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a b s t r a c t 

The importance of transaction fees in maintaining blockchain security and sustainability has been confirmed by 

extensive research, although they are not mandatory in most current blockchain systems. To enhance blockchain 

in the long term, it is crucial to design effective transaction pricing mechanisms. Different from the existing 

schemes based on auctions with more consideration about the profit of miners, we resort to game theory and 

propose a correlated equilibrium based transaction pricing mechanism through solving a pricing game among 

users with transactions, which can achieve both the individual and global optimum. To avoid the computational 

complexity exponentially increasing with the number of transactions, we further improve the game-theoretic 

solution with an approximate algorithm, which can derive almost the same results as the original one but costs 

significantly reduced time. We also propose a truthful assessment model for pricing mechanism to collect the 

feedback of users regarding the price suggestion. Extensive experimental results demonstrate the effectiveness 

and efficiency of our proposed mechanism. 
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. Introduction 

The world has witnessed a great deal of attention injected into

he field of blockchain technology from both academia and industry

ince Bitcoin was introduced as a representative concept of blockchain

n 2008. The most important contribution of blockchain is that it

an achieve distributed trust without any centralized coordination,

hich further highlights an attractive feature of blockchain that all

ecorded information, such as transactions and smart contracts, in-

ide blocks on the main chain cannot be arbitrarily modified or repu-

iated. This delicately designed technology achieving distributed se-

urity enables wide applications of blockchain in various directions,

uch as blockchain-based database [1,2] , blockchain-witnessed trust-

orthy cloud service [3,4] , blockchain-integrated crowdsourcing plat-

orm [5,6] , blockchain-assisted admission control in cognitive radio net-

ork [7] , and blockchain-driven internet of things [8–10] . 

To maintain the aforementioned attractive feature, a large number of

odes are involved to reach consensus on who should append the newly

enerated block to the main chain so as to guarantee the stability and

ecurity of the whole blockchain network, which might incur massive

osts for participated nodes [11] , e.g., computation cost and communi-

ation cost, according to specific consensus algorithms. As an incentive

or their work, the node who finally wins the accounting right will re-

∗ Corresponding author 
E-mail addresses: wangzhil@iu.edu (Z. Wang), qinhu@iu.edu (Q. Hu), yawei@gw
1 Pricing of other sorts of information records can be tackled in a similar way. 

ttps://doi.org/10.1016/j.hcc.2021.100044 

eceived 17 June 2021; Received in revised form 6 September 2021; Accepted 6 Sep

667-2952/© 2021 The Author(s). Published by Elsevier B.V. on behalf of Shandong

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
eive a reward, which usually comes from two sources, including the

lockchain system and the information-record owners. The first part is

enerally predefined when the blockchain system is initially designed,

hich is relatively stable. While the second part is determined by the

ecord owners as a sort of handling fee. As transaction is a representative

ype of information record in blockchain, we study its pricing problem

s an example in this paper 1 and refer to its owner as a user . In most

revailing blockchain systems, such as Bitcoin [12] and Ethereum [13] ,

he transaction fee is optional, thus making it unpredictable and seem-

ngly trivial. However, as pointed out in Kaskaloglu [14] , Carlsten et al.

15] , Lavi et al. [16] , transaction fees from users have a significant in-

uence on the system security of blockchain, which becomes even more

rominent in blockchain systems with decreasing block rewards. 

Being aware of this, many researchers analyze specific relationships

etween transaction fees and various security metrics of blockchain

ystems with the help of game theory [17–20] . Other existing work

s devoted to transaction pricing mechanism design based on auctions

16,21,22] from the perspective of miners’ profit. In contrast, our paper

esigns a transaction pricing mechanism from the perspective of users,

roviding price suggestions to realize both global and individual ratio-

ality. 

However, it is challenging to design such a transaction pricing mech-

nism due to the following two reasons. First, from the perspective of
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a  

a  
sers, the ultimate goal of everyone is to get his transaction included in

 valid block on the main chain by paying the transaction fee as low as

ossible. This is hard to achieve since they have to compete with each

ther on price with incomplete information about the offers from other

ompetitors. Second, from the perspective of the blockchain system, if

alicious competitions among users enforce an excessive pricing bar or

xtremely long waiting time, users who cannot afford it will stop using

t, which impedes the sustainable development of blockchain. 

To address the above challenges, we resort to game theory to model

he coexisted competition and collaboration among users and take ad-

antage of the concept of correlated equilibrium [23] to achieve both

ndividual and global optimum. To be specific, we consider a platform

or price recommendation with users inputting the sizes and time sensi-

ivities of their transactions, which can efficiently calculate the optimal

ricing strategies for all users with the best utilities, thus solving the first

hallenge. In addition, as the recommended prices are derived accord-

ng to the real-time parameters of all transactions, the expenses of users

ill not increase uncontrollably for the cumulative impact of malicious

idding, which therefore overcomes the second challenge. 

After the pricing mechanism design, a reliable assessment model re-

ecting the users’ feedback can quantify the performance of our pro-

osed scheme and inspire the future design. One method is to collect the

pinions of users regarding whether he/she will take the suggested price

r not. However, collecting truthful feedback from users is not trivial,

iven the existence of malicious users submitting unreliable informa-

ion, which may seriously impact the assessment accuracy and further

inder the implementation of the proposed pricing mechanism. To ad-

ress this issue, we design a truthful assessment model for the pricing

echanism based on the private-prior peer prediction theory. Instead

f collecting the users’ opinions directly, our truthful assessment model

equires them to submit a random peer’s belief about the price before

nd after the pricing game. Users’ trustworthiness can be then calculated

hrough the strictly proper scoring rule. To avoid the negative impact of

nreliable reports, we design a scheme considering only honest users’

eedback so as to guarantee the truthfulness of the assessment model. 

In summary, our contributions in this paper are as follows (a prelim-

nary version of this paper is published in Hu et al. [24] ): 

• We propose a pricing game to sketch the transaction pricing com-

petition among users in blockchain, where the possibility of each

transaction being included is defined to help depict the individual

utility of each user. 

• To achieve individual rationality with the maximized utility, we

leverage correlated equilibrium to integrate it to the global optimal

objective for securing the interests of all users, which comes into an

optimization problem with exponential complexity in the number of

transactions. 

• To overcome the weakness on computational cost, we propose an ap-

proximate algorithm with divided optimum achieved parallelly for

speeding up the calculation process, which is numerically evaluated

to demonstrate its effectiveness and efficiency. 

• We design a truthful assessment model for the pricing mechanism

to collect the feedback of users with respect to the price suggestion,

which is incentive compatible for encouraging users to behave hon-

estly. 

The rest of this paper is organized as follows. We investigate the

ost related work on blockchain transaction pricing in Section 2 . In

ection 3 , we formulate the problem of transaction fee determination as

 pricing game, where all users hope to maximize their individual utility.

o achieve the goal, we take advantage of the correlated equilibrium to

nalyze the pricing game from a global perspective in Section 4 , which is

ummarized as an optimization problem and approximately solved with

igher efficiency in Section 5 . In Section 6 , we design an assessment

odel to collect the feedback of the pricing mechanism. We evaluate

ur proposed solution in Section 7 and conclude the whole paper in

ection 8 . 
2 
. Related work 

Although paying transaction fees is not mandatory in most existing

lockchain systems, a large number of studies have indicated that it

lays a major role in the security of blockchain. Riehl et al. [25] pro-

osed a pricing mechanism which aligns the incentives of users exchang-

ng resources on a decentralized ledger, aiming at maximizing the trans-

ction throughput and protecting the security. In [14] , a financial rea-

oning was conducted to demonstrate the unsustainability of blockchain

ith zero or infinitesimal transaction fees. Further, as a counterintuitive

onclusion, Carlsten et al. [15] proved that whether rewards of miners

re coming from blockchain system or transaction fees significantly af-

ects the system security since there exists nearly no equilibrium with

avorable security properties. 

Besides, game theory is widely adopted to analyze the impact of

ransaction fees on blockchain. Correlating the issue with simple static

artial equilibrium, Houy [17] analyzed that it is equivalent to keep a

xed transaction fee or let the decentralized market to determine the

nit price with a fixed block size. He et al. [26] explored the interaction

etween security and the decision of fees in the manner of equilibrium,

roving that the primary state of the system determines the result re-

arding the interplay of users and miners. Focusing on the owner-less

haracteristic of blockchain, Huberman et al. [18] provided closed form

ormulas on the relationship between the transaction fees and waiting

imes through formulating user behavior as a queuing game. Similarly,

 queuing game with non-preemptive priority was employed in Li et al.

19] to depict the dynamics in memory pool of blockchain with trans-

ctions flowing in and out, where five types of Nash equilibrium were

ound. In [20] , Easley et al. constructed a game-theoretic model to ana-

yze the evolution of transaction fees in Bitcoin from a market perspec-

ive. Based on Lyapunov optimization and large deviation theory, the

ransaction selection mechanism is proposed in Shi et al. [27] , which

aximizes the utility of both system and miners. 

With knowing the importance of transaction fees, more research

ork has been conducted to design various pricing schemes in recent.

ost of the existing pricing mechanisms take advantage of auction to

nd the optimal price setting strategy, with a focus on maximizing the

rofit of miners. In [16] , Lavi et al. figured out two challenges in Bitcoin

elated to the decreasing block reward and limited block size, based on

hich they analyzed the applicability of monopolistic auction in this

cenario due to its immunity to untrusted auctioneers. In particular,

ll transactions included in a block pay the same lowest bid instead of

he current pay-your-bid approach in Bitcoin, which can decouple the

bove two challenges. As a theoretical supplement to the monopolistic

uction mechanism in Lavi et al. [16] , Yao [21] proved its approxi-

ate incentive-compatibility and further demonstrated its dominance

ompared to a traditional auction mechanism named Random Sampling

ptimal Price auction (RSOP) [28] . Besides, Basu et al. [22] proposed

 novel transaction pricing mechanism based on the generalized sec-

nd price auction, which was demonstrated to be resistant to arbitrary

anipulation as the derived bidding satisfied truthfulness. 

In summary, the existing work related to transaction fees in

lockchain have revealed its importance, most of which utilized game

heory to conduct analysis; other closely related work on pricing mech-

nism design mainly relies on auctions, aiming at improving the effi-

iency and profit of miners. In contrast, our work leverages game theory

o model the competitive and collaborative relationships among users

onsidering the size and time sensitivity of each transaction, which can

esult in both global and individual optimum, thus maintaining a more

ustainable and lively blockchain ecosystem. 

. Problem formulation 

In this paper, we consider the mempool of a blockchain system with

ll transactions from users, where the miners will select a set of trans-

ctions to be included in their individual block. Since there will be only
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Fig. 1. Transaction process in the blockchain system. 
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ne valid block at the end of each round of mining, we focus on the selec-

ion of transactions in this single block from a global perspective. 2 The

ransaction process is shown in Fig. 1 . As the blockchain network pre-

ails, increasingly large amount of transactions are generated, streaming

nto the mempool to be included in the valid block. However, the size

f a block is limited, yielding the competition among transactions with

espected to the transaction fees. 

To describe this competitive system, we denote all transactions in

he current mempool as { 𝑡𝑥 1 , 𝑡𝑥 2 , … , 𝑡𝑥 𝑛 } , where 𝑛 is the total number

f transactions from users. Each transaction has a specific size as 𝑠 𝑖 ,

hich is fixed once the transaction is appearing in the mempool. The

otal size of all transactions included in one block cannot exceed the

aximum limitation. Considering that transactions can have different

ime sensitivity, we assume that each transaction 𝑡𝑥 𝑖 come with a time

ag 𝑇 𝑖 indicating its remaining time to be included in a valid block; oth-

rwise, the user launching this transaction will suffer from a big loss. In

ur paper, we aim to study how to design a pricing mechanism to pro-

ide unit price suggestions for all transactions in the current mempool

onsidering both competitive prices provided by other transactions and

heir various emergency levels (i.e., time sensitivity). 

Given a unit price 𝑣 𝑖 for 𝑡𝑥 𝑖 with size 𝑠 𝑖 , the miner will get the pay-

ent of 𝑣 𝑖 𝑠 𝑖 for including 𝑡𝑥 𝑖 in the valid block. In particular, we charac-

erize the miner’s behavior of including transactions in the valid block

ith a probabilistic model which is inspired by the Discrete Choice Model

resented in Gao and Parameswaran [29] . Formally, we define the trans-

ction inclusion probability as follows. 

efination 1 (Transaction Inclusion Probability) . With the unit price

ector from all transactions in the current mempool, denoted as 𝒗 , the

robability of 𝑡𝑥 𝑖 with unit price 𝑣 𝑖 being included in the valid block is

 𝑖 ( 𝒗 ) = 

exp ( 𝑎 𝑖 𝑣 𝑖 − 𝑏 ) 
𝑛 ∑
𝑗=1 

exp ( 𝑎 𝑗 𝑣 𝑗 − 𝑏 ) 
, (1)

here 𝑎 𝑖 > 0 and 𝑏 > 0 are parameters related to each 𝑡𝑥 𝑖 and the block,

espectively. 

The above definition based on discrete choice model can macroscopi-

ally describe the transaction inclusion event from both the perspectives

f the miner (block) and the user (transaction). Generally, the probabil-

ty of a transaction 𝑡𝑥 being included is positively proportional to its
𝑖 

2 Transactions included in different blocks owned by different miners might be hetero- 

eneous due to the network transmission delay, which will be considered in our future 

ork. 

o  

b

 

t

3 
rovided unit price 𝑣 𝑖 . In practical, the miner would be more willing to

nclude those transactions with higher unit price as they can bring more

rofit for a length-limited block; and the transactions eager to be in-

luded are inclined to come with higher unit price to attract the miner’s

ttention. 

In addition, 𝑎 𝑖 and 𝑏 in (1) can reflect the randomness during the

rocess of including transactions in a block, which may come from both

he transaction side and the block side. For example, since the size of the

lock is limited, the miner cannot always select the remaining highest

nit price provider in the current mempool especially when the size of

he block left cannot cover the length of this transaction with the highest

nit price, which can be captured by the parameter 𝑎 𝑖 dependent on

𝑥 𝑖 at this point, denoted by 𝑎 𝑖 = 𝜓( 𝑠 𝑖 ) ; similarly, other factors of the

lock, such as the generation location, can also impact the transaction

nclusion results. 

It is worth mentioning that the values of 𝑎 𝑖 and 𝑏 could be obtained

y querying the transaction and statistically calculating the historical

lock information. 

With the definition of inclusion probability, we can calculate the

ayoff of the user, which is defined as individual utility in the following.

efination 2 (Individual Utility) . The expected individual utility of a

ser publishing 𝑡𝑥 𝑖 with size 𝑠 𝑖 and unit price 𝑣 𝑖 can be calculated by 

 𝑖 ( 𝒗 ) = 𝑝 𝑖 ( 𝒗 ) 
(
𝜙( 𝑇 𝑖 ) − 𝑣 𝑖 𝑠 𝑖 

)
, (2)

here 𝑇 𝑖 is the time tag of 𝑡𝑥 𝑖 and 𝜙( ⋅) is a non-decreasing function with

 𝑖 . In particular, 𝜙( ⋅) can be defined as 

( 𝑇 𝑖 ) = 

𝛼𝑖 

1 + exp (− 𝛽𝑖 𝑇 𝑖 ) 
, (3)

here 𝛼𝑖 , 𝛽𝑖 > 0 are scalars for 𝑡𝑥 𝑖 . 

In (2) , the individual utility of a user is mainly dependent on two

arts, i.e., the profit of the transaction being successfully included be-

ore its deadline and the total cost that the user needs to pay for the

ransaction. The cost part is obvious to be the unit price multiplying

he size of the transaction. For the profit part defined in (3) , we con-

ider that, generally, the sooner the transaction gets included, the higher

rofit the user can gain, so the increasing remaining time to be included

or a transaction can bring more profit for this user; while this sort of

dvantage of time length left cannot last forever, which is reflected in

he upper limitation of 𝜙( 𝑇 𝑖 ) as 𝛼𝑖 . In addition, the increasing speed

f 𝜙( 𝑇 𝑖 ) with respect to 𝑇 𝑖 is unique for each transaction 𝑡𝑥 𝑖 , decided

y 𝛽𝑖 . 

Note that since the range of 𝜙( 𝑇 𝑖 ) is [ 
𝛼𝑖 

2 , 𝛼𝑖 ] , we assume that 𝛼𝑖 ≥ 2 𝑣 𝑖 𝑠 𝑖
o guarantee the individual utility defined in (2) is non-negative. 
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Table 1 

Key notations. 

Notation Meaning 

{
𝑡𝑥 𝑖 

}
Transactions in the current mempool 

𝑛 The total number of transactions from users 

𝑠 𝑖 The size of transaction 𝑡𝑥 𝑖 
𝑣 𝑖 The unit price of 𝑡𝑥 𝑖 
𝑇 𝑖 The remaining time for 𝑡𝑥 𝑖 to be included in the valid block 

𝑝 𝑖 ( 𝒗 ) The probability of 𝑡𝑥 𝑖 being included in the valid block 

𝑈 𝑖 ( 𝒗 ) The expected utility of user 𝑖 publishing 𝑡𝑥 𝑖 
𝑁 The total number of users 

𝑊 The acceptance rate of honest users towards the price offered by the 

pricing mechanism 

𝐾 The total number of pricing rounds by now 

𝐶 The acceptance status of the pricing mechanism 

𝑆 𝑖 The judgement of user 𝑖 towards the price 

𝑥 𝑖 The opinion of user 𝑖 

𝛿𝑖𝑗 The optinion of user 𝑖 towards that user 𝑗 takes the price before the 

pricing game 

𝛿𝑖𝑗 The optinion of user 𝑖 towards that user 𝑗 takes the price after the 

pricing game 

𝐻 𝑖 The trustworthiness of user 𝑖 
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According to the above definition, it can be seen that the individual

tility of each transaction is not only related to its own posted unit price

ut also the unit prices provided by other transactions in the current

empool. In order to depict this interdependent relationship among all

ransactions, we take advantage of the non-cooperation game to further

odel this problem as a Pricing Game . 

efination 3 (Pricing Game) . All users with transactions 3 in the current

empool form a pricing game where any user with 𝑡𝑥 𝑖 is a game player,

xerting the strategy to provide a unit price 𝑣 𝑖 and getting the payoff of

he individual utility 𝑈 𝑖 ( 𝒗 ) . 

As the individual utility of any user is collectively decided by all

he unit prices, we can specifically express it as 𝑈 𝑖 ( 𝑣 𝑖 , 𝒗 − 𝑖 ) where 𝒗 − 𝑖 =
 𝑣 1 , … , 𝑣 𝑖 −1 , 𝑣 𝑖 +1 , … , 𝑣 𝑛 ) denotes the unit prices provided by other users

or their transactions { 𝑡𝑥 1 , … , 𝑡𝑥 𝑖 −1 , 𝑡𝑥 𝑖 +1 , … , 𝑡𝑥 𝑛 } . As a rational and

tility-driven player, any user wants to maximize the individual util-

ty 𝑈 𝑖 ( 𝑣 𝑖 , 𝒗 − 𝑖 ) . However, it is not feasible for any user to achieve this

oal without knowing the offers from others. Therefore, in this paper,

e start from a global perspective to help all users make the decision on

ow to provide reasonable unit prices to their transactions to get them

ncluded in the valid block before the deadline and achieve maximum

ayoffs as well. For simplicity, we summarize key notations in Table 1 .

. Game theoretic solution 

In the previous section, we propose the pricing game to characterize

he unit price decision problem of transactions among all users, which

eaves the individual utility maximization as a challenge. In this sec-

ion, we first derive it as a correlated equilibrium, and then analyze this

roblem from a macro perspective to achieve the global optimum for all

sers, followed by the final solution. 

Without loss of generality, we assume that the strategy space of users

s discrete, denoted by  , and with the size of 𝑉 . According to the in-

ividual utility maximization requirement of each user, we can get the

orrelated equilibrium of the pricing game as follows. 

efination 4 (Correlated Equilibrium) . For our proposed pricing game,

here exists a correlated equilibrium 𝐹 ( 𝒗 ) , which is a unique probability

istribution over the space  𝑛 denoting all possible combinations of unit
3 Here we consider each user only has one transaction. For a user with multiple trans- 

ctions, we treat each transaction individually, regarding there is a corresponding user 

ehind each one. 

s  

c  

v  

s  

a

4 
rices provided by all users, if and only if for any user with the strategy

 𝑖 ∈  , it satisfies ∑
 − 𝑖 ∈ 𝑛 −1 

𝐹 ( 𝑣 𝑖 , 𝒗 − 𝑖 ) 
(
𝑈 𝑖 ( 𝑣 𝑖 , 𝒗 − 𝑖 ) − 𝑈 𝑖 ( 𝑣 ′𝑖 , 𝒗 − 𝑖 ) 

)
≥ 0 , (4)

here 𝑣 ′
𝑖 
∈  is any strategy other than 𝑣 𝑖 . 

According to the above definition, one can see that under the corre-

ated equilibrium 𝐹 ( 𝒗 ) , any user has no motivation to deviate from the

urrent strategy 𝑣 𝑖 when others are fixed to 𝒗 − 𝑖 . In other words, any user

an thus maximize the individual utility as long as each user sets 𝑣 𝑖 ac-

ording to 𝒗 sampled from 𝐹 ( 𝒗 ) . Since 𝐹 ( 𝒗 ) is a probability distribution,

e have the constraints 𝐹 ( 𝒗 ) ≥ 0 and 
∑

𝒗 ∈ 𝑛 𝐹 ( 𝒗 ) = 1 . Combined with

he above inequality (4) , it is easy to calculate a correlated equilibrium

hrough solving a linear programming problem, which could generate a

et of results as multiple correlated equilibria. In order to find the best

ne, we introduce the following global objective of social welfare for

he pricing game. 

efination 5 (Social Welfare) . For a specific correlated equilibrium of

he pricing game 𝐹 ( 𝒗 ) , the social welfare is defined as the expected total

tilities of all users, i.e., 
∑

𝒗 ∈ 𝑛 𝐹 ( 𝒗 ) 
∑𝑛 

𝑖 =1 𝑈 𝑖 ( 𝒗 ) . 

Therefore, to derive the best pricing strategy for each user, we can

olve the best correlated equilibrium for the pricing game from a global

erspective, which can be summarized into the following optimization

roblem. 

ax ∶ 
∑
𝒗 ∈ 𝑛 

𝐹 ( 𝒗 ) 
𝑛 ∑
𝑖 =1 

𝑈 𝑖 ( 𝒗 ) (5) 

.t.: 𝐹 ( 𝒗 ) ≥ 0 , (6) 

∑
𝒗 ∈ 𝑛 

𝐹 ( 𝒗 ) = 1 , (7) 

∑
 𝑖 ∈ 𝑛 −1 

𝐹 ( 𝑣 𝑖 , 𝒗 − 𝑖 ) 
(
𝑈 𝑖 ( 𝑣 𝑖 , 𝒗 − 𝑖 ) − 𝑈 𝑖 ( 𝑣 ′𝑖 , 𝒗 − 𝑖 ) 

)
≥ 0 , 

𝑣 𝑖 , 𝑣 
′
𝑖 
∈  . (8) 

For simplicity, we refer this optimization problem as social welfare

aximization problem as the objective function in (5) is to maximize the

ocial welfare of the pricing game. It is worth mentioning that the first

wo constraints (6) and (7) are coming from the definition of probabil-

ty distribution, and the last constraint (8) is to guarantee the individual

tility maximization presented in Definition 4 . As mentioned above, this

ptimization problem is exactly a linear programming problem, where

he variable is the probability distribution over all possible combinations

f unit prices, i.e., 𝐹 ( 𝒗 ) . Thus we can employ existing algorithms to solve

t in an efficient manner, such as dual-simplex and interior-point, which

ill cost polynomial time in the numbers of variables and constraints.

owever, it is not realistic to directly adopt the existing algorpaithms

o solve our aforementioned optimization problem because the compu-

ational cost in our case is non-polynomial, which can be demonstrated

y the following Theorem. 

heorem 6. Directly using the existing algorithms to solve the social welfare

aximization problem has computational cost exponentially increasing with

he number of transactions 𝑛 . 

roof. Given the number of transactions 𝑛 and the size of strategy space

 , the number of variables in the social welfare maximization problem,

.e., 𝐹 ( 𝒗 ) , 𝒗 ∈  𝑛 , is 𝑉 𝑛 since the probability distribution is over all pos-

ible combinations of unit prices. For the number of constraints, it is

lear that (7) is a single constraint, while constraint (6) is held for every

ariable 𝐹 ( 𝒗 ) , so its total number is also 𝑉 𝑛 ; and the number of con-

traints according to (8) is 𝑛𝑉 . Therefore, both the numbers of variables

nd constraints are 𝑂( 𝑉 𝑛 ) . 
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𝑖  
In this case, even though the computational cost of the existing algo-

ithms for solving the linear programming problem is polynomial time

n the numbers of variables and constraints, directly applying them on

ur social welfare maximization problem will lead to exponential com-

utational complexity in the number of transactions because the num-

ers of variables and constraints are exponentially increasing with 𝑛 as

entioned above. □

As shown in the above Theorem, as the increase of the number of

ransactions 𝑛 , the number of variables will increase significantly, off-

etting the efficiency of employing existing algorithms with polynomial

omputational complexity. To overcome this challenge, we propose an

pproximate algorithm to maximize the social welfare of the pricing

ame based on the existing linear programming algorithms, which is

ntroduced in the following section. 

. An approximate algorithm 

To decrease the computational cost of directly employing classical

inear programming algorithms for solving our problem, we need to

liminate the impact of exponential relationship between the numbers

f variables and constraints and the number of transactions. In this sec-

ion, we achieve this goal through proposing an approximate algorithm

hich controls the exponentially increasing numbers of variables and

onstraints to an acceptable level. 

In general, our main idea is to divide all the current transactions into

mall sets where the social welfare is maximized locally in a smaller pric-

ng game to approximate the global optimization objective. Considering

hat transactions coming with the same time tag will compete with each

ther more severely as they have the same remaining time to be in-

luded in the valid block, we divide all transactions in the current mem-

ool into 𝜏 sets, where 𝜏 is the number of different time tags of trans-

ctions. By this means, the original social welfare maximization prob-

em in (5) –(8) can be divided into 𝜏 sub-problems achieving local social

elfare maximization for transactions with the same time tag, where

he number of transactions in each sub-problem is defined as 𝑛 𝑡 depend-

ng on the time tag. Formally, we can express the 𝑡 th sub-problem as

ollows, 

ax ∶ 
∑

𝒗 𝑡 ∈ 𝑛 𝑡 
𝐹 𝑡 ( 𝒗 𝑡 ) 

𝑛 𝑡 ∑
𝑖 =1 

𝑈 𝑡,𝑖 ( 𝒗 𝑡 ) (9) 

 . t. ∶ 𝐹 𝑡 ( 𝒗 𝑡 ) ≥ 0 , (10) 

∑
𝒗 𝑡 ∈ 𝑛 𝑡 

𝐹 𝑡 ( 𝒗 𝑡 ) = 1 , (11) 

∑
 𝑡, − 𝑖 ∈ 𝑛 𝑡 −1 

𝐹 𝑡 ( 𝑣 𝑡,𝑖 , 𝒗 𝑡, − 𝑖 ) 
(
𝑈 𝑡,𝑖 ( 𝑣 𝑡,𝑖 , 𝒗 𝑡, − 𝑖 ) − 𝑈 𝑡,𝑖 ( 𝑣 ′𝑡,𝑖 , 𝒗 𝑡, − 𝑖 ) 

)
≥ 0 , ∀ 𝑣 𝑡,𝑖 , 𝑣 ′𝑡,𝑖 ∈  , 

(12) 

here 𝒗 𝑡 is the unit price vector of 𝑛 𝑡 transactions; 𝐹 𝑡 ( 𝒗 𝑡 ) is a correlated

quilibrium of the small pricing game among them; 𝑈 𝑡,𝑖 and 𝑣 𝑡,𝑖 are re-

pectively the utility and unit price of the 𝑖 th transaction while 𝒗 𝑡, − 𝑖 is

he unit price vector except 𝑣 𝑡,𝑖 . 

Obviously, the above sub-problem has the same components as

he original one, which will output the best correlated equilibrium

 𝑡 ( 𝒗 𝑡 ) for maximizing the local social welfare in each small set of

ransactions. Thus, after solving all sub-problems with the existing lin-

ar programming algorithms, we can derive an approximate solution

hrough combining all the solutions of sub-problems, which means

 ( 𝒗 ) = ( 𝐹 1 ( 𝒗 1 ) , 𝐹 2 ( 𝒗 2 ) , … , 𝐹 𝜏 ( 𝒗 𝜏 )) . By this means, the computational cost

f solving the social welfare maximization problem come into an accept-

ble level, which is demonstrated in the following theorem. 

heorem 7. Assuming that the number of transactions with the same time

ag has a maximum limitation as �̄� , which is much less than 𝑛 since the time
5 
ags of transactions could be much diverse; and that the number of different

ime tags 𝜏 is polynomially increasing with 𝑛 . Then our proposed approximate

olution can solve the social welfare maximization problem in polynomial

ime. 

roof. Using the existing algorithms, we can solve the above sub-

roblem with the computational cost of 𝑂( 𝑉 𝑛 𝑡 ) according to Theorem 6 .

s we assume that 𝑛 𝑡 ≤ 𝑛 ≤ 𝑛 , we have 𝑂 ( 𝑉 𝑛 𝑡 ) ≤ 𝑂 ( 𝑉 �̄� ) where the latter

tem can be regarded as constant with respect to 𝑛 . In addition, since 𝜏

ncreases with 𝑛 in a polynomial manner, the overall computational cost

f our proposed approximate solution is 𝜏𝑂( 𝑉 �̄� ) which is polynomial in

 . □

. Truthful assessment model of the pricing mechanism 

To have a reliable assessment of the derived pricing mechanism, we

esign a truthful scheme in this section to collect feedback from users

ith respect to the received price suggestion. 

.1. Overview of the truthful assessment model 

With the pricing mechanism we proposed above, each user can get

 price suggestion in each pricing game. For such a price, it is not guar-

nteed that it will be accepted by users. Therefore, it is necessary to

esign a model to obtain the users opinions of accepting the price sug-

estion or not. However, it is nontrivial to collect users’ honest feedback

ince there may exist malicious users submitting unreliable information

hich will heavily affect the accuracy of assessment and further impede

he implementation of the proposed pricing mechanism. 

To address the above issues, we utilize the private-prior peer pre-

iction theory [30–32] to build the truthful assessment model for the

ricing mechanism. On the one hand, we need to calculate the trust-

orthiness of user 𝑖 , which is denoted as 𝐻 𝑖 ( 𝑖 ∈ {1 , 2 , … , 𝑁 } , with 𝑁 

enoting the number of users in total); on the other hand, we need to

esign a reasonable scheme to determine the quality of the proposed

ricing mechanism that is defined as the acceptance rate of honest users,

enoted as 𝑊 . The main idea of the peer prediction model is to require

ser 𝑖 to report both the prior and posterior opinions (i.e., probability)

f a random peering user 𝑗 accepting the offered price. Based on the

ollected opinions, we can take advantage of the strictly proper scoring

ule to calculate the trustworthiness of users for calculating the effective

cceptance rate. 

First, we define some parameters to describe the process of reporting

pinions. We term 𝐶 as the acceptance status of the pricing mechanism,

here 𝐶 = 𝑎 means that this price will be accepted while 𝐶 = 𝑟 refers to

 rejection. We define 𝑆 𝑖 as the judgement of user 𝑖 towards the price,

nd 𝑥 𝑖 ∈ {0 , 1} stands for the opinion of user 𝑖 . 

To describe whether users’ judgments are correct and reports are

ruthful, we introduce the following four definitions. Let 𝑃 1 
𝑐𝑗 

and 𝑃 0 
𝑐𝑗 

rep-

esent the probability of correct judgement of users. More specifically,

 

1 
𝑐𝑗 

is the conditional probability that user 𝑖 makes the positive judge-

ent when the price is accepted, i.e., 𝑃 ( 𝑆 𝑖 = 1 |𝐶 = 𝑎 ) ; and 𝑃 0 
𝑐𝑗 

means

hat user 𝑖 makes the negative judgement when the price is rejected, i.e.,

 ( 𝑆 𝑖 = 0 |𝐶 = 𝑟 ) . When user 𝑖 honestly reports the opinion, i.e., 𝑆 𝑖 = 1
iven 𝐶 = 𝑎 or 𝑆 𝑖 = 0 for 𝐶 = 𝑟 , we define the probability of honestly

eporting as 𝑃 1 
ℎ𝑟 

= 𝑃 ( 𝑥 𝑖 = 1 |𝐶 = 𝑎 ) and 𝑃 0 
ℎ𝑟 

= 𝑃 ( 𝑥 𝑖 = 0 |𝐶 = 𝑟 ) . 
Besides, we define 𝑃 ( 𝐶 = 𝑎 ) as the probability of the price being ac-

epted from the perspective of historical records, which can be obtained

y averaging the sum of the probabilities of the price being accepted in

ll previous rounds. The calculation of 𝑃 ( 𝐶 = 𝑎 ) is 

 ( 𝐶 = 𝑎 ) = 

1 
𝐾 − 1 

𝐾−1 ∑
𝑘 =1 

𝑃 𝑘 ( 𝐶 = 𝑎 ) , (13)

here 𝐾 is the total number of pricing rounds by now. 

𝑃 ( 𝑆 𝑖 = 1) represents the judgment that the price being taken by user

 , however, it is private information so we can’t get it directly from user
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 . In our model, we use the historical choice records of user 𝑖 toward

he prices, denoted as 𝑧 𝑖 , to estimate the value of 𝑃 ( 𝑆 𝑖 = 1) . When user 𝑖

akes the price, 𝑧 𝑖 = 1 ; otherwise, 𝑧 𝑖 = 0 . Then, we can define 𝑃 ( 𝑆 𝑖 = 1)
s follows: 

 

(
𝑆 𝑖 = 1 

)
= 𝑃 

(
𝑧 𝑖 = 1 

)
= 

1 
𝐾 − 1 

𝐾−1 ∑
𝑘 =1 

𝑧 𝑖 = 1 . (14) 

.2. Private-prior peer prediction model 

We deploy the private-prior peer prediction model to get two differ-

nt belief reports before and after experiencing the pricing game. Then

e calculate any user’s trustworthiness through a strictly proper scoring

ule. 

.2.1. Prior belief 

Before the pricing game, user 𝑖 is required to report the opinion that

ow likely user 𝑗 will take the price based on his/her observation, which

s denoted as 𝛿𝑖𝑗 and is calculated as follows: 

𝑖𝑗 = 𝑃 ( 𝑥 𝑗 = 1) 

= 𝑃 ( 𝑥 𝑗 = 1 |𝐶 = 𝑎 ) 𝑃 ( 𝐶 = 𝑎 ) + 𝑃 ( 𝑥 𝑗 = 1 |𝐶 = 𝑟 ) 𝑃 ( 𝐶 = 𝑟 ) 

= 𝑃 1 
𝑐𝑗 
( 𝑖 ) 𝑃 ( 𝐶 = 𝑎 ) + (1 − 𝑃 0 

𝑐𝑗 
( 𝑖 )) 𝑃 ( 𝐶 = 𝑟 ) . (15) 

.2.2. Posterior belief 

After receiving the pricing suggestion derived from the correlated

quilibrium based pricing mechanism, user 𝑖 reports another opinion

f user 𝑗 based on his/her own experience, thus there are two possible

ituations, i.e., 𝑆 𝑖 = 1 and 𝑆 𝑖 = 0 . First we denote the general form of

he posterior report 𝛿𝑖𝑗 : 

̂
ij = 𝑃 

(
𝑥 𝑗 = 1 |𝑆 𝑖 )

= 𝑃 
(
𝑥 𝑗 = 1 |𝐶 = 𝑎 

)
𝑃 
(
𝐶 = 𝑎 |𝑆 𝑖 )+ 𝑃 

(
𝑥 𝑗 = 1 |𝐶 = 𝑟 

)
𝑃 
(
𝐶 = 𝑟 |𝑆 𝑖 ). (16) 

Then we calculate 𝛿𝑖𝑗 in two different situations. When 𝑆 𝑖 = 1 , the

osterior belief is calculated by 

̂
ij ( 1 ) = 𝑃 

(
𝑥 𝑗 = 1 |𝑆 𝑖 = 1 

)
= 𝑃 

(
𝑥 𝑗 = 1 |𝐶 = 𝑎 

)
𝑃 
(
𝐶 = 𝑎 |𝑆 𝑖 = 1 

)
+ 𝑃 

(
𝑥 𝑗 = 1 |𝐶 = 𝑟 

)
𝑃 
(
𝐶 = 𝑟 |𝑆 𝑖 = 1 

)

= 𝑃 1 
hr 
( 𝑖 ) 
𝑃 1 

cj 
( 𝑖 ) 𝑃 ( 𝐶 = 𝑎 ) 

𝑃 
(
𝑆 𝑖 = 1 

) + 

(
1 − 𝑃 0 

hr 
( 𝑖 ) 
)𝑃 0 

cj 
( 𝑖 ) 𝑃 ( 𝐶 = 𝑟 ) 

𝑃 
(
𝑆 𝑖 = 1 

) . (17) 

When 𝑆 𝑖 = 0 , we have 

̂
ij ( 0 ) = 𝑃 

(
𝑥 𝑗 = 1 |𝑆 𝑖 = 0 

)
= 𝑃 

(
𝑥 𝑗 = 1 |𝐶 = 𝑎 

)
𝑃 
(
𝐶 = 𝑎 |𝑆 𝑖 = 0 

)
+ 𝑃 

(
𝑥 𝑗 = 1 |𝐶 = 𝑟 

)
𝑃 
(
𝐶 = 𝑟 |𝑆 𝑖 = 0 

)

= 𝑃 1 
hr 
( 𝑖 ) 

(
1 − 𝑃 1 

cj 
( 𝑖 ) 
)
𝑃 ( 𝐶 = 𝑎 ) 

𝑃 
(
𝑆 𝑖 = 0 

) + 

(
1 − 𝑃 0 

hr 
( 𝑖 ) 
)(1 − 𝑃 0 

cj 
( 𝑖 ) 
)
𝑃 ( 𝐶 = 𝑟 ) 

𝑃 
(
𝑆 𝑖 = 0 

) . 

(18) 

.2.3. Opinion inference 

We can deduce the real opinion of user 𝑖 based on the two submitted

eports, i.e., 𝛿𝑖𝑗 and 𝛿𝑖𝑗 . If 𝛿𝑖𝑗 < 𝛿𝑖𝑗 , we believe that user 𝑖 will accept

he price since his/her experience of the pricing game is better than

he prior idea, i.e., 𝑥 𝑖 = 1 . Otherwise, user 𝑖 will reject the price due to

is/her worse experience, i.e., 𝑥 𝑖 = 0 . 

.3. Strictly proper scoring rule 

We adopt the the quadratic scoring rule to calculate the trustworthi-

ess of each user, which is one of the strictly proper scoring rules utilized
6 
n Wang et al. [31] , Du et al. [32] . The general form of the quadratic

coring rule is: 

 ( 𝑦, 𝑥 = 1) = 2 𝑦 − 𝑦 2 , 

 ( 𝑦, 𝑥 = 0) = 1 − 𝑦 2 , (19) 

here 𝑦 is the belief of a user, and 𝑥 is the true opinion towards the

rice suggestion of the user. 

Based on our analysis about the procedure of reporting, we can cal-

ulate 𝐻 𝑖 via 𝛿𝑖𝑗 and 𝛿𝑖𝑗 as 

 𝑖 = 𝜃𝐿 ( 𝛿𝑖𝑗 , 𝑥 𝑗 ) + (1 − 𝜃) 𝐿 ( ̂𝛿𝑖𝑗 , 𝑥 𝑗 ) + 𝜂, (20)

here 𝜃 is a parameter determining the weights of prior and posterior

eports to the trustworthiness, with 𝜃 ∈ [0 , 1] ; 𝜂 is a variable used to

alance the value of 𝐻 𝑖 . Specifically, 𝜂 measures the deviation of 𝐻 𝑖 

rom the average value and represents the trustworthiness level of user

 among all the users. And 𝜂 can be calculated as: 

= − 

1 
𝑁 

𝑁 ∑
𝑛 =1 

(
𝜃𝐿 ( 𝛿𝑖𝑗 , 𝑥 𝑗 ) + (1 − 𝜃) 𝐿 

(
𝛿𝑖𝑗 , 𝑥 𝑗 

))
. (21)

.4. Assessment result 

After the calculation of 𝐻 𝑖 , we can know whether users are honest

nd their data can be further utilized to assess the proposed pricing

echanism. Specifically, we can distinguish honest users and filter out

ishonest users based on their 𝐻 𝑖 : when 𝐻 𝑖 ≥ ℎ , user 𝑖 can be considered

s honest; otherwise, user 𝑖 is malicious. Here ℎ is the threshold value

nd can be calculated by averaging all 𝐻 𝑖 of users in each round. 

We let  represent the set of honest users, and for each honest user,

here each has an opinion towards the price as 𝑥 𝑖 = 1 or 𝑥 𝑖 = 0 ; and

e let  as the set of honest users with opinions 𝑥 𝑖 = 1 . Then we define

and 𝜉 as the sizes of  and  respectively. The calculation of the

cceptance rate of the pricing mechanism is 

 = 

𝜉

𝜓 
. (22) 

heorem 8. The above truthful assessment model for the pricing mechanism

s incentive compatible. 

roof. Since 𝐻 𝑖 is significantly influenced by the submitted opinions of

ll users, 𝐻 𝑖 of a single user is not sufficient to prove the overall incen-

ive compatibility. We would like to prove that the proposed truthful

ssessment model is incentive compatible for all users, therefore, we

eed to first calculate the expectation of 𝐻 𝑖 . According to (20) , we can

alculate 𝐸( 𝐻 𝑖 ) as 

( 𝐻 𝑖 ) = 𝐸 

(
𝜃𝐿 

(
𝛿𝑖𝑗 , 𝑥 𝑗 

))
+ 𝐸((1 − 𝜃) 𝐿 

(
𝛿𝑖𝑗 , 𝑥 𝑗 ) 

)
+ 𝐸( 𝜂)) 

= 𝜃

(
1 − 

1 
𝑁 

)
𝐸( 𝐿 ( 𝛿𝑖𝑗 , 𝑥 𝑗 ))+ (1 − 𝜃) 

(
1 − 

1 
𝑁 

)
𝐸 

(
𝐿 

(
𝛿𝑖𝑗 , 𝑥 𝑗 

))

− 

1 
𝑁 

𝑁 ∑
𝑛 =1 ,𝑛 ≠𝑖 

(
𝜃𝐿 

(
𝛿𝑖𝑗 , 𝑥 𝑗 

)
+ ( 1 − 𝜃) 𝐿 

(
𝛿𝑖𝑗 , 𝑥 𝑗 

))
. (23) 

We first set 𝑝 1 = 𝑃 ( 𝑥 𝑗 = 1) and 𝑝 2 = 𝑃 ( 𝑥 𝑗 = 1 |𝑆 𝑖 ) , and by applying

he binary quadratic scoring rule to (23) , we can have 

 

(
𝐻 𝑖 

)
= 𝜃

(
1 − 

1 
𝑁 

)(
𝑝 1 

(
2 𝛿ij − 𝛿2 

ij 

)
+ 

(
1 − 𝑝 1 

)(
1 − 𝛿2 

ij 

))

+ ( 1 − 𝜃) 
(
1 − 

1 
𝑁 

)(
𝑝 2 

(
𝛿ij − 𝛿2 

ij 

)
+ 

(
1 − 𝑝 2 

)(
1 − 𝛿2 

ij 

))

− 

1 
𝑁 

𝑁 ∑
𝑛 =1 ,𝑛 ≠𝑖 

(
𝜃𝐿 

(
𝛿ij , 𝑥 𝑗 

)
+ ( 1 − 𝜃) 𝐿 

(
𝛿ij , 𝑥 𝑗 

))
. 

Then we can calculate the partial derivatives with respect to 𝛿𝑖𝑗 and
̂
𝑖𝑗 

𝜕𝐸( 𝐻 𝑖 ) 
𝜕𝛿𝑖𝑗 

= 𝜃

(
1 − 

1 
𝑁 

)
(2 𝑝 1 − 2 𝛿𝑖𝑗 ) , (24) 
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Table 2 

Maximized social welfare. 

Solution 𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 

Traditional 709.25 1293.53 876.43 712.17 

Approximate 713.57 1284.19 916.59 692.05 
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Fig. 2. Computational cost comparison changing with 𝑛 . 

Table 3 

Unit price vector with the highest probability. 

Solution Traditional Approximate 

𝑛 = 5 (10, 5, 10, 10, 10) (10, 5, 10, 10, 10) 

𝑛 = 6 (10, 5, 5, 10, 10, 5) (10, 5, 5, 10, 10, 5) 

𝑛 = 7 (10, 10, 5, 10, 5, 5, 10) (10, 10, 5, 10, 5, 5, 10) 

𝑛 = 8 (10, 5, 5, 5, 10, 10, 5, 10) (10, 5, 5, 5, 10, 10, 5, 10) 

w  

w  

w  

r  

t  

t  

a  

e

 

h  

t  

r

 

l  

d

 

b  

t  

a  

𝑋  

o  
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l  
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i  

s  

t  

o  

s  

e  

i

 

s

a  

s

 

𝜕𝐸( 𝐻 𝑖 ) 
𝜕 ̂𝛿𝑖𝑗 

= (1 − 𝜃) 
(
1 − 

1 
𝑁 

)
(2 𝑝 2 − 2 ̂𝛿𝑖𝑗 ) . (25) 

To get the optimal value, we let 
𝜕𝐸( 𝐻 𝑖 ) 
𝜕𝛿𝑖𝑗 

= 0 and 
𝜕𝐸( 𝐻 𝑖 ) 
𝜕 ̂𝛿𝑖𝑗 

= 0 , and we

an have 𝛿𝑖𝑗 = 𝑝 1 and 𝛿𝑖𝑗 = 𝑝 2 . 

Then we take the second partial derivatives of 𝐸( 𝐻 𝑖 ) regarding 𝛿𝑖𝑗 
nd 𝛿𝑖𝑗 : 

𝜕 2 𝐸 

(
𝐻 𝑖 

)
𝜕 𝛿2 

𝑖𝑗 

= −2 𝜃
(
1 − 

1 
𝑁 

)
< 0 , (26) 

𝜕 2 𝐸 

(
𝐻 𝑖 

)
𝜕 ̂𝛿2 

𝑖𝑗 

= −2 ( 1 − 𝜃) 
(
1 − 

1 
𝑁 

)
< 0 . (27) 

□

Based on the above analysis, when 𝛿𝑖𝑗 = 𝑝 1 and 𝛿𝑖𝑗 = 𝑝 2 are satisfied,

( 𝐻 𝑖 ) can have the maximum value. It means that only if user 𝑖 submits

is/her beliefs of the pricing mechanism honestly can he/she get the

aximum value of trustworthiness. Here we consider that every user ex-

ects the submitted opinion to be valued, leading them the motivation of

etting get higher trustworthiness. This proves that our proposed truth-

ul assessment model for the pricing mechanism is incentive-compatible

o encourage users to behave truthfully. 

. Experimental evaluation 

In this section, we evaluate our proposed pricing mechanism and its

ruthful assessment model through simulation experiments. 

.1. Performance evaluation of the pricing mechanism 

We implement our experiments using MATLAB R2019a in Windows

0 running on Intel i7 processor with 16 GB RAM and 512 GB SSD. For

arameters related to transactions, we randomly choose 𝑠 𝑖 ∈ [100 , 300]
B and 𝑇 𝑖 ∈ [10 , 30] min. Other parameters are set as 𝑛 = 500 , 𝛼𝑖 = 3000 ,
𝑖 = 0 . 01 , 𝑎 𝑖 = 

𝑠 𝑖 

100 , 𝜏 = 200 , and 𝑛 𝑡 ∈ {1 , 2 , 3} unless otherwise specified.

ote that all our experiments are repeated 20 times to have the average

esults. 

In order to demonstrate that our proposed approximate solution in

ection 5 can bring similar results for the optimization problem in a

ore efficient manner, we compare the experimental results returned

y traditional solution with the interior-point method and our proposed

ne. In detail, we set the number of transactions 𝑛 ∈ {5 , 6 , … , 16} and

un both the traditional and approximate algorithms to obtain the com-

utational efficiency and the results of optimization problem, i.e., max-

mized social welfare and the unit price vector with the highest proba-

ility as the correlated equilibrium. 

As shown in Fig. 2 , the computational cost of the traditional algo-

ithm solving the linear programming problem increases exponentially

ith the number of transactions 𝑛 , while that of our proposed approxi-

ate solution is linearly changing with 𝑛 , which is consistent with the

nalysis results presented in Theorems 6 and 7 . Besides, we present the

ptimization results in Tables 2 and 3 , where only the results of 𝑛 = 5 to
 are reported to avoid redundancy and the results in other cases have

he similar trend. As can be seen from Table 2 , even though our proposed

pproximate solution cannot obtain the exact same maximized social
 c  

7 
elfare compared to the traditional one with the accurate constraints,

e can have approximate values fluctuating around the accurate ones

ith lower computational cost in the long run. Since the optimal cor-

elated equilibrium for social welfare maximization is a probability dis-

ribution over all possible combinations of unit price vector, we regard

hat the combination with the highest probability is the most appropri-

te one, which is presented in Table 3 . One can see that all cases we

xamined come with the same results. 

From the above analysis on our numerical comparison results, we can

ave the conclusion that our proposed approximate solution can solve

he social welfare maximization problem efficiently and obtain similar

esults to the traditional one. 

Then, we evaluate the performance of our proposed approximate so-

ution with respect to the maximized social welfare when 𝑛 = 500 under

ifferent parameter settings of 𝑎 𝑖 , 𝛼𝑖 , 𝛽𝑖 , and 𝜏. 

To begin with, we examine the impact of transaction inclusion proba-

ility defined in Definition 1 on the maximized social welfare, especially

he impact of 𝑎 𝑖 . As mentioned in Section 3 , here we assume that 𝑎 𝑖 is

 function of 𝑠 𝑖 , i.e., the size of 𝑡𝑥 𝑖 , which is set as 𝑎 𝑖 = 𝜓( 𝑠 𝑖 ) = 

𝑠𝑖 

𝑋 
with

 = 𝑠 𝑖 ∕ 𝑎 𝑖 being a parameter changing from 100 to 1000 with an interval

f 100. As shown in Fig. 3 , we can obtain that the maximized social wel-

are changes with 𝑠 𝑖 ∕ 𝑎 𝑖 in a relatively complicated manner which seems

ike a combination of the exponential and stable trend. This is reason-

ble since (1) indicates that the relationship between probability and 𝑎 𝑖 
s exponent divided by the sum of exponents, which could present this

ort of complicated curve and further affect the social welfare through

he individual utility as defined in (2) . It is worth noting that the impact

f 𝑏 has also been checked but brings subtle influence on the maximized

ocial welfare, which is because this parameter is block-related with an

quivalent impact on all users, thus finally resulting in an offsetting of

ts impact. 

Next, we explore the impact of individual utility on the maximized

ocial welfare. In particular, we inspect the influences of 𝛼𝑖 and 𝑏𝑒𝑡𝑎 𝑖 
nd report the corresponding experimental results in Figs. 4 and 5 , re-

pectively. 

For 𝛼𝑖 , we change it from 3000 to 8000 with an interval of 500. As

an be seen from Fig. 4 , the maximized social welfare increases linearly
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Fig. 3. Maximized social welfare changing with 𝑠 𝑖 ∕ 𝑎 𝑖 . 

Fig. 4. Maximized social welfare changing with 𝛼𝑖 . 

Fig. 5. Maximized social welfare changing with 𝛽𝑖 . 
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Fig. 6. Maximized social welfare changing with 𝜏. 
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ith 𝛼𝑖 . This is because individual utility in Definition 2 is linearly re-

ated to 𝛼𝑖 when other parameters are fixed. Thus, the maximized social

elfare denoting the total utilities of all users has a linear relationship

ith 𝛼𝑖 . 

And for 𝛽𝑖 , we set it as 0.01 to 0.1 with an interval of 0.01. According

o Fig. 5 , one can see that the maximized social welfare increases with

𝑖 in a non-linear manner. In fact, it is a part of the “S ”-shape curve. As

hown in Definition 2 , we define that the individual utility is linear to

he profit function 𝜙( ⋅) which is a sigmoid function with respect to 𝛽 as
𝑖 

8 
hown in (3) . So the maximized social welfare also presents this trend

ith 𝛽𝑖 . 

From the above two figures, we can get the conclusion that the max-

mized social welfare will be affected by 𝛼𝑖 and 𝛽𝑖 in a similar way that

he individual utility 𝑈 𝑖 gets influenced. 

Finally, we study whether changing the number of transactions in

ubsets will affect the optimization result or not. To be specific, we

chieve this by adjusting the number of different 𝑇 𝑖 of transactions, i.e.,

. As presented in Fig. 6 , the maximized social welfare has no obvious

hanging trend with respect to 𝜏, which helps demonstrate the stability

nd robustness of our proposed approximate solution. 

.2. Evaluation of the truthful assessment model 

In this subsection, we design simulation experiments to evaluate our

roposed truthful assessment model and verify its incentive capability.

e first examine the impacts of 𝑃 ( 𝑆 𝑖 = 1) and 𝜃 on 𝐻 𝑖 in the similar

xperiment setting, and then we calculate the accumulative trustwor-

hiness of different types of users. 

As for the calculation of trustworthiness, the parameter 𝜃 indicates

he importance of prior belief and that of posterior belief, so our first

xperiment is to find how will 𝐻 𝑖 change with 𝜃. We consider two dif-

erent users, i.e., honest user 𝑖 and malicious user 𝑗. For user 𝑖 , we let

 

1 
𝑐𝑗 
( 𝑖 ) = 𝑃 0 

𝑐𝑗 
( 𝑖 ) = 0 . 8 , 𝑃 1 

ℎ𝑟 
( 𝑖 ) = 𝑃 0 

ℎ𝑟 
( 𝑖 ) = 1 , 𝑃 ( 𝐶 = 𝑎 ) = 0 . 8 and 𝑃 ( 𝑆 𝑖 = 1) =

 . 6 . As for user 𝑗, we set 𝑃 1 
ℎ𝑟 
( 𝑗) = 𝑃 0 

ℎ𝑟 
( 𝑗) = 0 . 1 , and the values of other

arameters are set the same as user 𝑖 . The above setting means that both

ser 𝑖 and user 𝑗 can make the right judgement after the price suggestion

s received, while user 𝑖 will report truthful opinions but user 𝑗 will not.

ccording to the results shown in Fig. 7 , we can see that the trustworthi-

ess of user 𝑖 changes slightly with 𝜃, while the trustworthiness of user

increases when 𝜃 is larger. The reason is that the posterior belief is

ubmitted after the pricing game, so it contains more information than

he information prior belief. For honest user 𝑖 , he/she will report all the

eliefs honestly, so both prior belief and posterior belief are important

nd reliable to the calculation of trustworthiness. But for user 𝑗, since

he posterior belief is generated based on the experience of the pricing

echanism, user 𝑗 may submit the wrong posterior belief intentionally

o obtain a higher trustworthiness. 

With a similar experimental setting to the above, we conduct ex-

eriments to analyze the impact of a user’s judgment of the price on

he trustworthiness. According to the results in Fig. 8 , we find that the

rustworthiness of honest user 𝑖 does not fluctuate much as 𝑃 ( 𝑆 𝑖 = 1)
hanges, while the trustworthiness of malicious user 𝑗 is negative and

ncreases when 𝑃 ( 𝑆 𝑖 = 1) < 0 . 3 and then keeps stable. The results indi-

ate that our model can adapt to the situation of numerous users with

ifferent judgments. Besides, our model is based on the assumption that
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Fig. 7. Trustworthiness changing with 𝜃. 

Fig. 8. Trustworthiness changing with 𝑃 ( 𝑆 𝑖 = 1) . 
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Fig. 9. Accumulative trustworthiness changing with rounds. 
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 ( 𝑆 𝑖 = 1) ∈ (0 , 1] is randomly distributed, and our experimental results

ffectively support the validity of this assumption. 

Finally, we calculate the accumulative trustworthiness of multiple

sers. We assume that there exist 80% honest users and 20% malicious

sers. As for the honest users, they will submit their reports truthfully,

ence we set 𝑃 1 
ℎ𝑟 
( 𝑖 ) , 𝑃 0 

ℎ𝑟 
( 𝑖 ) ∼ 𝑈 [0 . 6 , 0 . 8] for them, with 𝑈 [ 𝑢 1 , 𝑢 2 ] repre-

enting the uniform distribution between 𝑢 1 and 𝑢 2 . While for malicious

sers, they usually won’t report their real beliefs, so we set 𝑃 1 
ℎ𝑟 
( 𝑖 ) , 𝑃 0 

ℎ𝑟 
( 𝑖 ) ∼

[0 . 1 , 0 . 2] for them. For both honest users and malicious users, we as-

ume that they can make the right judgements with relatively high prob-

bility, so we set 𝑃 1 
𝑐𝑗 
( 𝑖 ) , 𝑃 0 

𝑐𝑗 
( 𝑖 ) ∼ 𝑈 [0 . 6 , 0 . 8] . As for 𝑃 ( 𝑆 𝑖 = 1) , we assume

t is randomly selected from [0,1] for all users. We also set 𝜃 = 0 . 5 and

 ( 𝐶 = 𝑎 ) = 0 . 4 . Then, we calculate the accumulative trustworthiness of

0 users in 100 rounds, and get the average of accumulative trustwor-

hiness in each round for both malicious and honest users. The results

eported in Fig. 9 , which shows that the honest users’ accumulative

rustworthiness is positive and goes up, while the accumulative trust-

orthiness of malicious users is negative and goes down, proving that

ur proposed assessment model is incentive capable and can encourage

he users to behave honestly according to the rules. 

. Conclusion 

In this paper, we study the transaction pricing issue in blockchain

ith the help of game theory from the perspective of users and propose

 correlated equilibrium based pricing mechanism for transactions. To

e specific, we first model the transaction inclusion competition among
9 
sers as a pricing game, and then utilize the concept of correlated equi-

ibrium to maximize the individual utility of each user through unifying

t with achieving the global optimum. To overcome the weakness of

xponential complexity in the original solution, we propose an approx-

mate algorithm to yield polynomial time cost. In addition, we design a

ruthful assessment model for our proposed price mechanism to collect

he feedback of users regarding the price suggestion. Finally, we con-

uct extensive simulations to evaluate our proposed pricing mechanism

nd the corresponding truthful assessment model. 
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