy coat DNA collected in 1986-1987. The 1893 differentially hydroxymethy-
lated regions (DhMRs) were identified after controlling for blood leukocyte subtypes and age among
12 monozygotic (MZ) pairs (Benjamini-Hochberg False Discovery Rate < 0.01), of which the
102 DhMRs were confirmed with directionally consistent logy-fold changes and p < 0.01 among
additional 7 MZ pairs. These signature 102 DhMRs, independent of the germline, were located on
all chromosomes except for chromosome 21 and the Y chromosome, mainly within/overlapped
with intergenic regions and introns, and predominantly hyper-hydroxymethylated. A binary linear
classifier predicting cardiovascular death among 19 dizygotic pairs was identified and equivalent
to that generated from MZ via the 2D transformation. Computational bioinformatics discovered
pathways, phenotypes, and DNA motifs for these DhMRs or their subtypes, suggesting that hydrox-
ymethylation was a pathophysiological mechanism underlying cardiovascular death that might be
influenced by genetic factors and warranted further investigations of mechanisms of these signature
regions in vivo and in vitro.

Keywords: hydroxymethylation; twins; monozygotic; dizygotic; cardiovascular disease

1. Introduction

Gene expression plays a role in the development of cardiovascular disease [1]. Without
changing genetic codes, DNA hydroxymethylation is one of the epigenetic mechanisms that
regulate gene expression through the activation of genes and executes functions indepen-
dent of methylation [1,2]. It is known that genes can also affect epigenetic modifications [3].
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5-hydroxymethylcytosine (5hmC), the “sixth” base in mammalian genomic DNA [4],
results from the demethylation of 5-methylcytosine (5mC) through Fe(Il) x-ketoglutarate-
dependent hydroxylation catalyzed by the ten-eleven translocation (TET) family pro-
teins [5]. An animal experiment demonstrated genome-wide hydroxymethylation, par-
ticularly in intronic regions, was one epigenetic mechanism underlying the development
of dilated cardiomyopathy [6]. Previous human studies of hydroxymethylation and car-
diovascular hard outcomes were few. A prior case-control study of myocardial infarction
in the Chinese elderly aged 70 to 88 years demonstrated a modest positive correlation
between global 5ShmC levels in peripheral mononuclear cells and coronary atherosclerosis
measured with the Gensini severity score [7]. Another case-control study of stable coro-
nary heart disease and acute myocardial infarction showed the diagnostic and predictive
property of 5ShmC signature in circulating cell-free DNA for coronary heart disease [8].
However, both case-control studies were retrospective and unable to control for potential
genetic confounding. Additionally, it is unknown if circulating whole-genome 5hmC was
prospectively associated with long-term cardiovascular death independent of genetic and
shared environmental influences and blood leukocyte composition in humans. The paucity
of this fundamental knowledge impedes the understanding of hydroxymethylation as an
epigenetic mechanism underlying the development of cardiovascular disease.

A nested case-co-twin-control design is a specific type of the 1:1 individually matched,
nested case-control design. This design uses twins discordant for an outcome in a prospec-
tive twin cohort to dissect the prospective association between exposure and outcomes
from genes and environment shared between co-twins of a twin pair [9]. The term
“germline” [10] describes genetic factors shared between co-twins that are inherited from
parents, including genome sequence and epigenetic modifications. Co-twins share germline
and numerous environmental factors; thus, they are naturally matched for these factors [9].
Environmental factors common to co-twins, i.e., common or shared environment, can exist
throughout their whole life course or in certain periods of their life. Common environ-
mental factors can be both within and outside of the family [9]. Common familial factors
include environmental factors that are shared between co-twins as they grow up and can
have a life-long influence, such as the family history of coronary heart disease [9].

Using twins discordant for cardiovascular death included from the prospective 45-year
National Heart, Lung, and Blood Institute (NHLBI) Twin Study, we aimed to characterize
whole-genome differentially hydroxymethylated regions (DhMRs) in relation to the ex-
tended long-term risk of cardiovascular death as the outcome, independent of influences
of germline and common environment.

2. Materials and Methods
2.1. Study Population

As has been shown before [9,11,12], the prospective NHLBI Twin Study was initi-
ated in 1969 and enrolled 514 middle-aged, white, male, veteran twin pairs (1028 men,
254 MZ and 260 DZ twin pairs [13]) from the National Academy of Sciences-National
Research Council Veteran Twin Registry, who lived within 200 miles of five research
centers: Framingham, Massachusetts; San Francisco, California; Davis, California; Los
Angeles, California; and Indianapolis, Indiana. The twins were born between 1917 and
1927 and were 43-56 years of age at baseline examination (i.e., exam 1, 1969-1973). All
twins were physically examined at baseline and during follow-up with the well-established
Framingham Heart Study protocol to ensure the uniform examination of all the twins by
experienced cardiovascular epidemiologists. Zygosity was ascertained by eight red blood
cell antigen groups (serotyping 22 erythrocyte antigens) in the 1960s and a variable number
of tandem repeat DNA markers in the 1980s [13]. The NHLBI Twin Study was approved
by the Institutional Review Board at each examination site, and all twins provided written
informed consent.
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2.2. Study Samples

In this study, we used a prospective nested case-co-twin-control design that included
twin pairs discordant for cardiovascular death. This design was a specific type of the 1:1
individually matched, nested case-control design, in which one co-twin within a twin pair
was the case, and his co-twin brother was the control. In the nested case-control design [14],
control has not developed the disease by the time of disease occurrence in the case (index
date) and may later become a case [14]. Therefore, in a twin pair discordant for the outcome
(i-e., cardiovascular death), a co-twin who had the outcome is the case twin, while the
co-twin who did not have the outcome on the event date of the case twin (index date) [15]
is the control twin. We used the following definitions to identify discordant twin pairs. The
primary definition of a twin pair discordant for total cardiovascular death was one where
a co-twin died from cardiovascular disease (CVD) and his co-twin brother who did not
die from it or died from it at least one year later. Thus, the co-twin who died first would
be considered the case, and his brother would be the control. A more stringent definition
was one where a co-twin died from the disease (case), and his co-twin brother did not
die from it by the end of the follow-up (control). Inclusion criteria included: (1) available
buffy coat DNA > 400 microgram on the DNA inventory of Veteran Twin Samples after
exam 5 (1999-2001) for each co-twin of a twin pair, and (2) available data on vital status,
dates of death, and causes of death through December 31, 2010. We performed stratified
random sampling for twins discordant for coronary heart death and non-coronary heart
cardiovascular death by zygosity, separately. Based on the updated vital data in 2014, we
included 19 monozygotic (CVD-dMZ) and 19 dizygotic (CVD-dDZ) twin pairs discordant
for cardiovascular death from the NHLBI Twin Study by the end of 2014 in this study. This
report study was approved by the Institutional Review Boards of Vanderbilt University
and Des Moines University.

2.3. DNA Sample Collection

Buffy coat DNA samples were collected at exam 3 (1986-1987). Whole blood was
drawn from the antecubital vein into EDTA tubes after an overnight fast and immediately
placed on ice. Buffy coats were obtained and used to extract DNA. Spectral analysis was
used to determine the quantity and quality of the extracted DNA. DNA samples were
stored at —70 °C. All samples were labeled by the study number only.

2.4. Genome-Wide Methylation (5mC) Measures

Genome-wide methylation was measured with the Illumina Infinium® HumanMethy-
lation450 (450 K) BeadChip (Illumina, Inc. San Diego, CA, USA) following the established
INlumina protocol. Co-twin samples were processed in the same analytical run without
known the disease status to minimize measurement error. All samples passed quality
control (missing percentage < 1.5%) [16]. CpGs with greater than 10% missing data were
removed (452 CpGs removed) [16].

2.5. Measurement of Whole-Genome Hydroxymethylation (5hmC)

Whole-genome 5hmC profiling was performed using a published enrichment-based
hMe-Seal-seq method with genome-wide coverage to detect 5ShmC signals [17]. The pub-
lished works have demonstrated that there is no bias with hMe-Seal and this method is
more sensitive than the antibody-based immunoprecipitation approach [17-19]. It has been
widely used to profile 5hmC in different tissues and cell types [18,20]. Co-twin samples
were processed in the same analytical run without known the disease status to minimize
measurement error.

2.5.1. Genomic DNA Preparation

Genomic DNA was isolated in digestion buffer (100 mM Tris-HCI, pH 8.5, 5 mM
EDTA, 0.2% SDS, 200 mM NaCl), Proteinase K (Thermo Fisher Scientific Baltics location,
Vilnius, Lithuania, cat# EO0491) treatment at 55 °C for overnight. On the second day,
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phenol:chloroform:isoamyl alcohol (25:24:1 saturated with 10 mM Tris, pH 8.0, 1 mM EDTA)
(Sigma-Aldrich, cat# P-3803) was added to samples, mixed completely, and centrifuged for
10 min at 12,000 rpm. The aqueous layer solution was transferred into a new Eppendorf
tube and precipitated with 600 mL isopropanol. The pellet was washed with 75% ethanol,
air-dried, and eluted with nuclease-free water (Ambion).

2.5.2. 5hmC Capture and Sequencing

We employed a previously established chemical labeling and affinity purification
method coupled with high-throughput sequencing (hMe-Seal) to profile the genome-wide
distribution of 5ShmC [17]. Briefly, genomic DNA was sonicated using a Covaris Ultrasoni-
cator, yielding an average size of sonicated DNA fragments of ~200 bp. Two micrograms
of fragmented DNA were used for the hMe-Seal assay. For the hMe-Seal assay, the T4 bac-
teriophage 3-glucosyltransferase was used to transfer a chemically modified glucose, 6-N3-
glucose, onto the hydroxyl group of ShmC. After attaching a biotin tag to the 6-N3-glucose,
the azide group was chemically modified for biotin detection, then 5ShmC-containing DNA
fragments were high-affinity captured for deep sequencing.

The captured DNA fragments containing 5ShmC were used for library preparation
using NEBNext®ChIP-Seq Library Prep Master Mix Set for Illumina (New England Bio-
labs®Inc., Ipswich, Massachusetts, U.S., Cat# E6240L) per the manufacturer’s instructions
with some modifications, i.e., no size selection and a 2.5-fold decrease in the quantity of the
final PCR primers (Universal primer and Index primer) for PCR-based final enrichment of
the library.

Single-end sequencing was performed in a depth of 25 million reads. Image processing
and sequence extraction were performed using the standard Illumina pipeline. The single
best alignment of raw sequence reads that passed the filtering to the reference genome
(hg19) was performed using the Bowtie2 (version 2.3.1) [21].

2.6. Assessment of Covariates

Through in-person interviews and physical examinations, data on all other cardio-
vascular risk factors were collected [12,13,22]. Data on age, years of education, mari-
tal status, and smoking status were collected. Weight and height were measured. Sys-
tolic and diastolic blood pressures were measured using a standard mercury sphygmo-
manometer. Triglycerides, total cholesterol, high-density lipoprotein cholesterol in plasma
were measured after at least a 9-hour overnight fast using North American Lipid Re-
search Clinics methodology. Low-density lipoprotein cholesterol levels were calculated
using the Friedewald equation. Plasma glucose concentrations at 1 h after a 50-g glu-
cose load (ppGlucose) were measured among those without a previous diagnosis of dia-
betes. Diabetes was defined by the current use of insulin or oral hypoglycemic agents, or
ppGlucose > 250 mg/dL. A 12-lead electrocardiogram was recorded. Information on the
current use of medications was collected. Participants were interviewed by a physician who
completed a medical history questionnaire that included questions about cardiovascular
events and procedures.

2.7. Follow-up and Assessment of Endpoints

Vital status and the cause and date of death were ascertained through medical records
in five active follow-up examinations (exam 2, 1981-1982; exam 3, 1986-1987; exam 4, 1995-
1997; exam 5, 1999-2001; and exam 6 2001-2003) [22] and later on using death certificates or
the National Death Index [12] through 31 December 2014. As previously described [9,12],
physicians assigned corresponding International Classification of Diseases, Ninth Revision
codes (ICD-9) for morbidity outcomes. Death certificates or the National Death Index
coded to the ninth revision codes were obtained for decedents. The endpoint was death
from all cardiovascular diseases (390-398, 402, 404, 410-438). Subjects were considered
lost to follow-up if a death certificate or coding from the National Death Index could not
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be traced. The follow-up was terminated at the date of death, end of follow-up, or loss to
follow-up, whichever occurred first.

2.8. Statistical Analysis
2.8.1. Estimation of Peripheral Blood Leukocyte Composition

The post-normalized beta values were calculated using the 450 K array methylation
data following the published method [16]. Beta values with associated detection p-values
greater than 0.01 were set to missing [16]. Blood leukocyte composition was estimated for
six blood leukocyte subtypes, including CD4+ T-cells, CD8+ T-cells, natural killer (NK)
cells, B-cells, monocytes, and granulocytes, from the 450 K array methylation data using
the “estimateCellCounts” function in the R package “minfi” [23].

2.8.2. Identification of Signature Differentially Hydroxymethylated Regions

Differentially 5-hydroxymethylated genomic regions (DhMR) were investigated in dis-
covery/exploratory/training (phase 1), validation (phase 2), and generalizability (phase 3)
phases. Phases 1 and 2 was a standard training-validation set-up: we used a random
split-sample method to randomly split 19 CVD-dMZ pairs into a training cohort/set con-
sisting of 12 pairs (phase 1) and a validation cohort/set consisting of 7 pairs (phase 2)
with the sample size selected a priori. There were no overlaps in twin pairs between
training and validation cohorts. The phase 2 study was an internal validation of the phase
1 study in a different set of CVD-dMZ. A generalization cohort/set for phase 3 consisted of
19 discordant DZ twin pairs (CVD-dDZ). Co-twins of a DZ twin pair share 50% genes on
average, while MZ co-twins share 100% genes. Details were described as follows.

In phase 1, we tested DhMRs at the group level using our improved analytic pipeline
that was adapted from a published R package MethylAction (version 1.0) [24]. We ran
MethylAction using a sliding window size of 50 bp, a fragment size of 200 bp, the minimum
DhMR size of 150 bp, a join distance of 200 bp. Detailed statistical methods of Methy-
1Action were published by Bhasin et al. [24]. To summarize, MethylAction started with a
filtering stage to remove the noise. Windows that were below sample-specific cutoffs across
all samples were removed. Reads were normalized based on library size using DESeq
(version 1.8.3) [25] for each pairwise comparison with the negative binomial test [25]; a false
discovery rate (FDR) was established for each number of reads, and windows with greater
than or equal to the lowest level of reads with an FDR of less than 10% were considered
to contain signal [24]. To generate candidate regions, windows with equivalent adjacent
patterns (i.e., either hyper- or hypo-hydroxymethylated pattern comparing cases with
controls and vice versa) and within a 200 bp gap distance were then joined to create a set
of noise-free regions. In our study, 183,099 noise-free regions were generated through the
filtering stage and used for the next DhMR analysis.

Differences in read counts in the noise-free regions between the case and control
groups were tested using analysis of deviance (ANODEYV) for the generalized linear
model to detect DhMRs, which allows adjustment for variables [24]. This model enables
adjustment for paired subject designs [24]. Details were described as follows.

We first only included the exposure (i.e., the group variable) without any covariates in
the ANODEV-based generalized linear models (model 1). Thus, no covariates were adjusted
in model 1. However, potential confounding from germline and environment shared
between co-twins of a twin pair was adjusted because co-twins were naturally matched
for them through our study design. To further control for potential confounding, we then
fitted two sets of covariates as potential confounders into models 2 and 3, respectively. We
selected the first set of covariates consisting of five of the six subtypes of blood leukocytes
a priori. The sixth subtype of blood leukocytes, granulocytes, was excluded because the
sum of the composition percentage of the six subtypes of blood leukocytes was 100%,
and we needed to avoid the near-perfect collinearity [26]. We fitted this covariate set into
model 2 to adjust for five blood leukocytes. The second set of covariates consisted of age
and the five blood leukocytes selected for model 2. We fitted the second covariate set into
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the model (model 3) to adjust for age and blood leukocyte composition. The ANODEV
p-values were adjusted using the Benjamini-Hochberg (B-H) procedure FDR to control
for multiple testing [27]. We selected DNA regions that were directionally consistent and
differentially hydroxymethylated before and after covariate adjustment at a B-H FDR
q < 0.01 to discover DhMRs and reduce potential false-positive DhMRs as the number of
DhMRs from the discovery/exploratory/training analysis was very large.

In phase 2, we evaluated the DhMRs discovered from phase 1 in the validation set
of 7 dMZ pairs to identify candidate DhMRs. To remove the noise, we implemented
a filter that removed any DhMR with a nominal p-value > 0.01 from the differential
expression analysis. Given the small sample size of CVD-dMZ in phase 2 relative to
phase 1, we used a less stringent significance level to reduce potential type 2 error (i.e., false
negative). The candidates that passed were then filtered for DhMRs. The filtered DhMRs
had the same log,-fold-change direction as the corresponding DhMRs from phase 1 among
12 dMZ pairs. We performed principal component analysis (PCA) on the candidate
DhMRs. The graph-based visual extraction method was used to select the two dimensions
(i.e., principal components, PC) that best-separated cases and controls to remove the noise
and for parsimony. The transformation matrix of the 2 selected dimensions (which includes
weights for rotation, centering, and scaling) was used in all subsequent calculations of
the 2 scores used as surrogate indicators of the overall candidate DhMR effect. HOMER
(version 4.8) (http:/ /homer.ucsd.edu/homer/, accessed on 28 November 2017) was used
to annotate the significant DhMRs [28].

In phase 3, the phase 2 transformation matrix was applied to the dDZ pairs and
generated the dDZ DhMRs scores. A binary linear classifier was used to separate dDZ case
co-twins from their control co-twins. Multiple classifiers were tested; many of them failed
due to multiple optimal solutions to separate case and control. To identify and select only
one of the solutions, a single node neural network with a tanh sigmoid activation function
was used to define a binary linear classifier using the two PCA scores as the input in the
DZ. The R package “neuralnet” was used for this neural network analysis. The area under
receiver operating characteristic curve (AUC) was estimated in the DZ. We selected the
binary linear classifier with high sensitivity, AUC, and specificity with the priority to the
sensitivity and the AUC. Then we evaluated the performance of this classifier in the MZ
pairs and the combined cohort of MZ and DZ pairs separately. A model based on neural
network analysis was developed to predict cardiovascular death. The mergePeaks function
from HOMER [28] was used to detect overlap between DhMRs.

We performed the sensitivity analysis of DhMRs among a subset of 13 stringently
defined CVD-dMZ pairs and another subset of 13 MZ pairs primarily defined discordant
for coronary heart death out of the primarily defined 19 CVD-dMZ pairs. Both subsets
had an overlap of the 8 MZ pairs. As the DhMRs results were similar to those from
19 CVD-dMZ pairs, we reported the results from the primarily defined twin pairs discor-
dant for cardiovascular disease.

2.9. Bioinformatic Analysis
2.9.1. Bioinformatic Visualization

R and Bioconductor packages were used to visualize the graph-based results. The PCA
plots were created using the limma package (version 3.34.0) to show the visual separation
of case co-twins from their control co-twins. The heatmaps were created to visualize
hydroxymethylation and clustering using the ComplexHeatmap package (version 1.15.1).
Volcano plots were created to visualize the statistical p-values versus fold-change using
ggplot2 (version 1.15.1).

2.9.2. Functional Enrichment Analysis
The significant DhMRs were annotated with nearby genes using HOMER [28]. The

bioinformatic tool, Enrichr [29] (https://maayanlab.cloud/Enrichr/, accessed on 23 June
2020), was used to perform the comprehensive enrichment analysis for these genes. The
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gene ontology (GO) analysis [30] consisted of analysis of three categories: biological pro-
cess, cellular component, molecular function. Kyoto Encyclopedia of Genes and Genomes
(KEGG) [31]. WiKipathway [32] and PATHER pathway [33] enrichment analyses were
performed to illustrate the genes’ functions in metabolic pathways, gene regulatory path-
ways, and signaling pathways [34]. The ClinVar 2019 [35], dbGaP [36], and DisGeNET [37]
disease analyses were conducted to reveal human diseases and health in relation to these
genes. The GWAS Catalog [38] and the U.K. Biobank GWAS v1 [39] were used to disclose
diseases, disorders, and phenotypes related to these genes based on genome-wide associa-
tion studies. The Rare Diseases Gene References into Function (GeneRIF) Gene lists [40],
Rare Disease GeneRIF ARCHS4 predictions archive, Rare Disease AutoRIF Gene Lists, and
Rare Disease AutoRIF ARCHS4 predictions archive were used to identify modern humans’
rare diseases associated with genes mapped to the DhMRs. A nominal p-value < 0.05 was
used as statistical significance. The statistically significant results that were female-specific
were removed. The statistically significant results with the top 5 smallest p-values were
listed if there were more than five statistically significant results.

2.9.3. DNA Motif Enrichment Analysis

HOMER [28] motif finding algorithm was used to identify enriched DNA motifs that
determined which DNA-binding transcription factors control the transcription of a set of
genes. HOMER matched de novo motifs to known motifs for transcription factors. The
quality criteria to identify motifs included a Bonferroni corrected significant level of 0.00049
to control for multiple testing and the percentage of target sequences with motif greater
than 5%.

3. Results
3.1. Characteristics of the Study Twin Pairs Discordant for Cardiovascular Death

Differences in age at death or at the last follow-up date (years) between controls and
cases ranged from 3.5 to 23.8 years (mean & SD: 10.3 &+ 5.7 years; median (interquartile
range (IQR) 10.0 (9.3) years)) for MZ pairs and 1.7-17.7 years (mean = SD: 8.49 £ 5.76 years;
median (IQR) 7.5 (10.9) years) for DZ pairs. The identical case twins had a lower level of low-
density lipoprotein (LDL) cholesterol at exam 3 than their control twins (p = 0.013), while
the fraternal case twins tended to use more antihypertensives at exam 3 than their control
twins (p = 0.08) (Table S1). Peripheral blood leukocyte composition was not statistically
significantly different between case twins and their co-twin controls (Table S1).

3.2. Differentially Hydroxymethylated Regions (DhMRs) from Monozygotic (MZ) Twin Pairs
Discordant for Cardiovascular Death (CVD-dMZ)

In phase 1, 1893 DhMRs (case twins versus control twins) were statistically signifi-
cant and directionally consistent among three regression models without and with sub-
sequent controlling for blood leukocyte composition and age (B-H false discovery rate
(FDR) < 0.01) (Table S2). In phase 2, a total of 102 DhMRs out of 1893 DhMRs were statisti-
cally significant at a nominal p < 0.01 and had the directional consistent logy-fold changes
between the training and the validation cohorts. Figure 1 is the graph-based visualiza-
tion of the 102 DhMRs. Figure 1a shows that two distinct clusters formed by the DNA
regions where cases and controls differ in hydroxymethylation, of which differentially
hyper-hydroxymethylated regions (hyper-DhMRs) are more predominant. Figure 1b illus-
trates that the majority of the 102 DhMRs have less than two-logy-fold changes; there are
16 hyper-DhMRs and 2 differentially hypo-hydroxymethylated regions (hypo-DhMRs)
with log-fold-change greater than two out of 102 DhMRs. The overall effects of 102 DhMRs
were represented with the principal component score (Figure 1c). Visual inspection of
the graphs shows distinct separation and pattern between case and control twins along
dimension 1 (i.e., principal component score 1) (Figure 1c).
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Figure 1. Graph-based visualization of the 102 candidate differentially hydroxymethylated regions (DhMRs) among
19 monozygotic twin pairs discordant for cardiovascular death. (a). Heatmap. Abbreviation: CD8T = CD8+ T-cells; CDA4T =
CD4+ T-cells; NK = natural killer cells; Bcel = B-cells; Mono = monocytes; Cov1l = age; 5hmC = 5-hydroxymethylcytosine.
Each row represents a DhMR, and each column represents a participant. The normalized count values are log, transformed
and then scaled with z-score in the blue-red color scale. The 102 DhMRs were adjusted for leukocyte subtypes and
age. The lower level of hydroxymethylation among co-twins than their twin brothers is in blue, and the higher level of
hydroxymethylation than their twin brothers is in red; (b). volcano plot. The horizontal axis represents the log, fold-change
(FC) (case versus control twins), and the vertical axis corresponds to the negative log;o (adjusted p-value). Red dots represent
the significant (—logjo adjusted p-value > 2.0) hyper-DhMRs (log, FC > 2) and blue dots represent significant (—logg
adjusted p-value > 2.0) hypo-DhMRs (log, FC < —2) when comparing cases with their corresponding control co-twins;
and (c). scatter plot. The overall effect of the 102 DhMRs was represented with principal components (PC) 1 and 4 from
principal component analysis. The horizontal axis represents PC1 (i.e., dimension 1), and the vertical axis displays PC4
(i.e., dimension 4). Red dots represent case twins, while blue dots represent their control twin brothers.

3.2.1. Genetic Characteristics of the 102 DhMRs

Among 19 MZ pairs, these 102 DhMRs were located on 21 autosomal chromosomes
and the X chromosome except for chromosome 21 or the Y chromosome (Table S3). They
were within/overlapped with exons, intergenic regions, introns, promoter transcription
start sites (TSS), and transcription terminal sites (TTS) (Table 1). None of 102 DhMRs were
within/overlapped with 3'-UTR, 5'-UTR, or non-coding regions. Among these DhMRs,
84 (82.4%) DhMRs were hyper-hydroxymethylated with log,-fold changes ranging from
0.73 to 3.64, (i.e., hyper-DhMRs) (Figure 1b) and predominantly with intergenic regions and
introns (Table 1), while 18 (17.6%) of DhMRs were hypo-hydroxymethylated (i.e., hypo-
DhMRs) with logy-fold changes ranging from —2.87 to —0.36 (Figure 1b) and predominantly
with introns (Table 1). Figure 1c visualizes the separation of case twins from control twins.
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Table 1. Annotation of the nearest genes mapped to the 102 differentially hydroxymethylated regions.

Annotation ! Total DhMRs Hyper-DhMRs Hypo-DhMRs
n 102 84 18
Exons! 2(2.0%) 2239 0
ncRNA?2 1(50%) 1(50%) 0
protein-coding? 1(50%) 1(50 %) 0
Pseudo? 0 0 0
snoRNA? 0 0 0
Intergenic regions! 47 (46 3) 42 (503) 5 (28 %)
ncRNA 14 (30 %) 13 (31 %) 1(20%)
protein-coding 30 (64 4) 26 (62 4) 4(80%)
pseudo 364 3(7% 0
snoRNA 0 0 0
Introns? 49 (48 3) 37 (44 %) 12 (67 3)
ncRNA 11 (224 10 (27 %) 1(8%)
protein-coding 35 (714%) 25 (68 %) 10 (83 %)
pseudo 364 1334 1(8%)
snoRNA 124 1(3%) 0
TSs! 2(2.0%) 1(1.23) 1(5.63)
ncRNA 0 0 0
protein-coding 1(504) 0 1(100 %)
pseudo 1(50%) 1(1004) 0
snoRNA 0 0 0
TTS! 2(2.09) 2(2.39) 0
ncRNA 0 0 0
protein-coding 2(100 %) 2(100 %) 0
pseudo 0 0 0
snoRNA 0 0 0

Abbreviations: TSS = promoter transcription start sites; TTS = transcription terminal site; ncRNA = non-
coding RNA; DhMRs = differentially hydroxymethylated regions; hyper-DhMRs = differentially hyper-
hydroxymethylated regions (case twins vs. control twins); hypo-DhMRs = differentially hypo-hydroxymethylated
regions (case twins vs. control twins). Data are presented as n (%) unless otherwise specified. ! annotation, while
3’-UTR, 5'-UTR, and non-coding regions are not shown as none of the nearest genes, are within/overlapped
with them; 2 gene type; ® percentage of each annotation for all DhMRs and each type of DhMRs, respectively;
4 percentage of each gene type per annotation.

3.2.2. Generalizability Validation in Dizygotic (DZ) Twin Pairs Discordant for
Cardiovascular Death (CVD-dDZ)

In phase 3, dimensions 1 and 4 from the 102 robust candidate DhMRs were used in the
neural network analysis to validate DhMRs among 19 DZ twin pairs (Figure 2a,c). From
the simulation, a binary linear classifier with the highest sensitivity and the area under the
curve was identified (Figure 2a,b). The AUC was 0.72, indicating a suitable prediction for
CVD deaths (Figure 2b). Table 54 details the sensitivity, specificity, positive predictive value,
and negative predictive value of the classifier’s ability to predict the case status in the MZ,
DZ, and combined cohort. Figure 2c illustrates that the linear classifier of the MZ pairs is a
vertical line through the origin; the 2-step 2D transformation via topological changes from
the MZ classifier to the DZ binary classifier with a slope of 0.214 is a clockwise rotation at
the origin by 72.92° and then a movement upwards along the vertical axis by 0.664 units
(Figure 2c), suggesting genetic influences on the 102 DhMRs to distinct case co-twins from
their control co-twins since DZ twins share fewer genes than MZ twins.
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Figure 2. Visualization of the binary linear classifier among 19 dizygotic twin pairs (DZ) discordant for cardiovascu-
lar death (CVD-dDZ) generated with the 102 candidate DhMRs identified from monozygotic twin pairs (MZ) discor-
dant for cardiovascular death (CVD-dMZ) using 1000 times simulation. (a) A principal component analysis of the
102 DhMRs generated principal component 1 (PC1) and principal component 4 (PC4). The points in the area below

the binary linear classifier are case twins while points above the classifier are control twins. Binary linear classifier
vPCy = 0.664 0.214 x ¢/PCy ; (b) receiver operating characteristic (ROC) curve and the area under the curve (AUC)
using the binary linear classifier for the CVD-dDZ; (c) graph-based 2D topology of genetic influences on the binary linear

classifier by comparison between MZ and DZ pairs. Two blues arrows show the two-step topological changes (i.e., 2-D

transformation) of the MZ classifier (i.e., the vertical line across the origin) to the DZ binary classifier line with a slope of

0.214. The first step is indicated with a clockwise half-circle arrow representing the clockwise rotation of the MZ classifier at

the origin by 72.92°. The second step is indicated with an upward arrow in blue representing an upward movement of the

rotated MZ classifier along the vertical axis by 0.664 units.

3.3. Functional Enrichment Analysis of DhMRs

All DhMRs could work together in vivo to execute functions; so, they were analyzed

together. These DhMRs involved various biological processes, molecular activities, cellular
structures, and pathways (Figure 3a and Figure Sla) and were manifested by a wide range
of phenotypes, disorders, diseases (Figure 3b and Supplementary Figure S2a), and rare
diseases (Figure 3c and Figure S3a) (all nominal p < 0.05). As each subtype of DhMRs
(i.e., hyper-DhMRs and hypo-DhMRs) could have different regulatory functions, DhMRs
subtype-specific bioinformatic analyses were performed (Figures S1-53). There were
no overlaps for pathways, phenotypes, disorders, diseases, and rare diseases between
hyper-DhMRs and hypo-DhMRs (Supplementary Figures S1-S3). Representative pathways
overrepresented for hypo-DhMRs were a couple of Wikipathways (i.e., G protein signaling
calcium and regulation in cardiac cells) (multiple-testing adjusted p,4j < 0.05) (Figure 3e).

Other potential pathways revealed at least twice were related to the negative regula-

tion of potassium ion in the GO biological process, synapse regulation in the GO biolog-
ical process and the KEGG pathway, and the p53 signaling in KEGG and Panther path-
ways linking all DhMRs and hyper-DhMRs to CVD deaths (Supplementary Figure Sla,b).
Representative phenotypes overrepresented for hyper-DhMRs were two GWAS phe-
notypes, i.e., mean arterial pressure (alcohol consumption interaction) and adverse re-
sponse to chemotherapy in breast cancer (alopecia), although breast cancer was rare
among males (multiple-testing adjusted p,4; < 0.05) (Figure 3d). Representative pheno-
types/disorders/diseases overrepresented for hypo-DhMRs with multiple-testing adjusted

Padj < 0.05 were three GWAS phenotypes (i.e., “waist circumference”,

Zawr

body mass index

in physically active individuals”, and “body mass index (joint analysis main effects and
physical activity interaction)”) (Figure 3f), three ClinVar diseases (i.e., “familiar colorectal

/a7

cancer”,

dbGap phenotype (i.e., “epilepsies, partial”) (Figure 3h).

carcinoma of colon”, and “primary ciliary dyskinesia”) (Figure 3g), and one
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Figure 3. Biological functions and pathways, phenotypes, disorders, and (rare) diseases apparently relevant to males.
(a) The number of enriched terms for biological functions and pathways (p < 0.05); (b) the number of enriched terms for
phenotypes, disorders, diseases and rare diseases (p < 0.05); (c) the number of enriched terms for rare diseases (p < 0.05);
(d-h) up to top 5 enriched terms with the smallest nominal p-values < 0.05 for the top terms containing any terms with p,g;
< 0.05. * paqj: multiple-testing adjusted p-value using the Benjamini-Hochberg False Discovery Rate (FDR) procedure.

3.4. Enriched DNA Motifs

Four, five, and two enriched DNA motifs were identified from genes mapped to all
DhMRs, hyper-DhMRs, and hypo-DhMRSs, respectively (Figure 4). Of the four de novo
motifs for all DhMRs, two were matched for the transcription factor 7 (TCE7) binding site
(p =10 x 1072 and p = 1.0 x 107°). All the remained de novo motifs were uniquely
matched for known motifs.
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Figure 4. De novo motif identification from genes mapped to differentially hydroxymethylated
regions (DhMRs) with HOMER. Abbreviations: DhMRs = differentially hydroxymethylated regions;
hyper-DhMRs = differentially hyper-hydroxymethylated regions (case vs. control twins); hypo-
DhMRs = differentially hypo-hydroxymethylated regions (case vs. control twins). The value next to
the motif sequence logo is the negative logg (p-value).

4. Discussion

Our study showed that the signature DhMRs for cardiovascular death in circulating
leukocytes were independent of blood leukocytes composition, germline, environmental
factors shared between co-twins (i.e., common environmental factors), and age and might
be influenced by genes. The enrichment-based whole-genome DhMRs were predominantly
hyper-DhMRs, which were mainly within or overlapped with intergenic regions and
introns. Comprehensive bioinformatic analyses revealed potential pathophysiological
mechanisms linking the DhMRs to cardiovascular death as well as phenotypes and diseases
related to genes mapped to the DhMRs. We also computationally discovered three DNA
sequence motifs as promising gene regulatory elements. In brief, our findings shed light
on epigenetic mechanisms underlying cardiovascular death.

4.1. Consistency with Prior Studies

Previous population studies of circulating hydroxymethylation in relation to cardio-
vascular disease are few. Levels of global DNA 5hmC in peripheral blood mononuclear
cells and aortic atherosclerotic tissue were higher in elderly patients with coronary heart
disease than controls [7]. The same research group also found that the higher hydrox-
ymethylation levels in peripheral blood mononuclear cells were associated with coronary
atherosclerosis in a case-control study that included 91 carotid atherosclerotic patients [41].
Of these cases, 53 cases also had coronary heart disease, and 11 cases had stroke events [41].
Our study provides evidence on the signature hydroxymethylated regions of DNA in
circulating leukocytes in which 5hmC levels were prospectively related to cardiovascu-
lar death, independent of blood leukocyte composition, germline, shared environment,
and age. Our comprehensive bioinformatic analyses of genes mapped to the DhMRs
implied the consistency with previous studies of genes in relation to diseases, including
cardiovascular disease.
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4.2. Mechanisms

Oxidative stress, inflammation, and endothelial dysfunction were well-known patho-
physiological mechanisms underlying cardiovascular disease [42,43]. Thus, the potential
pathophysiological mechanisms linking hydroxymethylation to cardiovascular disease
were multifaceted.

Oxidized LDL is a biomarker of oxidative stress and plays a crucial role in atheroscle-
rotic cardiovascular disease [44]. Three TET proteins are dioxidases and needed molecular
oxygen as well as co-factors Fe?* and a-ketoglutarate («KG) to oxidize 5mC into 5ShmC [45].
Tet2-mediated hydroxymethylation inhibits oxidized LDL-induced endothelial dysfunc-
tion [46]; therefore, TET2 protein is anti-atherosclerotic [47]. Moreover, TET enzymes and
5hmC affect adaptive and innate immune response [45] and thus play a pivotal role in
inflammation toward cardiovascular disease. Previous laboratory cell experiments revealed
the role of Tet proteins in genome-wide hydroxymethylation [48]. In mouse embryonic
stem cells, Tetl enzyme primarily regulated 5hmC levels at gene promoters and transcrip-
tion start sites (TSS), whereas Tet2 enzyme mainly regulated 5ShmC levels in gene bodies,
exon boundaries of highly expressed genes, and exons, respectively [48]. TET3 enzyme
acts on enhancer demethylation [45]. In our study, the number of hyper-DhMRs was two
times higher than that of hypo-DhMRs. The percentage of hyper-DhMRs associated with
introns was two-third of that of hypo-DhMRs. Of 84 hyper-DhMRs, half were related to
intergenic regions that contained promoters and enhancers, one with TSS, one with exon,
and the remainder of hyper-DhMRs with introns. It was hypothesized that all TET proteins
might be involved in demethylation to generate the hyper-DhMRs. At the same time,
the hypo-DhMRs could result from the suppressed demethylation catalyzed by all TET
proteins, the reduction in 5mC due to deamination-mediated demethylation, or both.

The predominant significant DhMRs were hyper-DhMRs in our study. In contrast
to 5-mC, 5-hmC increases DNA flexibility and enhances the mechanical stability of the
nucleosome [49]. Therefore, the hyper-DhMRs in our study might improve the accessibility
of DNA to various proteins, including chromatin regulators, transcription, and replication
machineries [50]. By contrast, our hypo-DhMRs would reduce the accessibility of DNA to
various proteins. Like previous studies using either all DhMRs [51] or DhMR subtypes [52],
our comprehensive bioinformatic annotation of genes mapped to all, hyper-DhMRs, and
hypo-DhMR with enriched ontology and pathway terms provided comprehensive biologi-
cal processes, molecular functions, and pathways, which were potential pathophysiological
mechanisms linking DhMRs to cardiovascular death risk. The G protein signaling calcium
pathway and regulation in the cardiac cell pathway were the most promising pathophysio-
logical mechanisms linking hypo-DhMRs to cardiovascular death risk. Negative regulation
of potassium ion, synapse regulation, and p53 signaling pathways were potential patho-
physiological mechanisms linking all DhMRs and hyper-DhMRs to cardiovascular deaths.

Our computational bioinformatic discovery of DNA motifs revealed candidate DNA
transcriptional regulatory elements regulating gene expression through hydroxymethyla-
tion [53-55]. For example, the most promising discovered DNA motif in our study was
matched to a known motif for Zinc Finger and BTB Domain Containing 18 (ZBTB18).
ZBTB18 (i.e., ZNF238 or RP58) gene encodes a C2H2-type zinc-finger protein that acts
as a transcriptional repressor of genes. ZNF238/RP58 regulates the myogenesis genome
network [56], brain development, and brain functions [57]. Zinc-finger transcription factors
prefer methylated cytosine in vitro [58]. Zinc-finger transcription factors prefer methylated
cytosine in vitro [58]. Therefore, oxidation of methylated cytosine to hydroxymethylated
cytosine might regulate ZBTB18 gene expression via the reduction in the affinity of tran-
scription factors to this gene in vivo [59].

Little is known about the mechanism linking the ZBTB18 gene to cardiovascular
disease among adults. ZBTB18 plays a crucial role in myogenesis by directly repressing the
expression of the family of inhibitors of the DNA (ID) gene ID [60]. The postulated mecha-
nism is that ZBTB18 regulates the gene expression for ID proteins (IDs), including ID1, ID2,
ID3, and ID4. Gene polymorphisms are mechanistically similar to hydroxymethylation in
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the way to affect gene expression. Therefore, evidence about gene polymorphisms associ-
ated with cardiovascular disease in the population study can be parallel evidence, at least
partially, to support our postulated mechanism linking ZBTB18 to cardiovascular disease
via IDs, particularly ID2 [61], ID3 [62—-64], and ID4 [65]. No previous population studies
reported an association of ID1 gene polymorphism with cardiovascular disease. The low
expression of the ID gene exists in most of the normal adult tissues [66]. At the cellular
level, Id1, Id2, and 1d3 induce activation and proliferation of endothelial cells [66,67]; ID2
and ID3 are involved in vascular cell differentiation [67], while ID1 and ID3 are involved in
angiogenic processes [66,67]. IDs contribute to atherosclerosis through their involvement
in the accumulation of macrophages in the vascular wall, oxidized LDL-mediated lipid
accumulation and plaque formation, smooth muscle cell proliferation, thrombosis [67], and
vascular calcification [68]. IDs are probably involved in angiogenesis-related atheroscle-
rotic plaque growth and instability [69]. Therefore, our mechanistic hypothesis is that the
hydroxymethylation of the ZBTB18 motif could regulate the expression of IDs and thus
contribute to cardiovascular disease.

Taken together, our findings yielded putative mechanisms for further studies to
investigate exact mechanisms.

4.3. Limitations and Advantages

There were limitations to our study. Our discordant twin sample size was limited
on the surface, although it was the largest, the most extended follow-up, prospective
discordant twin study in this kind of research. The root cause of this apparent small
sample size was the extremely low twin birth rate in comparison with the singleton birth
rate. The NHLBI Twin Study twins were born between 1917 and 1927, when the twin-
ning birth rate was likely to be 1.36% [70-72]. The live births were roughly estimated as
28,605,000 during 1917-1927 in the U.S. [73]. Assuming 50% of live births were males,
the live births of male twins would be 194,514, out of which roughly 1/3 were MZ, and
2/3 were DZ [72]. Therefore, the 254 MZ pairs and 260 DZ pairs enrolled in the NHLBI
Twin Study entire cohort were equivalent to 110,535 and 56,573 male singletons, respec-
tively. Such a sample size was much larger than that of 2344 men enrolled in the original
cohort of Framingham Heart Study designed to investigate cardiovascular disease and
its etiology [74]. Likewise, the sample size of our discordant twin pairs was large con-
sidering the twinning birth rate. Overfitting might be a concern in models adjusting for
blood leukocyte composition. We used several methods to minimize overfitting. First,
blood leukocyte subtypes were defined a priori as confounders and thus forced into the
model since blood leukocyte composition was known as a confounder in the association
of blood DNA methylation with phenotypes or outcomes in studies [26] and 5hmC is
derived from 5mC. Second, we reported DhMRs unadjusted and adjusted for blood leuko-
cyte composition and demonstrated that some DhMRs were not materially influenced by
adjustment and were robust to overfitting. The robustness to overfitting was statistically
plausible as overfitting affects strong signals less than moderate ones [75]. Biologically, a
previous study supported the existence of a non-cell-mediated differential DNA methy-
lation process [76]. As 5ShmC is derived from 5mC, it is biologically plausible that some
differential DNA hydroxymethylation was not mediated through cells. Taken together, we
minimized overfitting by considering both biological /clinical and biostatistical importance.
Hydroxymethylation enriched fragments obtained by the hMe-Seal method were not base
pair-specific. It was biologically plausible that hydroxymethylation executed its function
through its cluster in the specific DNA region. We did not measure messenger RNA in
blood as the mRNA preservation technique was not used in the mid-1980s when the
NHLBI Twin Study collected biospecimens. Thus, we were unable to assess the influence of
DhMRs on gene transcription. We did not measure changes in gene expression of any gene
related to pathways revealed from bioinformatic analysis. However, our research yielded
evidence for future investigation of specific DNA regions at the base-pair resolution and
the influence of hydroxymethylation on gene transcription and expression.
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There were some advantages of our study. Our prospective design with discordant
twin pairs was equivalent to the 1:1 individually matched, nested case-control design and
thus might be called “nested case-co-twin-control design.” We specified the “later” periods
as one year after the index date until the end of the follow-up [14,77]. The advantage
of this definition was “to make inference under a proportional hazards model from the
conditional logistic approach” [78]. Thus, this design could provide unbiased relative risk
estimates [79]. Confounding could interfere with DhMRs toward cardiovascular death if
confounders, confounding factors, were not distributed equally between cases and controls.
However, we used the matching design and the statistical modeling to control for potential
confounding to minimize potential confounding bias. Our discordant twin pair design
was unique to naturally match case twins with their control twin brothers for germline and
environmental factors shared between twins. The human genome consists of 3.2 billion
base pairs (2% are exons) [80]. Our nested case-co-twin-control design was the optimal,
natural, human experimental structure to control for confounding from germline and
common environment, including age-cohort-period effects, family history of disease, blood
sample collection, sample storage conditions, biochemical assay runs, and numerous other
unknown or unmeasured common environmental factors [9,12]. We characterized that
the signature DhMRs were predominantly within or overlapped with intergenic regions
and introns as well as predominant with hyper-DhMRs over hypo-DhMRs independent of
germline and shared environmental factors. As MZ twin pairs share 100% of the germline,
our study warrants further investigations of the environmental origins of these signature
regions in vivo and in vitro, which, in turn, can provide insights into preventive and
therapeutic targets. Our study provides evidence to support the existence of a non-cell-
mediated differential DNA hydroxymethylation process. By the inclusion of dizygotic
twin pairs, we were able to demonstrate that genetic factors might play a role in the
influence of hydroxymethylation on cardiovascular death. Our extended longitudinal
design demonstrated that hydroxymethylation temporally occurred before cardiovascular
death. This temporal order was critical to explain the causal role of hydroxymethylation in
cardiovascular death.

5. Conclusions

In conclusion, we found signature DhMRs in circulating leukocytes associated with
cardiovascular death prospectively, and their binary classifiers differed by zygosity, suggest-
ing that hydroxymethylation is a pathophysiological mechanism underlying cardiovascular
death and may be influenced by genetic factors.
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