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A B S T R A C T   

Laboratory visible near infrared reflectance (Vis-NIR, 400–2500 nm) spectroscopy has the advantages of 
simplicity, fast and non-destructive which was used for SM prediction. However, many previously proposed 
models are difficult to transfer to unknown target areas without recalibration. In this study, we first developed a 
suitable Convolutional Neutral Network (CNN) model and transferred the model to other target areas for two 
situations using different soil sample backgrounds under 1) the same measurement conditions (DSSM), and 2) 
under different measurement conditions (DSDM). We also developed the CNN models for the target areas based 
on their own datasets and traditional PLS models was developed to compare their performances. The results show 
that one dimensional model (1D-CNN) performed strongly for SM prediction with average R2 up to 0.989 and 
RPIQ up to 19.59 in the laboratory environment (DSSM). Applying the knowledge-based transfer learning 
method to an unknown target area improved the R2 from 0.845 to 0.983 under the DSSM and from 0.298 to 
0.620 under the DSDM, which performed better than data-based spiking calibration method for traditional PLS 
models. The results show that knowledge-based transfer learning was suitable for SM prediction under different 
soil background and measurement conditions and can be a promising approach for remotely estimating SM with 
the increasing amount of soil dataset in the future.   

1. Introduction 

Soil moisture (SM) is an important environmental variable for un-
derstanding the energy exchange between the atmosphere and the un-
derlying land surface and the interactions among the climatic, 
hydrological, and biological subsystems (Carrao et al., 2016; Lobell and 
Asner, 2002). Traditional methods for measuring SM content including 
thermogravimetric, neutron scattering, gamma ray attenuation, soil 
electrical conductivity, tensiometry, hygrometry and soil dielectric are 
time consuming or have some other disadvantages (Birdal et al., 2007). 
Moreover, these in situ point-based methods are not suitable for map-
ping SM in a large scale. Laboratory visible near infrared reflectance 
(Vis-NIR, 400–2500 nm) spectroscopy has great advantage in terms of 
saving cost of SM analysis (Bao et al., 2018). 

The methods used for SM prediction from Vis-NIR spectral data could 
be grouped into spectral indices, radiative transfer, and statistical 
regression. The spectral index methods use only a few bands and can 
only be applied to areas with less variation in soil types (Amani et al., 
2016; Fabre et al., 2015). Radiative transfer models can achieve a strong 
performance for some datasets but sometime require soil information 
that is somewhat difficult to access (Sadeghi et al., 2017). Statistical 
regression methods build a linear or non-linear relationship between the 
spectrum and SM by use of principal components regression (PCR) 
(Chang et al., 2001), partial least squares regression (PLS) (Araujo et al., 
2014), inverted Gaussian spectrum fitting (Whiting et al., 2004), support 
vector machines (SVM) (González Costa et al., 2017) or other machine 
learning approaches. These methods are the most favorable to the 
literature especially for those utilizing laboratory measured soil spectra. 

* Corresponding author. 
E-mail addresses: chenyu@radi.ac.cn (Y. Chen), ll3@iupui.edu (L. Li), chenfang@radi.ac.cn (F. Chen), sunzc@radi.ac.cn (Z. Sun), Songks@iga.ac.cn (K. Song), 

wangqj@radi.ac.cn (Q. Wang).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observations and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2021.102550 
Received 22 May 2021; Received in revised form 20 August 2021; Accepted 14 September 2021   

mailto:chenyu@radi.ac.cn
mailto:ll3@iupui.edu
mailto:chenfang@radi.ac.cn
mailto:sunzc@radi.ac.cn
mailto:Songks@iga.ac.cn
mailto:wangqj@radi.ac.cn
https://www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2021.102550
https://doi.org/10.1016/j.jag.2021.102550
https://doi.org/10.1016/j.jag.2021.102550
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2021.102550&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102550

2

In the recent years, the deep learning method regarded as an effective 
regression tool in the context of quantifying soil properties has wit-
nessed a great success (Tsakiridis et al., 2020; Zhang et al., 2019). Some 
studies also analyzed the transferability of CNN model between global 
model and localization (Padarian et al., 2019). However, these studies 
did not fully consider the different spectral measurement conditions in 
transfer learning. Therefore, a high-precision CNN model might perform 
poorly when the model is transferred to other regions under different 
spectral measurement conditions (Romero et al., 2018). 

As a deep learning model, a trained Convolutional Neural Network 
(CNN) is often assumed to be adoptable for other unknown areas via 
transfer learning with the expectation that the knowledge learned by the 
trained model is applicable to a related problem for which the under-
lying knowledge is not fully understood. The primary goal of this study 
was to investigate the extent to which a trained CNN is transferable for 
estimating SM for different areas or different measurement conditions. 
We first developed a suitable CNN model based on the 1-dimensional 
input Vis-NIR spectroscopy data (namely 1D-CNN model) for SM pre-
diction. Then, based on transfer learning method, we calibrated the 
model to another area in two situations: 1) one has different soil sample 
background but the same measurement conditions (DSSM), 2) the other 
has different soil sample background and different measurement con-
ditions (DSDM). We also tested PLS models under the same conditions to 
compare their performances with the CNN transfer learning method. 

2. Materials and methods 

2.1. Soil samples 

2.1.1. Sample distribution 
This study used soil samples collected from three different study sites 

(see Table 1). The first dataset contains 20 samples collected from the 
vineyards and grain lands near Tomelloso, Castilla-La Mancha, Spain 
(Site 1) (Whiting et al., 2004). The parent materials of these soils are 
characterized by high calcium carbonate concentrations and described 
as the limestone and marls mixed with conglomerates of clays and 
gravels. The older surfaces are Petric Calcisols and the younger alluvium 
Haplic Calcisols based on the UN Food and Agriculture Organization soil 
classification system (Sanchez et al., 1996). The second dataset contains 
20 samples collected from Tulare Lake playa in the southern San Joaquin 
Valley, near Lemoore, California, United States (Site 2) (Whiting et al., 
2004) where the principal crops are cotton, tomatoes, and grain and the 
soils contain illite and montmorillonite of fine-loamy, mixed (calcar-
eous), thermic Typic Torriorthents, and fine, montmorillonitic, thermic 
Typic Natrargrids within the US Department of Agriculture soil classi-
fication system (USDA, 1978). Soil samples from Sites 1 and 2 were 
sieved to smaller than 2 mm after a light grinding with mortar and 
pestle. The fraction passing through the sieve included coarse and finer 
sands, silt, clay, and small aggregates of clay and sand. Each well-mixed 
sample was divided into two replicates for spectral measurement. 

The third soil sample dataset contains 211 samples collected from 
north of Indianapolis, Indiana, United States (Site 3), where the prin-
cipal crops are corn, soybean, and wheat and the dominant soil types are 
Alfisols, Inceptisols, and Mollisols. During the sample collection, soil 
samples were kept fresh in Zip-loc bags (17 cm × 20 cm), transported 

over ice in a cooler to the laboratory and stored in refrigerators (4 ◦C) 
before soil property analyses could be performed. Additionally, crop 
residues and large size gravels were manually removed before sealing 
the bags. Unlike the samples from sites 1 and 2, these soil samples were 
not sieved. 

2.1.2. Moisture measurement 
Replicate samples from site 1 and site 2 were measured at 15 

different moisture contents. The water contents were increased in 0.05 g 
water/g soil increments by adding water, allow equilibration, then 
weighing just before spectral measurement. The gravimetric water 
contents were determined using the replicate’s oven dried weight at 
80 ◦C for 36 or more hours s (Whiting et al., 2004). The soil moisture for 
the 211 soil samples from site 3 were measured by weighting the soil 
samples before and after oven dry at 105 ◦C for more than 24 h. SM was 
calculated as: 

θ =
W − W ’

W’  

where W and W’ are the weight (g) of the sample before and after oven 
dry, respectively. 

The SM statistics for the three sites is presented in Table 2. It is ex-
pected that the distributions of the SM values of site 1 and site 2 are 
somewhat different from site 3, which is skewed toward the lower water 
contents of actual field moisture. 

2.1.3. Spectral measurement and preprocessing 
Spectral measurement for the samples collected at site 1 and site 2 

were made using a Cary 5E spectrophotometer (Varian Inc., San Jose, 
CA) (Whiting et al., 2004) with the spectral range 400–2500 nm and 1 
nm sampling interval. Each of two soil replicates were measured three 
times at approximately 15 moisture levels. The holders were rotated 
approximately 60◦ for each measurement to minimize the influence due 
to surface geometry. Of the total spectra collected, 121 were discarded 
because the replicates second oven dry soil weight was not within 0.1% 
of the initial oven dry weight. The total number of spectra for the 
combined replicated samples and moisture levels was 1779 and 1700 
spectra for site 1 and site 2, respectively. 

Spectral measurement for site 3 was made using an ASD Field Spec 
Pro FR spectrometer (Analytical Spectral Devices, Inc. Boulder, USA) 
with the spectral range 350–2500 nm. The spectrum acquisition soft-
ware was used to interpolate reflectance data to a sampling interval of 1 
nm (Araujo et al., 2014). To ensure the accuracy of the data, the spectral 
were measured in parallel with the gravimetric moisture measurement 
of the soil samples. Each soil sample was measured once (smoothing 5 
automatic measurements by the spectrometer). 

To maintain the consistency between the spectral data measured by 
the two different instruments and eliminate the instrument noise at both 
ends of the spectrum, the reflectance data was resampled to 400 to 2429 
nm with 1 nm interval. Then, the spectral data were downsampled by 
1:10 (one average value every 10 nm) to reduce the redundancy of 
spectrum dimension. 

Table 1 
Soil information from 3 sites.  

Location Soil 
samples 

Numbers of 
SM data 

Clay 
range (%) 

CaCO3 

range (%) 
Soil textures Mineral composition Land use 

Site 1: Tomelloso, Castilla- 
La Mancha, Spain 

20 1779 22–57 23–66 Loam sandy loam silt 
loam 

limestone and marls mixed with 
conglomerates of clays and gravels 

Vineyards and 
grain lands 

Site 2: Lemoore, CA, USA 20 1700 22–43 0.5–2.4 Clay loam sandy clay 
loam silty clay loam 

Mixtures of illite and montmorillonite Cotton, tomatoes, 
and grain 

Site 3: North of 
Indianapolis, IN, USA 

211 211 16–39 No data Clay loam Alfisols, Inceptisols, and Mollisols Corn, soybean, 
and wheat  
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2.2. Modeling methods 

2.2.1. Convolutional neural networks 
The earliest Convolutional Neural Networks (CNN) was developed 

by LeCun for classifying images of handwritten digits in 1989 (LeCun 
et al., 1990) and then developed to different architectures by many 
scholars (Krizhevsky et al., 2017; Simonyan and Zisserman, 2015). It 
usually consists of one or more convolution, pooling, or fully connected 
operation layers. The convolution operation is to extract different fea-
tures from the input layer. The pooling operation is to find the macro 
scale features and reduce the dimensionality of feature maps (Chen 
et al., 2020; Wang et al., 2020). The fully connected layer reorganizes 
extracted features to map to the final output. 

In this study, a 1D-CNN architecture was built similar to those 
described in the literature (Liu et al., 2018; Tsakiridis et al., 2020). Fig. 1 
shows the overall architecture of the proposed CNN model. First, the 
input layer is the spectral data which has 203 bands ranging from 400 to 
2429 nm with 10 nm intervals. Here, we resampled the spectral data 
from its original recording resolution 1 nm to 10 nm and down sampling 
the spectral resolution can reduce the spectral noise and the redundancy 
of spectral data for prediction of soil properties (Chen et al., 2021; 
Tsakiridis et al., 2020). The input layer could be spectral reflectance R or 
its transformation such as logarithmic (log(1/R)), continuum removal 
(CR) (Clark and Roush, 1984), standard normal variate (SNV) (Barnes 
et al., 1989), first derivative (FD) (Norris and Williams, 1984) or second 
derivative (SD) (Rinnan et al., 2009) etc. We finally used the SNV 
transformed data as model inputs. The reason was that soil moisture 
lowers spectral reflectance at longer wavelengths more than shorter 
wavelengths (Lobell and Asner, 2002; Yue et al., 2019). This inharmonic 
reflectance reduction originates from varying water absorption co-
efficients to which SNV is very suitable for minimizing this viability. The 
second layer is a 1-D convolutional layer with 16 filters and the kernel 
size is 3*1. The Batch Normalization function is used to normalize the 
layer by shifting and scaling the activations, and Leaky ReLU (α = 0.01) 
is used as an activation function. The third layer is a max pooling layer 
with size 2*1, which down-samples the filtered signals by halving the 
dimensionality. The fourth layer is another 1-D convolutional layer with 
the same parameters as the second layer but has 32 filters. The fifth layer 
is a flatten layer which contains 3232 nodes in this study. The sixth and 
seventh layer are both fully connected (Dense) layer with sizes of 10 and 
6 respectively and a Leaky ReLU activation (α = 0.01) function. All the 
convolutional layers and fully connected layers use L2 kernel regularizer 
(λ2 = 0.0004) to penalize the weights and reduce over-fitting. The last 

layer uses the ReLU activation function to determine the soil moisture 
value. The layer characteristics are summarized in Table 3. 

2.2.2. Calibration for model transfer 
In this study, two different situations were considered to evaluate the 

performance of a CNN model for transfer learning calibration as shown 
in Fig. 2. 

Situation 1- different soil sample background and same measurement 
(DSSM) conditions: Firstly, model was built on site 1 (mark the model as 
CNN-m1) and tested to site 2 without calibration (mark the model as 
CNN-m2′

1 with the subscript 1 representing that this model is built from 
site 1 and the label apostrophe “’” representing that the model was built 
without calibration). Secondly, the model CNN-m1 was recalibrated 
using the soil samples from site 2 to test its transferability (mark the 
model as CNN-m21). Lastly, model CNN-m2 was developed using the 
samples from site 2 itself to compare the performances. 

Situation 2- different soil sample background and different mea-
surement (DSDM) condition: Firstly, model was built on site 1 and site 2 
(mark the model as CNN-m12) and tested to site 3 without calibration 
(mark the model as CNN-m3′

12). Secondly, the model CNN-m12 was 
recalibrated using the soil samples from site 3 to test its transferability 
(mark the model as CNN-m312). Lastly, model CNN-m3 was developed 
using the samples from site 3 itself to compare the performances. 

To compare the accuracy of the proposed CNN model, we also tested 
the performance of Partial Least Squares (PLS) regression under the 
same conditions. PLS performs linear regression in a transformed input 

Table 2 
Soil moisture information for 3 sites.  

Location Numbers of SM data Min* Max* Mean* SD* Skewness Kurtosis 

Site 1 1779 0  0.506  0.189  0.156  0.211 − 1.374 
Site 2 1700 0  0.458  0.192  0.152  0.193 − 1.396 
Site 3 211 0.011  0.646  0.134  0.095  1.184 3.326 

* g water/ g soil. 

Fig. 1. Architecture of proposed CNN model for SM prediction.  

Table 3 
Sequence and description of the layers used in the CNN architecture.  

Layer Type Kernel 
size 

Filters width Activation 

1 Input + batch 
norm. 

– – 203 – 

2 Convolutional +
batch norm. 

3*1 16 203 Leaky ReLU 
(alpha = 0.01) 

3 Maxpooling 2*1 – 101 – 
4 Convolutional +

batch norm. 
3*1 32 101 Leaky ReLU 

(alpha = 0.01) 
5 Flatten – – 3232 – 
6 Dense (Fully 

connected) 
– – 10 Leaky ReLU 

(alpha = 0.01) 
7 Dense (Fully 

connected) 
– – 6 Leaky ReLU 

(alpha = 0.01) 
8 Output – – 1 ReLU  
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space, which is formed by successively selecting orthogonal factors 
(latent variables) to maximize the covariance between predictors and 
the response variable (Wold et al., 1983). It has been commonly used in 
estimating and mapping soil properties (Araujo et al., 2014; Goge et al., 
2014; Guerrero et al., 2016). The PLS model used in this study was the 
SIMPLS algorithm (Dejong, 1993) implemented using MATLAB 2020a 
and calibrated with the spiking method by adding a series of spiking 
subsets from the target area (Hong et al., 2018). 

2.2.3. Model assessment 
The model performance was assessed in terms of coefficient of 

determination (R2), root-mean-square error (RMSE) and the ratio of 
performance to interquartile range (RPIQ), which were calculated by the 
following equations: 

R2 = 1 −

∑n
i=1

(

yi − ŷi

)2

∑n
i=1(yi − y)2 (1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(

ŷi − yi

)2
√

(2)  

RPIQ =
IQR

RMSE
=

Q3 − Q1
RMSE

(3)  

where n stands for the number of samples, y is the measured value, y is 
the mean of the measured value of SM, and ŷ is the predicted value of 
SM. RPIQ takes both the prediction error and the variation of observed 
values into account, without making assumptions about the distribution 
of the observed values (Tsakiridis et al., 2020). It is defined as the 
interquartile range (IQR) of the observed values divided by the RMSE of 
prediction. Q3 and Q1 are the 25th percentile and 75th percentile of the 
observed values, respectively. 

2.3. CNN experiment environment 

All the CNN models for estimating SM were developed using the 
TensorFlow 2.0 software with python. TensorFlow is a flexible software 
library which enables users to efficiently program and train neural 
network and deploy them to production (Pang et al., 2020). The hard-
ware environment of this study was NVIDIA Quadro P2000 graphics 
card, Intel i7-8850H processor, and the memory was 32 GB. The Adam 
optimizer with a default learning rate of 0.001 and mean square error 
(MSE) loss with an early stop (patience = 10) was used for training these 
models. 

3. Results 

3.1. SM prediction results 

A total of 3479 SM samples including 1779 from site 1 and 1700 from 
site 2 were combined to build the models CNN/PLS-m12. We randomly 
selected 75% (2609 samples) of the total for model training and 25% 
(653 samples) from the 2609 subsamples for validation. A subsample of 
25% (870 samples) from the total of 3479 samples was used for inde-
pendent testing. This training, validation and testing subsampling was 
repeated for 10 rounds. An example for training and validation loss 
curves for the CNN model is shown in Fig. 3. It took approximately 3 to 5 
min and 300 to 400 epochs to process each round for the CNN-m12 
model. For the 10 rounds of independent testing, the scatter plots for 
measured and predicted SM results are shown in Fig. 4a and Fig. 4b for 
CNN-m12 and PLS-m12, respectively. An R2 value boxplot for 10 round 
independent tests of CNN-m12 and PLS-m12 is shown in Fig. 5. 
Compared with the PLS-m12, the CNN-m12 model performed better. Its 
average R2, RMSE and RPIQ values were 0.989, 0.016 and 19.59, 
respectively, while the PLS-m12 model corresponded to 0.976, 0.024 
and 12.99, respectively. 

Fig. 2. Two different conditions for transfer learning.  

Fig. 3. An example of training and validation loss curves for CNN-m12.  
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3.2. Calibration in different conditions 

3.2.1. Different soil sample background and same measurement (DSSM) 
conditions 

The soil samples from site 1 are much greater in CaCO3 and coarser 
texture than those from site 2. The CNN/PLS-m1 model was built using 
the 1779 samples from site 1. It was tested using 90% random sampling 
of 1700 samples from site 2 without calibration namely CNN/PLS- m2′

1. 
Next, the CNN/PLS-m1 model was recalibrated using 10% random 
sampling of 1700 samples from site 2. This model was named as CNN/ 
PLS-m21 and tested on the other 90% samples of site 2. The third model 
namely CNN/PLS-m2 used 10% random sampling of 1700 samples from 
site 2 and was tested on the remaining 90% of the samples. The results 
from 10 round independent testing of the three procedures were 
assessed based on the corresponding scatter plots between measured and 
predicted SM together (Fig. 6). The R2 value boxplot of independent 
testing for the three CNN models for 10 rounds was shown in Fig. 7. 

The following observations can be made from the results described 
above: a) regardless of whether it is recalibrated or not, the performance 
of the CNN model is better than the PLS model when transferred to a new 
target area (Fig. 6a vs 6b, Fig. 6c vs 6d); b) even if the same 

measurement conditions are maintained, transferring a trained model to 
another area without calibration may also cause large deviation. The 
extent of deviation may depend on the difference between the two sites. 
In this study, soil samples with low SM were estimated at a higher ac-
curacy than the samples with high SM (Fig. 6a); c) using even a small 
dataset to recalibrate a trained model based on the transfer learning 
method can lead to a stable and highly accurate result when generalizing 
a model to a new area (Fig. 6a vs 6c, Fig. 7); d) using a small dataset to 
train a new CNN model was unstable and even performed worse than the 
traditional method. In this study, 10% of 1700 samples from site 2 were 
randomly selected for training the model CNN-m2 and PLS-m2. The 
testing result showed a difficulty to train the model CNN-m2 because the 
model was prone to overfitting during training and thus the performance 
on the testing dataset was unstable (sometimes has high accuracy and 
sometimes has very low accuracy) (Fig. 6e vs 6f and Fig. 7). 

3.2.2. Different soil sample backgrounds and different measurement 
(DSDM) conditions 

The soil samples from site 1 and site 2 were measured under the same 
laboratory conditions, while the samples from site 3 were measured 
under different conditions. We tested the model CNN/PLS-m12 devel-
oped in section 3.2 in two testing scenarios, i.e., using 50% (random 
sampling) of the samples from site 3 without calibration as well as 
recalibrating the CNN/PLS-m12 model with 50% (random sampling) of 
211 samples from site 3. In the two scenarios, the model was tested using 
the other 50% of the sample from site 3, and thus called CNN/PLS-m3′

12 
and CNN/PLS-m312, respectively. The third model CNN/PLS-m3 was 
also built using 50% (random sampling) of 211 samples from site 3 and 
tested it on the other 50% samples. The results from 10 round inde-
pendent testing of the three procedures were assessed based on the 
corresponding scatter plots between measured and predicted SM 
together (Fig. 8). The R2 value boxplot of independent testing for the 
three CNN models for 10 rounds is shown in Fig. 9. 

The results suggested that a) transferring trained models to another 
target area without calibration may not be practical as shown by the 
large negative R2 (CNN-m3′

12 was − 0.224 and PLS-m3′
12 was − 0.346) 

and very low RPIQ value (CNN-m3′
12 was 1.26 and PLS-m3′

12 was 1.11) 
in the case that the measurement conditions differ a lot (Fig. 8a and 8b); 
b) knowledge-based transfer learning for recalibrating the CNN model 
could help improve the model performance as indicated by the average 
R2 values improved from 0.298 (Fig. 8e) to 0.620 (Fig. 8c); c) data-based 
spiking calibration of the PLS model might even introduce greater de-
viations because of the different measurement conditions (Fig. 8d vs 

(a) (b)

Fig. 4. Scatter plots for measured and model predicted SM for 10 round independent tests (a) CNN-m12; (b) PLS-m12. The values listed on the upper left corner are 
the average accuracy of 10 round tests. 

Fig. 5. Comparison of R2 values for 10 round independent tests of CNN-m12 
and PLS-m12. The three lines in the boxplot represent the 25th percentile 
(Q1), median (Q2), and 75th percentile (Q3), respectively. 
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Fig. 8f); d) the same with CNN-m2, a new CNN-m3 model trained using a 
small dataset was unstable and performed worse than PLS model (Fig. 8e 
vs 8f and Fig. 9). 

4. Discussion 

4.1. Model architecture for SM prediction 

The CNN model has demonstrated its strong capacity of predicting 

(a) (b)

(c) (d)

Fig. 6. Scatter plots for measured and predicted SM resulting from 10 round independent model tests (a) CNN-m2′
1; (b) PLS-m2′

1; (c) CNN-m21; (d) PLS-m21; (e) 
CNN-m2; (f) PLS-m2. The values listed at the upper left corner are the average accuracy for the 10 round tests. 
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soil properties with Vis-NIR spectral data in many recent literatures (Ng 
et al., 2020; Padarian et al., 2018; Tsakiridis et al., 2020; Wang et al., 
2018). The model architectures in these studies were similar, mostly 
including several convolution layers and max pooling layers in 
conjunction with several full dense layers and an output layer. The 
convolution operation is very suitable for extracting valuable absorption 
peaks/valleys from the spectral data by adjusting the parameters of the 
convolutional kernels through. However, it is difficult to predetermine 
the optimal parameters (kernel size, quantity of filters, etc.) in the CNN 
architecture which can vary among soil samples and depend on soil 
properties. In this study, a strong performing CNN model became un-
stable when using a small dataset (170 samples for CNN-m2 and 106 
samples for CNN-m3) to train - there were overfitting outliers when 
training the two models (Figs. 7 and 9). The two models performed even 
worse than traditional PLS models. We believe that the CNN model ar-
chitecture could be revised to perform better for the scenarios CNN-m2 
and CNN-m3, but that is not conducive to analyzing the performance of 
transfer learning. The CNN model performed better when trained using a 
large dataset (2609 samples for CNN-m12). It indicates that a large 
number of data is required to obtain a strong performing CNN model. In 
other words, the complexity of the CNN model architecture should be 
coordinated with the number of samples under a certain soil back-
ground. In this study, the convolutional kernel size was set to 3*1 and 
the first convolutional layers had 16 filters (Fig. 1), resulting in a model 
having 34,131 trainable parameters and 96 non-trainable parameters. 
The model performed well for 2,609 soil samples. The model architec-
ture developed by Tsakiridis (2020) has a kernel size of 7*1, and a total 
number of trainable parameters of 85,373 and performed well for pre-
dicting soil properties such as clay, silt, organic carbon of about 20,000 
soil samples. This model architecture was also prone to overfitting and 
poor fitting when trained with the soil samples used in the present study 
(the results are not shown here). Batch normalization and L2 kernel 
regularizer (λ2 = 0.0004) methods have been used for reducing over-
fitting, one may rely on this experience and develop a suitable CNN 
architecture for specific applications. 

4.2. Reduced accuracy from DSSM to DSDM 

We should realize that the number of soil samples used in this study 
is limited. A total 40 soil samples from site 1 and site 2 were expanded to 
3479 samples for modeling through dividing the samples to two repli-
cates, adding water to produce 15 moisture levels, and recording 3 
spectral measurements for each soil sample. Replication upon replica-
tion purposely included the variation attributed to incident-exit angle 
spectral measurements and subsampling variation. In addition, all these 
soil samples were sieved to grains smaller than 2 mm after a light 
grinding with mortar and pestle to minimize variation due to grain size. 

All the soil spectral and moisture measurement were carried in labora-
tory without in the field. The sample preparation steps for site 1 and site 
2 tend to eliminate other interferences such as different soil types or 
different spectral measurement conditions. This explains why that the 
accuracy of the model CNN-m12 was as high as 0.989 (average R2 

value), and the R2 value could still be as high as 0.782 when the model 
built from site 1 was independently tested on site 2 even without cali-
bration. However, different soil types (composition, particle size, etc.) 
make CNN model difficult to estimate SM accurately without a sufficient 
learning. In this study, a 10 round CNN-m3 model was built on 50% 
samples from a small dataset site 3 (211 samples) and then tested on 
another 50% samples resulting in a low average R2 value of 0.298. 
Therefore, a large soil library with SM content and soil spectra is 
necessary for knowledge learning to be suitable for more different soil 
types. Considering that there will be more and more data in the future 
and the strong knowledge-based transferability of CNN model, it will 
have broad application prospects. 

5. Conclusions 

CNN models have advantages for mining the relationship between 
spectral data and soil properties especially using a large number of 
samples. More importantly, the CNN model can be potentially general-
ized to other unknown target areas with a small amount of calibration 
data. In this study, a 1D-CNN model was built based on soil samples 
including different compositions and types. The results showed that the 
knowledge-based transfer learning method could improve the R2 from 
0.845 to 0.983 under the DSSM conditions and the R2 from 0.298 to 
0.620 under the DSDM conditions when transferring a trained CNN 
model to an unknown target area. Comparing with traditional PLS 
method, the results showed that the knowledge-based transfer learning 
method for CNN models has stronger potential for various soil back-
grounds or different measurement conditions. 
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